ROHM BU2396KN

TECHNICAL NOTE
High-performance Clock Generator Series
3ch Clock Generator
for Digital Cameras
BU2394KN,BU2396KN
●Description
These clock generators are an IC generating three types of clocks – CCD, USB, and VIDEO clocks – necessary for digital
still camera systems and digital video camera systems, with a single chip through making use of the PLL technology.
Generating these clocks with a single chip allows for the simplification of clock system, little space occupancy, reduction in
the number of components used for mobile camera equipment, which is becoming increasingly downsized and less costly.
●Features
1) Connecting a crystal oscillator generates multiple clock signals with a built-in PLL.
2) The CCD clock provides switching selection outputs.
3) Providing the output of low period-jitter clock.
4) Incorporating compact package VQFN20 most suited for mobile devices.
5) Single power supply of 3.3 V
●Applications
Generation of clocks used in digital still camera and digital video camera systems
●Lineup
BU2394KN
BU2396KN
Supply voltage
3.0V~3.6V
3.0V~3.6V
Operating temperature range
-5~+70℃
-5~+70℃
14.318182MHz
12.000000MHz
Reference input clock
28.636363MHz
Output CCD clock
135.000000MHz
36.000000MHz
110.000000MHz
30.000000MHz
108.000000MHz
24.000000MHz
98.181818MHz
Output USB clock
48.008022MHz
Output VIDEO clock
14.318182MHz
17.734450MHz
12.000000MHz
27.000000MHz
●Absolute Maximum Ratings(Ta=25℃)
Parameter
Symbol
Limit
Unit
Supply voltage
VDD
-0.5~7.0
V
Input voltage
VIN
-0.5~VDD+0.5
V
Storage Temperature range
Tstg
-30~125
℃
Power dissipation
PD
530
mW
*1 Operating temperature is not guaranteed.
*2 In the case of exceeding Ta = 25℃, 5.3mW should be reduced per 1℃.
*3 The radiation-resistance design is not carried out.
*4 Power dissipation is measured when the IC is mounted to the printed circuit board.
Sep. 2008
●Recommended Operating Range
Parameter
Symbol
Limit
Unit
Supply voltage
VDD
3.0~3.6
V
Input H voltage
VINH
0.8VDD~VDD
V
Input L voltage
VINL
0.0~0.2VDD
V
Operating temperature
Topr
-5~70
℃
CL
15(MAX)
pF
Output load
●
Electrical characteristics
BU2394KN(VDD=3.3V, Ta=25℃, unless otherwise specified.)
XTAL_SEL=H with crystal oscillator at a frequency of 28.636363 MHz, while XTAL_SEL=L at 14.318182 MHz
Parameter
Symbol
【Action circuit current】
Limit
Unit
Condition
Min.
Typ.
Max.
IDD
-
45
60
mA
CLK1
VOH1
VDD-0.5
VDD-0.2
-
V
When current load = - 9.0mA
CLK2
VOH2
VDD-0.5
VDD-0.2
-
V
When current load = - 7.0mA
REF_CLK
VOHR
VDD-0.5
VDD-0.2
-
V
When current load = - 4.5mA
CLK1
VOL1
-
0.2
0.5
V
When current load =11mA
CLK2
VOL2
-
0.2
0.5
V
When current load =9.0mA
REF_CLK
VOLR
-
0.2
0.5
V
When current load =5.5mA
Specified by a current value
running when a voltage of 0V is
applied to a measuring pin.
(R=VDD/I)
At no load
【Output H voltage】
【Output L voltage】
【Pull-Up resistance value】
FS1, FS2, FS3,
CLK2ON, XTAL_SEL
Pull-Up
R
125
250
375
Ω
CLK1 FS2:H FS3:H
Fclk1-1
-
135.000000
-
MHz
XTAL×(1188/63)/2
CLK1 FS2:H FS3:L
Fclk1-2
-
108.000000
-
MHz
XTAL×(1056/70)/2
CLK1 FS2:L FS3:L
Fclk1-3
-
98.181818
-
MHz
XTAL×(864/63)/2
CLK1 FS2:L FS3:H
Fclk1-4
-
110.000000
-
MHz
XTAL×(968/63)/2
CLK2
Fclk2-2
-
48.008022
-
MHz
XTAL×(228/17)/4
REF_CLK FS1:H
Fref1-1
-
14.318182
-
MHz
XTAL Output
REF_CLK FS1:L
Fref1-2
-
17.734450
-
MHz
XTAL×(706/57)/10
Duty1
45
50
55
%
Duty2
-
50
-
%
Tr
-
2.5
-
nsec
Tf
-
2.5
-
nsec
P-J1σ
-
30
-
psec
P-J
MIN-MAX
-
180
-
psec
【Output frequency】
【Output waveform】
Duty1 100MHz or less
Duty2 100MHz or more
Rise time
Fall time
Measured at a voltage of 1/2 of
VDD
Measured at a voltage of 1/2 of
VDD
Period of transition time required
for the output to reach 80% from
20% of VDD.
Period of transition time required
for the output to reach 20% from
80% of VDD.
【Jitter】
Period-Jitter 1σ
Period-Jitter MIN-MAX
※1
※2
【Output Lock-Time】
Tlock
-
-
1
msec ※3
Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to XTALIN. If the
input frequency is set to values shown below, the output frequency will be as listed above.
When XTAL_SEL is set to H, the input frequency on XTALIN will be 28.636363 MHz.
When XTAL_SEL is set to L, the input frequency on XTALIN will be 14.318182 MHz.
2/16
BU2396N(VDD=3.3V, Ta=25℃, Crystal =12.000000MHz, unless otherwise specified.)
Parameter
Symbol
【Action circuit current】
Limit
Unit
Condition
Min.
Typ.
Max.
IDD
-
23
35
mA
TGCLK
VOHT
VDD-0.5
-
-
V
VCLK
VOHV
VDD-0.5
-
-
V
When current load =-5.0mA
VOHU
VDD-0.5
-
-
V
When current load =-5.0mA
TGCLK
VOLT
-
-
0.5
V
When current load =5.0mA
VCLK
VOLV
-
-
0.5
V
When current load =5.0mA
UCLK
VOLU
-
-
0.5
V
When current load =5.0mA
At no load
【Output H voltage】
UCLK
When current load =-5.0mA
【Output L voltage】
【Pull-Up resistance value】
TGCLK_SEL1
TGCLK_SEL2
Pull-up
R
125
250
375
KΩ
Specified by a current value
running when a voltage of 0V is
applied to a measuring pin.
(R=VDD/I)
KΩ
Specified by a current value
running when a VDD is applied to
a measuring pin.
(R=VDD/I)
【Pull-Down resistance value】
TGCLK_EN, TGCLK_PD
VCLK_EN, VCLK_PD
Pull-down
R
25
50
75
【Output frequency】
TGCLK
SEL1:L SEL2:L
TGCLK1
24.000000
MHz
XTAL×(48/4)/6
TGCLK
SEL1:L SEL2:H
TGCLK2
30.000000
MHz
XTAL×(60/4)/6
TGCLK
SEL1:H
TGCLK3
36.000000
MHz
XTAL×(54/3)/6
VCLK
VCLK
27.000000
MHz
XTAL×(54/3)/8
UCLK
UCLK
12.000000
MHz
XTAL output
【Output waveform】
Duty
Duty
45
50
55
%
Rise time
Tr
2.0
nsec
Tf
2.0
nsec
P-J1σ
50
psec
P-J
MIN-MAX
300
psec
Fall time
Measured at a voltage of 1/2 of VDD
Period of transition time required
for the output to reach 80% from
20% of VDD.
Period of transition time required
for the output to reach 20% from
80% of VDD.
【Jitter】
Period-Jitter 1σ
Period-Jitter MIN-MAX
※1
※2
【Output Lock-Time】
Tlock
1
msec ※3
Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to XTALIN.
If the input frequency is set to 12.000000MHz, the output frequency will be as listed above.
Common to BU2394KN, BU2396KN
※1 Period-Jitter 1σ
This parameter represents standard deviation (=1σ) on cycle distribution data at the time when the output clock cycles are
sampled 1000 times consecutively with the TDS7104 Digital Phosphor Oscilloscope of Tektronix Japan, Ltd.
※2 Period-Jitter MIN-MAX
This parameter represents a maximum distribution width on cycle distribution data at the time when the output clock cycles are
sampled 1000 times consecutively with the TDS7104 Digital Phosphor Oscilloscope of Tektronix Japan, Ltd.
※3 Output Lock-Time
The Lock-Time represents elapsed time after power supply turns ON to reach a 3.0V voltage, after the system is switched from
Power-Down state to normal operation state, or after the output frequency is switched, until it is stabilized at a specified frequency,
respectively.
3/16
●Reference data (BU2394KN basic data)
10dB/div
1.0V/div
1.0V/div
RBW=1KHz
VBW=100Hz
1.0nsec/div
500psec/div
10KHz/div
Fig.1 135MHz output wave
At VDD=3.3V and CL=15pF
Fig.2 135MHz Period-Jitter
At VDD=3.3V and CL=15pF
Fig.3 135MHz Spectrum
At VDD=3.3V and CL=15pF
10dB/div
1.0V/div
1.0V/div
RBW=1KHz
VBW=100Hz
2.0nsec/div
500psec/div
10KHz/div
Fig.4 110MHz output wave
At VDD=3.3V and CL=15pF
Fig.5 110MHz Period-Jitter
At VDD=3.3V and CL=15pF
Fig.6 110MHz Spectrum
At VDD=3.3V and CL=15pF
10dB/div
1.0V/div
1.0V/div
RBW=1KHz
VBW=100Hz
2.0nsec/div
500psec/div
10KHz/div
Fig.7 108MHz output wave
At VDD=3.3V and CL=15pF
Fig.8 108MHz Period-Jitter
At VDD=3.3V and CL=15pF
Fig.9 108MHz Spectrum
At VDD=3.3V and CL=15pF
10dB/div
1.0V/div
1.0V/div
RBW=1KHz
VBW=100Hz
2.0nsec/div
500psec/div
10KHz/div
Fig.10 98MHz output wave
At VDD=3.3V and CL=15pF
Fig.11 98MHz Period-Jitter
At VDD=3.3V and CL=15pF
Fig.12 98MHz Spectrum
At VDD=3.3V and CL=15pF
4/16
●Reference data (BU2394KN basic data)
10dB/div
1.0V/div
1.0V/div
RBW=1KHz
VBW=100Hz
5.0nsec/div
500psec/div
10KHz/div
Fig.13 48MHz output wave
At VDD=3.3V and CL=15pF
Fig.14 48MHz Period-Jitter
At VDD=3.3V and CL=15pF
Fig.15 48MHz Spectrum
At VDD=3.3V and CL=15pF
10dB/div
1.0V/div
1.0V/div
RBW=1KHz
VBW=100Hz
10.0nsec/div
500psec/div
10KHz/div
Fig.16 17.7MHz output wave
At VDD=3.3V and CL=15pF
Fig.17 17.7MHz Period-Jitter
At VDD=3.3V and CL=15pF
Fig.18 17.7MHz Spectrum
At VDD=3.3V and CL=15pF
10dB/div
1.0V/div
1.0V/div
RBW=1KHz
VBW=100Hz
10.0nsec/div
500psec/div
10KHz/div
Fig.19 14.3MHz output wave
At VDD=3.3V and CL=15pF
Fig.20 14.3MHz Period-Jitter
At VDD=3.3V and CL=15pF
Fig.21 14.3MHz Spectrum
At VDD=3.3V and CL=15pF
5/16
●Reference data (BU2394KN
Temperature and Supply voltage variations data)
90
52
51
VDD=2.9V
VDD=3.3V
VDD=3.7V
50
49
48
47
46
80
70
60
VDD=2.9V
VDD=3.3V
VDD=3.7V
50
40
30
20
0
25
50
75
-25
100
0
100
54
90
52
51
VDD=2.9V
VDD=3.3V
VDD=3.7V
47
46
-25
0
25
50
75
70
60
50
VDD=2.9V
VDD=3.3V
VDD=3.7V
40
30
20
0
25
50
75
54
90
47
46
Period-jitter1σ:PJ-1σ[psec]
100
VDD=2.9V
VDD=3.3V
VDD=3.7V
-25
0
25
50
75
70
60
VDD=2.9V
VDD=3.3V
VDD=3.7V
50
40
30
20
51
50
VDD=2.9V
VDD=3.3V
VDD=3.7V
46
Period-jitter1σ:PJ-1σ[psec]
90
52
0
25
50
75
25
50
75
100
50
75
100
500
400
300
VDD=2.9V
VDD=3.3V
VDD=3.7V
200
100
-25
100
0
25
50
75
100
Temperature:T[℃]
Fig.30 108MHz
Temperature-Period-Jitter MIN-MAX
600
80
70
60
VDD=2.9V
VDD=3.3V
VDD=3.7V
50
40
30
20
500
400
VDD=2.9V
VDD=3.3V
VDD=3.7V
300
200
100
10
0
0
45
25
Fig.27 110MHz
Temperature-Period-Jitter MIN-MAX
Fig.29 108MHz
Temperature-Period-Jitter 1σ
54
0
0
Temperature:T[℃]
100
-25
100
0
-25
55
47
200
10
Fig.28 108MHz
Temperature-Duty
48
VDD=2.9V
VDD=3.3V
VDD=3.7V
600
Temperature:T[℃]
49
300
Temperature:T[℃]
80
100
53
100
400
-25
0
45
75
500
100
Fig.26 110MHz
Temperature-Period-Jitter 1σ
51
50
Fig.24 135MHz
Temperature-Period-Jitter MIN-MAX
Temperature:T[℃]
52
25
0
-25
55
48
0
10
100
53
Duty:Duty[%]
-25
Temperature:T[℃]
80
Fig.25 110MHz
Temperature-Duty
49
100
600
Temperature:T[℃]
50
200
100
0
45
Duty:Duty[%]
75
Period-jitterMIN-MAX:
PJ-MIN-MAX[psec]
Duty:Duty[%]
53
Period-jitter1σ:PJ-1σ[psec]
55
48
50
Fig.23 135MHz
Temperature-Period-Jitter 1σ
Fig.22 135MHz
Temperature-Duty
49
VDD=2.9V
VDD=3.3V
VDD=3.7V
300
Temperature:T[℃]
Temperature:T[℃]
50
25
Period-jitterMIN-MAX:
PJ-MIN-MAX[psec]
-25
400
0
0
45
500
10
Period-jitterMIN-MAX:
PJ-MIN-MAX[psec]
Duty:Duty[%]
53
600
Period-jitterMIN-MAX:
PJ-MIN-MAX[psec]
100
54
Period-jitter1σ:PJ-1σ[psec]
55
-25
0
25
50
75
100
-25
0
25
50
75
100
Temperature:T[℃]
Temperature:T[℃]
Temperature:T[℃]
Fig.31 98MHz
Temperature-Duty
Fig.32 98MHz
Temperature-Period-Jitter 1σ
Fig.33 98MHz
Temperature-Period-Jitter MIN-MAX
6/16
●Reference data (BU2394KN
Temperature and Supply voltage variations data)
90
52
51
50
49
VDD=2.9V
VDD=3.3V
VDD=3.7V
48
47
46
70
60
50
40
30
20
0
25
50
75
0
50
75
-25
100
0
25
50
75
100
Fig.35 48MHz
Temperature-Period-Jitter 1σ
Fig.36 98MHz
Temperature-Period-Jitter MIN-MAX
52
51
50
49
VDD=2.9V
VDD=3.3V
VDD=3.7V
48
46
Period-jitter1σ:PJ-1σ[psec]
90
47
600
80
VDD=3.7V
VDD=3.3V
VDD=2.9V
70
60
50
40
30
20
0
25
50
75
0
25
50
75
54
90
53
52
51
50
49
VDD=2.9V
VDD=3.3V
VDD=3.7V
46
Period-jitter1σ:PJ-1σ[psec]
100
50
75
100
80
VDD=3.7V
VDD=3.3V
VDD=2.9V
70
60
50
40
30
20
0
25
50
40
VDD=3.7V
VDD=3.3V
VDD=2.9V
10
0
25
50
75
25
50
75
100
Fig.39 17.7MHz
Temperature-Period-Jitter MIN-MAX
500
VDD=3.7V
VDD=3.3V
VDD=2.9V
400
300
200
100
0
-25
60
0
0
10
50
75
100
Fig.41 14.3MHz
Temperature-Period-Jitter 1σ
Fig.40 14.3MHz
Temperature-Duty
20
-25
600
Temperature:T[℃]
Temperature:T[℃]
30
100
Temperature:T[℃]
0
45
25
200
100
Fig.38 17.7MHz
Temperature-Period-Jitter 1σ
55
0
300
Temperature:T[℃]
Fig.37 17.7MHz
Temperature-Duty
47
VDD=3.7V
VDD=3.3V
VDD=2.9V
400
0
-25
100
Temperature:T[℃]
48
500
10
0
45
Duty:Duty[%]
25
Temperature:T[℃]
53
IDD:IDD[mA]
100
Fig.34 48MHz
Temperature-Duty
100
-25
200
Temperature:T[℃]
54
-25
300
Temperature:T[℃]
55
-25
VDD=3.7V
VDD=3.3V
VDD=2.9V
400
0
-25
100
Period-jitterMIN-MAX:
PJ-MIN-MAX[psec]
-25
500
10
0
45
Duty:Duty[%]
VDD=3.7V
VDD=3.3V
VDD=2.9V
80
Period-jitterMIN-MAX:
PJ-MIN-MAX[psec]
Duty:Duty[%]
53
600
Period-jitterMIN-MAX:
PJ-MIN-MAX[psec]
100
54
Period-jitter1σ:PJ-1σ[psec]
55
100
Temperature:T[℃]
Fig.43 At 1chip operation
Temperature-Consumption current
7/16
-25
0
25
50
75
100
Temperature:T[℃]
Fig.42 14.3MHz
Temperature-Period-Jitter MIN-MAX
●Reference data (BU2396KN basic data)
z
10dB/div
1.0V/div
1.0V/div
RBW=1KHz
VBW=100Hz
500psec/div
10KHz/div
Fig.45 136MHz Period-Jitter
At VDD=3.3V and CL=15pF
Fig.46 36MHz Spectrum
At VDD=3.3V and CL=15pF
5.0nsec/div
Fig.44 36MHz output waveform
At VDD=3.3V and CL=15pF
10dB/div
1.0V/div
1.0V/div
RBW=1KHz
VBW=100Hz
500psec/div
10KHz/div
Fig.48 30MHz Period-Jitter
At VDD=3.3V and CL=15pF
Fig.49 30MHz Spectrum
At VDD=3.3V and CL=15pF
5.0nsec/div
Fig.47 30MHz output waveform
At VDD=3.3V and CL=15pF
10dB/div
1.0V/div
1.0V/div
RBW=1KHz
VBW=100Hz
500psec/div
10KHz/div
Fig.51 24MHz Period-Jitter
At VDD=3.3V and CL=15pF
Fig.52 24MHz Spectrum
At VDD=3.3V and CL=15pF
5.0nsec/div
Fig.50 24MHz output waveform
At VDD=3.3V and CL=15pF
10dB/div
1.0V/div
1.0V/div
RBW=1KHz
VBW=100Hz
5.0nsec/div
Fig.53 27MHz output waveform
At VDD=3.3V and CL=15pF
500psec/div
10KHz/div
Fig.54 27MHz Period-Jitter
At VDD=3.3V and CL=15pF
Fig.55 27MHz Spectrum
At VDD=3.3V and CL=15pF
8/16
●Reference data (BU2396KN basic data)
10dB/div
1.0V/div
1.0V/div
RBW=1KHz
VBW=100Hz
500psec/div
10KHz/div
Fig.57 12MHz Period-Jitter
At VDD=3.3V and CL=15pF
Fig.58 12MHz Spectrum
At VDD=3.3V and CL=15pF
5.0nsec/div
Fig.56 12MHz output waveform
At VDD=3.3V and CL=15pF
●Reference data (BU2396KN
VDD=2.9V
VDD=3.3V
VDD=3.7V
52
51
50
49
48
47
46
80
VDD=2.9V
VDD=3.3V
VDD=3.7V
70
60
50
40
30
20
10
0
25
50
75
-25
100
0
200
100
50
75
-25
100
0
25
50
75
100
Temperature:T[℃]
Temperature: T[ ℃]
Fig.60 36MHz
Temperature-Period-Jitter 1σ
Fig.61 36MHz
Temperature-Period-Jitter MIN-MAX
90
VDD=2.9V
VDD=3.3V
VDD=3.7V
52
51
50
49
48
47
46
Period-jitter1σ:PJ-1σ[psec]
100
54
600
80
70
60
VDD=2.9V
VDD=3.3V
VDD=3.7V
50
40
30
20
10
25
50
75
-25
100
0
Fig.62 30MHz
Temperature-Duty
90
VDD=2.9V
VDD=3.3V
VDD=3.7V
50
49
48
47
46
Period-jitter1σ:PJ-1σ[psec]
100
54
51
50
75
25
50
75
200
100
-25
0
100
25
50
75
100
Temperature: T[ ℃]
Fig.64 30MHz
Temperature-Period-Jitter MIN-MAX
600
80
70
60
VDD=2.9V
VDD=3.3V
VDD=3.7V
50
40
30
20
500
400
VDD=2.9V
VDD=3.3V
VDD=3.7V
300
200
100
10
0
0
45
0
VDD=2.9V
VDD=3.3V
VDD=3.7V
300
100
Fig.63 30MHz
Temperature-Period-Jitter 1σ
55
52
400
Temperature:T[℃]
Temperature:T[℃]
53
25
Period-jitterMIN-MAX:
PJ-MIN-MAX[psec]
0
500
0
0
45
-25
VDD=2.9V
VDD=3.3V
VDD=3.7V
300
Fig.59 36MHz
Temperature-Duty
55
-25
400
Temperature:T[℃]
53
Duty:Duty[%]
25
Period-jitterMIN-MAX :
PJ-MIN-MAX[psec]
-25
500
0
0
45
Duty:Duty[%]
600
Period-jitterMIN-MAX :
PJ-MIN-MAX[psec]
90
Period-jitter1σ:PJ-1σ[psec]
100
54
53
Duty:Duty[%]
Temperature and Supply voltage variations data)
55
-25
0
25
50
75
100
-25
0
25
50
75
100
Temperature:T[℃]
Temperature:T[℃]
Temperature:T[℃]
Fig.65 24MHz
Temperature-Duty
Fig.66 24MHz
Temperature-Period-Jitter 1σ
Fig.67 24MHz
Temperature-Period-Jitter MIN-MAX
9/16
●Reference data (BU2396KN
90
VDD=2.9V
VDD=3.3V
VDD=3.7V
52
51
50
49
48
47
46
80
VDD=3.7V
VDD=3.3V
VDD=2.9V
70
60
50
40
30
20
10
-25
0
25
50
75
-25
100
0
25
VDD=3.7V
VDD=3.3V
VDD=2.9V
300
200
100
75
-25
100
0
25
50
75
100
Temperature:T[℃]
Temperature: T[ ℃]
Fig.68 27MHz
Temperature-Duty
Fig.69 27MHz
Temperature-Period-Jitter 1σ
Fig.70 27MHz
Temperature-Period-Jitter MIN-MAX
600
52
51
50
49
48
47
46
90
80
70
60
VDD=2.9V
VDD=3.3V
VDD=3.7V
50
40
30
20
10
0
25
50
75
100
500
400
VDD=2.9V
VDD=3.3V
VDD=3.7V
300
200
100
0
0
45
Period-jitterMIN-MAX :
PJ-MIN-MAX[psec]
VDD=2.9V
VDD=3.3V
VDD=3.7V
53
Period-jitter1σ:PJ-1σ[psec]
54
-25
0
25
50
75
100
-25
0
25
50
75
100
Temperature:T[℃]
Temperature:T[℃]
Temperature: T[ ℃]
Fig.71 12MHz
Temperature-Duty
Fig.72 12MHz
Temperature-Period-Jitter 1σ
Fig.73 12MHz
Temperature-Period-Jitter MIN-MAX
40
30
IDD:IDD[mA]
50
100
20
VDD=3.7V
VDD=3.3V
VDD=2.9V
10
0
-25
400
Temperature:T[℃]
55
-25
500
0
0
45
Duty:Duty[%]
600
Period-jitterMIN-MAX :
PJ-MIN-MAX[psec]
100
54
Period-jitter1σ:PJ-1σ[psec]
55
53
Duty:Duty[%]
Temperature and Supply voltage variations data)
0
25
50
75
100
Temperature:T[℃]
Fig.74 At 1chip operation
Temperature-Consumption current
10/16
●List of BU2396KN Operation Modes
When XTAL_SEL=L, (When a crystal oscillator of 14.318182-MHz frequency is used)
Xtal(MHz)
CLK2ON
FS1
FS2
FS3
CLK1(MHz)
CLK2(MHz)
REF_CLK(MHz)
14.318182
H
H
H
H
135.000000
48.008022
14.318182
14.318182
H
L
H
H
135.000000
48.008022
17.734450
14.318182
L
H
H
H
135.000000
Fixed to L
14.318182
14.318182
L
L
H
H
135.000000
Fixed to L
17.734450
14.318182
H
H
H
L
108.000000
48.008022
14.318182
14.318182
H
L
H
L
108.000000
48.008022
17.734450
14.318182
L
H
H
L
108.000000
Fixed to L
14.318182
14.318182
L
L
H
L
108.000000
Fixed to L
17.734450
14.318182
H
H
L
L
98.181818
48.008022
14.318182
14.318182
H
L
L
L
98.181818
48.008022
17.734450
14.318182
L
H
L
L
98.181818
Fixed to L
14.318182
14.318182
L
L
L
L
98.181818
Fixed to L
17.734450
14.318182
H
H
L
H
110.000000
48.008022
14.318182
14.318182
H
L
L
H
110.000000
48.008022
17.734450
14.318182
L
H
L
H
110.000000
Fixed to L
14.318182
14.318182
L
L
L
H
110.000000
Fixed to L
17.734450
When XTAL_SEL=H, (When a crystal oscillator of 28.636363MHz frequency is used)
Xtal(MHz)
CLK2ON
FS1
FS2
FS3
CLK1(MHz)
CLK2(MHz)
REF_CLK(MHz)
28.636363
H
H
H
H
135.000000
48.008022
14.318182
28.636363
H
L
H
H
135.000000
48.008022
17.734450
28.636363
L
H
H
H
135.000000
Fixed to L
14.318182
28.636363
L
L
H
H
135.000000
Fixed to L
17.734450
28.636363
H
H
H
L
108.000000
48.008022
14.318182
28.636363
H
L
H
L
108.000000
48.008022
17.734450
28.636363
L
H
H
L
108.000000
Fixed to L
14.318182
28.636363
L
L
H
L
108.000000
Fixed to L
17.734450
28.636363
H
H
L
L
98.181818
48.008022
14.318182
28.636363
H
L
L
L
98.181818
48.008022
17.734450
28.636363
L
H
L
L
98.181818
Fixed to L
14.318182
28.636363
L
L
L
L
98.181818
Fixed to L
17.734450
28.636363
H
H
L
H
110.000000
48.008022
14.318182
28.636363
H
L
L
H
110.000000
48.008022
17.734450
28.636363
L
H
L
H
110.000000
Fixed to L
14.318182
28.636363
L
L
L
H
110.000000
Fixed to L
17.734450
11/16
●List of BU2396KN Operation Modes
TGCLK_SEL1
TGCLK_SEL
2
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
TGCLK_EN
VCLK_EN
TGCLK_PD
VCLK_PD
TGCLK
Output
VCLK
Output
UCLK
Output
PLL1
30M,24M
PLL2
36M,27M
Power-Down
Power-Down
Normal
operation
Power-Down
Power-Down
Normal
operation
Normal
operation
Power-Down
Power-Down
Normal
operation
Normal
operation
Power-Down
Power-Down
Normal
operation
Normal
operation
Power-Down
Power-Down
Normal
operation
0
0
1
0
Fixed to L
0
1
1
0
0
Fixed to L
Fixed to L
0
24MHz output
30MHz output
1
36MHz output
36MHz output
1
0
Fixed to L
1
24MHz output
30MHz output
1
36MHz output
36MHz output
12MHz
output
0
0
Fixed to L
1
0
Fixed to L
Power-Down
0
27MHz
output
1
1
1
Normal
operation
0
Fixed to L
Power-Down
0
Fixed to L
24MHz output
Normal
operation
30MHz output
1
36MHz output
Power-Down
36MHz output
1
Normal
operation
0
Fixed to L
Power-Down
1
24MHz output
30MHz output
1
27MHz
output
Normal
operation
36MHz output
Power-Down
36MHz output
12/16
Normal
operation
●BU2394KN
Application Circuit
/
Description of Terminal
for Video
14.318182MHz
0.1uF
17.734450MHz
for USB
DATA
16:CLK2OUT
17:VSS2
18:VDD2
19:REF_CLK
20:TEST2
48.008022MHz
1:AVDD
15:VDD1
2:AVDD
XIN
4
XOUT
5
PLL2
0.1uF
BU2394KN
VQFN-20
3:AVSS
13:VSS1
12
FS1
10
FS2
9
FS3
8
10:FS1
CLK2ON
9:FS2
XTAL_SEL
8:FS3
12:CLK2ON
11:CLK1OUT
7:XTAL_SEL
4:XIN
6:TEST1
CLK1
48.008022MHz
1/4
16
CLK2
19
REF_CLK
1 /2
5:XOUT
for CCD
135.000000MHz
110.000000MHz
108.000000MHz
98.181818MHz
7
PLL3
1/10
17.734450MHz
14.318182MHz
Fig.76
Fig.75
Description of Terminal
PIN No.
PIN NAME
1
AVDD
2
AVDD
3
AVSS
4
XIN
5
XOUT
6
TEST1
7
XTAL_SEL
8
FS3
9
FS2
10
FS1
11
CLK1OUT
12
CLK2ON
13
VSS1
14
VDD1
15
VDD1
16
CLK2OUT
17
VSS2
18
VDD2
19
REF_CLK
20
TEST2
11
XTAL
OSC
14:VDD1
0.1uF
R
PLL1
135.000000MHz
108.000000MHz
110.000000MHz
98.181818MHz
Function
Analog power source
Analog power source
Analog GND
Crystal IN
Crystal OUT
TEST pin, normally open, equipped with pull-down
Crystal oscillator selection, H: 28.636 MHz, L: 14.318 MHz, equipped with pull-up
CLK1,2 output selection, equipped with pull-up
CLK1,2 output selection, equipped with pull-up
REFCLK output selection, equipped with pull-up
110M/98M/108M/135M output
CLK2 output control, H: Enable, L: Disable, equipped with pull-up
CLK1/CLK2 & Internal digital GND
CLK1/2 & Internal digital power supply
CLK1/2 & Internal digital power supply
48M output
REFCLK GND
REFCLK power supply
14.3M/17.7M output
TEST pin, normally open, equipped with pull-down
Note) Basically, mount ICs to the substrate for use. If the ICs are not mounted to the substrate, the characteristics of ICs may
not be fully demonstrated.
Mount 0.1uF as bypass capacitors in the vicinity of the IC pins between 1&2 PIN and 3PIN, 13PIN and 14&15PIN, and
17PIN and 18PIN, respectively.
※Even though we believe that the example of the application circuit is worth of a recommendation, please be sure to
thoroughly recheck the characteristics before use.
※As to the jitters, the TYP values vary with the substrate, power supply, output loads, noises, and others.
Besides, for the use, the operating margin should be thoroughly checked.
13/16
●BU2396KN
Application Circuit
/
Description of Terminal
for Video
XIN
4
XOUT
5
XTAL
OSC
12.000000MHz
16 UCLK
27.000000MHz
TGCLK_EN 10
0.1uF
for USB
TGCLK_SEL2
7
DATA
30.000000MHz
24.000000MHz
16:UCLK
17:VSS2
18:VDD2
19:VCLK
20:VCLK_PD
12.000000MHz
PLL1
11 TGCLK
36.000000MHz
1: AVDD
15: VDD1
2: AVDD
14: VDD1
0.1uF
10:TGCLK_EN
11: TGCLK
9: TGCLK_PD
12: VCLK_EN
8: TGCLK_SEL1
4: XIN
7: TGCLK_SEL2
9
1/6
13: VSS1
5: XOUT
6: TEST
R
8
TGCLK_PD
0.1uF
BU2396KN
VQFN-20
3: AVSS
TGCLK_SEL1
PLL2
for CCD
36.000000MHz
30.000000MHz
24.000000MHz
1/8
19 VCLK
27.000000MHz
VCLK_PD 20
VCLK_EN 12
Fig.77
Description of Terminal
PIN No.
PIN NAME
1
AVDD
2
AVDD
3
AVSS
4
XIN
5
XOUT
6
TEST
7
TGCLK_SEL2
8
TGCLK_SEL1
9
TGCLK_PD
10
TGCLK_EN
11
TGCLK
12
VCLK_EN
13
VSS1
14
VDD1
15
VDD1
16
UCLK
17
VSS2
18
VDD2
19
VCLK
20
VCLK_PD
Fig.78
Function
Analog power source
Analog power source
Analog GND
Crystal IN
Crystal OUT
TEST pin, normally open, equipped with pull-down
TGCLK frequency selection, equipped with pull-up
TGCLK frequency selection, equipped with pull-up
TGCLK Power-Down control, H:enable, L:Power-Down, equipped with pull-down
TGCLK output control, H: Enable, L: Output fixed to L, equipped with pull-down
36M, 30M, 24M output
VCLK output control, H:enable, L: Output fixed to L, equipped with pull-down
TGCLK,UCLK & Internal digital GND
TGCLK,UCLK & Internal digital power supply
TGCLK,UCLK & Internal digital power supply
12M output
VCLK GND
VCLK power source
27M output
VCLK Power-Down control, H:enable, L:Power-Down, equipped with pull-down
Note) Basically, mount ICs to the substrate for use. If the ICs are not mounted to the substrate, the characteristics of ICs may
not be fully demonstrated.
Mount 0.1uF as bypass capacitors in the vicinity of the IC pins between 1&2 PIN and 3PIN, 13PIN and 14&15PIN, and
17PIN and 18PIN, respectively.
※Even though we believe that the example of the application circuit is worth of a recommendation, please be sure to
thoroughly recheck the characteristics before use.
※As to the jitters, the TYP values vary with the substrate, power supply, output loads, noises, and others. Besides, for the
use, the operating margin should be thoroughly checked.
14/16
●Cautions on use
(1) Absolute Maximum Ratings
An excess in the absolute maximum ratings, such as applied voltage (VDD or VIN), operating temperature range (Topr),
etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit.
If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take
physical safety measures including the use of fuses, etc.
(2) Recommended operating conditions
These conditions represent a range within which characteristics can be provided approximately as expected. The
electrical characteristics are guaranteed under the conditions of each parameter.
(3) Reverse connection of power supply connector
The reverse connection of power supply connector can break down ICs. Take protective measures against the
breakdown due to the reverse connection, such as mounting an external diode between the power supply and the IC’s
power supply terminal.
(4) Power supply line
Design PCB pattern to provide low impedance for the wiring between the power supply and the GND lines.
In this regard, for the digital block power supply and the analog block power supply, even though these power supplies
has the same level of potential, separate the power supply pattern for the digital block from that for the analog block,
thus suppressing the diffraction of digital noises to the analog block power supply resulting from impedance common to
the wiring patterns. For the GND line, give consideration to design the patterns in a similar manner.
Furthermore, for all power supply terminals to ICs, mount a capacitor between the power supply and the GND terminal.
At the same time, in order to use an electrolytic capacitor, thoroughly check to be sure the characteristics of the
capacitor to be used present no problem including the occurrence of capacity dropout at a low temperature, thus
determining the constant.
(5) GND voltage
Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state.
Furthermore, check to be sure no terminals are at a potential lower than the GND voltage including an actual electric
transient.
(6) Short circuit between terminals and erroneous mounting
In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting
can break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between terminals or
between the terminal and the power supply or the GND terminal, the ICs can break down.
(7) Operation in strong electromagnetic field
Be noted that using ICs in the strong electromagnetic field can malfunction them.
(8) Inspection with set PCB
On the inspection with the set PCB, if a capacitor is connected to a low-impedance IC terminal, the IC can suffer stress.
Therefore, be sure to discharge from the set PCB by each process. Furthermore, in order to mount or dismount the set
PCB to/from the jig for the inspection process, be sure to turn OFF the power supply and then mount the set PCB to the
jig. After the completion of the inspection, be sure to turn OFF the power supply and then dismount it from the jig. In
addition, for protection against static electricity, establish a ground for the assembly process and pay thorough attention
to the transportation and the storage of the set PCB.
(9) Input terminals
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the
parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of
the input terminal. Therefore, pay thorough attention not to handle the input terminals, such as to apply to the input
terminals a voltage lower than the GND respectively, so that any parasitic element will operate. Furthermore, do not
apply a voltage to the input terminals when no power supply voltage is applied to the IC. In addition, even if the power
supply voltage is applied, apply to the input terminals a voltage lower than the power supply voltage or within the
guaranteed value of electrical characteristics.
(10) Ground wiring pattern
If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND
pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that
resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of
the small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of external parts as well.
(11) External capacitor
In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a
degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, et
15/16
●Name selection of ordered type
B
U
2
3
9
X
K
E
Package Type
KN:VQFN20
Type
2394, 2396
Part No.
-
N
2
Packing specification
E2: Reel-like emboss taping
VQFN20
<Tape and Reel information>
<Dimension>
4.2±0.1
4.0±0.1
11
(The direction is the 1pin of product is at the upper left when you hold
reel on the left hand and you pull out the tape on the right hand)
(0
.
4.0±0.1
4.2±0.1
5)
0.5
5
0.03
0.02 −+0.02
0.95MAX
0.05
1234
1234
1pin
1234
Reel
(Unit:mm)
1234
0.05
1234
1234
0.22 ± 0.05
.3
(0
0.22±0.05
0.1
(0.6 −+0.3
)
3−
1
)
6
20
.5
(0
10
2500pcs
E2
)
15
16
22
(1.1)
Embossed carrier tape(with dry pack)
Tape
Quantity
Direction
of feed
Direction of feed
※When you order , please order in times the amount of package quantity.
Catalog No.08T802A '08.9 ROHM ©
Appendix
Notes
No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM
CO.,LTD.
The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you
wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM
upon request.
Examples of application circuits, circuit constants and any other information contained herein illustrate the
standard usage and operations of the Products. The peripheral conditions must be taken into account
when designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specified in this document. However, should
you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.
The technical information specified herein is intended only to show the typical functions of and examples
of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to
use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.
The Products specified in this document are intended to be used with general-use electronic equipment
or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).
The Products are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or
malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard against the
possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as
derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your
use of any Product outside of the prescribed scope or not in accordance with the instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or system
which requires an extremely high level of reliability the failure or malfunction of which may result in a direct
threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment,
aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear
no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.
If you intend to export or ship overseas any Product or technology specified herein that may be controlled under
the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact your nearest sales office.
ROHM Customer Support System
www.rohm.com
Copyright © 2009 ROHM CO.,LTD.
THE AMERICAS / EUROPE / ASIA / JAPAN
Contact us : webmaster @ rohm.co. jp
21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
TEL : +81-75-311-2121
FAX : +81-75-315-0172
Appendix-Rev4.0