TECHNICAL NOTE High-performance Clock Generator Series DVD-video Reference Clock Generators for Audio/Video Equipments BU2280FV, BU2288FV, BU2360FV, BU2362FV ●Description These clock generators are an IC generating three types of clocks - VIDEO, AUIDIO and SYSTEM clocks – necessary for DVD player systems, with a single chip through making use of the PLL technology. Particularly, the AUDIO clock is a DVD-Video reference and yet achieves high C/N characteristics to provide a low level of distortion factor. ●Features 1) Connecting a crystal oscillator generates multiple clock signals with a built-in PLL. 2) AUDIO clock of high C/N characteristics providing a low level of distortion factor 3) The AUDIO clock provides switching selection outputs. 4) Single power supply of 3.3 V ●Applications DVD players ●Lineup Part name Power source voltage [V] Reference frequency [MHz] 256fs BU2280FV 3.0 ~ 3.6 27.0000 27.0000 36.8640 /33.8688 24.5760 /22.5792 18.4320 /16.9344 - other - 768 (48k type) 768 (44.1k type) 384 (44.1k type) 33.8688 70 8.0 SSOP-B24 2 1 1/2 DVD VIDEO 768fs Output frequency [MHz] 512fs DVD AUDIO, CD (Switching outputs) SYSTEM 384fs Jitter 1σ [psec] Long-term-Jitter p-p [nsec] Package BU2288FV 3.0 ~ 3.6 27.0000 27.0000 - BU2360FV 2.7 ~ 3.6 27.0000 27.0000 - BU2362FV 2.7 ~ 3.6 27.0000 27.0000 - - - - 24.5760 /22.5792 24.5760 /22.5792 24.5760 /22.5792 - - - 36.8640 /16.9344 33.8688 16.9344 70 5.0 SSOP-B16 - 36.8640 /16.9344 36.8640 33.8688 16.9344 70 5.0 SSOP-B16 33.8688 70 2.5 SSOP-B16 Sep. 2008 ●Absolute Maximum Ratings (Ta=25℃) Parameter Supply voltage Input voltage Storage temperature range Power dissipation Symbol VDD VIN Tstg PD BU2280FV -0.5 ~ +7.0 -0.5~VDD+0.5 -30 ~ +125 630 *1 BU2288FV -0.5 ~ +7.0 -0.5~VDD+0.5 -30 ~ +125 450 *2 BU2360FV -0.5 ~ +7.0 -0.5~VDD+0.5 -30 ~ +125 450 *2 BU2362FV -0.5 ~ +7.0 -0.5~VDD+0.5 -30 ~ +125 450 *2 Unit V V ℃ mW BU2362FV 2.7 ~ 3.6 0.8VDD~VDD 0.0 ~ 0.2VDD -25 ~ +85 15 - Unit V V V ℃ pF pF pF *1 In the case of exceeding Ta = 25℃, 6.3mW to be reduced per 1℃ *2 In the case of exceeding Ta = 25℃, 4.5mW to be reduced per 1℃ *Operating is not guaranteed. *The radiation-resistance design is not carried out. *Power dissipation is measured when the IC is mounted to the printed circuit board. ●Recommended Operating Range Parameter Parameter Supply voltage Input “H” Voltage Input “L” Voltage Operating temperature Output load 27M output load 1 Symbol VDD VIH VIL Topr CL CL_27M1 CL_27M2 BU2280FV 3.0 ~ 3.6 0.8VDD~VDD 0.0 ~ 0.2VDD -5 ~ +70 15 - BU2288FV 3.0 ~ 3.6 0.8VDD~VDD 0.0 ~ 0.2VDD -5 ~ +70 15 - BU2360FV 2.7 ~ 3.6 0.8VDD~VDD 0.0 ~ 0.2VDD -25 ~ +85 15 40 (CLK27M1) 25 (CLK27M2) ●Electrical characteristics ◎BU2280FV(VDD=3.3V, Ta=25℃, Crystal frequency 27.0000MHz, unless otherwise specified.) Parameter Symbol Min. Typ. Max. Unit Conditions Output L voltage VOL 0.4 V IOL=4.0mA Output H voltage VOH 2.4 V IOH=-4.0mA Consumption IDD 30 50 mA At no load current CLK768-44 33.8688 MHz At FSEL=L, XTAL×3136 / 625 / 4 CLK768FS CLK768-48 36.8640 MHz At FSEL=H, XTAL×2048 / 375 / 4 CLK512-44 22.5792 MHz At FSEL=L, XTAL×3136 / 625 / 6 CLK512FS CLK512-48 24.5760 MHz At FSEL=H, XTAL×2048 / 375 / 6 CLK384-44 16.9344 MHz At FSEL=L, XTAL×3136 / 625 / 8 CLK384FS CLK384-48 18.4320 MHz At FSEL=H, XTAL×2048 / 375 / 8 CLK33M CLK33M 33.8688 MHz XTAL×147 / 40 / 4 CLK16M CLK16M 16.9344 MHz XTAL×147 / 40 / 8 Duty Duty 45 50 55 % Measured at a voltage of 1/2 of VDD Period-Jitter 1σ P-J 1σ 70 psec *1 Period-Jitter P-J 420 psec *2 MIN-MAX MIN-MAX Rise Time Tr - 2.5 - nsec Fall Time Tf - 2.5 - nsec Output Lock-Time Tlock - - 1 msec Period of transition time required for the output reach 80% from 20% of VDD. Period of transition time required for the output reach 20% from 80% of VDD. *3 Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to XTALIN. If the input frequency is set to 27.0000MHz, the output frequency will be as listed above. 2/24 ◎BU2288FV(VDD=3.3V, Ta=25℃, Crystal frequency 27.0000MHz, unless otherwise specified.) Parameter Symbol Min. Typ. Max. Unit Output L voltage VOH 2.4 - - V Conditions IOH=-4.0mA Output H voltage VOL - - 0.4 V IOL=4.0mA FSEL input VthL VthL 0.2VDD - - V *4 FSEL input VthH VthH - - 0.8VDD V *4 Hysteresis range Vhys 0.2 - - V Vhys=VthH-VthL*4 IDD - 27.0000 40.5 mA At no load CLK512-44 - 22.5792 - MHz At FSEL1=OPEN XTAL*3136/625/6 CLK512-48 - 24.5760 - MHz At FSEL1=L XTAL*2048/375/6 CLK33M CLK33M - 33.8688 - MHz XTAL*3136/625/4 CLK16M CLK16M - 16.9344 - MHz XTAL*3136/625/8 CLK27M CLK27M - 27.0000 - MHz XTAL direct out CLKA-A - 16.9344 - MHz At FSEL1=OPEN XTAL*3136/625/8 Action circuit current CLK512FS CLK A CLKA-B - 36.8640 - MHz Duty Duty 45 50 55 % Period-Jitter 1σ P-J 1σ - 70 - psec *1 Period-Jitter MIN-MAX P-J MIN-MAX - 420 - psec *2 Rise time Tr - 2.5 - nsec Fall time Tf - 2.5 - nsec Output Lock-Time Tlock - - 1 msec At FSEL1=L XTAL*2048/375/4 Measured at a voltage of 1/2 of VDD Period of transition time required for the output reach 80% from 20% of VDD. Period of transition time required for the output reach 20% from 80% of VDD. *3 Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to XTALIN. If the input frequency is set to 27.0000MHz, the output frequency will be as listed above. ◎BU2360FV(VDD=3.3V, Ta=25℃, Crystal frequency 27.0000MHz, unless otherwise specified.) Parameter Symbol Min. Typ. Max. Unit Conditions Output L voltage VOL 0.4 V IOL=4.0mA Output H voltage VOH 2.4 V IOH=-4.0mA FSEL input VthL VthL 0.2VDD V *4 FSEL input VthH VthH 0.8VDD V *4 Hysteresis range Vhys 0.2 V Vhys = VthH - VthL *4 IDD CLK27M CLK33M - 27.0 27.0000 33.8688 40.5 - mA MHz MHz At no load XTAL direct out XTAL×3136 / 625 / 4 Duty Period-Jitter 1σ Period-Jitter MIN-MAX CLK512_48 CLK512_44 Duty P-J 1σ P-J MIN-MAX 45 - 24.5760 22.5792 50 70 55 - MHz MHz % psec At FSEL=H, XTAL×2048 / 375 / 6 At FSEL=L, XTAL×3136 / 625 / 6 Measured at a voltage of 1/2 of VDD *1 - 420 - psec *2 Rise Time Tr - 2.5 - nsec Action circuit current CLK27M CLK33M CLK512FS Fall Time Tf - 2.5 - nsec Output Lock-Time Tlock - - 1 msec Period of transition time required for the output reach 80% from 20% of VDD. Period of transition time required for the output reach 20% from 80% of VDD. *3 Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to XTALIN. If the input frequency is set to 27.0000MHz, the output frequency will be as listed above. 3/24 ◎BU2362FV(VDD=3.3V, Ta=25℃, Crystal frequency 27.0000MHz, unless otherwise specified.) Parameter Symbol Min. Typ. Max. Unit Output L voltage VOH 2.4 - - V Output H voltage VOL - - 0.4 V IOL=4.0mA Action circuit current IDD - 35 45 mA At no load CLK512-44 - 22.5792 - MHz At FSEL1=OPEN XTAL*3136/625/6 CLK512-48 - 24.5760 - MHz At FSEL1=L XTAL*2048/375/6 CLK512FS Conditions IOH=-4.0mA CLKA-A - 16.9344 - MHz At FSEL1=OPEN XTAL*3136/625/8 CLKA-B - 36.8640 - MHz At FSEL1=L XTAL*2048/375/8 CLK36M CLK36M - 36.8640 - MHz XTAL*2048/375/4 CLK33M CLK33M - 33.8688 - MHz XTAL*3136/625/4 CLK16M CLK16M - 16.9344 - MHz XTAL*3136/625/8 CLK27M CLK27M - 27.0000 - MHz XTAL direct out Duty Duty 45 50 55 % Period-Jitter 1σ P-J 1σ - 70 - psec *1 Period-Jitter MIN-MAX P-J MIN-MAX - 420 - psec *2 Rise Time Tr - 2.5 - nsec Fall Time Tf - 2.5 - nsec Output Lock-Time Tlock - - 1 msec CLKA Measured at a voltage of 1/2 of VDD Period of transition time required for the output reach 80% from 20% of VDD. Period of transition time required for the output reach 20% from 80% of VDD. *3 Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to XTALIN. If the input frequency is set to 27.0000MHz, the output frequency will be as listed above. Common to BU2280FV, BU2288FV, BU2360FV and BU2362FV: *1 Period-Jitter 1σ This parameter represents standard deviation (1 ) on cycle distribution data at the time when the output clock cycles are sampled 1000 times consecutively with the TDS7104 Digital Phosphor Oscilloscope of Tektronix Japan, Ltd. *2 Period-Jitter MIN-MAX This parameter represents a maximum distribution width on cycle distribution data at the time when the output clock cycles are sampled 1000 times consecutively with the TDS7104 Digital Phosphor Oscilloscope of Tektronix Japan, Ltd. *3 Output Lock-Time The Lock-Time represents elapsed time after power supply turns ON to reach a 3.0V voltage, after the system is switched from Power-Down state to normal operation state, or after the output frequency is switched, until it is stabilized at a specified frequency, respectively. BU2360FV, BU2288FV This parameter represents lower and upper limit voltages at the Schmitt trigger input PIN having hysteresis characteristics shown in figure below. The width requested by these differences is assumed to be a hysteresis width. 0.2VDD 0.8VDD Vhys Output Voltage [V] 4 0 VthL VthH Input Voltage [V] 4/24 ●Reference data (BU2280FV basic data) 1.0V/div 1.0V/div 10dB/div RBW=1KHz VBW=100Hz 5.0nsec/div Fig.1 33.9MHz output waveform VDD=3.3V, at CL=15pF 500psec/div 10KHz/div Fig.2 33.9MHz Period-Jitter VDD=3.3V, at CL=15pF Fig.3 33.9MHz Spectrum VDD=3.3V, at CL=15pF 10KHz/div 500psec/div 5.0nsec/div Fig.4 36.9MHz output waveform VDD=3.3V, at CL=15pF 10dB/div 1.0V/div 1.0V/div RBW=1KHz VBW=100Hz Fig.5 36.9MHz Period-Jitter VDD=3.3V, at CL=15pF Fig.6 36.9MHz Spectrum VDD=3.3V, at CL=15pF 5.0nsec/div Fig.7 22.6MHz output waveform VDD=3.3V, at CL=15pF 10dB/div 1.0V/div 1.0V/div RBW=1KHz VBW=100Hz 500psec/div Fig.8 22.6MHz Period-Jitter VDD=3.3V, at CL=15pF 10KHz/div Fig.9 22.6MHz Spectrum VDD=3.3V, at CL=15pF 1.0V/div 1.0V/div RBW=1KHz VBW=100Hz 5.0nsec/div Fig.10 24.6MHz output waveform VDD=3.3V, at CL=15pF 500psec/div Fig.11 24.6MHz Period-Jitter VDD=3.3V, at CL=15pF 5/24 10KHz/div Fig.12 24.6MHz Spectrum VDD=3.3V, at CL=15pF ●Reference data (BU2280FV basic data) 10dB/div 1.0V/div 1.0V/div RBW=1KHz VBW=100Hz 10.0nsec/div Fig.13 16.9MHz output waveform VDD=3.3V, at CL=15pF 500psec/div Fig.14 16.9MHz Period-Jitter VDD=3.3V, at CL=15pF 10KHz/div Fig.15 16.9MHz Spectrum VDD=3.3V, at CL=15pF 10.0nsec/div Fig.16 18.4MHz output waveform VDD=3.3V, at CL=15pF 10dB/div 1.0V/div 1.0V/div RBW=1KHz VBW=100Hz 500psec/div Fig.17 18.4MHz Period-Jitter VDD=3.3V, at CL=15pF 10KHz/div Fig.18 18.4MHz Spectrum VDD=3.3V, at CL=15pF 1.0V/div 5.0nsec/div Fig.19 27MHz output waveform VDD=3.3V, at CL=15pF 500psec/div Fig.20 27MHz Period-Jitter VDD=3.3V, at CL=15pF 1.0V/div 1.0V/div 10dB/div 1.0V/div RBW=1KHz VBW=100Hz LT Jitter 6.2nsec 2.0nsec/div Fig.22 24.6MHz LT Jitter VDD=3.3V, at CL=15pF LT Jitter 8.1nsec 2.0nsec/div Fig.23 22.6MHz LT Jitter VDD=3.3V, at CL=15pF 6/24 10KHz/div Fig.21 27MHz Spectrum VDD=3.3V, at CL=15pF ●Reference data (BU2280FV Temperature and Supply voltage variations data) 100 54 90 52 VDD=3.3V VDD=3.7V 51 50 49 VDD=2.9V 48 47 46 45 80 VDD=3.3V 70 60 50 40 VDD=3.7V 30 20 10 0 0 25 50 75 100 0 25 Temperature:T[℃] 90 Period-jitter1σ : PJ-1σ[psec] 100 54 VDD=3.3V 51 50 VDD=3.7V 48 47 46 -25 0 25 50 75 60 50 VDD=3.3V 40 VDD=3.7V 30 20 Period-jitter1σ : PJ-1σ[psec] 90 53 VDD=2.9V 50 VDD=3.3V 47 46 45 25 50 75 0 25 50 75 VDD=3.7V 80 VDD=3.3V 60 50 VDD=2.9V 40 30 20 90 Period-jitter1σ : PJ-1σ[psec] 100 53 51 VDD=3.3V 50 49 VDD=3.7V 48 47 46 45 25 50 75 0 25 50 75 Temperature: T[ ℃] Fig.33 24.6MHz Temperature-Duty VDD=3.3V 200 100 0 100 25 50 75 100 Fig.29 36.9MHz Temperature r-Period-Jitter MIN-MAX 500 VDD=3.7V 400 300 VDD=2.9V VDD=3.3V 200 100 100 -25 0 25 50 75 100 Temperature:T[℃] Fig.32 22.6MHz Temperature-Period-Jitter MIN-MAX 600 80 VDD=2.9V 70 VDD=3.3V 60 50 40 30 VDD=3.7V 20 10 0 -25 300 0 0 Fig.31 22.6MHz Temperature-Period-Jitter 1σ 54 VDD=2.9V 400 Temperature: T[ ℃] 55 100 VDD=2.9V VDD=3.7V -25 10 -25 Fig.30 22.6MHz Temperature-Duty 75 Temperature:T[℃] 70 100 50 600 Temperature: T[ ℃] 52 500 100 0 -25 25 0 0 Fig.28 36.9MHz Temperature-Period-Jitter 1σ 100 48 0 Temperature:T[℃] 54 49 100 -25 10 55 VDD=3.7V VDD=3.7V Temperature:T[℃] 70 -25 Fig.27 36.9MHz Temperature-Duty 51 200 Fig.26 33.9MHz Temperature-Period-Jitter MIN-MAX VDD=2.9V Temperature: T[ ℃] 52 300 600 80 100 VDD=2.9V 400 100 0 45 Duty : Duty[%] 75 Period-jitterMIN-MAX: PJ-MIN-MAX[psec] Duty : Duty[%] 53 49 50 Fig.25 33.9MHz Temperature-Period-Jitter 1σ 55 VDD=2.9V VDD=3.3V Temperature: T[ ℃] Fig.24 33.9MHz Temperature-Duty 52 500 0 -25 Period-jitterMIN-MAX: PJ-MIN-MAX[psec] -25 Duty : Duty[%] VDD=2.9V Period-jitterMIN-MAX: PJ-MIN-MAX[psec] Duty : Duty[%] 53 600 Period-jitterMIN-MAX: PJ-MIN-MAX[psec] 55 Period-jitter1σ : PJ-1σ[psec] 5 500 VDD=3.7V VDD=3.3V 400 300 VDD=2.9V 200 100 0 -25 0 25 50 75 100 Temperature: T[ ℃] Fig.34 24.6MHz Temperature-Period-Jitter 1σ 7/24 -25 0 25 50 75 100 Temperature:T[℃] Fig.35 24.6MHz Temperature-Period-Jitter MIN-MAX ●Reference data (BU2280FV Temperature and Supply voltage variations data) 100 54 90 52 VDD=2.9V 51 VDD=3.7V 50 49 VDD=3.3V 48 47 46 80 70 VDD=3.7V 60 50 40 30 VDD=3.3V 20 VDD=2.9V 0 25 50 75 -25 100 0 Fig.36 16.9MHz Temperature-Duty 100 54 90 Period-jitter1σ : PJ-1σ[psec] 55 Duty : Duty[%] VDD=3.3V VDD=3.7V 51 50 49 VDD=2.9V 48 47 46 45 0 25 50 75 70 VDD=3.7V 50 40 VDD=3.3V VDD=2.9V 30 20 -25 0 25 50 75 Period-jitter1σ : PJ-1σ[psec] 52 VDD=2.9V VDD=3.3V 48 47 46 45 0 25 50 75 100 Temperature:T[℃] 80 VDD=2.9V 70 VDD=3.3V 60 50 40 30 VDD=3.7V 20 10 VDD=3.7V 0 25 VDD=3.3V VDD=2.9V 10 0 -25 0 25 50 50 75 100 Fig.43 27MHz Temperature-Period-Jitter 1σ 30 20 75 300 VDD=2.9V 200 VDD=3.3V 100 -25 0 25 50 75 100 Fig.41 18.4MHz Temperature-Period-Jitter MIN-MAX VDD=2.9V 500 400 300 VDD=3.3V 200 VDD=3.7V 100 0 -25 50 40 VDD=3.7V 600 Temperature:T[℃] Fig.42 27MHz Temperature-Duty 100 Temperature: T[ ℃] 0 -25 75 400 Temperature:T[℃] 53 50 500 100 Fig.40 18.4MHz Temperature-Period-Jitter 1σ 90 25 0 -25 100 49 0 Fig.38 16.9MHz Temperature-Period-Jitter MIN-MAX 10 54 50 100 Temperature: T[ ℃] 60 55 VDD=3.7V VDD=3.3V 600 Temperature:T[℃] 51 200 100 80 100 Fig.39 18.4MHz Temperature-Duty Duty : Duty[%] 75 0 -25 Circuit Current : IDD[mA] 50 Fig.37 16.9MHz Temperature-Period-Jitter 1σ 53 VDD=2.9V 300 Temperature:T[℃] Temperature:T[℃] 52 25 Period-jitterMIN-MAX : PJ-MIN-MAX[psec] -25 VDD=3.7V 400 0 0 45 500 10 Period-jitterMIN-MAX : PJ-MIN-MAX[psec] Duty:Duty[%] 53 600 Period-jitterMIN-MAX: PJ-MIN-MAX[psec] Period-jitter1σ : PJ-1σ[psec] 55 100 Temperature:T[℃] Fig.45 Action circuit current (with maximum output load) Temperature-Consumption current 8/24 -25 0 25 50 75 100 Temperature: T[ ℃] Fig.44 27MHz Temperature-Period-Jitter MIN-MAX ●Reference data (BU2360FV basic data) 5.0nsec/div Fig.46 27MHz output waveform VDD=3.3V, at CL=40pF 10dB/div 1.0V/div 1.0V/div RBW=1KHz VBW=100Hz 500psec/div Fig.47 27MHz Period-Jitter VDD=3.3V, at CL=40pF 10KHz/div Fig.48 27MHz Spectrum VDD=3.3V, at CL=40pF 5.0nsec/div Fig.49 27MHz output waveform VDD=3.3V, at CL=25pF 10dB/div 1.0V/div 1.0V/div RBW=1KHz VBW=100Hz 500psec/div Fig.50 27MHz Period-Jitter VDD=3.3V, at CL=25pF 10KHz/div Fig.51 27MHz Spectrum VDD=3.3V, at CL=25pF 5.0nsec/div Fig.52 33.9MHz output waveform VDD=3.3V, at CL=15pF 10dB/div 1.0V/div 1.0V/div RBW=1KHz VBW=100Hz 500psec/div Fig.53 33.9MHz Period-Jitter VDD=3.3V, at CL=15pF 10KHz/div Fig.54 33.9MHz Spectrum VDD=3.3V, at CL=15pF 1.0V/div 5.0nsec/div Fig.55 24.6MHz output waveform VDD=3.3V, at CL=15pF 500psec/div Fig.56 24.6MHz Period-Jitter VDD=3.3V, at CL=15pF 10dB/div 1.0V/div RBW=1KHz VBW=100Hz 9/24 10KHz/div Fig.57 24.6MHz Spectrum VDD=3.3V, at CL=15pF ●Reference data (BU2360FV basic data) 10dB/div 1.0V/div 1.0V/div RBW=1KHz VBW=100Hz 500psec/div 5.0nsec/div Fig.58 22.6MHz output waveform VDD=3.3V, at CL=15pF 10KHz/div Fig.60 22.6MHz Spectrum VDD=3.3V, at CL=15pF 1.0V/div 1.0V/div Fig.59 22.6MHz Period-Jitter VDD=3.3V, at CL=15pF LT Jitter 2.5nsec LT Jitter 2.3nsec 1.0nsec/div 1.0nsec/div Fig61. 24.6MHz LT Jitter VDD=3.3V, at CL=15pF Fig62. 22.6MHz LT Jitter VDD=3.3V, at CL=15pF ●Reference data (BU2360FV Temperature and Supply voltage variations data) 100 54 90 52 51 VDD=3.7V VDD=3.3V 50 49 48 VDD=2.4V 47 46 45 70 60 50 40 VDD=3.7V VDD=3.3V 30 20 10 0 -25 0 25 50 75 100 25 50 75 Fig.64 27MHz (40pF) Temperature-Period-Jitter 1σ 90 Period-jitter1σ : PJ-1σ[psec] 100 52 51 VDD=2.4V 50 49 48 VDD=3.7V VDD=3.3V 46 45 0 25 50 75 100 300 VDD=3.3V VDD=3.7V 200 100 -25 0 25 50 75 100 Temperature: T[ ℃] Fig.65 27MHz (40pF) Temperature-Period-Jitter MIN-MAX 600 VDD=2.4V 80 VDD=3.3V 70 60 50 40 VDD=3.7V 30 20 10 0 -25 400 100 Fig.63 27MHz (40pF) Temperature-Duty 54 47 0 Temperature:T[℃] 55 VDD=2.4V 500 0 -25 Temperature:T[℃] 53 Duty : Duty[%] 80 Period-jitterMIN-MAX : PJ-MIN-MAX[psec] Duty : Duty[%] 53 600 VDD=2.4V Period-jitterMIN-MAX : PJ-MIN-MAX[psec] Period-jitter1σ : PJ-1σ[psec] 55 VDD=2.4V 500 400 300 VDD=3.7V 200 VDD=3.3V 100 0 -25 0 25 50 75 100 -25 0 25 50 75 100 Temperature:T[℃] Temperature:T[℃] Temperature: T[ ℃] Fig.66 27MHz (25pF) Temperature-Duty Fig.67 27MHz (25pF) Temperature-Period-Jitter 1σ Fig.68 27MHz (25pF) Temperature-Period-Jitter MIN-MAX 10/24 ●Reference data (BU2360FV Temperature and Supply voltage variations data) 100 54 90 52 VDD=2.4V 51 VDD=3.3V 50 49 48 VDD=3.7V 47 46 45 80 70 VDD=2.4V 60 VDD=3.3V 50 40 VDD=3.7V 30 20 10 0 0 25 50 75 100 0 Temperature: T[ ℃] 90 Period-jitter1σ : PJ-1σ[psec] 100 54 Duty : Duty[%] 53 52 VDD=2.4V 50 49 48 VDD=3.3V VDD=3.7V 47 46 45 0 25 50 75 75 50 VDD=3.3V 40 VDD=2.4V 30 20 0 25 50 75 Period-jitter1σ : PJ-1σ[psec] VDD=3.3V 49 VDD=3.7V 47 46 45 25 50 75 100 Temperature: T[ ℃] 50 VDD=3.7V 70 VDD=3.3V 60 50 40 VDD=2.4V 30 20 10 0 25 VDD=3.3V 10 0 25 50 50 75 100 Fig.76 22.6MHz Temperature-Period-Jitter 1σ VDD=2.4V 0 75 VDD=3.3V VDD=3.7V 200 100 0 25 50 75 100 Fig.74 24.6MHz Temperature-Period-Jitter MIN-MAX VDD=3.7V 500 400 300 200 VDD=2.4V VDD=3.3V 100 0 -25 30 -25 300 -25 VDD=3.7V 80 40 20 400 600 Temperature:T[℃] Fig.75 22.6MHz Temperature-Duty 100 Temperature: T[ ℃] 0 0 75 VDD=2.4V Temperature:T[℃] 50 -25 500 100 Fig.73 24.6MHz Temperature-Period-Jitter 1σ 53 50 0 -25 90 25 Fig.71 33.9MHz Temperature-Period-Jitter MIN-MAX 10 100 48 0 600 60 54 VDD=2.4V 100 Temperature: T[ ℃] 70 55 51 VDD=3.7V 200 -25 VDD=3.7V Temperature: T[ ℃] 52 300 100 80 100 Fig.72 24.6MHz Temperature-Duty Duty : Duty[ %] 50 0 -25 Circuit Current : IDD[mA] 25 Fig.70 33.9MHz Temperature-Period-Jitter 1σ 55 VDD=3.3V VDD=2.4V 400 Temperature:T[℃] Fig.69 33.9MHz Temperature-Duty 51 500 0 -25 Period-jitterMIN-MAX : PJ-MIN-MAX[psec] -25 Period-jitterMIN-MAX: PJ-MIN-MAX[psec] Duty : Duty[%] 53 600 Period-jitterMIN-MAX: PJ-MIN-MAX[psec] Period-jitter1σ : PJ-1σ[psec] 55 100 Temperature: T[ ℃] Fig.78 Action circuit current (with maximum output load) Temperature-Consumption current 11/24 -25 0 25 50 75 100 Temperature: T[ ℃] Fig.77 22.6MHz Temperature-Period-Jitter MIN-MAX ●Reference data(BU2362FV basic data) 5.0nsec/div Fig.79 33.9MHz output waveform VDD=3.3V, at CL=15pF 10dB/div 1.0V/div 1.0V/div RBW=1KHz VBW=100Hz 500psec/div 10KHz/div Fig.80 33.9MHz Period-Jitter VDD=3.3V, at CL=15pF Fig.81 33.9MHz Spectrum VDD=3.3V, at CL=15pF 10dB/div 1.0V/div 1.0V/div RBW=1KHz VBW=100Hz 5.0nsec/div Fig.82 36.9MHz output waveform VDD=3.3V, at CL=15pF 500psec/div Fig.83 36.9MHz Period-Jitter VDD=3.3V, at CL=15pF 10KHz/div Fig.84 36.9MHz Spectrum VDD=3.3V, at CL=15pF 10dB/div 1.0V/div 1.0V/div RBW=1KHz VBW=100Hz 500psec/div Fig.86 22.6MHz Period-Jitter VDD=3.3V, at CL=15pF 5.0nsec/div Fig.85. 22.6MHz output waveform VDD=3.3V, at CL=15pF 10KHz/div Fig.87 22.6MHz Spectrum VDD=3.3V, at CL=15pF 5.0nsec/div Fig.88 24.6MHz output waveform VDD=3.3V, at CL=15pF 10dB/div 1.0V/div 1.0V/div RBW=1KHz VBW=100Hz 500psec/div Fig.89 24.6MHz Period-Jitter VDD=3.3V, at CL=15pF 12/24 Fig.90 24.6MHz Spectrum VDD=3.3V, at CL=15pF ●Reference data(BU2362FV basic data) 5.0nsec/div Fig.91 16.9MHz output waveform VDD=3.3V, at CL=15pF 10dB/div 1.0V/div 1.0V/div RBW=1KHz VBW=100Hz 500psec/div Fig.92 16.9MHz Period-Jitter VDD=3.3V, at CL=15pF 10KHz/div Fig.93 16.9MHz Spectrum VDD=3.3V, at CL=15pF 500psec/div 10KHz/div Fig.95 27MHz Period-Jitter VDD=3.3V, at CL=15pF Fig.96 27MHz Spectrum VDD=3.3V, at CL=15pF 1.0V/div 1.0V/div 5.0nsec/div Fig.94 27MHz output waveform VDD=3.3V, at CL=15pF 10dB/div 1.0V/div 1.0V/div RBW=1KHz VBW=100Hz LT Jitter 4.8nsec 2.0nsec/div Fig.97 24.6MHz LT Jitter VDD=3.3V, at CL=15pF 2.0nsec/div Fig.98 22.6MHz LT Jitter VDD=3.3V, at CL=15pF 13/24 ●Reference data (BU2362FV Temperature and Supply voltage variations data) 100 90 90 53 51 VDD=2.4V 50 VDD=3.3V VDD=3.7V 49 48 47 46 80 70 60 VDD=2.4V 50 40 30 VDD=3.3V 20 10 45 25 50 75 100 30 90 Period-jitter1σ : PJ-1σ[psec] 100 54 VDD=3.3V 51 VDD=2.4V 50 49 48 VDD=3.7V 47 46 10 0 25 50 75 100 -25 25 50 75 80 70 VDD=2.4V VDD=3.7V 60 50 40 30 20 VDD=3.3V 10 90 Period-jitter1σ : PJ-1σ[psec] 100 54 VDD=3.3V 50 49 48 0 25 50 75 400 VDD=3.7V 47 46 0 25 50 75 100 -25 70 60 VDD=3.7V 50 VDD=2.4V 40 30 20 VDD=3.3V 90 Period-jitter1σ : PJ-1σ[psec] 100 50 49 48 VDD=3.3V 47 46 0 25 50 75 400 VDD=3.7V 300 -25 0 25 50 VDD=2.4V 200 VDD=3.3V 100 -25 100 0 75 Temperature:T[℃] Fig.108 24.6MHz Temperature-Duty 100 25 50 75 100 Temperature: T[ ℃] Fig.107 22.6MHz Temperature-Period-Jitter MIN-MAX 600 80 70 VDD=2.4V 60 50 40 30 20 VDD=3.3V VDD=3.7V 10 0 45 100 500 Temperature:T[℃] VDD=3.7V 75 0 54 VDD=2.4V 50 Fig.104 36.9MHz Temperature-Period-Jitter MIN-MAX Fig.106 22.6MHz Temperature-Period-Jitter 1σ 53 25 10 55 51 0 Temperature: T[ ℃] 80 Temperature:T[℃] Fig.105 22.6MHz Temperature-Duty 52 VDD=3.3V 600 -25 100 VDD=3.7V 200 0 45 -25 VDD=2.4V 300 100 Fig.103 36.9MHz Temperature-Period-Jitter 1σ 55 VDD=2.4V 100 500 Temperature: T[ ℃] Temperature:T[℃] 51 75 0 -25 Fig.102 36.9MHz Temperature-Duty 52 50 600 100 53 25 Temperature:T[℃] Period-jitterMIN-MAX : PJ-MIN-MAX[psec] 0 0 Fig.101 33.9MHz Temperature-Period-Jitter MIN-MAX 0 45 -25 VDD=3.7V 20 Temperature: T[ ℃] 53 VDD=3.3V 40 Fig.100 33.9MHz Temperature-Period-Jitter 1σ 55 52 VDD=2.4V 50 0 -25 Temperature:T[℃] Duty : Duty[%] 60 Period-jitterMIN-MAX : PJ-MIN-MAX[psec] 0 Fig.99 33.9MHz Temperature-Duty Duty : Duty[ %] 70 0 -25 Duty : Duty[%] VDD=3.7V 80 Period-jitterMIN-MAX : PJ-MIN-MAX[psec] Duty : Duty[%] 52 Period-jitter1σ : PJ-1σ[psec] 100 54 Period-jitter1σ : PJ-1σ[psec] 55 500 400 VDD=2.4V 300 200 VDD=3.3V 100 VDD=3.7V 0 -25 0 25 50 75 100 Temperature:T[℃] Fig.109 24.6MHz Temperature-Period-Jitter 1σ 14/24 -25 0 25 50 75 100 Temperature: T[ ℃] Fig.110 24.6MHz Temperature-Period-Jitter MIN-MAX ●Reference data (BU2362FV Temperature and Supply voltage variations data) 100 54 90 Period-jitter1σ : PJ-1σ[psec] 55 51 VDD=3.7V VDD=2.4V 50 49 VDD=3.3V 48 47 46 80 70 VDD=3.7V 60 40 30 VDD=3.3V 20 10 0 -25 0 25 50 75 0 90 Period-jitter1σ : PJ-1σ[psec] 100 54 53 52 VDD=3.7V VDD=3.3V 49 48 VDD=2.4V 47 25 50 75 46 25 50 75 70 VDD=3.3V VDD=2.4V 60 50 40 30 VDD=3.7V 20 10 100 0 25 30 VDD=3.7V 20 VDD=3.3V 0 -25 0 25 50 75 75 100 Temperature: T[ ℃] VDD=3.7V VDD=2.4V 50 Fig.115 27MHz Temperature-Period-Jitter 1σ 50 10 -25 0 25 50 75 100 Fig.113 16.9MHz) Temperature-Period-Jitter MIN-MAX 500 VDD=2.4V 400 VDD=3.3V 300 200 VDD=3.7V 100 0 -25 Temperature:T[℃] Fig.114 27MHz Temperature-Duty 40 VDD=2.4V 100 600 0 0 200 Temperature: T[ ℃] 80 45 -25 VDD=3.3V 300 100 Fig.112 16.9MHz Temperature-Period-Jitter 1σ 55 50 VDD=3.7V 400 Temperature:T[℃] Fig.111 16.9MHz Temperature-Duty 51 500 0 -25 100 Temperature:T[℃] Duty : Duty[%] VDD=2.4V 50 45 Circuit Current :IDD[mA] Period-jitterMIN-MAX: PJ-MIN-MAX[psec] 52 Period-jitterMIN-MAX : PJ-MIN-MAX[psec] Duty : Duty[%] 53 600 100 Temperature:T[℃] Fig.117 Action circuit current (with maximum output load) Temperature-Consumption current *Refer to the BU2362FV data for BU2288FV data. 15/24 -25 0 25 50 75 100 Temperature: T[ ℃] Fig.116 27MHz Temperature-Period-Jitter MIN-MAX ●Block diagram, Pin assignment ◎BU2280FV 3:CLK27M1 (27.0000MHz) 4:CLK27M2 (27.0000MHz) 24:CLK27M3 (27.0000MHz) 1/4 12:CLK33M (33.8688MHz) XTALIN=27.0000MHz 8:XTALIN 9:XTALOUT XTAL OSC PLL1 1/6 22:CLK768FS (CTRLFS=OPEN:36.8640MHz CTRLFS=L :33.8688MHz) 1/8 16:CLK512FS1 (CTRLFS=OPEN:24.5760MHz CTRLFS=L :22.5792MHz) 1/4 PLL2 1/6 15:CLK512FS2 (CTRLFS=OPEN:24.5760MHz CTRLFS=L :22.5792MHz) 1/8 20:CLK384FS (CTRLFS=OPEN:18.4320MHz CTRLFS=L :16.9344MHz) 21:OE 23:CTRLFS (FSEL=OPEN:48.0kHz type FSEL=L :44.1kHz type) Fig.118 24:CLK27M3 2:VSS1 23:CTRLFS 3:CLK27M1 22:CLK768FS 4:CLK27M2 21:OE 5:AVDD 6:AVDD 7:AVSS 8:XTALIN BU2280FV BU2280FV 1:VDD1 20:CLK384FS 19:DVDD 18:DVSS 17:DVSS 9:XTALOUT 16:CLK512FS1 10:VSS2 15:CLK512FS2 11:VDD2 14:VDD2 12:CLK33M 13:VSS2 Fig.119 CTRLFS L OPEN CLK384FS 16.9344MHz 18.4320MHz CLK512FS 22.5792MHz 24.5760MHz 16/24 CLK768FS 33.8688MHz 36.8640MHz ●Block diagram, Pin assignment ◎BU2288FV 3:CLK27M (27.0000MHz) 15:CLK33M (33.8688MHz) 1/4 1/6 XTALIN=27.0000MHz 8:XTALIN 7:XTALOUT XTAL OSC PLL1 1/8 13:CLK16M (16.9344MHz) PLL2 1/4 9:CLKA (FSEL=OPEN:16.9344MHz FSEL=L :36.8640MHz) 1/6 10:CLK512FS (FSEL=OPEN:22.5792MHz FSEL=L :24.5760MHz) 16:OE 14:FSEL1 Fig.120 16:OE 2:VSS2 15:CLK33M 3:CLK27M 4:TEST 5:AVDD 6:AVSS BU2288FV 1:VDD2 14:FSEL1 13:CLK16M 12:DVDD 11:DVSS 7:XTALOUT 10:CLK512FS 8:XTALIN 9:CLKA Fig.121 FSEL1 CLK512FS CLKA OPEN L 22.5792MHz 24.5760MHz 16.9344MHz 36.8640MHz 17/24 ●Block diagram, Pin assignment ◎BU2360FV 3:CLK27M 1 (27.0000MHz) 4:CLK27M 2 (27.0000MHz) 15:CLK33M1 (33.8688MHz) 1/4 13:CLK33M2 (33.8688MHz) XTALIN=27.0000MHz 7:XTALIN 8:XTALOUT XTAL OSC PLL1 1/6 PLL2 1/6 10:CLK512FS1 (FSEL=OPEN:24.5760MHz FSEL=L :22.5792MHz) 9:CLK512FS2 (FSEL=OPEN:24.5760MHz FSEL=L :22.5792MHz) 16:OE 14:FSEL (FSEL=OPEN:48.0kHz type FSEL=L :44.1kHz type) Fig.122 1:VDD2 16:OE 2:VSS2 15:CLK33M1 BU2360FV 3:CLK27M1 4:CLK27M2 5:AVDD 6:AVSS 14:FSEL 13:CLK33M2 12:DVDD 11:DVSS 7:XTALIN 10:CLK512FS1 8:XTALOUT 9:CLK512FS2 Fig.123 FSEL L OPEN CLK512FS1 / 2 22.5792MHz 24.5760MHz 18/24 ●Block diagram, Pin assignment ◎BU2362FV 3:CLK27M (27.0000MHz) 15:CLK33M (33.8688MHz) 1/4 1/6 XTALIN=27.0000MHz 8:XTALIN 7:XTALOUT XTAL OSC PLL1 1/8 13:CLK16M (16.9344MHz) PLL2 1/4 16:CLK36M (36.8640MHz) 9:CLKA (FSE=OPEN:16.9344MHz FSEL=L :36.8640MHz) 10:CLK512FS (FSE=OPEN:22.5792MHz FSEL=L :24.5760MHz) 1/6 14:FSEL1 Fig.124 16:CLK36M 2:VSS2 15:CLK33M 3:CLK27M 4:TEST 5:AVDD 6:AVSS BU2362FV 1:VDD2 14:FSEL1 13:CLK16M 12:DVDD 11:DVSS 7:XTALOUT 10:CLK512FS 8:XTALIN 9:CLKA Fig.125 FSEL1 OPEN L CLK512FS 22.5792MHz 24.5760MHz 19/24 CLKA 16.9344MHz 36.8640MHz ●Example of application circuit ◎BU2280FV 1:VDD1 24:CLK27M3 2:VSS1 23:CTRLFS 27.0000MHz 3:CLK27M1 22:CLK768FS 27.0000MHz 4:CLK27M2 27.0000MHz 0.1uF 6:AVDD 0.1uF 7:AVSS BU2280FV 5:AVDD 21:OE 20:CLK384FS OPEN:48.0kHz type L:44.1kHz type 36.8640MHz or 33.8688MHz OPEN:Enable L:Disable 18.4320MHz or 16.9344MHz 19:DVDD 0.1uF 18:DVSS 8:XTALIN 17:DVSS 9:XTALOUT 16:CLK512FS1 10:VSS2 15:CLK512FS2 11:VDD2 14:VDD2 12:CLK33M 13:VSS2 0.1uF 24.5760MHz or 22.5792MHz 24.5760MHz or 22.5792MHz 0.1uF 33.8688MHz Fig.126 Description of terminal PIN No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 PIN name VDD1 VSS1 CLK27M1 CLK27M2 AVDD AVDD AVSS XTALIN XTALOUT VSS2 VDD2 CLK33M VSS2 VDD2 CLK512FS2 CLK512FS1 DVSS DVSS PIN function Power supply for 27MHz GND for 27MHz 27.0000MHz Clock output terminal 1 27.0000MHz Clock output terminal 2 Power supply for Analog block Power supply for Analog block GND for Analog block Crystal input terminal Crystal output terminal GND for 33MHz Power supply for 33MHz 33.8688MHz Clock output terminal GND for 33MHz Power supply for 33MHz CTRLFS=OPEN:24.5760MHz, CTRLFS=L:22.5792MHz CTRLFS=OPEN:24.5760MHz, CTRLFS=L:22.5792MHz GND for Digital block GND for Digital block 19 20 21 22 DVDD CLK384FS OE CLK768FS 23 CTRLFS 24 CLK27M3 Power supply for Digital block CTRLFS=OPEN:18.4320MHz, CTRLFS=L:16.9344MHz Output enable (with pull-up), OPEN:enable, L:disable CTRLFS=OPEN:36.8640MHz, CTRLFS=L:33.8688MHz 15, 16, 20, 22PIN output selection (with pull-up) OPEN:24.5760MHz(15PIN, 16PIN), 18.4320MHz(20PIN), 36.8640MHz(22PIN) L:22.5792MHz(15PIN, 16PIN), 16.9344MHz(20PIN), 33.8688MHz(22PIN) 27.0000MHz Clock output terminal 3 Note) Basically, mount ICs to the printed circuit board for use. (If the ICs are not mounted to the printed circuit board, the characteristics of ICs may not be fully demonstrated.) Mount 0.1F capacitors in the vicinity of the IC PINs between 1PIN (VDD1) and 2PIN (VSS1), 5PIN-6PIN (AVDD) and 7PIN (AVSS), 10PIN (VSS2) and 11PIN (VDD2), 13PIN(VSS2) and 14PIN (VDD2), 17PIN-18PIN (DVSS) and 19PIN(DVDD), respectively. Depending on the conditions of the printed circuit board, mount an additional electrolytic capacitor between the power supply and GND terminal. For EMI protection, it is effective to put ferrite beads in the origin of power supply to be fed to BU2280FV from the printed circuit board or to insert a capacitor (of 1 or less), which bypasses high frequency desired, between the power supply and the GND terminal. 20/24 ●Example of application circuit ◎BU2360FV 1:VDD2 16:OE 2:VSS2 15:CLK33M1 0.1uF 3:CLK27M1 27.0000MHz 4: CLK27M2 5:AVDD 0.1uF 6:AVSS BU2360FV 27.0000MHz 14:FSEL 13:CLK32M2 0.1uF 11:DVSS 9:CLK512FS2 8:XTALOUT OPEN:48.0kHz type L:44.1kHz type 33.8688MHz 12:DVDD 10:CLK512FS1 7:XTALIN OPEN:Enable L:Disable 33.8688MHz 24.5760MHz or 22.5792MHz 24.5760MHz or 22.5792MHz Fig.127 Description of terminal PIN No. PIN name 1 2 3 4 5 6 7 8 9 10 11 12 13 VDD2 VSS2 CLK27M1 CLK27M2 AVDD AVSS XTALIN XTALOUT CLK512FS2 CLK512FS1 DVSS DVDD CLK33M2 14 FSEL 15 16 CLK33M1 OE PIN function Power supply for 27MHz GND for 27MHz 27.0000MHz Clock output terminal 1 (CL=40pF) 27.0000MHz Clock output terminal 2 (CL=25pF) Power supply for Analog block GND for Analog block Crystal input terminal Crystal output terminal FSEL=OPEN:24.5760MHz, FSEL=L:22.5792MHz FSEL=OPEN:24.5760MHz, FSEL=L:22.5792MHz GND for Digital block Power supply for Digital block 33.8688MHz Clock output terminal 2 9, 10PIN output selection (with pull-up) OPEN:24.5760MHz(9, 10PIN), L:22.5792MHz(9, 10PIN) 33.8688MHz Clock output terminal 1 Output enable (with pull-up), OPEN:enable, L:disable Note) Basically, mount ICs to the printed circuit board for use. (If the ICs are not mounted to the printed circuit board, the characteristics of ICs may not be fully demonstrated.) Mount 0.1F capacitors in the vicinity of the IC PINs between 1PIN (VDD2) and 2PIN (VSS2), 5PIN (AVDD) and 6PIN (AVSS), 11PIN (DVSS) and 12PIN (DVDD), respectively. Depending on the conditions of the printed circuit board, mount an additional electrolytic capacitor between the power supply and GND terminal. For EMI protection, it is effective to put ferrite beads in the origin of power supply to be fed to BU2360FV from the printed circuit board or to insert a capacitor (of 1 or less), which bypasses high frequency desired, between the power supply and the GND terminal. 21/24 ●Example of application circuit ◎BU2362FV 16:CLK36M 36.8640MHz 2:VSS2 15:CLK33M 33.8688MHz 14:FSEL1 H:44.1KHz mode L:48KHz mode 16.9344MHz BU2362FV 27.0000MHz 1:VDD2 3:CLK27M 4:TEST 5:AVDD 6:AVSS 27.0000MHz 13:CLK16M 12:DVDD 11:DVSS 10:CLK512FS1 7:XTALOUT 9:CLKA 8:XTALIN 22.5792MHz or 24.5670MHz 16.9344MHz or 36.8640MHz Fig.128 Pin No. 1 2 3 PIN NAME VDD2 VSS2 CLK27M Function 4 TEST 5 6 7 8 9 10 11 AVDD AVSS XTALOUT XTALIN CLKA CLK512FS DVSS Power supply for CLK27, CLK36M GND for CLK27, CLK36M 27MHz Clock output terminal Input pin for TEST : with pull-down (Please set ”L” or OPEN, normally) Power supply for Analog block GND for Analog block Crystal output terminal Crystal input terminal CLKA output terminal (16.9344MHz or 36.8640MHz) 512fs Clock output terminal (22.5792MHz or 24.5760MHz) Power supply for Digital block 12 13 14 15 16 DVDD CLK16M FSEL1 CLK33M CLK36M GND for Digital block 16.9344MHz Clock output terminal CLKA or CLK512FS pin output select : with pull-up 33.8688MHz Clock output terminal 36.8640MHz Clock output terminal ●Cautions on use (BU2362FV) Basically, mount ICs to the printed circuit board for use. (If the ICs are not mounted to the printed circuit board, the characteristics of ICs may not be fully demonstrated.) Mount 0.1F capacitors in the vicinity of the IC PINs between 1PIN (VDD2) and 2PIN (VSS2), 5PIN (AVDD) and 6PIN (AVSS), 11PIN (DVSS) and 12PIN (DVDD), respectively. For the fine-tuning of frequencies, insert several numbers of pF in the 7PIN and 8PIN to GND. Depending on the conditions of the printed circuit board, mount an additional electrolytic capacitor between the power supply and GND terminal. For EMI protection, it is effective to put ferrite beads in the origin of power supply to be fed to BU2362FV from the printed circuit board or to insert a capacitor (of 1Ω or less), which bypasses high frequency desired, between the power supply and the GND terminal. *Refer to the BU2362FV Example of application circuit for BU2288FV Example of application circuit. Even though we believe that the example of recommended circuit is worth of a recommendation, please be sure to thoroughly recheck the characteristics before use. 22/24 ●Cautions on use (1) Absolute Maximum Ratings An excess in the absolute maximum ratings, such as applied voltage (VDD or VIN), operating temperature range (Topr), etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety measures including the use of fuses, etc. (2) Recommended operating conditions These conditions represent a range within which characteristics can be provided approximately as expected. The electrical characteristics are guaranteed under the conditions of each parameter. (3) Reverse connection of power supply connector The reverse connection of power supply connector can break down ICs. Take protective measures against the breakdown due to the reverse connection, such as mounting an external diode between the power supply and the IC’s power supply terminal. (4) Power supply line Design PCB pattern to provide low impedance for the wiring between the power supply and the GND lines. In this regard, for the digital block power supply and the analog block power supply, even though these power supplies has the same level of potential, separate the power supply pattern for the digital block from that for the analog block, thus suppressing the diffraction of digital noises to the analog block power supply resulting from impedance common to the wiring patterns. For the GND line, give consideration to design the patterns in a similar manner. Furthermore, for all power supply terminals to ICs, mount a capacitor between the power supply and the GND terminal. At the same time, in order to use an electrolytic capacitor, thoroughly check to be sure the characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low temperature, thus determining the constant. (5) GND voltage Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure no terminals are at a potential lower than the GND voltage including an actual electric transient. (6) Short circuit between terminals and erroneous mounting In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between terminals or between the terminal and the power supply or the GND terminal, the ICs can break down. (7) Operation in strong electromagnetic field Be noted that using ICs in the strong electromagnetic field can malfunction them. (8) Inspection with set PCB On the inspection with the set PCB, if a capacitor is connected to a low-impedance IC terminal, the IC can suffer stress. Therefore, be sure to discharge from the set PCB by each process. Furthermore, in order to mount or dismount the set PCB to/from the jig for the inspection process, be sure to turn OFF the power supply and then mount the set PCB to the jig. After the completion of the inspection, be sure to turn OFF the power supply and then dismount it from the jig. In addition, for protection against static electricity, establish a ground for the assembly process and pay thorough attention to the transportation and the storage of the set PCB. (9) Input terminals In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the input terminal. Therefore, pay thorough attention not to handle the input terminals, such as to apply to the input terminals a voltage lower than the GND respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input terminals when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to the input terminals a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics. (10) Ground wiring pattern If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of the small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of external parts as well. (11) External capacitor In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc. 23/24 ●Product Designation B U 2 2 8 0 F - V E 2 Type Package Type Package and forming specification BU2280FV, BU2288FV, FV : SSOP-B24(BU2280FV) E2: Reel-like emboss taping BU2360FV, BU2362FV FV : SSOP-B16 (BU2288FV,BU2360FV,BU2362FV) Part No. SSOP-B16 <Dimension> <Tape and Reel information> Embossed carrier tape Tape 9 1 8 0.3Min. 16 2500pcs E2 (The direction is the 1pin of product is at the upper left when you hold reel on the left hand and you pull out the tape on the right hand) 0.15 ± 0.1 1234 Direction of feed 1pin Reel 1234 1234 1234 1234 1234 0.1 0.22 ± 0.1 1234 0.65 Quantity Direction of feed 1234 1.15 ± 0.1 6.4 ± 0.3 0.1 4.4 ± 0.2 5.0 ± 0.2 ※When you order , please order in times the amount of package quantity. (Unit:mm) SSOP-B24 <Dimension> <Tape and Reel information> Tape 7.8 ± 0.2 13 0.3Min. 7.6 ± 0.3 5.6 ± 0.2 24 2000pcs E2 (The direction is the 1pin of product is at the upper left when you hold reel on the left hand and you pull out the tape on the right hand) 0.15 ± 0.1 1234 1234 1234 1pin 1234 (Unit:mm) 1234 Reel 1234 0.1 0.22 ± 0.1 1234 0.65 12 Quantity Direction of feed 1234 1.15 ± 0.1 0.1 1 Embossed carrier tape Direction of feed ※When you order , please order in times the amount of package quantity. Catalog No.08T808A '08.9 ROHM © Appendix Notes No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM CO.,LTD. The content specified herein is subject to change for improvement without notice. The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices). The Products are not designed to be radiation tolerant. While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons. Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual. The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact your nearest sales office. ROHM Customer Support System www.rohm.com Copyright © 2009 ROHM CO.,LTD. THE AMERICAS / EUROPE / ASIA / JAPAN Contact us : webmaster @ rohm.co. jp 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan TEL : +81-75-311-2121 FAX : +81-75-315-0172 Appendix-Rev4.0