CEG2108E

CEG2108E
Dual N-Channel Enhancement Mode Field Effect Transistor
PRELIMINARY
FEATURES
D
20V, 8.5A, RDS(ON) = 14mΩ @VGS = 10V.
D
RDS(ON) = 15mΩ @VGS = 4.5V.
RDS(ON) = 20mΩ @VGS = 2.5V.
*1K
G1
RDS(ON) = 28mΩ @VGS = 1.8V.
G2
*1K
Super High dense cell design for extremely low RDS(ON).
High power and current handing capability.
S1
*Typical value by design
Lead-free plating ; RoHS compliant.
TSSOP-8 for Surface Mount Package.
G2
S2
S2
D
G1
S1
S1
D
TSSOP-8
ABSOLUTE MAXIMUM RATINGS
S2
1
8
D
S1 2
7
S2
S1 3
6
S2
G1 4
5
G2
D
TA = 25 C unless otherwise noted
Symbol
Limit
Drain-Source Voltage
VDS
20
Units
V
Gate-Source Voltage
VGS
±12
V
ID
8.5
A
IDM
34
A
PD
1.5
W
TJ,Tstg
-55 to 150
C
Symbol
Limit
Units
RθJA
83
C/W
Parameter
Drain Current-Continuous
Drain Current-Pulsed
a
Maximum Power Dissipation
Operating and Store Temperature Range
Thermal Characteristics
Parameter
Thermal Resistance, Junction-to-Ambient b
This is preliminary information on a new product in development now .
Details are subject to change without notice .
1
Rev 1. 2012.Oct
http://www.cetsemi.com
CEG2108E
Electrical Characteristics
Parameter
Tc = 25 C unless otherwise noted
Symbol
Test Condition
Min
Drain-Source Breakdown Voltage
BVDSS
VGS = 0V, ID = 250µA
20
Zero Gate Voltage Drain Current
IDSS
Gate Body Leakage Current, Forward
Gate Body Leakage Current, Reverse
Typ
Max
Units
VDS = 20V, VGS = 0V
1
µA
IGSSF
VGS = 12V, VDS = 0V
10
uA
IGSSR
VGS = -12V, VDS = 0V
-10
uA
Off Characteristics
V
On Characteristics
Gate Threshold Voltage
Static Drain-Source
On-Resistance
VGS(th)
RDS(on)
VGS = VDS, ID = 250µA
1.0
V
VGS = 10V, ID = 8A
0.4
11
14
mΩ
VGS = 4.5V, ID = 4A
12
15
mΩ
VGS = 2.5V, ID = 2A
14
20
mΩ
VGS = 1.8V, ID = 1A
20
28
mΩ
VDS = 25V, VGS = 0V,
f = 1.0 MHz
35
pF
185
pF
15
pF
487
us
800
us
1728
us
Dynamic Characteristics c
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
Switching Characteristics c
Turn-On Delay Time
td(on)
Turn-On Rise Time
tr
Turn-Off Delay Time
td(off)
VDD = 10V, ID = 1A,
VGS = 10V, RGEN = 3Ω
Turn-Off Fall Time
tf
6180
us
Total Gate Charge
Qg
4.3
nC
Gate-Source Charge
Qgs
1.1
nC
Gate-Drain Charge
Qgd
2.5
nC
VDS = 10V, ID =8A,
VGS = 4.5V
Drain-Source Diode Characteristics and Maximun Ratings
Drain-Source Diode Forward Current
IS
Drain-Source Diode Forward Voltage b
VSD
VGS = 0V, IS = 1A
Notes :
a.Repetitive Rating : Pulse width limited by maximum junction temperature.
b.Surface Mounted on FR4 board,t < 10sec.
b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%.
c.Guaranteed by design, not subject to production testing.
2
1
A
1.2
V
CEG2108E
15
VGS=10,8,6,4,2V
12
ID, Drain Current (A)
ID, Drain Current (A)
15
9
6
3
0
0
0.2
0.4
0.6
0
-55 C
3
2
1
Figure 1. Output Characteristics
Figure 2. Transfer Characteristics
RDS(ON), Normalized
RDS(ON), On-Resistance(Ohms)
Coss
120
80
Ciss
40
Crss
0
2
4
6
8
10
2.2
1.9
ID=8A
VGS=10V
1.6
1.3
1.0
0.7
0.4
-100
-50
0
50
100
150
200
VDS, Drain-to-Source Voltage (V)
TJ, Junction Temperature( C)
Figure 3. Capacitance
Figure 4. On-Resistance Variation
with Temperature
VDS=VGS
ID=250µA
1.1
1.0
0.9
0.8
0.7
0.6
-50
TJ=125 C
VGS, Gate-to-Source Voltage (V)
IS, Source-drain current (A)
C, Capacitance (pF)
VTH, Normalized
Gate-Source Threshold Voltage
25 C
3
0
160
1.2
6
VDS, Drain-to-Source Voltage (V)
200
1.3
9
0.8
240
0
12
-25
0
25
50
75
100
125
150
VGS=0V
10
1
10
0
10
-1
0.4
0.6
0.8
1.0
1.2
1.4
TJ, Junction Temperature( C)
VSD, Body Diode Forward Voltage (V)
Figure 5. Gate Threshold Variation
with Temperature
Figure 6. Body Diode Forward Voltage
Variation with Source Current
3
5 V =10V
DS
ID=8A
10
2
RDS(ON)Limit
4
ID, Drain Current (A)
VGS, Gate to Source Voltage (V)
CEG2108E
3
2
1
0
0
1
2
3
4
5
6
Qg, Total Gate Charge (nC)
10
1
10
0
10
-1
10
-2
1ms
10ms
100ms
1s
DC
TA=25 C
TJ=150 C
Single Pulse
10
-2
10
t on
RGEN
10
1
10
toff
tr
td(on)
td(off)
tf
90%
90%
RL
D
0
Figure 8. Maximum Safe
Operating Area
VDD
VGS
10
VDS, Drain-Source Voltage (V)
Figure 7. Gate Charge
V IN
-1
VOUT
VOUT
10%
G
INVERTED
10%
90%
VIN
S
50%
50%
10%
PULSE WIDTH
Figure 9. Switching Test Circuit
Figure 10. Switching Waveforms
r(t),Normalized Effective
Transient Thermal Impedance
10
0
D=0.5
10
0.2
-1
0.1
0.05
10
PDM
0.02
0.01
-2
t1
1. RθJA (t)=r (t) * RθJA
2. RθJA=See Datasheet
3. TJM-TA = P* RθJA (t)
4. Duty Cycle, D=t1/t2
Single Pulse
10
-3
10
-4
t2
10
-3
10
-2
10
-1
10
0
Square Wave Pulse Duration (sec)
Figure 10. Normalized Thermal Transient Impedance Curve
4
10
1
10
2
2