CEG2108E Dual N-Channel Enhancement Mode Field Effect Transistor PRELIMINARY FEATURES D 20V, 8.5A, RDS(ON) = 14mΩ @VGS = 10V. D RDS(ON) = 15mΩ @VGS = 4.5V. RDS(ON) = 20mΩ @VGS = 2.5V. *1K G1 RDS(ON) = 28mΩ @VGS = 1.8V. G2 *1K Super High dense cell design for extremely low RDS(ON). High power and current handing capability. S1 *Typical value by design Lead-free plating ; RoHS compliant. TSSOP-8 for Surface Mount Package. G2 S2 S2 D G1 S1 S1 D TSSOP-8 ABSOLUTE MAXIMUM RATINGS S2 1 8 D S1 2 7 S2 S1 3 6 S2 G1 4 5 G2 D TA = 25 C unless otherwise noted Symbol Limit Drain-Source Voltage VDS 20 Units V Gate-Source Voltage VGS ±12 V ID 8.5 A IDM 34 A PD 1.5 W TJ,Tstg -55 to 150 C Symbol Limit Units RθJA 83 C/W Parameter Drain Current-Continuous Drain Current-Pulsed a Maximum Power Dissipation Operating and Store Temperature Range Thermal Characteristics Parameter Thermal Resistance, Junction-to-Ambient b This is preliminary information on a new product in development now . Details are subject to change without notice . 1 Rev 1. 2012.Oct http://www.cetsemi.com CEG2108E Electrical Characteristics Parameter Tc = 25 C unless otherwise noted Symbol Test Condition Min Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = 250µA 20 Zero Gate Voltage Drain Current IDSS Gate Body Leakage Current, Forward Gate Body Leakage Current, Reverse Typ Max Units VDS = 20V, VGS = 0V 1 µA IGSSF VGS = 12V, VDS = 0V 10 uA IGSSR VGS = -12V, VDS = 0V -10 uA Off Characteristics V On Characteristics Gate Threshold Voltage Static Drain-Source On-Resistance VGS(th) RDS(on) VGS = VDS, ID = 250µA 1.0 V VGS = 10V, ID = 8A 0.4 11 14 mΩ VGS = 4.5V, ID = 4A 12 15 mΩ VGS = 2.5V, ID = 2A 14 20 mΩ VGS = 1.8V, ID = 1A 20 28 mΩ VDS = 25V, VGS = 0V, f = 1.0 MHz 35 pF 185 pF 15 pF 487 us 800 us 1728 us Dynamic Characteristics c Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Switching Characteristics c Turn-On Delay Time td(on) Turn-On Rise Time tr Turn-Off Delay Time td(off) VDD = 10V, ID = 1A, VGS = 10V, RGEN = 3Ω Turn-Off Fall Time tf 6180 us Total Gate Charge Qg 4.3 nC Gate-Source Charge Qgs 1.1 nC Gate-Drain Charge Qgd 2.5 nC VDS = 10V, ID =8A, VGS = 4.5V Drain-Source Diode Characteristics and Maximun Ratings Drain-Source Diode Forward Current IS Drain-Source Diode Forward Voltage b VSD VGS = 0V, IS = 1A Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature. b.Surface Mounted on FR4 board,t < 10sec. b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%. c.Guaranteed by design, not subject to production testing. 2 1 A 1.2 V CEG2108E 15 VGS=10,8,6,4,2V 12 ID, Drain Current (A) ID, Drain Current (A) 15 9 6 3 0 0 0.2 0.4 0.6 0 -55 C 3 2 1 Figure 1. Output Characteristics Figure 2. Transfer Characteristics RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) Coss 120 80 Ciss 40 Crss 0 2 4 6 8 10 2.2 1.9 ID=8A VGS=10V 1.6 1.3 1.0 0.7 0.4 -100 -50 0 50 100 150 200 VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature( C) Figure 3. Capacitance Figure 4. On-Resistance Variation with Temperature VDS=VGS ID=250µA 1.1 1.0 0.9 0.8 0.7 0.6 -50 TJ=125 C VGS, Gate-to-Source Voltage (V) IS, Source-drain current (A) C, Capacitance (pF) VTH, Normalized Gate-Source Threshold Voltage 25 C 3 0 160 1.2 6 VDS, Drain-to-Source Voltage (V) 200 1.3 9 0.8 240 0 12 -25 0 25 50 75 100 125 150 VGS=0V 10 1 10 0 10 -1 0.4 0.6 0.8 1.0 1.2 1.4 TJ, Junction Temperature( C) VSD, Body Diode Forward Voltage (V) Figure 5. Gate Threshold Variation with Temperature Figure 6. Body Diode Forward Voltage Variation with Source Current 3 5 V =10V DS ID=8A 10 2 RDS(ON)Limit 4 ID, Drain Current (A) VGS, Gate to Source Voltage (V) CEG2108E 3 2 1 0 0 1 2 3 4 5 6 Qg, Total Gate Charge (nC) 10 1 10 0 10 -1 10 -2 1ms 10ms 100ms 1s DC TA=25 C TJ=150 C Single Pulse 10 -2 10 t on RGEN 10 1 10 toff tr td(on) td(off) tf 90% 90% RL D 0 Figure 8. Maximum Safe Operating Area VDD VGS 10 VDS, Drain-Source Voltage (V) Figure 7. Gate Charge V IN -1 VOUT VOUT 10% G INVERTED 10% 90% VIN S 50% 50% 10% PULSE WIDTH Figure 9. Switching Test Circuit Figure 10. Switching Waveforms r(t),Normalized Effective Transient Thermal Impedance 10 0 D=0.5 10 0.2 -1 0.1 0.05 10 PDM 0.02 0.01 -2 t1 1. RθJA (t)=r (t) * RθJA 2. RθJA=See Datasheet 3. TJM-TA = P* RθJA (t) 4. Duty Cycle, D=t1/t2 Single Pulse 10 -3 10 -4 t2 10 -3 10 -2 10 -1 10 0 Square Wave Pulse Duration (sec) Figure 10. Normalized Thermal Transient Impedance Curve 4 10 1 10 2 2