CEP70N10/CEB70N10 N-Channel Enhancement Mode Field Effect Transistor PRELIMINARY FEATURES 100V, 70A, RDS(ON) = 16mΩ @VGS = 10V. Super high dense cell design for extremely low RDS(ON). High power and current handing capability. D Lead-free plating ; RoHS compliant. TO-220 & TO-263 package. D G S CEB SERIES TO-263(DD-PAK) G G D S ABSOLUTE MAXIMUM RATINGS Parameter CEP SERIES TO-220 S Tc = 25 C unless otherwise noted Symbol Limit Drain-Source Voltage VDS Gate-Source Voltage VGS Drain Current-Continuous @ TC = 25 C ID Drain Current-Continuous @ TC = 100 C Drain Current-Pulsed a IDM Maximum Power Dissipation @ TC = 25 C PD - Derate above 25 C 100 Units V ±20 V 70 A 48 A 280 A 136 W 0.9 W/ C Single Pulsed Avalanche Energy d EAS 182 mJ Single Pulsed Avalanche Current IAS TJ,Tstg 27 A -55 to 175 C d Operating and Store Temperature Range Thermal Characteristics Symbol Limit Units Thermal Resistance, Junction-to-Case Parameter RθJC 1.1 C/W Thermal Resistance, Junction-to-Ambient RθJA 62.5 C/W This is preliminary information on a new product in development now . Details are subject to change without notice . 1 Rev 1. 2011.Dec http://www.cetsemi.com CEP70N10/CEB70N10 Electrical Characteristics Parameter Tc = 25 C unless otherwise noted Symbol Test Condition Min Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = 250µA 100 Zero Gate Voltage Drain Current IDSS Gate Body Leakage Current, Forward Gate Body Leakage Current, Reverse Typ Max Units VDS = 100V, VGS = 0V 1 µA IGSSF VGS = 20V, VDS = 0V 100 nA IGSSR VGS = -20V, VDS = 0V -100 nA 4 V 16 mΩ Off Characteristics V On Characteristics b Gate Threshold Voltage Static Drain-Source On-Resistance VGS(th) VGS = VDS, ID = 250µA 2 RDS(on) VGS = 10V, ID = 25A 13 gFS VDS = 25V, ID = 25A 21 S 3790 240 pF 140 pF Dynamic Characteristics c Forward Transconductance Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss VDS = 25V, VGS = 0V, f = 1.0 MHz pF Switching Characteristics c Turn-On Delay Time td(on) Turn-On Rise Time tr Turn-Off Delay Time td(off) VDD = 50V, ID = 30A, VGS = 10V, RGEN = 5.6Ω 27 54 ns 10 20 ns 140 26 ns 101 nC Turn-Off Fall Time tf 70 13 Total Gate Charge Qg 78 Gate-Source Charge Qgs Gate-Drain Charge Qgd VDS = 80V, ID = 70A, VGS = 10V ns nC 20 25 nC Drain-Source Diode Characteristics and Maximun Ratings Drain-Source Diode Forward Current IS Drain-Source Diode Forward Voltage b VSD VGS = 0V, IS = 25A Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%. c.Guaranteed by design, not subject to production testing. d.L = 0.5mH, IAS = 27A, VDD = 25V, RG = 25Ω, Starting TJ = 25 C 2 72 A 1.3 V CEP70N10/CEB70N10 20 15 10 VGS=4V 5 0 1 2 3 4 5 6 0 2 4 6 8 10 Figure 1. Output Characteristics Figure 2. Transfer Characteristics Ciss 1600 800 Coss Crss 0 5 10 15 20 25 2.6 2.2 ID=25A VGS=10V 1.8 1.4 1.0 0.6 0.2 -100 -50 0 50 100 150 200 VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature( C) Figure 3. Capacitance Figure 4. On-Resistance Variation with Temperature VDS=VGS IS, Source-drain current (A) ID=250µA 1.1 1.0 0.9 0.8 0.7 0.6 -50 TJ=125 C 35 VGS, Gate-to-Source Voltage (V) 2400 1.2 70 -55 C 3200 1.3 105 0 4000 0 25 C VDS, Drain-to-Source Voltage (V) 4800 C, Capacitance (pF) ID, Drain Current (A) 25 0 VTH, Normalized Gate-Source Threshold Voltage 140 VGS=10,9,8,7,6V RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) ID, Drain Current (A) 30 -25 0 25 50 75 100 125 150 VGS=0V 10 1 10 0 10 -1 0.4 0.6 0.8 1.0 1.2 1.4 TJ, Junction Temperature( C) VSD, Body Diode Forward Voltage (V) Figure 5. Gate Threshold Variation with Temperature Figure 6. Body Diode Forward Voltage Variation with Source Current 3 10 VDS=80V ID=70A 10 8 ID, Drain Current (A) VGS, Gate to Source Voltage (V) CEP70N10/CEB70N10 6 4 2 0 0 20 40 60 10 RDS(ON)Limit 2 100ms 1ms 10 10 80 3 1 10ms DC TC=25 C TJ=175 C Single Pulse 0 10 -1 10 0 10 1 10 Qg, Total Gate Charge (nC) VDS, Drain-Source Voltage (V) Figure 7. Gate Charge Figure 8. Maximum Safe Operating Area VDD t on RL V IN D VGS RGEN toff tr td(on) td(off) tf 90% 90% VOUT VOUT 10% INVERTED 10% G 90% S VIN 50% 50% 10% PULSE WIDTH Figure 10. Switching Waveforms r(t),Normalized Effective Transient Thermal Impedance Figure 9. Switching Test Circuit 10 0 D=0.5 0.2 10 10 PDM 0.1 -1 0.05 0.02 0.01 Single Pulse t1 1. RθJC (t)=r (t) * RθJC 2. RθJC=See Datasheet 3. TJM-TC = P* RθJC (t) 4. Duty Cycle, D=t1/t2 -2 10 -2 t2 10 -1 10 0 10 1 10 2 Square Wave Pulse Duration (msec) Figure 11. Normalized Thermal Transient Impedance Curve 4 10 3 10 4 2