CED13N07/CEU13N07 N-Channel Enhancement Mode Field Effect Transistor FEATURES 70V, 11A, RDS(ON) = 127mΩ @VGS = 10V. RDS(ON) = 153mΩ @VGS = 5V. Super high dense cell design for extremely low RDS(ON). High power and current handing capability. D Lead free product is acquired. TO-251 & TO-252 package. G D G S CEU SERIES TO-252(D-PAK) ABSOLUTE MAXIMUM RATINGS Parameter G D S CED SERIES TO-251(I-PAK) Tc = 25 C unless otherwise noted Symbol Limit Drain-Source Voltage VDS Gate-Source Voltage VGS Drain Current-Pulsed Maximum Power Dissipation @ TC = 25 C - Derate above 25 C 70 Units V ±20 V ID 11 A IDM 44 A 28 W Drain Current-Continuous a S PD 0.22 W/ C Single Pulsed Avalanche Energy d EAS 70 mJ Single Pulsed Avalanche Current d IAS 10 A TJ,Tstg -55 to 150 C Operating and Store Temperature Range Thermal Characteristics Symbol Limit Units Thermal Resistance, Junction-to-Case Parameter RθJC 4.5 C/W Thermal Resistance, Junction-to-Ambient RθJA 50 C/W 2005.March http://www.cetsemi.com 6 - 26 CED13N07/CEU13N07 Electrical Characteristics Parameter Tc = 25 C unless otherwise noted Symbol Test Condition Min Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = 250µA 70 Zero Gate Voltage Drain Current IDSS Gate Body Leakage Current, Forward Gate Body Leakage Current, Reverse Typ Max Units VDS = 60V, VGS = 0V 1 µA IGSSF VGS = 20V, VDS = 0V 100 nA IGSSR VGS = -20V, VDS = 0V -100 nA Off Characteristics V On Characteristics b Gate Threshold Voltage VGS(th) Static Drain-Source RDS(on) On-Resistance Forward Transconductance Dynamic Characteristics gFS VGS = VDS, ID = 250µA 2.5 V VGS = 10V, ID = 5.5A 1 106 127 mΩ VGS = 5V, ID = 5.5A 127 153 mΩ VDS = 25V, ID = 5.5A 6 S 413 pF 105 pF 23 pF c Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss VDS = 25V, VGS = 0V, f = 1.0 MHz Switching Characteristics c Turn-On Delay Time td(on) Turn-On Rise Time tr Turn-Off Delay Time td(off) VDD = 30V, ID = 6.8A, VGS = 5V, RGEN = 25Ω 14 30 ns 10 25 ns 28 55 ns Turn-Off Fall Time tf 9 20 ns Total Gate Charge Qg 5.5 6.4 nC Gate-Source Charge Qgs Gate-Drain Charge Qgd VDS = 48V, ID = 13.6A, VGS = 5V 2.1 nC 2.3 nC Drain-Source Diode Characteristics and Maximun Ratings Drain-Source Diode Forward Current IS Drain-Source Diode Forward Voltage b VSD VGS = 0V, IS = 11A Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature. b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%. c.Guaranteed by design, not subject to production testing. d.L = 870µH, IAS = 10A, VDD = 25V, RG = 25Ω, Starting TJ = 25 C 6 - 27 11 A 1.5 V 6 CED13N07/CEU13N07 25 15 25 C 12 ID, Drain Current (A) ID, Drain Current (A) VGS=10,8,6,5V VGS=4V 9 6 3 0 VGS=3V 0 1 2 3 4 0 2 4 6 8 VGS, Gate-to-Source Voltage (V) Figure 1. Output Characteristics Figure 2. Transfer Characteristics Ciss 400 300 200 Coss Crss 0 0 5 10 15 20 25 2.6 2.2 ID=5.5A VGS=10V 1.8 1.4 1.0 0.6 0.2 -100 -50 0 50 100 150 200 VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature( C) Figure 3. Capacitance Figure 4. On-Resistance Variation with Temperature IS, Source-drain current (A) VDS=VGS ID=250µA 1.1 1.0 0.9 0.8 0.7 0.6 -50 -55 C VDS, Drain-to-Source Voltage (V) RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) C, Capacitance (pF) 5 0 100 VTH, Normalized Gate-Source Threshold Voltage 10 5 500 1.2 15 TJ=125 C 600 1.3 20 VGS=0V 10 10 10 -25 0 25 50 75 100 125 150 1 0 -1 0.4 0.6 0.8 1.0 1.2 1.4 TJ, Junction Temperature( C) VSD, Body Diode Forward Voltage (V) Figure 5. Gate Threshold Variation with Temperature Figure 6. Body Diode Forward Voltage Variation with Source Current 6 - 28 10 10 VDS=48V ID=13.6A 8 ID, Drain Current (A) VGS, Gate to Source Voltage (V) CED13N07/CEU13N07 6 4 2 0 2 4 6 8 100µs RDS(ON)Limit 10 1 1ms 10ms DC 10 10 0 2 0 6 TC=25 C TJ=150 C Single Pulse -1 10 -1 10 0 10 1 10 Qg, Total Gate Charge (nC) VDS, Drain-Source Voltage (V) Figure 7. Gate Charge Figure 8. Maximum Safe Operating Area VDD t on RL V IN D td(off) tf 90% 90% VOUT VOUT VGS RGEN toff tr td(on) 10% INVERTED 10% G 90% S VIN 50% 50% 10% PULSE WIDTH Figure 10. Switching Waveforms r(t),Normalized Effective Transient Thermal Impedance Figure 9. Switching Test Circuit 10 0 D=0.5 0.2 10 PDM 0.1 -1 t1 0.05 t2 0.02 0.01 Single Pulse 10 1. RθJC (t)=r (t) * RθJC 2. RθJC=See Datasheet 3. TJM-TC = P* RθJC (t) 4. Duty Cycle, D=t1/t2 -2 10 -2 10 -1 10 0 10 1 10 2 Square Wave Pulse Duration (msec) Figure 11. Normalized Thermal Transient Impedance Curve 6 - 29 10 3 10 4 2