CEP60N10/CEB60N10 N-Channel Enhancement Mode Field Effect Transistor FEATURES 100V, 57A, RDS(ON) = 24mΩ @VGS = 10V. Super high dense cell design for extremely low RDS(ON). High power and current handing capability. D Lead free product is acquired. TO-220 & TO-263 package. D G S CEB SERIES TO-263(DD-PAK) G G D S ABSOLUTE MAXIMUM RATINGS Parameter CEP SERIES TO-220 Tc = 25 C unless otherwise noted Symbol Limit Drain-Source Voltage VDS Gate-Source Voltage VGS Drain Current-Continuous Drain Current-Pulsed S a Maximum Power Dissipation @ TC = 25 C Units V ±20 V ID 57 A IDM 228 A 200 W PD - Derate above 25 C 100 1.3 W/ C Single Pulsed Avalanche Energy d EAS 560 mJ Single Pulsed Avalanche Current d IAS 40 A TJ,Tstg -55 to 175 C Operating and Store Temperature Range Thermal Characteristics Symbol Limit Units Thermal Resistance, Junction-to-Case Parameter RθJC 0.75 C/W Thermal Resistance, Junction-to-Ambient RθJA 62.5 C/W This is preliminary information on a new product in development now . Details are subject to change without notice . 1 Rev 4. 2008.Oct. http://www.cet-mos.com CEP60N10/CEB60N10 Electrical Characteristics Parameter Tc = 25 C unless otherwise noted Symbol Test Condition Min Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = 250µA 100 Zero Gate Voltage Drain Current IDSS Gate Body Leakage Current, Forward Gate Body Leakage Current, Reverse Typ Max Units VDS = 80V, VGS = 0V 1 µA IGSSF VGS = 20V, VDS = 0V 100 nA IGSSR VGS = -20V, VDS = 0V -100 nA 4 V 24 mΩ Off Characteristics V On Characteristics b Gate Threshold Voltage Static Drain-Source On-Resistance VGS(th) VGS = VDS, ID = 250µA RDS(on) VGS = 10V, ID = 30A 2 20 Dynamic Characteristics c Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss VDS = 25V, VGS = 0V, f = 1.0 MHz 2810 pF 440 pF 38 pF Switching Characteristics c Turn-On Delay Time td(on) Turn-On Rise Time tr Turn-Off Delay Time td(off) VDD = 50V, ID = 30A, VGS = 10V, RGEN = 2.5Ω 26 52 ns 5 10 ns ns 52 104 Turn-Off Fall Time tf 8 16 ns Total Gate Charge Qg 64 76 nC Gate-Source Charge Qgs Gate-Drain Charge Qgd VDS = 80V, ID = 30A, VGS = 10V 15 nC 24 nC Drain-Source Diode Characteristics and Maximun Ratings Drain-Source Diode Forward Current IS Drain-Source Diode Forward Voltage b VSD VGS = 0V, IS = 57A Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature. b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%. c.Guaranteed by design, not subject to production testing. d.L = 700µH, IAS = 40A, VDD = 25V, RG = 25Ω, Starting TJ = 25 C 2 57 A 1.3 V CEP60N10/CEB60N10 100 VGS=10,9V 45 ID, Drain Current (A) ID, Drain Current (A) 54 VGS=8V 32 27 VGS=7V 18 VGS=6V 9 0 0 0.5 1.0 1.5 2.0 2.5 20 0 0 2 4 6 8 Figure 1. Output Characteristics Figure 2. Transfer Characteristics RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) Ciss 1800 1200 Coss 600 Crss 0 5 10 15 20 25 2.6 2.2 ID=30A VGS=10V 1.8 1.4 1.0 0.6 0.2 -100 -50 0 50 100 150 200 VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature( C) Figure 3. Capacitance Figure 4. On-Resistance Variation with Temperature VDS=VGS ID=250µA 1.1 1.0 0.9 0.8 0.7 0.6 -50 -55 C TJ=125 C VGS, Gate-to-Source Voltage (V) IS, Source-drain current (A) C, Capacitance (pF) VTH, Normalized Gate-Source Threshold Voltage 25 C 3.0 2400 1.2 40 VDS, Drain-to-Source Voltage (V) 3000 1.3 60 VGS=5V 3600 0 80 -25 0 25 50 75 100 125 150 VGS=0V 10 2 10 1 10 0 0.4 0.6 0.8 1.0 1.2 1.4 TJ, Junction Temperature( C) VSD, Body Diode Forward Voltage (V) Figure 5. Gate Threshold Variation with Temperature Figure 6. Body Diode Forward Voltage Variation with Source Current 3 10 10 VDS=80V ID=30A 8 6 4 2 0 0 12 3 RDS(ON)Limit ID, Drain Current (A) VGS, Gate to Source Voltage (V) CEP60N10/CEB60N10 24 36 48 60 10 100ms 1ms 10 10 72 10ms 2 DC 1 TC=25 C TJ=175 C Single Pulse 0 10 0 10 1 10 2 10 Qg, Total Gate Charge (nC) VDS, Drain-Source Voltage (V) Figure 7. Gate Charge Figure 8. Maximum Safe Operating Area VDD t on RL V IN D RGEN td(off) tf 90% 90% VOUT VGS toff tr td(on) VOUT INVERTED 10% 10% G 90% S VIN 50% 50% 10% PULSE WIDTH Figure 10. Switching Waveforms r(t),Normalized Effective Transient Thermal Impedance Figure 9. Switching Test Circuit 10 0 D=0.5 0.2 10 PDM 0.1 -1 0.05 t1 0.02 0.01 1. RθJC (t)=r (t) * RθJC 2. RθJC=See Datasheet 3. TJM-TC = P* RθJC (t) 4. Duty Cycle, D=t1/t2 Single Pulse 10 -2 10 -2 t2 10 -1 10 0 10 1 10 2 Square Wave Pulse Duration (msec) Figure 11. Normalized Thermal Transient Impedance Curve 4 10 3 10 4 3