CEP140N10/CEB140N10

CEP140N10/CEB140N10
N-Channel Enhancement Mode Field Effect Transistor
FEATURES
100V, 137A, RDS(ON) = 7.5mΩ @VGS = 10V.
Super high dense cell design for extremely low RDS(ON).
High power and current handing capability.
D
Lead-free plating ; RoHS compliant.
TO-220 & TO-263 package.
D
G
S
CEB SERIES
TO-263(DD-PAK)
G
G
D
S
ABSOLUTE MAXIMUM RATINGS
Parameter
CEP SERIES
TO-220
S
Tc = 25 C unless otherwise noted
Symbol
Limit
Drain-Source Voltage
VDS
Gate-Source Voltage
VGS
Drain Current-Continuous @ TC = 25 C
ID
Drain Current-Continuous @ TC = 100 C
Drain Current-Pulsed a
IDM
Maximum Power Dissipation @ TC = 25 C
PD
- Derate above 25 C
100
Units
V
±20
V
137
A
87
A
548
A
208
W
1.7
W/ C
Single Pulsed Avalanche Energy d
EAS
800
mJ
Single Pulsed Avalanche Current
Operating and Store Temperature Range
IAS
40
A
TJ,Tstg
-55 to 150
C
d
Thermal Characteristics
Symbol
Limit
Units
Thermal Resistance, Junction-to-Case
Parameter
RθJC
0.6
C/W
Thermal Resistance, Junction-to-Ambient
RθJA
62.5
C/W
Rev 2. 2015.Jan.
http://www.cetsemi.com
Details are subject to change without notice .
1
CEP140N10/CEB140N10
Electrical Characteristics
Parameter
Tc = 25 C unless otherwise noted
Symbol
Test Condition
Min
Drain-Source Breakdown Voltage
BVDSS
VGS = 0V, ID = 250µA
100
Zero Gate Voltage Drain Current
IDSS
Gate Body Leakage Current, Forward
Gate Body Leakage Current, Reverse
Typ
Max
Units
VDS = 100V, VGS = 0V
1
µA
IGSSF
VGS = 20V, VDS = 0V
100
nA
IGSSR
VGS = -20V, VDS = 0V
-100
nA
4
V
7.5
mΩ
Off Characteristics
V
On Characteristics b
Gate Threshold Voltage
Static Drain-Source
On-Resistance
VGS(th)
VGS = VDS, ID = 250µA
RDS(on)
VGS = 10V, ID = 35A
2
6.1
Dynamic Characteristics c
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
VDS = 25V, VGS = 0V,
f = 800KHz
6650
605
pF
495
pF
44
ns
23
ns
pF
Switching Characteristics c
Turn-On Delay Time
td(on)
Turn-On Rise Time
tr
Turn-Off Delay Time
td(off)
VDD = 50V, ID = 70A,
VGS = 10V, RGEN = 2.5Ω
tf
98
27
ns
Turn-Off Fall Time
Total Gate Charge
Qg
231
nC
Gate-Source Charge
Qgs
Qgd
63
70
nC
Gate-Drain Charge
VDS = 80V, ID = 70A,
VGS = 10V
ns
nC
Drain-Source Diode Characteristics and Maximun Ratings
Drain-Source Diode Forward Current
IS
Drain-Source Diode Forward Voltage b
VSD
VGS = 0V, IS = 35A
Notes :
a.Repetitive Rating : Pulse width limited by maximum junction temperature
b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%.
c.Guaranteed by design, not subject to production testing.
d.L = 1mH, IAS =40A, VDD = 25V, RG = 25Ω, Starting TJ = 25 C.
2
137
A
1.5
V
CEP140N10/CEB140N10
280
25 C
VGS=10,9,8,7,6V
40
32
ID, Drain Current (A)
ID, Drain Current (A)
48
VGS=5V
24
16
8
0
0
1
2
3
4
5
6
4
6
8
10
Figure 1. Output Characteristics
Figure 2. Transfer Characteristics
RDS(ON), Normalized
RDS(ON), On-Resistance(Ohms)
4800
3200
1600
Coss
Crss
0
5
10
15
20
25
2.6
2.2
ID=35A
VGS=10V
1.8
1.4
1.0
0.6
0.2
-100
-50
0
50
100
150
200
VDS, Drain-to-Source Voltage (V)
TJ, Junction Temperature( C)
Figure 3. Capacitance
Figure 4. On-Resistance Variation
with Temperature
VDS=VGS
ID=250µA
IS, Source-drain current (A)
C, Capacitance (pF)
VTH, Normalized
Gate-Source Threshold Voltage
2
VGS, Gate-to-Source Voltage (V)
Ciss
1.1
1.0
0.9
0.8
0.7
0.6
-50
0
VDS, Drain-to-Source Voltage (V)
6400
1.2
TJ=125 C
70
-55 C
8000
1.3
140
0
9600
0
210
-25
0
25
50
75
100
125
150
VGS=0V
10
1
10
0
10
-1
0.4
0.6
0.8
1.0
1.2
1.4
TJ, Junction Temperature( C)
VSD, Body Diode Forward Voltage (V)
Figure 5. Gate Threshold Variation
with Temperature
Figure 6. Body Diode Forward Voltage
Variation with Source Current
3
10
VDS=80V
ID=70A
10
8
ID, Drain Current (A)
VGS, Gate to Source Voltage (V)
CEP140N10/CEB140N10
6
4
2
0
0
60
120
180
10
2
10
1
10
240
3
RDS(ON)Limit
100ms
1ms
10ms
DC
TC=25 C
TJ=150 C
Single Pulse
0
10
-1
10
0
10
1
10
Qg, Total Gate Charge (nC)
VDS, Drain-Source Voltage (V)
Figure 7. Gate Charge
Figure 8. Maximum Safe
Operating Area
VDD
t on
RL
V IN
D
VGS
RGEN
toff
tr
td(on)
td(off)
tf
90%
90%
VOUT
VOUT
10%
INVERTED
10%
G
90%
S
VIN
50%
50%
10%
PULSE WIDTH
Figure 10. Switching Waveforms
r(t),Normalized Effective
Transient Thermal Impedance
Figure 9. Switching Test Circuit
10
0
D=0.5
0.2
10
10
PDM
0.1
-1
0.05
0.02
0.01
Single Pulse
t1
1. RθJC (t)=r (t) * RθJC
2. RθJC=See Datasheet
3. TJM-TC = P* RθJC (t)
4. Duty Cycle, D=t1/t2
-2
10
-2
t2
10
-1
10
0
10
1
10
2
Square Wave Pulse Duration (msec)
Figure 11. Normalized Thermal Transient Impedance Curve
4
10
3
10
4
2