CEP140N10/CEB140N10 N-Channel Enhancement Mode Field Effect Transistor FEATURES 100V, 137A, RDS(ON) = 7.5mΩ @VGS = 10V. Super high dense cell design for extremely low RDS(ON). High power and current handing capability. D Lead-free plating ; RoHS compliant. TO-220 & TO-263 package. D G S CEB SERIES TO-263(DD-PAK) G G D S ABSOLUTE MAXIMUM RATINGS Parameter CEP SERIES TO-220 S Tc = 25 C unless otherwise noted Symbol Limit Drain-Source Voltage VDS Gate-Source Voltage VGS Drain Current-Continuous @ TC = 25 C ID Drain Current-Continuous @ TC = 100 C Drain Current-Pulsed a IDM Maximum Power Dissipation @ TC = 25 C PD - Derate above 25 C 100 Units V ±20 V 137 A 87 A 548 A 208 W 1.7 W/ C Single Pulsed Avalanche Energy d EAS 800 mJ Single Pulsed Avalanche Current Operating and Store Temperature Range IAS 40 A TJ,Tstg -55 to 150 C d Thermal Characteristics Symbol Limit Units Thermal Resistance, Junction-to-Case Parameter RθJC 0.6 C/W Thermal Resistance, Junction-to-Ambient RθJA 62.5 C/W Rev 2. 2015.Jan. http://www.cetsemi.com Details are subject to change without notice . 1 CEP140N10/CEB140N10 Electrical Characteristics Parameter Tc = 25 C unless otherwise noted Symbol Test Condition Min Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = 250µA 100 Zero Gate Voltage Drain Current IDSS Gate Body Leakage Current, Forward Gate Body Leakage Current, Reverse Typ Max Units VDS = 100V, VGS = 0V 1 µA IGSSF VGS = 20V, VDS = 0V 100 nA IGSSR VGS = -20V, VDS = 0V -100 nA 4 V 7.5 mΩ Off Characteristics V On Characteristics b Gate Threshold Voltage Static Drain-Source On-Resistance VGS(th) VGS = VDS, ID = 250µA RDS(on) VGS = 10V, ID = 35A 2 6.1 Dynamic Characteristics c Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss VDS = 25V, VGS = 0V, f = 800KHz 6650 605 pF 495 pF 44 ns 23 ns pF Switching Characteristics c Turn-On Delay Time td(on) Turn-On Rise Time tr Turn-Off Delay Time td(off) VDD = 50V, ID = 70A, VGS = 10V, RGEN = 2.5Ω tf 98 27 ns Turn-Off Fall Time Total Gate Charge Qg 231 nC Gate-Source Charge Qgs Qgd 63 70 nC Gate-Drain Charge VDS = 80V, ID = 70A, VGS = 10V ns nC Drain-Source Diode Characteristics and Maximun Ratings Drain-Source Diode Forward Current IS Drain-Source Diode Forward Voltage b VSD VGS = 0V, IS = 35A Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%. c.Guaranteed by design, not subject to production testing. d.L = 1mH, IAS =40A, VDD = 25V, RG = 25Ω, Starting TJ = 25 C. 2 137 A 1.5 V CEP140N10/CEB140N10 280 25 C VGS=10,9,8,7,6V 40 32 ID, Drain Current (A) ID, Drain Current (A) 48 VGS=5V 24 16 8 0 0 1 2 3 4 5 6 4 6 8 10 Figure 1. Output Characteristics Figure 2. Transfer Characteristics RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) 4800 3200 1600 Coss Crss 0 5 10 15 20 25 2.6 2.2 ID=35A VGS=10V 1.8 1.4 1.0 0.6 0.2 -100 -50 0 50 100 150 200 VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature( C) Figure 3. Capacitance Figure 4. On-Resistance Variation with Temperature VDS=VGS ID=250µA IS, Source-drain current (A) C, Capacitance (pF) VTH, Normalized Gate-Source Threshold Voltage 2 VGS, Gate-to-Source Voltage (V) Ciss 1.1 1.0 0.9 0.8 0.7 0.6 -50 0 VDS, Drain-to-Source Voltage (V) 6400 1.2 TJ=125 C 70 -55 C 8000 1.3 140 0 9600 0 210 -25 0 25 50 75 100 125 150 VGS=0V 10 1 10 0 10 -1 0.4 0.6 0.8 1.0 1.2 1.4 TJ, Junction Temperature( C) VSD, Body Diode Forward Voltage (V) Figure 5. Gate Threshold Variation with Temperature Figure 6. Body Diode Forward Voltage Variation with Source Current 3 10 VDS=80V ID=70A 10 8 ID, Drain Current (A) VGS, Gate to Source Voltage (V) CEP140N10/CEB140N10 6 4 2 0 0 60 120 180 10 2 10 1 10 240 3 RDS(ON)Limit 100ms 1ms 10ms DC TC=25 C TJ=150 C Single Pulse 0 10 -1 10 0 10 1 10 Qg, Total Gate Charge (nC) VDS, Drain-Source Voltage (V) Figure 7. Gate Charge Figure 8. Maximum Safe Operating Area VDD t on RL V IN D VGS RGEN toff tr td(on) td(off) tf 90% 90% VOUT VOUT 10% INVERTED 10% G 90% S VIN 50% 50% 10% PULSE WIDTH Figure 10. Switching Waveforms r(t),Normalized Effective Transient Thermal Impedance Figure 9. Switching Test Circuit 10 0 D=0.5 0.2 10 10 PDM 0.1 -1 0.05 0.02 0.01 Single Pulse t1 1. RθJC (t)=r (t) * RθJC 2. RθJC=See Datasheet 3. TJM-TC = P* RθJC (t) 4. Duty Cycle, D=t1/t2 -2 10 -2 t2 10 -1 10 0 10 1 10 2 Square Wave Pulse Duration (msec) Figure 11. Normalized Thermal Transient Impedance Curve 4 10 3 10 4 2