CEZ3R03

CEZ3R03
N-Channel Enhancement Mode Field Effect Transistor
PRELIMINARY
FEATURES
30V, 85A, R DS(ON) = 4.0mΩ @VGS = 10V.
RDS(ON) = 6.0mΩ @VGS = 4.5V.
D
D
D
D
8
7
6
5
1
S
2
S
3
S
4
G
Super high dense cell design for extremely low RDS(ON).
High power and current handing capability.
Lead free product is acquired.
D D D
D
Surface mount Package.
G S S
S
PR-PACK (5*6)
ABSOLUTE MAXIMUM RATINGS
Parameter
TA = 25 C unless otherwise noted
Symbol
Limit
Drain-Source Voltage
VDS
30
Units
V
Gate-Source Voltage
VGS
± 20
V
ID
85
A
IDM
340
A
Maximum Power Dissipation
PD
48
W
Single Pulsed Avalanche Energy e
EAS
IAS
125
50
mJ
A
TJ,Tstg
-55 to 150
C
Symbol
Limit
Units
Drain Current-Continuous
Drain Current-Pulsed
a
Single Pulsed Avalanche Current e
Operating and Store Temperature Range
Thermal Characteristics
Parameter
Thermal Resistance, Junction-to-Case
RθJC
2.6
C/W
Thermal Resistance, Junction-to-Ambient b
RθJA
20
C/W
This is preliminary information on a new product in development now .
Details are subject to change without notice .
1
Rev 1. 2011.Aug
http://www.cetsemi.com
CEZ3R03
Electrical Characteristics
Parameter
TA = 25 C unless otherwise noted
Symbol
Test Condition
Min
Drain-Source Breakdown Voltage
BVDSS
VGS = 0V, ID = 250µA
30
Zero Gate Voltage Drain Current
IDSS
Gate Body Leakage Current, Forward
Gate Body Leakage Current, Reverse
Typ
Max
Units
VDS = 30V, VGS = 0V
1
µA
IGSSF
VGS = 20V, VDS = 0V
100
nA
IGSSR
VGS = -20V, VDS = 0V
-100
nA
Off Characteristics
V
On Characteristics c
Gate Threshold Voltage
Static Drain-Source
On-Resistance
Gate input resistance
VGS(th)
RDS(on)
Rg
VGS = VDS, ID = 250µA
3
V
VGS = 10V, ID =18A
1
3.0
4.0
mΩ
VGS = 4.5V, ID =15A
4.0
6.0
mΩ
f=1MHz,open Drain
1.8
Ω
2470
pF
325
pF
185
pF
Dynamic Characteristics d
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
VDS = 15V, VGS = 0V,
f = 1.0 MHz
Switching Characteristics d
Turn-On Delay Time
td(on)
Turn-On Rise Time
tr
Turn-Off Delay Time
td(off)
VDD = 15V, ID = 10A,
VGS = 10V, RGEN = 1Ω
26
52
ns
14
28
ns
67
134
ns
Turn-Off Fall Time
tf
9
18
ns
Total Gate Charge
Qg
63
82
nC
Gate-Source Charge
Qgs
Gate-Drain Charge
Qgd
VDS = 15V, ID = 10A,
VGS = 10V
8
nC
15
nC
Drain-Source Diode Characteristics and Maximun Ratings
Drain-Source Diode Forward Current b
IS
Drain-Source Diode Forward Voltage c
VSD
VGS = 0V, IS = 18A
Notes :
a.Repetitive Rating : Pulse width limited by maximum junction temperature.
b.Surface Mounted on FR4 Board, t < 10 sec.
c.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%.
d.Guaranteed by design, not subject to production testing.
e.L = 0.1mH, IAS =50A, VDD = 24V, RG = 25Ω, Starting TJ = 25 C
2
85
A
1.2
V
CEZ3R03
150
VGS=10,8,6V
25 C
20
ID, Drain Current (A)
ID, Drain Current (A)
25
15
10
5
120
90
60
30
TJ=125 C
VGS=3V
0
0
0.1
0.2
0.3
0
0.4
RDS(ON), Normalized
RDS(ON), On-Resistance(Ohms)
1500
1000
Coss
500
Crss
0
5
10
15
20
25
6
2.2
1.9
ID=18A
VGS=10V
1.6
1.3
1.0
0.7
0.4
-100
-50
0
50
100
150
200
VDS, Drain-to-Source Voltage (V)
TJ, Junction Temperature( C)
Figure 3. Capacitance
Figure 4. On-Resistance Variation
with Temperature
VDS=VGS
ID=250µA
IS, Source-drain current (A)
C, Capacitance (pF)
VTH, Normalized
Gate-Source Threshold Voltage
5
Figure 2. Transfer Characteristics
Ciss
1.1
1.0
0.9
0.8
0.7
0.6
-50
4
Figure 1. Output Characteristics
2000
1.2
2
VGS, Gate-to-Source Voltage (V)
2500
1.3
1
VDS, Drain-to-Source Voltage (V)
3000
0
0
-55 C
-25
0
25
50
75
100
125
150
VGS=0V
10
1
10
0
10
-1
0.4
0.6
0.8
1.0
1.2
1.4
TJ, Junction Temperature( C)
VSD, Body Diode Forward Voltage (V)
Figure 5. Gate Threshold Variation
with Temperature
Figure 6. Body Diode Forward Voltage
Variation with Source Current
3
10
VDS=15V
ID=10A
6
4
2
0
0
10
3
10
2
RDS(ON)Limit
8
ID, Drain Current (A)
VGS, Gate to Source Voltage (V)
CEZ3R03
15
30
45
60
75
10ms
100ms
1s
10
1
10
0
10
-1
DC
TA=25 C
TJ=150 C
Single Pulse
10
-2
10
-1
10
0
10
1
10
Qg, Total Gate Charge (nC)
VDS, Drain-Source Voltage (V)
Figure 7. Gate Charge
Figure 8. Maximum Safe
Operating Area
VDD
t on
V IN
RL
D
VGS
RGEN
toff
tr
td(on)
td(off)
tf
90%
90%
VOUT
VOUT
10%
INVERTED
10%
G
90%
S
VIN
50%
50%
10%
PULSE WIDTH
Figure 10. Switching Waveforms
Figure 9. Switching Test Circuit
r(t),Normalized Effective
Transient Thermal Impedance
10
0
D=0.5
10
0.2
-1
0.1
0.05
10
PDM
0.02
0.01
-2
t1
Single Pulse
10
-3
10
-4
t2
1. RθJA (t)=r (t) * RθJA
2. RθJA=See Datasheet
3. TJM-TA = P* RθJA (t)
4. Duty Cycle, D=t1/t2
10
-3
10
-2
10
-1
10
0
Square Wave Pulse Duration (sec)
Figure 11. Normalized Thermal Transient Impedance Curve
4
10
1
10
2
2