CEP71A3/CEB71A3 N-Channel Enhancement Mode Field Effect Transistor FEATURES 30V, 70A,RDS(ON) = 7.5mΩ @VGS = 10V. RDS(ON) = 10.5mΩ @VGS = 5V. Super high dense cell design for extremely low RDS(ON). High power and current handing capability. D Lead free product is acquired. TO-220 & TO-263 package. D G G S CEB SERIES TO-263(DD-PAK) G D S ABSOLUTE MAXIMUM RATINGS Parameter CEP SERIES TO-220 Tc = 25 C unless otherwise noted Symbol Limit 30 Units V VGS ±20 V ID 70 A IDM 210 A 65 W Drain-Source Voltage VDS Gate-Source Voltage Drain Current-Continuous Drain Current-Pulsed a Maximum Power Dissipation @ TC = 25 C - Derate above 25 C Operating and Store Temperature Range S PD 0.53 W/ C TJ,Tstg -55 to 175 C Thermal Characteristics Symbol Limit Units Thermal Resistance, Junction-to-Case Parameter RθJC 1.9 C/W Thermal Resistance, Junction-to-Ambient RθJA 62.5 C/W 2002.December http://www.cetsemi.com 4 - 146 CEP71A3/CEB71A3 Electrical Characteristics Parameter Tc = 25 C unless otherwise noted Symbol Test Condition Min Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = 250µA 30 Zero Gate Voltage Drain Current IDSS Gate Body Leakage Current, Forward Gate Body Leakage Current, Reverse Typ Max Units VDS = 30V, VGS = 0V 1 µA IGSSF VGS = 20V, VDS = 0V 100 nA IGSSR VGS = -20V, VDS = 0V -100 nA Off Characteristics V On Characteristics b Gate Threshold Voltage VGS(th) Static Drain-Source RDS(on) On-Resistance Forwand Transconductance Dynamic Characteristics gFS VGS = VDS, ID = 250µA 3 V VGS = 10V, ID = 50A 1 6.5 7.5 mΩ VGS = 5V, ID = 40A 9.2 10.5 mΩ VDS = 10V, ID = 35A 50 S 2152 pF 965 pF 234 pF c Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss VDS = 15V, VGS = 0V, f = 1.0 MHz Switching Characteristics c Turn-On Delay Time td(on) Turn-On Rise Time tr Turn-Off Delay Time td(off) 27 VDD = 15V, ID = 60A, VGS = 10V, RGEN = 1.8Ω 54 ns 28 56 ns 58 105 ns Turn-On Fall Time tf 17 42 ns Total Gate Charge Qg 55 67 nC Gate-Source Charge Qgs Gate-Drain Charge Qgd VDS = 15V, ID = 30A, VGS = 10V 9 nC 18 nC Drain-Source Diode Characteristics and Maximun Ratings Drain-Source Diode Forward Current IS Drain-Source Diode Forward Voltage b VSD VGS = 0V, IS = 35A Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature. b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%. c.Guaranteed by design, not subject to production testing. 4 - 147 0.93 70 A 1.3 V 4 CEP71A3/CEB71A3 60 60 50 ID, Drain Current (A) ID, Drain Current (A) VGS=10,8,6,4V 40 30 20 VGS=3V 30 20 25 C 10 0 0 TJ=125 C 1 2 3 1 4 4 Figure 2. Transfer Characteristics RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) Ciss 1500 Coss 1000 500 Crss 0 0 5 10 15 20 25 2.2 1.9 ID=50A VGS=10V 1.6 1.3 1.0 0.7 0.4 -100 -50 0 50 100 150 200 VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature( C) Figure 3. Capacitance Figure 4. On-Resistance Variation with Temperature IS, Source-drain current (A) VDS=VGS ID=250µA 1.1 1.0 0.9 0.8 0.7 0.6 -50 3 Figure 1. Output Characteristics 2000 1.2 2 VGS, Gate-to-Source Voltage (V) 2500 1.3 -55 C VDS, Drain-to-Source Voltage (V) 3000 C, Capacitance (pF) 40 10 0 VTH, Normalized Gate-Source Threshold Voltage 50 VGS=0V 10 10 10 -25 0 25 50 75 100 125 2 1 0 0.4 150 0.6 0.8 1.0 1.2 1.4 TJ, Junction Temperature( C) VSD, Body Diode Forward Voltage (V) Figure 5. Gate Threshold Variation with Temperature Figure 6. Body Diode Forward Voltage Variation with Source Current 4 - 148 10 10 VDS=15V ID=30A 6 4 2 0 10 4 10 20 30 40 50 60 2 100µs 1ms 10 10 10 0 3 RDS(ON)Limit 8 ID, Drain Current (A) VGS, Gate to Source Voltage (V) CEP71A3/CEB71A3 1 10ms 100ms DC 0 TC=25 C TJ=175 C Single Pulse -1 10 -1 10 0 10 1 10 Qg, Total Gate Charge (nC) VDS, Drain-Source Voltage (V) Figure 7. Gate Charge Figure 8. Maximum Safe Operating Area VDD t on RL V IN D td(off) tf 90% 90% VOUT VOUT VGS RGEN toff tr td(on) 10% INVERTED 10% G 90% S VIN 50% 50% 10% PULSE WIDTH Figure 10. Switching Waveforms r(t),Normalized Effective Transient Thermal Impedance Figure 9. Switching Test Circuit 10 10 0 PDM -1 t1 t2 10 1. RθJA (t)=r (t) * RθJA 2. RθJA=See Datasheet 3. TJM-TA = P* RθJA (t) 4. Duty Cycle, D=t1/t2 -2 10 -5 10 -4 10 -3 10 -2 10 -1 Square Wave Pulse Duration (sec) Figure 11. Normalized Thermal Transient Impedance Curve 4 - 149 10 0 10 1 2