CEP71A3/CEB71A3

CEP71A3/CEB71A3
N-Channel Enhancement Mode Field Effect Transistor
FEATURES
30V, 70A,RDS(ON) = 7.5mΩ @VGS = 10V.
RDS(ON) = 10.5mΩ @VGS = 5V.
Super high dense cell design for extremely low RDS(ON).
High power and current handing capability.
D
Lead free product is acquired.
TO-220 & TO-263 package.
D
G
G
S
CEB SERIES
TO-263(DD-PAK)
G
D
S
ABSOLUTE MAXIMUM RATINGS
Parameter
CEP SERIES
TO-220
Tc = 25 C unless otherwise noted
Symbol
Limit
30
Units
V
VGS
±20
V
ID
70
A
IDM
210
A
65
W
Drain-Source Voltage
VDS
Gate-Source Voltage
Drain Current-Continuous
Drain Current-Pulsed
a
Maximum Power Dissipation @ TC = 25 C
- Derate above 25 C
Operating and Store Temperature Range
S
PD
0.53
W/ C
TJ,Tstg
-55 to 175
C
Thermal Characteristics
Symbol
Limit
Units
Thermal Resistance, Junction-to-Case
Parameter
RθJC
1.9
C/W
Thermal Resistance, Junction-to-Ambient
RθJA
62.5
C/W
2002.December
http://www.cetsemi.com
4 - 146
CEP71A3/CEB71A3
Electrical Characteristics
Parameter
Tc = 25 C unless otherwise noted
Symbol
Test Condition
Min
Drain-Source Breakdown Voltage
BVDSS
VGS = 0V, ID = 250µA
30
Zero Gate Voltage Drain Current
IDSS
Gate Body Leakage Current, Forward
Gate Body Leakage Current, Reverse
Typ
Max
Units
VDS = 30V, VGS = 0V
1
µA
IGSSF
VGS = 20V, VDS = 0V
100
nA
IGSSR
VGS = -20V, VDS = 0V
-100
nA
Off Characteristics
V
On Characteristics b
Gate Threshold Voltage
VGS(th)
Static Drain-Source
RDS(on)
On-Resistance
Forwand Transconductance
Dynamic Characteristics
gFS
VGS = VDS, ID = 250µA
3
V
VGS = 10V, ID = 50A
1
6.5
7.5
mΩ
VGS = 5V, ID = 40A
9.2
10.5
mΩ
VDS = 10V, ID = 35A
50
S
2152
pF
965
pF
234
pF
c
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
VDS = 15V, VGS = 0V,
f = 1.0 MHz
Switching Characteristics c
Turn-On Delay Time
td(on)
Turn-On Rise Time
tr
Turn-Off Delay Time
td(off)
27
VDD = 15V, ID = 60A,
VGS = 10V, RGEN = 1.8Ω
54
ns
28
56
ns
58
105
ns
Turn-On Fall Time
tf
17
42
ns
Total Gate Charge
Qg
55
67
nC
Gate-Source Charge
Qgs
Gate-Drain Charge
Qgd
VDS = 15V, ID = 30A,
VGS = 10V
9
nC
18
nC
Drain-Source Diode Characteristics and Maximun Ratings
Drain-Source Diode Forward Current
IS
Drain-Source Diode Forward Voltage b
VSD
VGS = 0V, IS = 35A
Notes :
a.Repetitive Rating : Pulse width limited by maximum junction temperature.
b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%.
c.Guaranteed by design, not subject to production testing.
4 - 147
0.93
70
A
1.3
V
4
CEP71A3/CEB71A3
60
60
50
ID, Drain Current (A)
ID, Drain Current (A)
VGS=10,8,6,4V
40
30
20
VGS=3V
30
20
25 C
10
0
0
TJ=125 C
1
2
3
1
4
4
Figure 2. Transfer Characteristics
RDS(ON), Normalized
RDS(ON), On-Resistance(Ohms)
Ciss
1500
Coss
1000
500
Crss
0
0
5
10
15
20
25
2.2
1.9
ID=50A
VGS=10V
1.6
1.3
1.0
0.7
0.4
-100
-50
0
50
100
150
200
VDS, Drain-to-Source Voltage (V)
TJ, Junction Temperature( C)
Figure 3. Capacitance
Figure 4. On-Resistance Variation
with Temperature
IS, Source-drain current (A)
VDS=VGS
ID=250µA
1.1
1.0
0.9
0.8
0.7
0.6
-50
3
Figure 1. Output Characteristics
2000
1.2
2
VGS, Gate-to-Source Voltage (V)
2500
1.3
-55 C
VDS, Drain-to-Source Voltage (V)
3000
C, Capacitance (pF)
40
10
0
VTH, Normalized
Gate-Source Threshold Voltage
50
VGS=0V
10
10
10
-25
0
25
50
75
100
125
2
1
0
0.4
150
0.6
0.8
1.0
1.2
1.4
TJ, Junction Temperature( C)
VSD, Body Diode Forward Voltage (V)
Figure 5. Gate Threshold Variation
with Temperature
Figure 6. Body Diode Forward Voltage
Variation with Source Current
4 - 148
10
10
VDS=15V
ID=30A
6
4
2
0
10
4
10
20
30
40
50
60
2
100µs
1ms
10
10
10
0
3
RDS(ON)Limit
8
ID, Drain Current (A)
VGS, Gate to Source Voltage (V)
CEP71A3/CEB71A3
1
10ms
100ms
DC
0
TC=25 C
TJ=175 C
Single Pulse
-1
10
-1
10
0
10
1
10
Qg, Total Gate Charge (nC)
VDS, Drain-Source Voltage (V)
Figure 7. Gate Charge
Figure 8. Maximum Safe
Operating Area
VDD
t on
RL
V IN
D
td(off)
tf
90%
90%
VOUT
VOUT
VGS
RGEN
toff
tr
td(on)
10%
INVERTED
10%
G
90%
S
VIN
50%
50%
10%
PULSE WIDTH
Figure 10. Switching Waveforms
r(t),Normalized Effective
Transient Thermal Impedance
Figure 9. Switching Test Circuit
10
10
0
PDM
-1
t1
t2
10
1. RθJA (t)=r (t) * RθJA
2. RθJA=See Datasheet
3. TJM-TA = P* RθJA (t)
4. Duty Cycle, D=t1/t2
-2
10
-5
10
-4
10
-3
10
-2
10
-1
Square Wave Pulse Duration (sec)
Figure 11. Normalized Thermal Transient Impedance Curve
4 - 149
10
0
10
1
2