Technical Data Sheet

128MB (x72, ECC, SR), 256MB (x72, ECC, DR)
168-PIN SDRAM UDIMM
SYNCHRONOUS
DRAM MODULE
MT9LSDT1672A(I) – 128MB
MT18LSDT3272A(I) – 256MB
For the latest data sheet, please refer to the Micron Web
site: www.micron.com/products/modules
Features
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Figure 1: 168-Pin DIMM (MO–161)
PC100- and PC133-compliant
168-pin, dual in-line memory module (DIMM)
Unbuffered, ECC-optimized pinout
128MB (16 Meg x 72) and 256MB (32 Meg x 72)
Single +3.3V power supply
Fully synchronous; all signals registered on positive
edge of system clock
Internal pipelined operation; column address can
be changed every clock cycle
Internal SDRAM banks for hiding row access/precharge
Programmable burst lengths: 1, 2, 4, 8, or full page
Auto Precharge, includes Concurrent Auto
Precharge, and Auto Refresh Modes
Self Refresh Mode
64ms, 4,096-cycle refresh
LVTTL-compatible inputs and outputs
Serial Presence-Detect (SPD)
Gold edge contacts
Table 1:
Low Profile 1.125in./28.58mm
Options
133 MHz
133 MHz
100 MHz
5.4ns
–
9ns
–
5.4ns
7.5ns
SETUP
TIME
HOLD
TIME
1.5
1.5
2ns
0.8
0.8
1ns
NOTE:
Table 2:
Marking
• Self-Refresh
Standard
None
Low Power
L1
• Package
168-pin DIMM (Standard)
G
Y1
168-pin DIMM (Lead-free)
• Frequency/CAS Latency
7.5ns (133 MHz)/CL = 2
-13E
7.5ns (133 MHz)/CL = 3
-133
10ns (100 MHz)/CL = 2
-10E
• PCB
Standard (1.375in./34.93mm)
See note on page 2
Low-Profile (1.125in./28.58mm) See note on page 2
Timing Parameters
ACCESS TIME
MODULE
CLOCK
MARKING FREQUENCY CL = 2 CL = 3
-13E
-133
-10E
Standard 1.375in./34.93mm
1. Consult Micron for product availability.
Address Table
Refresh Count
Device Banks
Device Configuration
Row Addressing
Column Addressing
Module Ranks
09005aef807b3709
SD9_18C16_32x72AG.fm - Rev. E 6/04 EN
128MB
256MB
4K
4 (BA0, BA1)
128Mb (16 Meg x 8)
4K (A0–A11)
1K (A0–A9)
1 (S0, S2)
4K
4 (BA0, BA1)
128Mb (16 Meg x 8)
4K (A0–A11)
1K (A0–A9)
2 (S0, S2; S1, S3)
1
©2004 Micron Technology, Inc.
PRODUCTS AND SPECIFICATIONS DISCUSSED HEREIN ARE SUBJECT TO CHANGE BY MICRON WITHOUT NOTICE.
128MB (x72, ECC, SR), 256MB (x72, ECC, DR)
168-PIN SDRAM UDIMM
Table 3:
Part Numbers
PART NUMBER
MT9LSDT1672AG-13E_
MT9LSDT1672AY-13E_
MT9LSDT1672AG-133_
MT9LSDT1672AY-133_
MT9LSDT1672AG-10E_
MT9LSDT1672AY-10E_
MT18LSDT3272AG-13E_
MT18LSDT3272AY-13E_
MT18LSDT3272(L)AG-133_
MT18LSDT3272(L)AY-133_
MT18LSDT3272AG-10E_
MT18LSDT3272AY-10E_
MODULE DENSITY
CONFIGURATION
SYSTEM
BUS SPEED
128MB
128MB
128MB
128MB
128MB
128MB
256MB
256MB
256MB
256MB
256MB
256MB
16 Meg x 72
16 Meg x 72
16 Meg x 72
16 Meg x 72
16 Meg x 72
16 Meg x 72
32 Meg x 72
32 Meg x 72
32 Meg x 72
32 Meg x 72
32 Meg x 72
32 Meg x 72
133 MHz
133 MHz
133 MHz
133 MHz
100 MHz
100 MHz
133 MHz
133 MHz
133 MHz
133 MHz
100 MHz
100 MHz
NOTE:
Designators for component and PCB revision are the last two characters of each part number Consult factory for current
revision codes. Example: MT9LSDT1672G-133B1.
09005aef807b3709
SD9_18C16_32x72AG.fm - Rev. E 6/04 EN
2
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
128MB (x72, ECC, SR), 256MB (x72, ECC, DR)
168-PIN SDRAM UDIMM
Table 4:
Pin Assignment
(168-Pin DIMM Front)
Table 5:
Pin Assignment
(168-Pin DIMM Back)
PIN SYMBOL PIN SYMBOL PIN SYMBOL PIN SYMBOL
PIN SYMBOL PIN SYMBOL PIN SYMBOL PIN SYMBOL
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
VSS
DQ0
DQ1
DQ2
DQ3
VDD
DQ4
DQ5
DQ6
DQ7
DQ8
VSS
DQ9
DQ10
DQ11
DQ12
DQ13
VDD
DQ14
DQ15
CB0
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
CB1
VSS
NC
NC
VDD
WE#
DQMB0
DQMB1
S0#
NC
VSS
A0
A2
A4
A6
A8
A10
BA1
VDD
VDD
CK0
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
VSS
NC
S2#
DQMB2
DQMB3
NC
VDD
NC
NC
CB2
CB3
VSS
DQ16
DQ17
DQ18
DQ19
VDD
DQ20
NC
NC
CKE1
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
VSS
DQ21
DQ22
DQ23
VSS
DQ24
DQ25
DQ26
DQ27
VDD
DQ28
DQ29
DQ30
DQ31
VSS
CK2
NC
NC
SDA
SCL
VDD
VSS
DQ32
DQ33
DQ34
DQ35
VDD
DQ36
DQ37
DQ38
DQ39
DQ40
VSS
DQ41
DQ42
DQ43
DQ44
DQ45
VDD
DQ46
DQ47
CB4
106
CB5
127
VSS
148
107
VSS
128 CKE0 149
108
NC
129
S3#
150
109
NC
130 DQMB6 151
110
VDD
131 DQMB7 152
111 CAS# 132
NC
153
154
112 DQMB4 133
VDD
113 DQMB5 134
NC
155
114
S1#
135
NC
156
115 RAS# 136
CB6
157
116
VSS
137
CB7
158
117
A1
138
VSS
159
118
A3
139 DQ48 160
119
A5
140 DQ49 161
120
A7
141 DQ50 162
121
A9
142 DQ51 163
122
BA0
143
VDD
164
123
A11
144 DQ52 165
124
VDD
145
NC
166
125
CK1
146
NC
167
126
NC
147
NC
168
VSS
DQ53
DQ54
DQ55
VSS
DQ56
DQ57
DQ58
DQ59
VDD
DQ60
DQ61
DQ62
DQ63
VSS
CK3
NC
SA0
SA1
SA2
VDD
Figure 2: 168-Pin DIMM Pin Locations
Front View
U10
U2
U1
U3
U4
U5
U6
U7
U8
PIN 41
PIN 1
U9
PIN 84
Back View (Populated only for 256MB module)
U11
U12
U13
U14
Indicates a VDD pin
U17
U18
U19
PIN 85
PIN 125
PIN 168
09005aef807b3709
SD9_18C16_32x72AG.fm - Rev. E 6/04 EN
U16
U15
Indicates a VSS pin
3
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
128MB (x72, ECC, SR), 256MB (x72, ECC, DR)
168-PIN SDRAM UDIMM
Table 6:
Pin Descriptions
Pin numbers may not correlate with symbols. Refer to the Pin Assignment tables on page 3 for more information
PIN NUMBERS
SYMBOL
TYPE
DESCRIPTION
27, 111, 115
Input
42, 79, 125, 163
RAS#, CAS#,
WE#
CK0–CK3
Input
63, 128
CKE0, CKE1
Input
30, 45,114, 129
S0#–S3#
Input
28, 29, 46, 47, 112, 113, 130,
131
DQMB0–DQMB7
Input
39, 122
BA0, BA1
Input
33–38, 117–121, 123
A0–A11
Input
83
SCL
Input
165–167
SA0–SA2
Input
21, 22, 52, 53, 105, 106, 136,
137
2–5, 7–11, 13–17, 19, 20,
55–58, 60, 65–67, 69–72, 74–
77, 86–89, 91–95, 97–101, 103,
104, 139–142, 144, 149–151,
153–156,158–161
82
CB0–CB7
Command Inputs: RAS#, CAS#, and WE# (along with S#) define
the command being entered.
Clock: CK is driven by the system clock. All SDRAM input
signals are sampled on the positive edge of CK. CK also
increments the internal burst counter and controls the output
registers.
Clock Enable: CKE activates (HIGH) and deactivates (LOW) the
CK signal. Deactivating the clock provides PRECHARGE
POWER-DOWN and SELF REFRESH operation (all device banks
idle) or CLOCK SUSPEND OPERATION (burst access in progress).
CKE is synchronous except after the device enters powerdown and self refresh modes, where CKE becomes
asynchronous until after exiting the same mode. The input
buffers, including CK, are disabled during power-down and
self refresh modes, providing low standby power.
Chip Select: S# enables (registered LOW) and disables
(registered HIGH) the command decoder. All commands are
masked when S# is registered HIGH. S# is considered part of
the command code.
Input/Output Mask: DQMB is an input mask signal for write
accesses and an output enable signal for read accesses. Input
data is masked when DQMB is sampled HIGH during a WRITE
cycle. The output buffers are placed in a High-Z state (twoclock latency) when DQMB is sampled HIGH during a READ
cycle.
Bank Address: BA0 and BA1 define to which device bank the
ACTIVE, READ, WRITE, or PRECHARGE command is being
applied.
Address Inputs: Provide the row address for ACTIVE
commands, and the column address and auto prcharge bit
(A10) for READ/WRITE commands, to select one location out
of the memory arrary in the respective device bank. A10
sampled during a PRECHARGE command determines whether
the PRECHARGE applies to one device bank (A10 LOW, device
bank selected by BA0, BA1) or all device banks (A10 HIGH).
The address inputs also provide the op-code during a MODE
REGISTER SET command.
Serial Clock for Presence-Detect: SCL is used to synchronize the
presence-detect data transfer to and from the module.
Presence-Detect Address Inputs: These pins are used to
configure the presence-detect device.
Check Bits. ECC, 1-bit error detection and correction.
09005aef807b3709
SD9_18C16_32x72AG.fm - Rev. E 6/04 EN
DQ0–DQ63
SDA
Input/
Output
Input/ Data I/O: Data bus.
Output
Input/ Serial Presence-Detect Data: SDA is a bidirectional pin used to
Output transfer addresses and data into and out of the presencedetect portion of the module.
4
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
128MB (x72, ECC, SR), 256MB (x72, ECC, DR)
168-PIN SDRAM UDIMM
Table 6:
Pin Descriptions
Pin numbers may not correlate with symbols. Refer to the Pin Assignment tables on page 3 for more information
PIN NUMBERS
SYMBOL
6, 18, 26, 40, 41, 49, 59, 73, 84,
90, 102, 110, 124, 133, 143,
157, 168
1, 12, 23, 32, 43, 54, 64, 68, 78,
85, 96, 107, 116, 127, 138, 148,
152, 162
24, 25, 31, 44, 48, 50, 51 61,
62, 80, 81, 108, 109, 126, 132,
134, 135, 145,146, 147
VDD
Supply Power Supply: +3.3V ±0.3V.
VSS
Supply Ground.
09005aef807b3709
SD9_18C16_32x72AG.fm - Rev. E 6/04 EN
NC
TYPE
–
DESCRIPTION
Not Connected: These pins are not connected on these
module.
5
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
128MB (x72, ECC, SR), 256MB (x72, ECC, DR)
168-PIN SDRAM UDIMM
Figure 3: Functional Block Diagram – Single Rank
S0#
DQMB0
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQMB4
DQM CS#
DQ
U1
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQMB1
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
CB0
CB1
CB2
CB3
CB4
CB5
CB6
CB7
DQM CS#
DQ
U2
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
DQMB5
DQM CS#
DQ
U3
DQ
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
U4
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
DQM CS#
DQ
U5
DQ
DQ
DQ
DQ
DQ
DQ
DQ
S2#
DQMB2
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
DQMB6
DQM CS#
DQ
U7
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQMB3
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
DQMB7
DQM CS#
DQ
U9
DQ
DQ
DQ
DQ
DQ
DQ
DQ
RAS#
RAS#: SDRAMs
VDD
CAS#
CAS#: SDRAMs
2.2µF
CKE0
CKE0: SDRAMs
WE#
WE#: SDRAMs
A0-A11
A0-A11: SDRAMs
BA0
BA0: SDRAMs
BA1
BA1: SDRAMs
DQM CS#
DQ
U8
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
SDRAMs
CK0
U1
U2
U3
U4
U5
CK2
U6
U7
U8
U9
2.2µF
VSS
SDRAMs
SPD
U10
A0 A1 A2
SCL
WP
SA0 SA1 SA2
Note:
1. All resistor values are 10Ω unless otherwise specified.
2. Per industry standard, Micron modules use various component speed grades
as referenced in the module part numbering guide at www.micron.com/
SDA
3.3pF
CK1,
CK3
10pF
Standard modules use the following SDRAM devices:
MT48LC16M8A2TG
Lead-free modules use the following SDRAM devices:
MT48LC16M8A2TG
support/numbering.html.
09005aef807b3709
SD9_18C16_32x72AG.fm - Rev. E 6/04 EN
DQM CS#
DQ
U6
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
6
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
128MB (x72, ECC, SR), 256MB (x72, ECC, DR)
168-PIN SDRAM UDIMM
Figure 4: Functional Block Diagram – Dual Rank
S0#
S1#
DQMB0
DQMB4
DQM CS#
DQ
U1
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ U19
DQ
DQ
DQ
DQ
DQ
DQ
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
DQM CS#
DQ
U3
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ U17
DQ
DQ
DQ
DQ
DQ
DQ
CB0
CB1
CB2
CB3
CB4
CB5
CB6
CB7
DQM CS#
DQ
U5
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ U15
DQ
DQ
DQ
DQ
DQ
DQ
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
DQMB1
DQM CS#
DQ
U2
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ U18
DQ
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
U4
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ U16
DQ
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
U6
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ U14
DQ
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
U8
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ U12
DQ
DQ
DQ
DQ
DQ
DQ
DQMB5
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
S2#
S3#
DQMB2
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
DQMB6
DQM CS#
DQ
U7
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ U13
DQ
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
U9
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ U11
DQ
DQ
DQ
DQ
DQ
DQ
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
DQMB3
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
DQMB7
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
VDD
VDD
10K
CKE1
CKE0
CKE0: SDRAMs
CAS#
CAS#: SDRAMs
RAS#
RAS#: SDRAMs
WE#
WE#: SDRAMs
A0-A11
VSS
SDRAMs
SPD
U10
A0 A1 A2
SCL
WP
BA0: SDRAMs
BA1
BA1: SDRAMs
CK1
U15
U16
U17
U18
U19
SDA
A0-A11: SDRAMs
BA0
CK0
U1
U2
U3
U4
U5
SDRAMs
CKE1: SDRAMs
SA0 SA1 SA2
CK2
3.3pF
CK3
3.3pF
U6
U7
U8
U9
U11
U12
U13
U14
Standard modules use the following SDRAM devices:
MT48LC16M8A2TG
NOTE:
1. All resistor values are 10Ω unless othersise specified.
2. Per industry standard, Micron modules use various component speed grades
as referenced in the module part numbering guide at www.micron.com/
Lead-free modules use the following SDRAM devices:
MT48LC16M8A2TG
support/numbering.html.
09005aef807b3709
SD9_18C16_32x72AG.fm - Rev. E 6/04 EN
7
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
128MB (x72, ECC, SR), 256MB (x72, ECC, DR)
168-PIN SDRAM UDIMM
General Description
2,048-bit EEPROM. This nonvolatile storage device
contains 256 bytes. The first 128 bytes can be programmed by Micron to identify the module type and
various SDRAM organizations and timing parameters.
The remaining 128 bytes of storage are available for
use by the customer. System READ/WRITE operations
between the master (system logic) and the slave
EEPROM device (DIMM) occur via a standard I2C bus
using the DIMM’s SCL (clock) and SDA (data) signals,
together with SA (2:0), which provide eight unique
DIMM/EEPROM addresses. Write protect (WP) is tied
to ground on the module, permanently disabling hardware write protect.
The MT9LSDT1672 and MT18LSDT3272A modules
are high-speed CMOS, dynamic random-access,
128MB and 256MB DIMMs organized in a x72 (ECC)
configuration. SDRAM modules use internally configured quad-bank SDRAM devices with a synchronous
interface (all signals are registered on the positive edge
of the clock signals).
Read and write accesses to the SDRAM modules are
burst oriented; accesses start at a selected location and
continue for a programmed number of locations in a
programmed sequence. Accesses begin with the registration of an ACTIVE command, which is then followed
by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used
to select the device bank and row to be accessed (BA0,
BA1 select the device bank, A0–A11 select the device
row). The address bits registered coincident with the
READ or WRITE command are used to select the starting column location for the burst access.
SDRAM modules provide for programmable READ
or WRITE burst lengths of 1, 2, 4, or 8 locations, or the
full page, with a burst terminate option. An AUTO PRECHARGE function may be enabled to provide a selftimed row precharge that is initiated at the end of the
burst sequence.
SDRAM modules use an internal pipelined architecture to achieve high-speed operation. This architecture is compatible with the 2n rule of prefetch
architectures, but it also allows the column address to
be changed on every clock cycle to achieve a highspeed, fully random access. Precharging one device
bank while accessing one of the other three device
banks will hide the precharge cycles and provide
seamless, high-speed, random-access operation.
SDRAM modules are designed to operate in 3.3V,
low-power memory systems. An auto refresh mode is
provided, along with a power-saving, power-down
mode. All inputs and outputs are LVTTL-compatible.
SDRAM modules offer substantial advances in
DRAM operating performance, including the ability to
syn-chronously burst data at a high data rate with
automatic column-address generation, the ability to
interleave between internal device banks in order to
hide precharge time and the capability to randomly
change column addresses on each clock cycle during a
burst access. For more information regarding SDRAM
operation, refer to the 128Mb SDRAM component data
sheet.
Initialization
SDRAMs must be powered up and initialized in a
predefined manner. Operational procedures other
than those specified may result in undefined operation. Once power is applied to VDD and VDDQ (simultaneously) and the clock is stable (stable clock is defined
as a signal cycling within timing constraints specified
for the clock pin), the SDRAM requires a 100µs delay
prior to issuing any command other than a COMMAND INHIBIT or NOP. Starting at some point during
this 100µs period and continuing at least through the
end of this period, COMMAND INHIBIT or NOP commands should be applied.
Once the 100µs delay has been satisfied with at least
one COMMAND INHIBIT or NOP command having
been applied, a PRECHARGE command should be
applied. All device banks must then be precharged,
thereby placing the device in the all banks idle state.
Once in the idle state, two AUTO REFRESH cycles
must be performed. After the AUTO REFRESH cycles
are complete, the SDRAM is ready for mode register
programming. Because the mode register will power
up in an unknown state, it should be loaded prior to
applying any operational command.
Mode Register Definition
The mode register is used to define the specific
mode of operation of the SDRAM. This definition
includes the selection of a burst length, a burst type, a
CAS latency, an operating mode and a write burst
mode, as shown in Figure 5, Mode Register Definition
Diagram, on page 9. The mode register is programmed
via the LOAD MODE REGISTER command and will
retain the stored information until it is programmed
again or the device loses power.
Mode register bits M0–M2 specify the burst length,
M3 specifies the type of burst (sequential or interleaved), M4–M6 specify the CAS latency, M7 and M8
specify the operating mode, M9 specifies the write
Serial Presence-Detect Operation
These modules incorporate serial presence-detect
(SPD). The SPD function is implemented using a
09005aef807b3709
SD9_18C16_32x72AG.fm - Rev. E 6/04 EN
8
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
128MB (x72, ECC, SR), 256MB (x72, ECC, DR)
168-PIN SDRAM UDIMM
The ordering of accesses within a burst is determined by the burst length, the burst type and the starting column address, as shown in Table 7, Burst
Definition Table, on page 10.
burst mode, and M10 and M11 are reserved for future
use. Address A12 (M12) is undefined but should be
driven LOW during loading of the mode register.
The mode register must be loaded when all device
banks are idle, and the controller must wait the specified time before initiating the subsequent operation.
Violating either of these requirements will result in
unspecified operation.
Figure 5: Mode Register Definition
Diagram
A11 A10
A9
A8
A6
A7
A5
A4
A3
A1
A2
Address Bus
A0
Burst Length
Read and write accesses to the SDRAM are burst oriented, with the burst length being programmable, as
shown in Figure 5, Mode Register Definition Diagram,
on page 9. The burst length determines the maximum
number of column locations that can be accessed for a
given READ or WRITE command. Burst lengths of 1, 2,
4, or 8 locations are available for both the sequential
and the interleaved burst types, and a full-page burst is
available for the sequential type. The full-page burst is
used in conjunction with the BURST TERMINATE
command to generate arbitrary burst lengths.
Reserved states should not be used, as unknown
operation or incompatibility with future versions may
result.
When a READ or WRITE command is issued, a block
of columns equal to the burst length is effectively
selected. All accesses for that burst take place within
this block, meaning that the burst will wrap within the
block if a boundary is reached, as shown in Table 7,
Burst Definition Table, on page 10. The block is
uniquely selected by A1–A9 when the burst length is
set to two; by A2–A9 when the burst length is set to
four; and by A3–A9 when the burst length is set to
eight. The remaining (least significant) address bit(s) is
(are) used to select the starting location within the
block. Full-page bursts wrap within the page if the
boundary is reached, as shown in Table 7, Burst Definition Table, on page 10.
11
10
9
Reserved* WB
6
7
5
4
CAS Latency
3
1
2
BT
0
Mode Register (Mx)
Burst Length
*Should program
M11, M10 = “0, 0”
to ensure compatibility
with future devices.
Burst Length
M2 M1 M0
9
M3 = 1
0
0
1
1
0
0
1
2
2
0
1
0
4
4
0
1
1
8
8
1
0
0
Reserved
Reserved
1
0
1
Reserved
Reserved
1
1
0
Reserved
Reserved
1
1
1
Full Page
Reserved
Burst Type
0
Sequential
1
Interleaved
M6 M5 M4
Accesses within a given burst may be programmed
to be either sequential or interleaved; this is referred to
as the burst type and is selected via bit M3.
M3 = 0
0
M3
Burst Type
09005aef807b3709
SD9_18C16_32x72AG.fm - Rev. E 6/04 EN
8
Op Mode
CAS Latency
0
0
0
Reserved
0
0
1
Reserved
0
1
0
2
0
1
1
3
1
0
0
Reserved
1
0
1
Reserved
1
1
0
Reserved
1
1
1
Reserved
M8
M7
M6-M0
Operating Mode
0
0
Defined
Standard Operation
-
-
-
M9
Write Burst Mode
0
Programmed Burst Length
1
Single Location Access
All other states reserved
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
128MB (x72, ECC, SR), 256MB (x72, ECC, DR)
168-PIN SDRAM UDIMM
Table 7:
BURST
LENGTH
Burst Definition Table
STARTING
COLUMN
ADDRESS
ORDER OF ACCESSES WITHIN
A BURST
TYPE =
SEQUENTIAL
A0
0
1
A1 A0
0
0
4
0
1
1
0
1
1
A2 A1 A0
0
0
0
0
0
1
0
1
0
0
1
1
8
1
0
0
1
0
1
1
1
0
1
1
1
Full Page
n= A0-A9
(y)
(location 0-y)
2
Figure 6: CAS Latency Diagram
T0
T1
T2
T3
READ
NOP
NOP
CLK
COMMAND
TYPE =
INTERLEAVED
tLZ
tOH
DOUT
DQ
tAC
0-1
1-0
0-1
1-0
0-1-2-3
1-2-3-0
2-3-0-1
3-0-1-2
0-1-2-3
1-0-3-2
2-3-0-1
3-2-1-0
0-1-2-3-4-5-6-7
1-2-3-4-5-6-7-0
2-3-4-5-6-7-0-1
3-4-5-6-7-0-1-2
4-5-6-7-0-1-2-3
5-6-7-0-1-2-3-4
6-7-0-1-2-3-4-5
7-0-1-2-3-4-5-6
Cn, Cn+1, Cn+2
Cn+3, Cn+4...
...Cn-1, Cn...
0-1-2-3-4-5-6-7
1-0-3-2-5-4-7-6
2-3-0-1-6-7-4-5
3-2-1-0-7-6-5-4
4-5-6-7-0-1-2-3
5-4-7-6-1-0-3-2
6-7-4-5-2-3-0-1
7-6-5-4-3-2-1-0
CAS Latency = 2
T0
T1
T2
T3
T4
READ
NOP
NOP
NOP
CLK
COMMAND
tLZ
tOH
DOUT
DQ
tAC
CAS Latency = 3
DON’T CARE
UNDEFINED
CAS Latency
The CAS latency is the delay, in clock cycles,
between the registration of a READ command and the
availability of the first piece of output data. The latency
can be set to two or three clocks.
If a READ command is registered at clock edge n,
and the latency is m clocks, the data will be available
by clock edge n + m. The DQ will start driving as a
result of the clock edge one cycle earlier (n + m - 1),
and provided that the relevant access times are met,
the data will be valid by clock edge n + m. For example,
assuming that the clock cycle time is such that all relevant access times are met, if a READ command is registered at T0 and the latency is programmed to two
clocks, the DQ will start driving after T1 and the data
will be valid by T2, as shown in Figure 6, CAS Latency
Diagram. Table 8, CAS Latency Table, indicates the
operating frequencies at which each CAS latency setting can be used.
Reserved states should not be used as unknown
operation or incompatibility with future versions may
result.
Not Supported
NOTE:
1. For full-page accesses: y = 1,024
2. For a burst length of two, A1–A9 select the block of two
burst; A0 selects the starting column within the block.
3. For a burst length of four, A2–A9 select the block of
four burst; A0-A1 select the starting column within the
block.
4. For a burst length of eight, A3–A9 select the block of
eight burst; A0–A2 select the starting column within the
block.
5. For a full-page burst, the full row is selected and A0–A9
select the starting column.
6. Whenever a boundary of the block is reached within a
given sequence above, the following access wraps
within the block.
7. For a burst length of one, A0–A9 select the unique column to be accessed, and Mode Register bit M3 is
ignored.For a full-page burst, the full row is selected
and A0–A8 select the starting column.
Operating Mode
The normal operating mode is selected by setting
M7 and M8 to zero; the other combinations of values
for M7 and M8 are reserved for future use and/or test
modes. The programmed burst length applies to both
READ and WRITE bursts.
09005aef807b3709
SD9_18C16_32x72AG.fm - Rev. E 6/04 EN
10
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
128MB (x72, ECC, SR), 256MB (x72, ECC, DR)
168-PIN SDRAM UDIMM
Table 8:
Test modes and reserved states should not be used
because unknown operation or incompatibility with
future versions may result.
ALLOWABLE OPERATING
CLOCK FREQUENCY (MHz)
Write Burst Mode
When M9 = 0, the burst length programmed via M0M2 applies to both READ and WRITE bursts; when M9
= 1, the programmed burst length applies to READ
bursts, but write accesses are single-location (nonburst) accesses.
09005aef807b3709
SD9_18C16_32x72AG.fm - Rev. E 6/04 EN
CAS Latency Table
11
SPEED
CAS LATENCY = 2
CAS LATENCY = 3
-13E
-133
-10E
≤ 133
≤ 100
≤ 100
≤ 143
≤ 133
N/A
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
128MB (x72, ECC, SR), 256MB (x72, ECC, DR)
168-PIN SDRAM UDIMM
Commands
The Truth Table, below, provides a quick reference
of available commands. This is followed by written
description of each command. For a more detailed
Table 9:
description of commands and operations, refer to the
128Mb SDRAM component data sheet.
SDRAM Commands and DQMB Operation Truth Table
CKE is HIGH for all commands shown except SELF REFRESH
NAME (FUNCTION)
CS# RAS# CAS#
WE#
DQMB
ADDR
DQ
NOTES
X
X
X
1
X
Valid
2
2
COMMAND INHIBIT (NOP)
NO OPERATION (NOP)
ACTIVE (Select bank and activate row)
H
L
L
X
H
L
X
H
H
X
H
H
X
X
X
READ (Select bank and column, and start READ burst)
WRITE (Select bank and column, and start WRITE
burst)
BURST TERMINATE
PRECHARGE (Deactivate row in bank or banks)
AUTO REFRESH or SELF REFRESH
(Enter self refresh mode)
LOAD MODE REGISTER
Write Enable/Output Enable
Write Inhibit/Output High-Z
L
L
H
H
L
L
H
L
L/H
L/H
X
X
Bank/
Row
Bank/Col
Bank/Col
L
L
L
H
L
L
H
H
L
L
L
H
X
X
X
X
Code
X
Active
X
X
3
4, 5
L
–
–
L
–
–
L
–
–
L
–
–
X
L
H
Op-code
–
–
X
Active
High-Z
6
7
7
NOTE:
1. A0–A11 provide row address; BA0–BA1 determine which device bank is made active.
2. A0–A9 provide column address; A10 HIGH enables the auto-precharge feature (nonpersistent), while A10 LOW disables
the auto-precharge feature; BA0–BA1 determine which device bank is being read from or written to.
3. A10 LOW: BA0–BA1 determine which device bank is being precharged. A10 HIGH: all device banks are precharged and
BA0, BA1 are “Don’t Care.”
4. This command is AUTO REFRESH if CKE is HIGH, SELF REFRESH if CKE is LOW.
5. Internal refresh counter controls row addressing; all inputs and I/Os are “Don’t Care” except for CKE.
6. A0–A11 define the op-code written to the mode register.
7. Activates or deactivates the DQs during WRITEs (zero-clock delay) and READs (two-clock delay).
09005aef807b3709
SD9_18C16_32x72AG.fm - Rev. E 6/04 EN
12
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
128MB (x72, ECC, SR), 256MB (x72, ECC, DR)
168-PIN SDRAM UDIMM
Absolute Maximum Ratings
Stresses greater than those listed may cause permanent damage to the device. This is a stress rating only,
and functional operation of the device at these or any
other conditions above those indicated in the opera-
tional sections of this specification is not implied.
Exposure to absolute maximum rating conditions for
extended periods may affect reliability.
Voltage on VDD, VDDQ Supply
Relative to VSS . . . . . . . . . . . . . . . . . . . . . -1V to +4.6V
Voltage on Inputs NC or I/O Pins
Relative to VSS . . . . . . . . . . . . . . . . . . . . -1V to +4.6V
Operating Temperature
TOPR (Commercial - ambient) . . . . .. 0°C to +65°C
TOPR (Industrial - ambient) . . . . . . .-40°C to +85°C
Storage Temperature (plastic) . . . . . . -55°C to +150°C
Table 10: DC Electrical Characteristics and Operating Conditions – 128MB
Notes: 1, 5, 6; notes appear on page 18; VDD, VDDQ = +3.3V ±0.3V
PARAMETER/CONDITION
SUPPLY VOLTAGE
INPUT HIGH VOLTAGE: Logic 1; All inputs
INPUT LOW VOLTAGE: Logic 0; All inputs
INPUT LEAKAGE CURRENT:
Any input 0V ≤ VIN ≤ VDD
(All other pins not under test = 0V)
OUTPUT LEAKAGE CURRENT: DQ pins are
disabled; 0V ≤ VOUT ≤ VDDQ
OUTPUT LEVELS:
Output High Voltage (IOUT = -4mA)
Output Low Voltage (IOUT = 4mA)
SYMBOL
MIN
MAX
UNITS
NOTES
VDD, VDDQ
VIH
VIL
3
2
-0.3
3.6
VDD + 0.3
0.8
V
V
V
22
22
-45
45
25
20
5
5
µA
33
IOZ
-25
-20
-5
-5
µA
33
VOH
VOL
2.4
–
–
0.4
V
V
Command and
Address Inputs,
CKE0
CK0, S0#
CK2, S2#
DQMB
DQ
II
Table 11: DC Electrical Characteristics and Operating Conditions – 256MB
Notes: 1, 5, 6; notes appear on page 18; VDD, VDDQ = +3.3V ±0.3V
PARAMETER/CONDITION
SUPPLY VOLTAGE
INPUT HIGH VOLTAGE: Logic 1; All inputs
INPUT LOW VOLTAGE: Logic 0; All inputs
INPUT LEAKAGE CURRENT:
Any input 0V ≤ VIN ≤ VDD
(All other pins not under test = 0V)
OUTPUT LEAKAGE CURRENT: DQ pins are
disabled; 0V ≤ VOUT ≤ VDDQ
OUTPUT LEVELS:
Output High Voltage (IOUT = -4mA)
Output Low Voltage (IOUT = 4mA)
09005aef807b3709
SD9_18C16_32x72AG.fm - Rev. E 6/04 EN
Command and
Address Inputs
CKE0, CKE1
CK0, CK1, S0#, S1#
CK2, CK3, S2#, S3#
DQMB
DQ
13
SYMBOL
MIN
MAX
UNITS
NOTES
VDD, VDDQ
VIH
VIL
3
2
-0.3
3.6
VDD + 0.3
0.8
V
V
V
22
22
-90
90
45
25
20
5
10
µA
33
IOZ
-45
-25
-20
-5
-10
µA
33
VOH
VOL
2.4
–
–
0.4
II
V
V
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
128MB (x72, ECC, SR), 256MB (x72, ECC, DR)
168-PIN SDRAM UDIMM
Table 12: IDD Specifications and Conditions – 128MB
Notes: 1, 5, 6, 11, 13; notes appear on page 18; VDD, VDDQ = +3.3V ±0.3V; SDRAM component values only
MAX
PARAMETER/CONDITION
SYMBOL
IDD1
-13E
-133
-10E
UNITS
NOTES
1,125 1,035
855
mA
3, 18, 19, 30
OPERATING CURRENT: Active Mode; Burst = 2; READ or WRITE;
t
RC = tRC (MIN)
STANDBY CURRENT: Power-Down Mode; All device banks idle;
CKE = LOW
STANDBY CURRENT: Active Mode;CKE = HIGH; CS# = HIGH; All
device banks active after tRCD met; No accesses in progress
OPERATING CURRENT: Burst Mode; Continuous burst; READ or
WRITE; All device banks active
tRFC = tRFC (MIN)
AUTO REFRESH CURRENT
IDD4
IDD5
CKE = HIGH; CS# = HIGH
IDD6
27
27
IDD7
18
9
18
9
SELF REFRESH CURRENT: CKE ≤ 0.2V
t
RFC = 15.625µs
Standard
Low Power
IDD2
18
18
18
mA
30
IDD3
405
405
315
mA
3, 12, 19, 30
1,350 1,260 1,080
mA
3, 18, 19, 30
2,070 1,890 1,710
mA
3, 12
27
mA
18, 19, 30, 31
18
9
mA
mA
4
4
Table 13: IDD Specifications and Conditions – 256MB
Notes: 1, 5, 6, 11, 13; notes appear on page 18; VDD, VDDQ = +3.3V ±0.3V; SDRAM component values only
MAX
PARAMETER/CONDITION
SYMBOL
IDD1a
-13E
-133
IDD4a
IDD5b
CKE = HIGH; CS# = HIGH
IDD6b
54
54
IDD7b
36
27
36
27
SELF REFRESH CURRENT: CKE ≤ 0.2V
tRFC
= 15.625µs
Standard
Low Power
-10E
1,458 1,368 1,278
OPERATING CURRENT: Active Mode; Burst = 2; READ or WRITE;
tRC = tRC (MIN)
STANDBY CURRENT: Power-Down Mode; All device banks idle;
CKE = LOW
STANDBY CURRENT: Active Mode; CKE = HIGH; CS# = HIGH; All
device banks active after tRCD met; No accesses in progress
OPERATING CURRENT: Burst Mode; Continuous burst; READ or
WRITE; All device banks active
tRFC = tRFC (MIN)
AUTO REFRESH CURRENT
UNITS
NOTES
mA
3, 18, 19, 30
IDD2b
36
36
36
mA
30
IDD3a
468
468
378
mA
3, 12, 19, 30
1,503 1,368 1,278
mA
3, 18, 19, 30
5,940 5,580 4,860
mA
3, 12
54
mA
18, 19, 30, 31
36
27
mA
mA
4
4
NOTE:
a - Value calculated as one module rank in this condition, and all other module ranks in Power-Down Mode (IDD2).
b - Value calculated reflects all module ranks in this condition.
09005aef807b3709
SD9_18C16_32x72AG.fm - Rev. E 6/04 EN
14
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
128MB (x72, ECC, SR), 256MB (x72, ECC, DR)
168-PIN SDRAM UDIMM
. 14: Capacitance – 128MB
Table
Note 2; notes appear on page 18
PARAMETER
Input Capacitance: Address and Command
Input Capacitance: CK0
Input Capacitance: CK2
Input Capacitance: S0#
Input Capacitance: S2#
Input Capacitance: CKE
Input Capacitance: DQMB0, 2–4, 6, 7
Input Capacitance: DQMB1
Input/Output Capacitance: DQ, CB
SYMBOL
MIN
MAX
UNITS
CI1
CI2
CI2
CI3
CI3
CI4
CI5
CI6
CIO
22.5
12.5
13.3
12.5
10
22.5
2.5
5
4
34.2
17.5
17.3
19
15.2
34.2
3.8
7.6
6
pF
pF
pF
pF
pF
pF
pF
pF
pF
SYMBOL
MIN
MAX
UNITS
CI1
CI2
CI2
CI3
CI3
CI4
CI5
CI6
CIO
45
12.5
13.3
12.5
10
22.5
5
7.5
8
68.4
17.5
17.3
19
15.2
34.2
7.6
11.4
12
pF
pF
pF
pF
pF
pF
pF
pF
pF
.
Table 15: Capacitance – 256MB
Note 2; notes appear on page 18
PARAMETER
Input Capacitance: Address and Command
Input Capacitance: CK0
Input Capacitance: CK2
Input Capacitance: S0#
Input Capacitance: S2#
Input Capacitance: CKE
Input Capacitance: DQMB0, 2–4, 6, 7
Input Capacitance: DQMB1
Input/Output Capacitance: DQ, CB
09005aef807b3709
SD9_18C16_32x72AG.fm - Rev. E 6/04 EN
15
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
128MB (x72, ECC, SR), 256MB (x72, ECC, DR)
168-PIN SDRAM UDIMM
Table 16: Electrical Characteristics and Recommended AC Operating Conditions
Notes: 5, 6, 8, 9, 11, 31; notes appear on page 18
Module AC timing parameters comply with PC100 and PC133 Design Specs, based on component parameters
ACCHARACTERISTICS
-13E
PARAMETER
SYMBOL
Access timefrom CLK (pos.edge) CL= 3
t
CL= 2
t
MIN
-133
MAX
MIN
-10E
MAX
UNITS
NOTES
AC(3)
5.4
MAX
5.4
MIN
6
ns
27
AC(2)
5.4
6
6
ns
AH
0.8
0.8
1
ns
Address setup time
t
1.5
1.5
2
ns
CLK high-level width
t
CH
2.5
2.5
3
ns
CLK low-level width
tCL
2.5
2.5
3
ns
CL= 3
tCK(3)
7
7.5
8
ns
23
CL = 2
t
CK(2)
7.5
10
10
ns
23
tCKH
0.8
0.8
1
ns
tCKS
1.5
1.5
2
ns
CS#, RAS#, CAS#, WE#, DQM hold time
tCMH
0.8
0.8
1
ns
CS#, RAS#, CAS#, WE#, DQM setup time
tCMS
1.5
1.5
2
ns
Data-in hold time
tDH
0.8
0.8
1
ns
Data-in setup time
tDS
1.5
1.5
2
ns
t
Address hold time
Clock cycle time
CKE holdt ime
CKE setup time
Data-out high-impedance time
AS
CL = 3
tHZ(3)
5.4
5.4
6
ns
10
CL = 2
tHZ(2)
5.4
6
6
ns
10
Data-out low-impedance time
tLZ
1
1
1
ns
Data-out hold time (load)
tOH
3
3
3
ns
Data-out hold time (noload)
tOH
1.8
1.8
1.8
ns
28
ACTIVE to PRECHARGE command
tRAS
37
ns
32
tRC
60
ACTIVE to READ or WRITE delay
tRCD
15
Refresh period (4,096 rows)
tREF
AUTOREFRESH period
tRFC
66
66
70
ns
tRP
15
20
20
ns
ACTIVE bank a to ACTIVE bank b
command
Transition time
tRRD
14
15
20
ns
tT
0.3
WRITE recovery time
t
WR
Exit SELF REFRESH to ACTIVE command
tXSR
1 CLK
+
7ns
14
67
ACTIVE to ACTIVE command period
PRECHARGE command period
N
120,000
44
120,000
66
0.3
1 CLK
+
7.5ns
15
75
ns
20
64
1.2
120,000
70
20
64
50
1.2
ns
64
0.3
1 CLK
+
7ns
15
80
1.2
ms
ns
7
ns
24
ns
ns
25
20
.
09005aef807b3709
SD9_18C16_32x72AG.fm - Rev. E 6/04 EN
16
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
128MB (x72, ECC, SR), 256MB (x72, ECC, DR)
168-PIN SDRAM UDIMM
Table 17: AC Functional Characteristics
Notes: 5, 6, 7, 8, 9, 11, 31; notes appear on page 18
PARAMETER
SYMBOL
-13E
-133
-10E
CCD
1
1
1
t
CK
17
tCKED
1
1
1
tCK
14
t
READ/WRITE command to READ/WRITE command
CKE to clock disable or power-down entry mode
UNITS
NOTES
CKE to clock enable or power-down exit setup mode
t
PED
1
1
1
t
14
DQM to input data delay
t
DQD
0
0
0
t
17
DQM to data mask during WRITEs
t
DQM
0
0
0
t
17
DQM to data high-impedance during READs
t
DQZ
2
2
2
t
CK
17
WRITE command to input data delay
tDWD
0
0
0
tCK
17
Data-in to ACTIVE command
tDAL
4
5
4
tCK
15, 21
Data-in to PRECHARGE command
tDPL
2
2
2
tCK
16, 21
Last data-in to burst STOP command
tBDL
1
1
1
tCK
17
Last data-in to new READ/WRITE command
tCDL
1
1
1
tCK
17
Last data-in to PRECHARGE command
tRDL
2
2
2
tCK
16, 21
LOAD MODE REGISTER command to ACTIVE or REFRESH command
tMRD
2
2
2
tCK
26
CL = 3
tROH(3)
3
3
3
tCK
17
CL = 2
tROH(2)
2
2
2
tCK
17
Data-out to high-impedance from PRECHARGE
command
09005aef807b3709
SD9_18C16_32x72AG.fm - Rev. E 6/04 EN
17
CK
CK
CK
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
128MB (x72, ECC, SR), 256MB (x72, ECC, DR)
168-PIN SDRAM UDIMM
Notes
1. All voltages referenced to VSS.
2. This parameter is sampled. VDD, VDDQ = +3.3V; f =
1 MHz; TA = 25°C; pin under test biased at 1.4V.
3. IDD is dependent on output loading and cycle
rates. Specified values are obtained with minimum cycle time and the outputs open.
4. Enables on-chip refresh and address counters.
5. The minimum specifications are used only to indicate cycle time at which proper operation over
the full temperature range is ensured (0°C ≤ TA ≤
+70°C for Commercial, -40°C ≤ TA ≤ +85°C for
Industrial).
6. An initial pause of 100µs is required after powerup, followed by two AUTO REFRESH commands,
before proper device operation is ensured. (VDD
and VDDQ must be powered up simultaneously.
VSS and VSSQ must be at same potential.) The two
AUTO REFRESH command wake-ups should be
repeated any time the tREF refresh requirement is
exceeded.
7. AC characteristics assume tT = 1ns.
8. In addition to meeting the transition rate specification, the clock and CKE must transit between
VIH and VIL (or between VIL and VIH) in a monotonic manner.
9. Outputs measured at 1.5V with equivalent load:
15. Timing actually specified by tWR plus tRP; clock(s)
specified as a reference only at minimum cycle
rate.
16. Timing actually specified by tWR.
17. Required clocks are specified by JEDEC functionality and are not dependent on any timing parameter.
18. The IDD current will increase or decrease proportionally according to the amount of frequency
alteration for the test condition.
19. Address transitions average one transition every
two clocks.
20. CLK must be toggled a minimum of two times
during this period.
21. Based on tCK = 10ns for -10E; tCK = 7.5ns for -133
and -13E.
22. VIH overshoot: VIH (MAX) = VDDQ + 2V for a pulse
width ≤ 3ns, and the pulse width cannot be
greater than one third of the cycle rate. VIL undershoot: VIL (MIN) = -2V for a pulse width ≤ 3ns.
23. The clock frequency must remain constant (stable
clock is defined as a signal cycling within timing
constraints specified for the clock pin) during
access or precharge states (READ, WRITE, including tWR, and PRECHARGE commands). CKE may
be used to reduce the data rate.
24. Auto precharge mode only. The precharge timing
budget (tRP) begins 7ns for -13E; 7.5ns for -133;
and 7ns for -10E after the first clock delay, after
the last WRITE is executed. May not exceed limit
set for precharge mode.
25. Precharge mode only.
26. JEDEC and PC100 specify three clocks.
27. tAC for -133/-13E at CL = 3 with no load is 4.6ns
and is guaranteed by design.
28. Parameter guaranteed by design.
29. For -13E, CL = 2 and tCK = 7.5ns; for -133, CL = 3
and tCK = 7.5ns; for -10E, CL=2 and tCK = 10ns
30. CKE is HIGH during refresh command period
t
RFC (MIN) else CKE is LOW. The IDD6 limit is
actually a nominal value and does not result in a
fail value.
31. Refer to device data sheet for timing waveforms.
32. The value of tRAS used in -13E speed grade modules is calculated from tRC - tRP.
33. Leakage number reflects the worst case leakage
possible through the module pin, not what each
memory device contributes.
Q
50pF
10. tHZ defines the time at which the output achieves
the open circuit condition; it is not a reference to
VOH or VOL. The last valid data element will meet
t
OH before going High-Z.
11. AC timing and IDD tests have VIL = 0V and VIH = 3V,
with timing referenced to 1.5V crossover point. If
the input transition time is longer than 1ns, then
the timing is referenced at VIL (MAX) and VIH
(MIN) and no longer at the ISV crossover point.
12. Other input signals are allowed to transition no
more than once every two clocks and are otherwise at valid VIH or VIL levels.
13. IDD specifications are tested after the device is
properly initialized.
14. Timing actually specified by tCKS; clock(s) specified as a reference only at minimum cycle rate.
09005aef807b3709
SD9_18C16_32x72AG.fm - Rev. E 6/04 EN
18
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
128MB (x72, ECC, SR), 256MB (x72, ECC, DR)
168-PIN SDRAM UDIMM
SPD Clock and Data Conventions
SPD Acknowledge
Data states on the SDA line can change only during
SCL LOW. SDA state changes during SCL HIGH are
reserved for indicating start and stop conditions (as
shown in Figure 7, Data Validity, and Figure 8, Definition of Start and Stop).
Acknowledge is a software convention used to indicate successful data transfers. The transmitting device,
either master or slave, will release the bus after transmitting eight bits. During the ninth clock cycle, the
receiver will pull the SDA line LOW to acknowledge
that it received the eight bits of data (as shown in Figure 9, Acknowledge Response From Receiver).
The SPD device will always respond with an
acknowledge after recognition of a start condition and
its slave address. If both the device and a WRITE operation have been selected, the SPD device will respond
with an acknowledge after the receipt of each subsequent eight bit word. In the read mode the SPD device
will transmit eight bits of data, release the SDA line and
monitor the line for an acknowledge. If an acknowledge is detected and no stop condition is generated by
the master, the slave will continue to transmit data. If
an acknowledge is not detected, the slave will terminate further data transmissions and await the stop
condition to return to standby power mode.
SPD Start Condition
All commands are preceded by the start condition,
which is a HIGH-to-LOW transition of SDA when SCL
is HIGH. The SPD device continuously monitors the
SDA and SCL lines for the start condition and will not
respond to any command until this condition has been
met.
SPD Stop Condition
All communications are terminated by a stop condition, which is a LOW-to-HIGH transition of SDA when
SCL is HIGH. The stop condition is also used to place
the SPD device into standby power mode.
Figure 7: Data Validity
Figure 8: Definition of Start and Stop
SCL
SCL
SDA
SDA
DATA STABLE
DATA
CHANGE
DATA STABLE
START
BIT
STOP
BIT
Figure 9: Acknowledge Response From Receiver
SCL from Master
8
9
Data Output
from Transmitter
Data Output
from Receiver
Acknowledge
09005aef807b3709
SD9_18C16_32x72AG.fm - Rev. E 6/04 EN
19
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
128MB (x72, ECC, SR), 256MB (x72, ECC, DR)
168-PIN SDRAM UDIMM
Table 18: EEPROM Device Select Code
The most significant bit (b7) is sent first
DEVICE TYPE IDENTIFIER
SELECT CODE
CHIP ENABLE
RW
b7
b6
b5
b4
b3
b2
b1
b0
1
0
0
1
1
1
0
0
SA2
SA2
SA1
SA1
SA0
SA0
RW
RW
Memory Area Select Code (two arrays)
Protection Register Select Code
Table 19: EEPROM Operating Modes
MODE
RW BIT
WC
BYTES
Current Address Read
1
VIH or VIL
1
Start, Device Select, RW = 1
INITIAL SEQUENCE
RandomAddressRead
0
VIH or VIL
1
Start, Device Select, RW= 0, Address
1
VIH or VIL
Sequential Read
1
VIH or VIL
≥1
Similar to Current or Random Address Read
Byte Write
Page Write
0
0
VIL
VIL
1
≤ 16
START, Device Select, RW = 0
START, Device Select, RW = 0
RESTART, Device Select, RW= 1
Figure 10: SPD EEPROM Timing Diagram
tF
t HIGH
tR
t LOW
SCL
t SU:STA
t HD:STA
t SU:DAT
t HD:DAT
t SU:STO
SDA IN
t DH
t AA
t BUF
SDA OUT
UNDEFINED
09005aef807b3709
SD9_18C16_32x72AG.fm - Rev. E 6/04 EN
20
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
128MB (x72, ECC, SR), 256MB (x72, ECC, DR)
168-PIN SDRAM UDIMM
Table 20: Serial Presence-Detect EEPROM DC Operating Conditions
All voltages referenced to VSS; VDDSPD = +3.3V ±0.3V
PARAMETER/CONDITION
SUPPLY VOLTAGE
INPUT HIGH VOLTAGE: Logic 1; All inputs
INPUT LOW VOLTAGE: Logic 0; All inputs
OUTPUT LOW VOLTAGE: IOUT = 3mA
INPUT LEAKAGE CURRENT: VIN = GND to VDD
OUTPUT LEAKAGE CURRENT: VOUT = GND to VDD
STANDBY CURRENT: SCL = SDA = VDD - 0.3V; All other
inputs = VSS or VDD
POWER SUPPLY CURRENT:
SYMBOL
MIN
MAX
UNITS
VDD
VIH
VIL
VOL
ILI
ILO
ICCS
3
VDD x 0.7
-1
–
-10
-10
–
3.6
VDD + 0.5
VDD x 0.3
0.4
10
10
30
V
V
V
V
µA
µA
µA
ICC Write
ICC Read
–
–
3
1
mA
Table 21: Serial Presence-Detect EEPROM AC Operating Conditions
All voltages referenced to VSS; VDDSPD = +3.3V ±0.3V
PARAMETER/CONDITION
SCL LOW to SDA data-out valid
Time the bus must be free before a new transition can start
Data-out hold time
SDA and SCL fall time
Data-in hold time
Start condition hold time
Clock HIGH period
Noise suppression time constant at SCL, SDA inputs
Clock LOW period
SDA and SCL rise time
SCL clock frequency
Data-in setup time
Start condition setup time
Stop condition setup time
WRITE cycle time
SYMBOL
MIN
MAX
UNITS
NOTES
tAA
0.2
1.3
200
0.9
µs
µs
ns
ns
µs
µs
µs
ns
µs
µs
KHz
ns
µs
µs
ms
1
tBUF
tDH
tF
tHD:DAT
tHD:STA
tHIGH
300
0
0.6
0.6
tI
tLOW
50
1.3
tR
0.3
400
fSCL
tSU:DAT
tSU:STA
t
SU:STO
tWRC
100
0.6
0.6
10
2
2
3
4
NOTE:
1. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL=1 and the falling or rising
edge of SDA.
2. This parameter is sampled.
3. For a reSTART condition, or following a WRITE cycle.
4. The SPD EEPROM WRITE cycle time (tWRC) is the time from a valid stop condition of a write sequence to the end of
the EEPROM internal erase/program cycle. During the WRITE cycle, the EEPROM bus interface circuit is disabled, SDA
remains HIGH due to pull-up resistor, and the EEPROM does not respond to its slave address.
09005aef807b3709
SD9_18C16_32x72AG.fm - Rev. E 6/04 EN
21
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
128MB (x72, ECC, SR), 256MB (x72, ECC, DR)
168-PIN SDRAM UDIMM
Table 22: Serial Presence-Detect Matrix
“1”/”0”: Serial data, “driven to HIGH”/”driven to LOW”; VDD = +3.3V ±0.3V
BYTE
DESCRIPTION
ENTRY (VERSION)
0
1
2
3
4
5
6
7
8
9
Number of Bytes Used by Micron
Total Number of SPD Memory Bytes
Memory Type
Number of Row Addresses
Number of Column Addresses
Number of Module Ranks
Module Data Width
Module Data Width (Continued)
Module Voltage Interface Levels
10
SDRAM Access From CLK, tAC
(CAS Latency = 3)
Module Configuration Type
Refresh Rate/Type
SDRAM Width (Primary SDRAM)
Error-checking SDRAM Data Width
Minimum Clock Delay from Back-to-Back Random
Column Addresses,tCCD
Burst Lengths Supported
Number of Banks on SDRAM Device
CAS Latencies Supported
CS Latency
WE Latency
SDRAM Module Attributes
SDRAM Device Attributes: General
MT9LSDT1672A MT18LSDT3272A
128
256
SDRAM
12
10
1 or 2
72
0
LVTTL
7ns (-13E)
7.5ns (-133
8ns (-10E)
5.4ns (-13E/-133)
6ns (-10E)
80
08
04
0C
0A
01
48
00
01
70
75
80
54
60
80
08
04
0C
0A
02
48
00
01
75
75
80
54
60
ECC
15.625µs/SELF
8
8
1
02
80
08
08
01
02
80
08
08
01
SDRAM Cycle Time , tCK
(CAS Latency = 2)
1, 2, 4, 8, PAGE
4
2, 3
0
0
UNBUFFERED
0E
7.5ns (13E)
10ns (-133/-10E)
8F
04
06
01
01
00
0E
75
A0
8F
04
06
01
01
00
0E
75
A0
24
SDRAM Access from CLK, tAC
(CAS Latency = 2)
5.4ns (-13E)
6ns (-133/-10E)
54
60
54
60
25
SDRAM Cycle Time, tCK (CAS Latency = 1)
00
00
11
12
13
14
15
16
17
18
19
20
21
22
23
26
SDRAM Cycle Time, tCK
(CAS Latency = 3)
SDRAM Access from CLK,
tAC
(CAS Latency = 1)
27
Minimum Row Precharge Time,
28
Minimum Row Active to Row Active, tRRD
29
Minimum RAS# to CAS# Delay, tRCD
30
Minimum RAS# Pulse Width, tRAS (See note 1)
31
Module Rank Density
09005aef807b3709
SD9_18C16_32x72AG.fm - Rev. E 6/04 EN
15ns (-13E)
20ns (-133/-10E)
14ns (-13E)
15ns (-133)
20ns (-10E)
15ns (-13E)
20ns (-133/-10E)
45ns (-13E)
44ns (-133)
50ns (-10E)
128MB
tRP
22
00
00
0F
14
0E
0F
14
0F
14
2D
2C
32
20
oF
14
0E
0F
14
0F
14
2D
2C
32
20
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
128MB (x72, ECC, SR), 256MB (x72, ECC, DR)
168-PIN SDRAM UDIMM
Table 22: Serial Presence-Detect Matrix (Continued)
“1”/”0”: Serial data, “driven to HIGH”/”driven to LOW”; VDD = +3.3V ±0.3V
BYTE
DESCRIPTION
32
Command and Address Setup Time, tAS, tCMS
33
Command and Address Hold Time, tAH, tCMH
34
Data Signal Input Setup Time, tDS
35
Data Signal Input Hold Time, tDH
36-40
41
Reserved
42-61
62
63
Reserved
SPD Revision
Checksum For Bytes 0-62
64
65-71
72
73-90
91
92
93
94
95-98
99-125
126
Manufacturer’s JEDEC ID Code
Manufacturer’s JEDEC ID Code(Cont.)
Manufacturing Location
Module Part Number (ASCII)
PCB Identification Code
Identification Code (Cont.)
Year of Manufacture in BCD
Week of Manufacture in BCD
Module Serial Number
Manufacturer-Specific Data (RSVD)
System Frequency
127
ENTRY (VERSION)
1.5ns (-13E/-133)
2ns (-10E)
0.8ns (-13E/-133)
1ns (-10E)
1.5ns (-13E/-133)
2ns (-10E)
0.8ns (-13E/-133
1ns (-10E))
60ns (-13E)
66ns (-133)
70ns (10E)
Device Minimum Active/Auto-Refresh Time, tRC
REV. 2.0
(-13E)
(-133)
(-10E)
MICRON
1–12
1–9
0
100 MHz (-13E/-133/10E)
SDRAM Component & Clock Detail
MT9LSDT1672A MT18LSDT3272A
15
20
08
10
15
20
08
10
00
3C
42
46
00
02
A6
F2
3E
2C
FF
01–0C
Variable Data
01–09
00
Variable Data
Variable Data
Variable Data
15
20
08
10
15
20
08
10
00
3C
42
46
00
02
A7
F3
3F
2C
FF
01–0C
Variable Data
01–09
00
Variable Data
Variable Data
Variable Data
64
64
AF
FF
NOTE:
1. The value of tRAS used for -13E modules is calculated from tRC - tRP. Actual device specification value is 37ns.
09005aef807b3709
SD9_18C16_32x72AG.fm - Rev. E 6/04 EN
23
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
128MB (x72, ECC, SR), 256MB (x72, ECC, DR)
168-PIN SDRAM UDIMM
Figure 11: 168-Pin DIMM Dimensions – Single Rank
STANDARD PCB
FRONT VIEW
0.125 (3.18)
MAX
5.256 (133.50)
5.244 (133.20)
0.079 (2.00) R
(2X)
U1
U2
U4
U3
U5
U6
U7
U8
U9
0.118 (3.00)
(2X)
1.380 (35.05)
1.370 (34.80)
0.700 (17.78)
TYP
U10
0.118 (3.00) TYP
0.250 (6.35) TYP
0.118 (3.00)
TYP
1.661 (42.18)
0.039 (1.00)R
(2X)
2.625 (66.68)
0.128 (3.25)
(2X)
0.118 (3.00)
1.039 (1.00)
TYP
0.050 (1.27)
TYP
0.054 (1.37)
0.046 (1.17)
PIN 84 (PIN 168 ON BACKSIDE)
PIN 1 (PIN 85 ON BACKSIDE)
4.550 (115.57)
LOW PROFILE PCB
0.125 (3.18)
MAX
FRONT VIEW
5.256 (133.50)
5.244 (133.20)
0.079 (2.00) R
(2X)
U10
U1
U2
U4
U3
U5
U6
U7
U8
U9
1.131 (28.73)
0.700 (17.78) 1.119 (28.42)
TYP
0.118 (3.00)
(2X)
0.118 (3.00) TYP
0.250 (6.35) TYP
0.118 (3.00)
TYP
1.661 (42.18)
0.039 (1.00)R
(2X)
2.625 (66.68)
0.128 (3.25)
(2X)
0.118 (3.00)
0.039 (1.00)
TYP
PIN 1 (PIN 85 ON BACKSIDE)
0.050 (1.27)
TYP
0.054 (1.37)
0.046 (1.17)
PIN 84 (PIN 168 ON BACKSIDE)
4.550 (115.57)
NOTE:
MAX
All dimensions in inches (millimeters); MIN or typical where noted.
09005aef807b3709
SD9_18C16_32x72AG.fm - Rev. E 6/04 EN
24
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
128MB (x72, ECC, SR), 256MB (x72, ECC, DR)
168-PIN SDRAM UDIMM
Figure 12: 168-Pin DIMM Dimensions – Low-Profile PCB
STANDARD PCB
0.157 (3.99)
MAX
FRONT VIEW
5.256 (133.50)
5.244 (133.20)
0.079 (2.00) R
(2X)
U4
U3
U2
U1
U5
U7
U6
U8
U9
0.118 (3.00)
(2X)
1.380 (35.05)
1.370 (34.80)
0.700 (17.78)
TYP
U10
0.118 (3.00) TYP
0.250 (6.35) TYP
0.118 (3.00)
TYP
1.661 (42.18)
0.039 (1.00)R
(2X)
2.625 (66.68)
0.128 (3.25)
(2X)
0.118 (3.00)
0.039 (1.00)
TYP
0.050 (1.27)
TYP
0.054 (1.37)
0.046 (1.17)
PIN 84
PIN 1
4.550 (115.57)
BACK VIEW
U12
U11
U14
U13
U15
U16
U17
U18
U19
PIN 168
PIN 85
0.157 (3.99)
MAX
LOW PROFILE PCB
FRONT VIEW
5.256 (133.50)
5.244 (133.20)
0.079 (2.00) R
(2X)
U10
U1
U4
U3
U2
U5
U6
U7
U8
U9
1.131 (28.73)
0.700 (17.78) 1.119 (28.42)
TYP
0.118 (3.00)
(2X)
0.118 (3.00) TYP
0.250 (6.35) TYP
0.118 (3.00)
TYP
1.661 (42.18)
0.039 (1.00)R
(2X)
2.625 (66.68)
0.128 (3.25)
(2X)
0.118 (3.00)
0.039 (1.00)
TYP
0.050 (1.27)
TYP
0.054 (1.37)
0.046 (1.17)
PIN 84
PIN 1
4.550 (115.57)
BACK VIEW
U11
U12
U13
U14
U15
U16
U17
PIN 168
U18
U19
PIN 85
NOTE:
MAX
All dimensions in inches (millimeters); MIN or typical where noted.
09005aef807b3709
SD9_18C16_32x72AG.fm - Rev. E 6/04 EN
25
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
128MB (x72, ECC, SR), 256MB (x72, ECC, DR)
168-PIN SDRAM UDIMM
Data Sheet Designation
Released (No Mark): This data sheet contains minimum and maximum limits specified over the complete
power supply and temperature range for production
devices. Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur.
®
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900
E-mail: [email protected], Internet: http://www.micron.com, Customer Comment Line: 800-932-4992
Micron, the M logo, and the Micron logo are trademarks and/or service marks of Micron Technology, Inc.
All other trademarks are the property of their respective owners.
09005aef807b3709
SD9_18C16_32x72AG.fm - Rev. E 6/04 EN
26
Micron Technology, Inc., reserves the right to change products or specifications without notice..
©2004 Micron Technology, Inc