TDA7498MV - STMicroelectronics

TDA7498MV
100 W mono BTL class-D audio amplifier
Datasheet - production data
•
•
•
•
•
Differential inputs minimize common-mode
noise
Standby and mute features
Short-circuit protection
Thermal overload protection
Externally synchronizable
Description
PowerSSO-36
exposed pad up
The TDA7498MV is a mono BTL class-D audio
amplifier with single power supply designed for
home systems and active speaker applications.
Features
•
•
•
•
•
100 W output power at THD = 10% with
RL = 6 Ω and VCC = 36 V
80 W output power at THD = 10% with
RL = 8 Ω and VCC = 34 V
Wide-range single-supply operation
(14 - 39 V)
High efficiency (η = 90%)
Four selectable, fixed gain settings of
nominally 25.6 dB, 31.6 dB, 35.1 dB and
37.6 dB
September 2015
It comes in a 36-pin PowerSSO package with
exposed pad up (EPU) to facilitate mounting a
separate heatsink.
Table 1: Device summary
Order code
TDA7498MVTR
DocID016505 Rev 6
This is information on a product in full production.
Operating
temp. range
-40 to 85 °C
Package
PowerSSO36
(EPU)
Packaging
Tape and
reel
1/26
www.st.com
Contents
TDA7498MV
Contents
1
Device block diagram...................................................................... 5
2
Pin description ................................................................................ 6
3
4
5
6
2.1
Pinout ................................................................................................ 6
2.2
Pin list ............................................................................................... 7
Electrical specifications .................................................................. 8
3.1
Absolute maximum ratings ................................................................ 8
3.2
Thermal data ..................................................................................... 8
3.3
Recommended operating conditions ................................................. 8
3.4
Electrical specifications ..................................................................... 9
Characterization curves ................................................................ 11
4.1
Test board ....................................................................................... 11
4.2
Characterization curves .................................................................. 12
2/26
For RL = 6 Ω...................................................................................... 12
4.2.2
For RL = 8 Ω...................................................................................... 14
Application information ................................................................ 16
5.1
Application circuit ............................................................................ 16
5.2
Mode selection ................................................................................ 17
5.3
Gain setting ..................................................................................... 18
5.4
Input resistance and capacitance .................................................... 18
5.5
Internal and external clocks ............................................................ 19
5.5.1
Master mode (internal clock) ............................................................ 19
5.5.2
Slave mode (external clock) ............................................................. 19
5.6
Output low-pass filter ...................................................................... 20
5.7
Protection functions......................................................................... 20
5.8
Diagnostic output ............................................................................ 21
Package information ..................................................................... 22
6.1
7
4.2.1
PowerSSO-36 EPU package information ........................................ 22
Revision history ............................................................................ 25
DocID016505 Rev 6
TDA7498MV
List of tables
List of tables
Table 1: Device summary ........................................................................................................................... 1
Table 2: Pin description list ......................................................................................................................... 7
Table 3: Absolute maximum ratings ........................................................................................................... 8
Table 4: Thermal data ................................................................................................................................. 8
Table 5: Recommended operating conditions ............................................................................................ 8
Table 6: Electrical specifications ................................................................................................................. 9
Table 7: Mode settings.............................................................................................................................. 17
Table 8: Gain settings ............................................................................................................................... 18
Table 9: How to set up SYNCLK .............................................................................................................. 19
Table 10: PowerSSO-36 EPU package mechanical data ........................................................................ 24
Table 11: Document revision history ........................................................................................................ 25
DocID016505 Rev 6
3/26
List of figures
TDA7498MV
List of figures
Figure 1: Internal block diagram ................................................................................................................. 5
Figure 2: Pin connections (top view, PCB view) ......................................................................................... 6
Figure 3: Test board.................................................................................................................................. 11
Figure 4: Output power (THD = 10%) vs. supply voltage ......................................................................... 12
Figure 5: THD vs. output power ................................................................................................................ 12
Figure 6: THD vs. frequency (1 W) ........................................................................................................... 12
Figure 7: THD vs. frequency (100 mW) .................................................................................................... 12
Figure 8: Frequency response .................................................................................................................. 13
Figure 9: FFT performance (0 dBFS) ....................................................................................................... 13
Figure 10: FFT performance (-60 dBFS) .................................................................................................. 13
Figure 11: Output power (THD = 10%) vs. supply voltage ....................................................................... 14
Figure 12: THD vs. output power .............................................................................................................. 14
Figure 13: THD vs. frequency (1 W) ......................................................................................................... 14
Figure 14: THD vs. frequency (100 mW) .................................................................................................. 14
Figure 15: Frequency response ................................................................................................................ 15
Figure 16: FFT performance (0 dB) .......................................................................................................... 15
Figure 17: FFT performance (-60 dB) ....................................................................................................... 15
Figure 18: Application circuit ..................................................................................................................... 16
Figure 19: Standby and mute circuits ....................................................................................................... 17
Figure 20: Turn on/off sequence for minimizing speaker “pop” ................................................................ 17
Figure 21: Input circuit and frequency response ...................................................................................... 18
Figure 22: Master and slave connection ................................................................................................... 19
Figure 23: Typical LC filter for an 8 Ω speaker ......................................................................................... 20
Figure 24: Typical LC filter for a 6 Ω speaker ........................................................................................... 20
Figure 25: Behavior of pin DIAG for various protection conditions ........................................................... 21
Figure 26: PowerSSO-36 EPU package outline ....................................................................................... 23
4/26
DocID016505 Rev 6
TDA7498MV
1
Device block diagram
Device block diagram
Figure 1: "Internal block diagram" shows the block diagram of the TDA7498MV.
Figure 1: Internal block diagram
DocID016505 Rev 6
5/26
Pin description
TDA7498MV
2
Pin description
2.1
Pinout
Figure 2: Pin connections (top view, PCB view)
SUB_GND
1
SVCC
N.C.
2
34
VREF
N.C.
3
33
SGND2
N.C.
4
32
VDDS2
N.C.
5
31
GAIN1
N.C.
6
30
GAIN0
N.C.
7
29
SVR
N.C.
8
N.C.
9
36
VSS
35
28 DIAG
27 SGND
OUTN 10
26 VDDS
OUTN
25 SYNCLK
PVCC 12
24 ROSC
PVCC 13
23 INN
PGND 14
22 INP
21 MUTE
6/26
EP, exposed pad
Connect to ground
11
PGND 15
OUTP 16
20 STBY
OUTP 17
19 VDDPW
PGND 18
DocID016505 Rev 6
TDA7498MV
2.2
Pin description
Pin list
Table 2: Pin description list
Number
Name
Type
Description
1
SUB_GND
PWR
Connect to the frame
2, 3
NC
-
No internal connection
4, 5
NC
-
No internal connection
6, 7
NC
-
No internal connection
8, 9
NC
-
No internal connection
10, 11
OUTN
O
Negative PWM output for audio channel
12, 13
PVCC
PWR
Power supply for audio channel
14, 15
PGND
PWR
Power stage ground
16, 17
OUTP
O
Positive PWM output for audio channel
18
PGND
PWR
Power stage ground
19
VDDPW
O
3.3-V (nominal) regulator output referred to ground for
power stage
20
STBY
I
Standby mode control
21
MUTE
I
Mute mode control
22
INP
I
Positive differential input
23
INN
I
Negative differential input
24
ROSC
O
Master oscillator frequency-setting pin
25
SYNCLK
I/O
Clock in/out for external oscillator
26
VDDS
O
3.3-V (nominal) regulator output referred to ground for
signal blocks
27
SGND
PWR
Signal ground
28
DIAG
O
Open-drain diagnostic output
29
SVR
O
Supply voltage rejection
30
GAIN0
I
Gain setting input 1
31
GAIN1
I
Gain setting input 2
32
VDDS2
O
Connect to VDDS (pin 26)
33
SGND2
PWR
Connect to SGND (pin 27)
34
VREF
O
Half VDDS (nominal) referred to ground
35
SVCC
PWR
Signal power supply decoupling
36
VSS
O
3.3-V (nominal) regulator output referred to power supply
-
EP
-
Exposed pad for heatsink, to be connected to ground
DocID016505 Rev 6
7/26
Electrical specifications
TDA7498MV
3
Electrical specifications
3.1
Absolute maximum ratings
Table 3: Absolute maximum ratings
Symbol
Parameter
Value
Unit
VCC_MAX
DC supply voltage for pins PVCCA, PVCCB, SVCC
45
V
VL_MAX
Voltage limits for input pins STBY, MUTE, INNA, INPA,
INNB, INPB, GAIN0, GAIN1
-0.3 to 3.6
V
Tj_MAX
Operating junction temperature
0 to 150
°C
Top_MAX
Operating temperature
-40 to 85
°C
Tstg
Storage temperature
-40 to 150
°C
Warning: Stresses beyond those listed under “Absolute maximum ratings”
may cause permanent damage to the device. These are stress ratings only,
and functional operation of the device at these or any other conditions
beyond those indicated under “Recommended operating condition” are not
implied. Exposure to absolute maximum rated conditions for extended
periods may affect device reliability. In the real application, the power
supply with nominal value rated inside recommended operating conditions
may rise beyond the maximum operating condition for a short time when no
or very low current is sunk (amplifier in mute state). In this case the
reliability of the device is guaranteed, provided that the absolute maximum
rating is not exceeded.
3.2
Thermal data
Table 4: Thermal data
Symbol
Rth j-case
3.3
Parameter
Thermal resistance, junction to case
Min
Typ
Max
-
2
3
Unit
°C/W
Recommended operating conditions
Table 5: Recommended operating conditions
Symbol
8/26
Parameter
Min
Typ
Max
Unit
VCC
Supply voltage for pins PVCCA, PVCCB
14
-
39
V
Tamb
Ambient operating temperature
-20
-
85
°C
DocID016505 Rev 6
TDA7498MV
3.4
Electrical specifications
Electrical specifications
Unless otherwise stated, the values in the table below are specified for the conditions:
VCC = 36 V, RL = 6 Ω, ROSC = R3 = 39 kΩ, C8 = 100 nF, f = 1 kHz, GV = 25.6 dB and
Tamb = 25 °C.
Table 6: Electrical specifications
Symbol
Parameter
Condition
Min
Typ
Max
Unit
Iq
Total quiescent current
No LC filter, no load
-
40
60
mA
IqSTBY
Quiescent current in standby
-
-
1
10
µA
VOS
Output offset voltage
Play mode
-100
-
100
Mute mode
-60
-
60
IOCP
Overcurrent protection
threshold
RL = 0 Ω
5.5
7
-
A
TjS
Junction temperature at
thermal shutdown
-
-
150
-
°C
Ri
Input resistance
Differential input
48
60
-
kΩ
VOVP
Overvoltage protection
threshold
-
42
43
-
V
VUVP
Undervoltage protection
threshold
-
-
-
8
V
RdsON
Power transistor on-resistance
High side
-
0.2
-
Low side
-
0.2
-
Po
Output power
THD = 10%
-
100
-
THD = 1%
-
78
-
Po
Output power
RL = 8 Ω, THD = 10%,
VCC = 36 V
-
80
-
W
PD
Dissipated power
Po = 100 W,
THD = 10%
-
10
-
W
η
Efficiency
Po = 100 W
-
90
-
%
THD
Total harmonic distortion
Po = 1 W
-
0.1
-
%
GAIN0 = L, GAIN1 = L
24.6
25.6
26.6
GAIN0 = L, GAIN1 = H
30.6
31.6
32.6
GAIN0 = H, GAIN1 = L
34.1
35.1
36.1
GAIN0 = H, GAIN1 = H
36.6
37.6
38.6
-
-1
-
1
A Curve, GV = 20 dB
-
15
-
f = 22 Hz to 22 kHz
-
25
50
GV
Closed-loop gain
mV
Ω
W
dB
ΔGV
Gain matching
eN
Total input noise
SVRR
Supply voltage rejection ratio
fr = 100 Hz, Vr = 0.5 Vpp,
CSVR = 10 µF
-
70
-
dB
Tr, Tf
Rise and fall times
-
-
50
-
ns
fSW
Switching frequency
Internal oscillator
290
310
330
kHz
250
-
400
250
-
400
2.3
-
-
With internal oscillator
(1)
fSWR
Output switching frequency
range
With external oscillator
VinH
Digital input high (H)
-
DocID016505 Rev 6
(2)
dB
µV
kHz
V
9/26
Electrical specifications
Symbol
TDA7498MV
Parameter
VinL
Condition
Digital input low (L)
Pin STBY voltage high (H)
VSTBY
Pin STBY voltage low (L)
Pin MUTE voltage high (H)
VMUTE
Pin MUTE voltage low (L)
AMUTE
Mute attenuation
-
VMUTE < 0.8 V
Min
Typ
Max
-
-
0.8
2.9
-
-
-
-
0.5
2.5
-
-
-
-
0.8
-
70
-
Notes:
(1)
6
fSW = 10 / ((16 * ROSC + 182) * 4) kHz, fSYNCLK = 2 * fSW with R3 = 39 kΩ (see Figure 18: "Application
circuit").
(2)
10/26
fSW = fSYNCLK / 2 with the external oscillator.
DocID016505 Rev 6
Unit
V
V
dB
TDA7498MV
4
Characterization curves
Characterization curves
Figure 18: "Application circuit" shows the test circuit with which the characterization curves,
shown in the next sections, were measured. Figure 3: "Test board" shows the PCB layout.
4.1
Test board
Figure 3: Test board
Top view
Top copper
Bottom view
Bottom copper
DocID016505 Rev 6
11/26
Characterization curves
4.2
TDA7498MV
Characterization curves
Unless otherwise stated the measurements were made under the following conditions:
VCC = 36 V, f = 1 kHz, GV = 25.6 dB, ROSC = 39 kΩ, COSC = 100 nF, Tamb = 25 °C
4.2.1
For RL = 6 Ω
Figure 4: Output power (THD = 10%) vs.
supply voltage
Figure 5: THD vs. output power
10
120
5
110
2
100
1
80
THD+N (%)
Output power (W)
90
70
0.5
0.2
60
f = 1 kHz
0.1
50
0.05
40
f = 100 Hz
30
0.02
20
0.01
10
0.005
100m
+10
+12
+14
+16
+1 8
+20
+22
+24
+26
+2 8
+30
+32
+34
200m
500m
1
2
+36
5
10
20
50
100
200
Output power (W)
Su pply voltage (V)
Figure 7: THD vs. frequency (100 mW)
2
2
1
1
0.5
0.5
0.2
0.2
THD+N ( %)
THD+N (%)
Figure 6: THD vs. frequency (1 W)
0.1
0.05
0.05
0.02
0.02
0.01
20
50
100
200
500
1k
2k
5k
10k
20k
0.01
20
50
100
200
500
1k
Fre quency (Hz)
Fre quency (Hz)
12/26
0.1
DocID016505 Rev 6
2k
5k
10k
20k
TDA7498MV
Characterization curves
Figure 8: Frequency response
Figure 9: FFT performance (0 dBFS)
+3
+0
-10
+2.5
-20
+2
-30
-40
+1.5
-50
-60
-70
+0.5
FFT (dB)
Ampl (dB)
+1
+0
-0.5
-80
-90
-100
-110
-120
-1
-130
-1.5
-140
-150
-2
-160
-2.5
-3
-170
-180
10
20
50
100
200
500
1k
2k
5k
10k
20k
Fre quency (Hz)
20
50
100
200
500
1k
2k
5k
10k
20k
Fre quency (Hz)
Figure 10: FFT performance (-60 dBFS)
+0
-10
-20
-30
-40
-50
-60
FFT (dB)
-70
-80
-90
-100
-110
-120
-130
-140
-150
-160
-170
-180
20
50
100
200
500
1k
2k
5k
10k
20k
Fre quency (Hz)
DocID016505 Rev 6
13/26
Characterization curves
4.2.2
TDA7498MV
For RL = 8 Ω
Figure 11: Output power (THD = 10%) vs.
supply voltage
Figure 12: THD vs. output power
10
120
5
110
2
100
1
0.5
80
THD+N (% )
O utput power (W)
90
70
60
50
0.2
f = 1 kHz
0.1
0.05
40
0.02
30
f = 100 Hz
0.01
20
10
+10
+12
+14
+16
+1 8
+20
+22
+24
+26
+2 8
+30
+32
+34
0.005
100m
+36
200m
500m
1
2
2
1
1
0.5
0.5
0.2
0.2
THD+N ( % )
THD+N ( % )
2
0.1
0.05
0.02
0.02
50
100
200
500
1k
2k
5k
10k
20k
0.01
20
50
100
200
500
1k
Fre quency (Hz)
Fre quency (Hz)
14/26
20
50
100
200
0.1
0.05
20
10
Figure 14: THD vs. frequency (100 mW)
Figure 13: THD vs. frequency (1 W)
0.01
5
O utput power (W)
Su pply voltage (V)
DocID016505 Rev 6
2k
5k
10k
20k
TDA7498MV
Characterization curves
Figure 16: FFT performance (0 dB)
Figure 15: Frequency response
Figure 17: FFT performance (-60 dB)
+0
-10
-20
-30
-40
-50
-60
FFT (dB)
-70
-80
-90
-100
-110
-120
-130
-140
-150
-160
-170
-180
20
50
100
200
500
1k
2k
5k
10k
20k
Fre quency (Hz)
DocID016505 Rev 6
15/26
Application information
TDA7498MV
5
Application information
5.1
Application circuit
Figure 18: Application circuit
1
C1
1µF
C2
1µF
J9
C5
100nF
1
SUB_GN D
22
IN P
C3
1nF
23
INN
C4
1nF
27
SGND
VDDS 26
VDDS
J7
For
R7
100k
22R
DIAG
PGND
14
PGND
15
28
DIAG
PVCC
12
PVCC
13
OUTN
18
PGND
25
SYNC LK
Frequency shift
100nF
39K
J5 30
VDDS
31
10
ROSC
TDA7498M V
GAIN 0
*
C3 0
C2 6
1µ F
680nF
C4 0
J3
*
OU T-1
OU T-2
C4 1
C2 4
220nF
220nF
OUTPU T
R1 6
Load = 6 ohm
8R
330pF
L3
11
*
IC 3
22µH
C2 3
R3
24
8R
220n F
C2 7
C6
100nF
R1 5
*
C2 8
22R
19 VDD PW
OUTN
C8
*
22µH
R6
C2 5
input
R9
Q1
KTC3875(S) 180K
3
R1 3
FS
1
47k
2
R1 4
100k
L4
100nF
R1
single-ended
16
17
220nF
2
INPU T
OUT P
OUT P
NC
3
NC
2
2
VC C
+
2200µF
1
50 V
NC
7
NC
6
GN D
J2
GAIN 1
J6
35
SVC C
C1 0
100nF 36
32
3V3
33
J4
S2
MUTE
1
3
2
S1 STB Y
1
3
2
120k
R2
C2 9
2.2µF
IN
IC 2
L4931CZ3 3 3
2
GN D
C9
100nF
4
NC
9
Load
L1,L2
C26
C24,C28
NC
8
6 ohm
22 µH
680 nF
220 nF
34
8 oh m
22 µH
470 nF
21
220 nF
+
+
C1 5
2.2µF
16V
20
LC filter components
SGND2
MUTE
C1 7
STB Y
SVR
29
10µF
10V
C1 6
C7
2.2µF
16V
10µF
TDA7498MV
VCC
CLASS-D AMPLIFIER
3V3 Power supply
16/26
5
10V
R8
6.8k
D1
18V
NC
NC
VREF
R4
33k
1
VDDS2
VDDS
FS
OU T
VSS
DocID016505 Rev 6
TDA7498MV
5.2
Application information
Mode selection
The three operating modes of the TDA7498MV are set by the two inputs, STBY (pin 20)
and MUTE (pin 21).
•
•
Standby mode: all circuits are turned off, very low current consumption.
Mute mode: inputs are connected to ground and the positive and negative PWM
outputs are at 50% duty cycle.
Play mode: the amplifiers are active.
•
The protection functions of the TDA7498MV are enabled by pulling down the voltages of
the STBY and MUTE inputs shown in Figure 19: "Standby and mute circuits". The input
current of the corresponding pins must be limited to 200 µA.
Table 7: Mode settings
Mode
STBY
MUTE
L
(1)
X (don’t care)
Mute
H
(1)
L
Play
H
Standby
H
Notes:
(1)
Drive levels defined in
Figure 19: Standby and mute circuits
Figure 20: Turn on/off sequence for minimizing speaker “pop”
DocID016505 Rev 6
17/26
Application information
5.3
TDA7498MV
Gain setting
The gain of the TDA7498MV is set by the two inputs, GAIN0 (pin 30) and GAIN1 (pin31).
Internally, the gain is set by changing the feedback resistors of the amplifier.
Table 8: Gain settings
GAIN0
5.4
GAIN1
Nominal gain, Gv (dB)
L
L
25.6
L
H
31.6
H
L
35.6
H
H
37.6
Input resistance and capacitance
The input impedance is set by an internal resistor Ri = 60 kΩ (typical). An input capacitor
(Ci) is required to couple the AC input signal.
The equivalent circuit and frequency response of the input components are shown in
Figure 21: "Input circuit and frequency response". For Ci = 470 nF the high-pass filter cutoff
frequency is below 20 Hz:
fC = 1 / (2 * π * Ri * Ci)
Figure 21: Input circuit and frequency response
18/26
DocID016505 Rev 6
TDA7498MV
5.5
Application information
Internal and external clocks
The clock of the class-D amplifier can be generated internally or can be driven by an
external source.
If two or more class-D amplifiers are used in the same system, it is recommended that all
devices operate at the same clock frequency. This can be implemented by using one
TDA7498MV as master clock, while the other devices are in slave mode, that is, externally
clocked. The clock interconnect is via pin SYNCLK of each device. As explained below,
SYNCLK is an output in master mode and an input in slave mode.
5.5.1
Master mode (internal clock)
Using the internal oscillator, the output switching frequency, fSW , is controlled by the
resistor, ROSC, connected to pin ROSC:
6
fSW = 10 / [(ROSC * 16 + 182) * 4] kHz
where ROSC is in kΩ.
In master mode, pin SYNCLK is used as a clock output pin whose frequency is:
fSYNCLK = 2 * fSW
For master mode to operate correctly then resistor ROSC must be less than 60 kΩ as given
below in Table 9: "How to set up SYNCLK".
5.5.2
Slave mode (external clock)
In order to accept an external clock input the pin ROSC must be left open, that is, floating.
This forces pin SYNCLK to be internally configured as an input as given in Table 9: "How to
set up SYNCLK".
The output switching frequency of the slave devices is:
fSW = fSYNCLK / 2
Table 9: How to set up SYNCLK
Mode
ROSC
SYNCLK
Master
ROSC < 60 kΩ
Output
Slave
Floating (not connected)
Input
Figure 22: Master and slave connection
DocID016505 Rev 6
19/26
Application information
5.6
TDA7498MV
Output low-pass filter
To avoid EMI problems, it may be necessary to use a low-pass filter before the speaker.
The cutoff frequency should be larger than 22 kHz and much lower than the output
switching frequency. It is necessary to choose the L and C component values depending
on the loudspeaker impedance. Some typical values, which give a cutoff frequency of 27
kHz, are shown in Figure 23: "Typical LC filter for an 8 Ω speaker" and Figure 24: "Typical
LC filter for a 6 Ω speaker" below.
Figure 23: Typical LC filter for an 8 Ω speaker
Figure 24: Typical LC filter for a 6 Ω speaker
5.7
Protection functions
The TDA7498MV is fully protected against overvoltages, undervoltages, overcurrents and
thermal overloads as explained here.
Overvoltage protection (OVP)
If the supply voltage exceeds the value for VOVP given in Table 6: "Electrical specifications
", the overvoltage protection is activated which forces the outputs to the high impedance
state. When the supply voltage falls back to within the operating range, the device restarts.
20/26
DocID016505 Rev 6
TDA7498MV
Application information
Undervoltage protection (UVP)
If the supply voltage drops below the value for VUVP given in Table 6: "Electrical
specifications ", the undervoltage protection is activated which forces the outputs to the
high impedance state. When the supply voltage recovers to within the operating range, the
device restarts.
Overcurrent protection (OCP)
If the output current exceeds the value for IOCP given in Table 6: "Electrical specifications ",
the overcurrent protection is activated which forces the outputs to the high impedance
state. Periodically, the device attempts to restart. If the overcurrent condition is still present,
then the OCP remains active. The restart time, TOC, is determined by the RC components
connected to pin STBY.
Thermal protection (OTP)
If the junction temperature, Tj, reaches 145 °C (nominally), the device goes to mute mode
and the positive and negative PWM outputs are forced to 50% duty cycle. If the junction
temperature reaches the value for Tj given in Table 6: "Electrical specifications ", the device
shuts down and the output is forced to the high-impedance state. When the device cools
sufficiently, the device restarts.
5.8
Diagnostic output
The output pin DIAG is an open drain transistor. When any protection is activated, it
switches to the high impedance state. The pin can be connected to a power supply (< 39
V) by a pull-up resistor whose value is limited by the maximum sinking current (200 µA) of
the pin.
Figure 25: Behavior of pin DIAG for various protection conditions
VDD
TDA7498MV
R1
DIAG
Protection logic
VDD
Restart
Restart
Overcurrent
protection
OV, UV, OT
protection
DocID016505 Rev 6
21/26
Package information
6
TDA7498MV
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
®
ECOPACK is an ST trademark.
6.1
PowerSSO-36 EPU package information
The device comes in a 36-pin PowerSSO package with exposed pad up (EPU).
Figure 26: "PowerSSO-36 EPU package outline" shows the package outline and Table 10:
"PowerSSO-36 EPU package mechanical data" gives the dimensions.
22/26
DocID016505 Rev 6
TDA7498MV
Package information
Figure 26: PowerSSO-36 EPU package outline
7618147_F
DocID016505 Rev 6
23/26
Package information
TDA7498MV
Table 10: PowerSSO-36 EPU package mechanical data
Dimensions in mm
Dimensions in inches
Symbol
24/26
Min.
Typ.
Max.
Min.
Typ.
Max.
A
2.15
-
2.45
0.085
-
0.096
A2
2.15
-
2.35
0.085
-
0.093
a1
0
-
0.10
0
-
0.004
b
0.18
-
0.36
0.007
-
0.014
c
0.23
-
0.32
0.009
-
0.013
D
10.10
-
10.50
0.398
-
0.413
E
7.40
-
7.60
0.291
-
0.299
e
-
0.5
-
-
0.020
-
e3
-
8.5
-
-
0.335
-
F
-
2.3
-
-
0.091
-
G
-
-
0.10
-
-
0.004
H
10.10
-
10.50
0.398
-
0.413
h
-
-
0.40
-
-
0.016
k
0
-
8 degrees
0
-
8 degrees
L
0.55
-
0.85
0.022
-
0.033
M
-
4.30
-
-
0.169
-
N
-
-
10 degrees
-
-
10 degrees
O
-
1.20
-
-
0.047
-
Q
-
0.80
-
-
0.031
-
S
-
2.90
-
-
0.114
-
T
-
3.65
-
-
0.144
-
U
-
1.00
-
-
0.039
-
X
4.10
-
4.70
0.161
-
0.185
Y
4.90
-
7.10
0.193
-
0.280
DocID016505 Rev 6
TDA7498MV
7
Revision history
Revision history
Table 11: Document revision history
Date
30-Nov-2009
Revision
Changes
1
Initial release.
28-Jul-2010
2
Removed datasheet preliminary status, updated features list and
updated Table 1: "Device summary"
Added operating temperature range to Table 3: "Absolute maximum
ratings" Updated minimum supply voltage and temperature range in
Table 5: "Recommended operating conditions" Updated voltage for
logical 1 on pin STBY in Table 6: "Electrical specifications "
27-Jan-2011
3
Updated application circuit in Figure 18: "Application circuit".
24-Feb-2014
4
Updated order code in Table 1: "Device summary"
19-Sep-2014
5
Updated Figure 2: "Pin connections (top view, PCB view)" Updated
package information (representation on page 1, Figure 26:
"PowerSSO-36 EPU package outline", Table 10: "PowerSSO-36
EPU package mechanical data").
09-Sep-2015
6
Updated VCC_MAX in Table 3: "Absolute maximum ratings"
Updated dimension L in Table 10: "PowerSSO-36 EPU package
mechanical data".
DocID016505 Rev 6
25/26
TDA7498MV
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the
design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
26/26
DocID016505 Rev 6