STMICROELECTRONICS TDA7498MV

TDA7498MV
100-watt mono BTL class-D audio amplifier
Features
„
100-W output power at
THD = 10% with RL = 6 Ω and VCC = 36 V
„
80-W output power at
THD = 10% with RL = 8 Ω and VCC = 34 V
„
Wide-range single-supply operation (14 - 39 V)
„
High efficiency (η = 90%)
„
Four selectable, fixed gain settings of
nominally 25.6 dB, 31.6 dB, 35.1 dB and
37.6 dB
„
Differential inputs minimize common-mode
noise
„
Standby and mute features
„
Short-circuit protection
„
Thermal overload protection
„
Externally synchronizable
PowerSSO-36
with exposed pad up
Description
The TDA7498MV is a mono BTL class-D audio
amplifier with single power supply designed for
home systems and active speaker applications.
It comes in a 36-pin PowerSSO package with
exposed pad up (EPU) to facilitate mounting a
separate heatsink.
Table 1.
Device summary
Order code
Temperature range
Package
Packaging
TDA7498MV
-40 to 85 °C
PowerSSO-36 (EPU)
Tube
TDA7498MVTR
-40 to 85 °C
PowerSSO-36 (EPU)
Tape and reel
January 2011
Doc ID 16505 Rev 3
1/27
www.st.com
27
Contents
TDA7498MV
Contents
1
Device block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
4
5
2.1
Pin-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2
Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Characterization curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1
Test board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2
Characterization curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.1
For RL = 6 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
4.2.2
For RL = 8 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Applications information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1
Applications circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2
Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3
Gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4
Input resistance and capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.5
Internal and external clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.5.1
Master mode (internal clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.5.2
Slave mode (external clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.6
Output low-pass filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.7
Protection function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.8
Diagnostic output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2/27
Doc ID 16505 Rev 3
TDA7498MV
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Internal block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin connection (top view, PCB view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Test board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Output power (THD = 10%) vs supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
THD vs output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
THD vs frequency (1 W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
THD vs frequency (100 mW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
FFT performance (0 dBFS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
FFT performance (-60 dBFS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Output power (THD = 10%) vs supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
THD vs output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
THD vs frequency (1 W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
THD vs frequency (100 mW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
FFT performance (0 dB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
FFT performance (-60 dB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Applications circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Standby and mute circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Turn-on/off sequence for minimizing speaker “pop” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Input circuit and frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Master and slave connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Typical LC filter for a 8-Ω speaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Typical LC filter for a 6-Ω speaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Behavior of pin DIAG for various protection conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
PowerSSO-36 EPU outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Doc ID 16505 Rev 3
3/27
List of tables
TDA7498MV
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
4/27
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin description list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Electrical specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Mode settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Gain settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
How to set up SYNCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
PowerSSO-36 EPU dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Doc ID 16505 Rev 3
TDA7498MV
1
Device block diagram
Device block diagram
Figure 1 shows the block diagram of the TDA7498MV.
Figure 1.
Internal block diagram
Doc ID 16505 Rev 3
5/27
Pin description
TDA7498MV
2
Pin description
2.1
Pin-out
Figure 2.
Pin connection (top view, PCB view)
SUB_GND
1
SVCC
N.C.
2
34
VREF
N.C.
3
33
SGND2
N.C.
4
32
VDDS2
N.C.
5
31
GAIN1
N.C.
6
30
GAIN0
N.C.
7
29
SVR
N.C.
8
N.C.
9
36
VSS
35
28 DIAG
6/27
27
SGND
OUTN 10
26
VDDS
OUTN
25
SYNCLK
PVCC 12
24
ROSC
PVCC 13
23
INN
PGND 14
22
INP
EP, exposed pad
Connect to ground
11
PGND 15
OUTP 16
21
MUTE
20
STBY
OUTP 17
19
VDDPW
PGND 18
Doc ID 16505 Rev 3
TDA7498MV
2.2
Pin description
Pin list
Table 2.
Pin description list
Number
Name
Type
Description
1
SUB_GND
PWR
Connect to the frame
2,3
N.C.
-
No internal connection
4,5
N.C.
-
No internal connection
6,7
N.C.
-
No internal connection
8,9
N.C.
-
No internal connection
10,11
OUTN
O
Negative PWM output for audio channel
12,13
PVCC
PWR
Power supply for audio channel
14,15
PGND
PWR
Power stage ground
16,17
OUTP
O
Positive PWM output for audio channel
18
PGND
PWR
Power stage ground
19
VDDPW
O
3.3-V (nominal) regulator output referred to ground for power
stage
20
STBY
I
Standby mode control
21
MUTE
I
Mute mode control
22
INP
I
Positive differential input
23
INN
I
Negative differential input
24
ROSC
O
Master oscillator frequency-setting pin
25
SYNCLK
I/O
Clock in/out for external oscillator
26
VDDS
O
3.3-V (nominal) regulator output referred to ground for signal
blocks
27
SGND
PWR
Signal ground
28
DIAG
O
Open-drain diagnostic output
29
SVR
O
Supply voltage rejection
30
GAIN0
I
Gain setting input 1
31
GAIN1
I
Gain setting input 2
32
VDDS2
O
Connect to VDDS (pin 26)
33
SGND2
PWR
Connect to SGND (pin 27)
34
VREF
O
Half VDDS (nominal) referred to ground
35
SVCC
PWR
Signal power supply decoupling
36
VSS
O
3.3-V (nominal) regulator output referred to power supply
-
EP
-
Exposed pad for heatsink, to be connected to ground
Doc ID 16505 Rev 3
7/27
Electrical specifications
TDA7498MV
3
Electrical specifications
3.1
Absolute maximum ratings
Table 3.
Absolute maximum ratings
Symbol
Parameter
VCC_MAX DC supply voltage for pins PVCCA, PVCCB
V
-0.3 to 3.6
V
Tj_MAX
Operating junction temperature
0 to 150
°C
Top_MAX
Operating temperature
-40 to 85
°C
Tstg
Storage temperature
-40 to 150
°C
Stresses beyond those listed under “Absolute maximum
ratings” make cause permanent damage to the device. These
are stress ratings only, and functional operation of the device
at these or any other conditions beyond those indicated
under “Recommended operating condition” are not implied.
Exposure to absolute-maximum-rated conditions for
extended periods may affect device reliability. In the real
application, power supply with nominal value rated inside
recommended operating conditions, may experience some
rising beyond the maximum operating condition for short
time when no or very low current is sinked (amplifier in mute
state). In this case the reliability of the device is guaranteed,
provided that the absolute maximum rating is not exceeded.
Thermal data
Thermal data
Symbol
Parameter
Rth j-case
Thermal resistance, junction to case
Min
-
Typ
2
Max
3
Unit
°C/W
Recommended operating conditions
Table 5.
Symbol
8/27
44
Voltage limits for input pins STBY, MUTE, INNA, INPA,
INNB, INPB, GAIN0, GAIN1
Table 4.
3.3
Unit
VL_MAX
Warning:
3.2
Value
Recommended operating conditions
Parameter
Min
Typ
Max
Unit
VCC
Supply voltage for pins PVCCA, PVCCB
14
-
39
V
Tamb
Ambient operating temperature
-20
-
85
°C
Doc ID 16505 Rev 3
TDA7498MV
3.4
Electrical specifications
Electrical specifications
Unless otherwise stated, the results in Table 6 below are given for the conditions:
VCC = 36 V, RL (load) = 6 Ω, ROSC = R3 = 39 kΩ, C8 = 100 nF, f = 1 kHz, GV = 25.6 dB and
Tamb = 25 °C.
Table 6.
Electrical specifications
Symbol
Parameter
Condition
Min
Typ
Max
Unit
Iq
Total quiescent current
No LC filter, no load
-
40
60
mA
IqSTBY
Quiescent current in standby
-
-
1
10
µA
Play mode
-100
-
100
VOS
Output offset voltage
Mute mode
-60
-
60
IOCP
Overcurrent protection threshold RL = 0 Ω
5.5
7
-
A
TjS
Junction temperature at thermal
shutdown
-
-
150
-
°C
Ri
Input resistance
Differential input
48
60
-
kΩ
VOVP
Overvoltage protection threshold -
42
43
-
V
VUVP
Undervoltage protection
threshold
-
-
-
8
V
High side
-
0.2
-
RdsON
Power transistor on resistance
Low side
-
0.2
-
THD = 10%
-
100
-
Po
Output power
THD = 1%
-
78
-
Po
Output power
RL = 8 Ω, THD = 10%,
VCC = 36V
-
80
-
W
PD
Dissipated power
Po = 100 W,
THD = 10%
-
10
-
W
η
Efficiency
Po = 100 W
-
90
-
%
THD
Total harmonic distortion
Po = 1 W
-
0.1
-
%
GAIN0 = L, GAIN1 = L
24.6
25.6
26.6
GAIN0 = L, GAIN1 = H
30.6
31.6
32.6
GAIN0 = H, GAIN1 = L
34.1
35.1
36.1
GAIN0 = H, GAIN1 = H
36.6
37.6
38.6
-
-1
-
1
A Curve, GV = 20 dB
-
15
-
f = 22 Hz to 22 kHz
-
25
50
GV
mV
W
Closed-loop gain
∆GV
Gain matching
eN
Total input noise
Ω
dB
dB
µV
SVRR
Supply voltage rejection ratio
fr = 100 Hz, Vr = 0.5 Vpp,
CSVR = 10 µF
70
-
dB
Tr, Tf
Rise and fall times
-
-
50
-
ns
fSW
Switching frequency
Internal oscillator
290
310
330
kHz
Doc ID 16505 Rev 3
9/27
Electrical specifications
Table 6.
Symbol
TDA7498MV
Electrical specifications (continued)
Parameter
fSWR
Output switching frequency
range
VinH
Digital input high (H)
VinL
Digital input low (L)
Condition
AMUTE
400
With external oscillator (2) 250
-
400
2.3
-
-
-
-
0.8
2.9
-
-
-
-
0.5
2.5
-
-
-
-
0.8
-
70
-
-
V
Pin STBY voltage low (L)
V
Pin MUTE voltage low (L)
Mute attenuation
VMUTE < 0.8 V
2. fSW = fSYNCLK / 2 with the external oscillator.
Doc ID 16505 Rev 3
Unit
kHz
V
1. fSW = 106 / ((16 * ROSC + 182) * 4) kHz, fSYNCLK = 2 * fSW with R3 = 39 kΩ (see Figure 18.).
10/27
Max
-
Pin MUTE voltage high (H)
VMUTE
Typ
250
With internal oscillator
Pin STBY voltage high (H)
VSTBY
Min
(1)
dB
TDA7498MV
4
Characterization curves
Characterization curves
Figure 18 on page 18 shows the test circuit with which the characterization curves, shown in
the next sections, were measured. Figure 3 shows the PCB layout.
4.1
Test board
Figure 3.
Test board
Top view
Top copper
Bottom view
Bottom copper
Doc ID 16505 Rev 3
11/27
Characterization curves
4.2
TDA7498MV
Characterization curves
Unless otherwise stated the measurements were made under the following conditions:
VCC = 36 V, f = 1 kHz, GV = 25.6 dB, ROSC = 39 kΩ, COSC = 100 nF, Tamb = 25 °C.
4.2.1
For RL = 6 Ω
Figure 4.
Output power (THD = 10%) vs supply voltage
120
110
Output power (W)
100
90
80
70
60
50
40
30
20
10
+10
+12
+14
+16
+18
+20
+22
+24
+26
+28
+30
+32
+34
+36
Supply voltage (V)
Figure 5.
THD vs output power
10
5
THD+N (%)
2
1
0.5
0.2
f = 1 kHz
0.1
0.05
f = 100 Hz
0.02
0.01
0.005
100m
200m
500m
1
2
5
Output power (W)
12/27
Doc ID 16505 Rev 3
10
20
50
100
200
TDA7498MV
Figure 6.
Characterization curves
THD vs frequency (1 W)
2
1
THD+N (%)
0.5
0.2
0.1
0.05
0.02
0.01
20
50
100
200
500
1k
2k
5k
10k
20k
2k
5k
10k
20k
10k
20k
Frequency (Hz)
Figure 7.
THD vs frequency (100 mW)
2
1
THD+N (%)
0.5
0.2
0.1
0.05
0.02
0.01
20
50
100
200
500
1k
Frequency (Hz)
Figure 8.
Frequency response
+3
+2.5
Ampl (dB)
+2
+1.5
+1
+0.5
+0
-0.5
-1
-1.5
-2
-2.5
-3
10
20
50
100
200
500
1k
2k
5k
Frequency (Hz)
Doc ID 16505 Rev 3
13/27
Characterization curves
Figure 9.
TDA7498MV
FFT performance (0 dBFS)
+0
-10
-20
FFT (dB)
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
-160
-170
-180
20
50
100
200
500
1k
2k
5k
10k
20k
Frequency (Hz)
Figure 10. FFT performance (-60 dBFS)
+0
-10
-20
FFT (dB)
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
-160
-170
-180
20
50
100
200
500
1k
Frequency (Hz)
14/27
Doc ID 16505 Rev 3
2k
5k
10k
20k
TDA7498MV
4.2.2
Characterization curves
For RL = 8 Ω
Figure 11. Output power (THD = 10%) vs supply voltage
120
110
Output power (W)
100
90
80
70
60
50
40
30
20
10
+10
+12
+14
+16
+18
+20
+22
+24
+26
+28
+30
+32
+34
+36
Supply voltage (V)
Figure 12. THD vs output power
10
5
THD+N (%)
2
1
0.5
0.2
f = 1 kHz
0.1
0.05
0.02
f = 100 Hz
0.01
0.005
100m
200m
500m
1
2
5
10
20
50
100
200
Output power (W)
Doc ID 16505 Rev 3
15/27
Characterization curves
TDA7498MV
Figure 13. THD vs frequency (1 W)
2
1
THD+N (%)
0.5
0.2
0.1
0.05
0.02
0.01
20
50
100
200
500
1k
2k
5k
10k
20k
2k
5k
10k
20k
Frequency (Hz)
Figure 14. THD vs frequency (100 mW)
2
1
THD+N (%)
0.5
0.2
0.1
0.05
0.02
0.01
20
50
100
200
500
1k
Frequency (Hz)
Figure 15. Frequency response
+3
+2.5
Ampl (dB)
+2
+1.5
+1
+0.5
+0
-0.5
-1
-1.5
-2
-2.5
-3
10
20
50
100
200
500
Frequency (Hz)
16/27
Doc ID 16505 Rev 3
1k
2k
5k
10k
20k
TDA7498MV
Characterization curves
Figure 16. FFT performance (0 dB)
))7G%
N
N
N
N
N
)UHTXHQF\+]
Figure 17. FFT performance (-60 dB)
+0
-10
FFT (dB)
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
-160
-170
-180
20
50
100
200
500
1k
2k
5k
10k
20k
Frequency (Hz)
Doc ID 16505 Rev 3
17/27
Applications information
5.1
Applications circuit
Applications information
18/27
5
Figure 18. Applications circuit
1
SUB_GND
OUTP
16
22
INP
OUTP
17
C3
1nF
23
INN
PGND
14
PGND
15
C4
1nF
27
SGND
VDDS 26
VDDS
C1
1µF
C2
1µF
J9
C5
100nF
1
R1
28
Doc ID 16505 Rev 3
J7
For
single-ended
DIAG
100k
R7
22R
DIAG
C8
24
39K
J5 30
3V3
C26
1µF
680nF
PVCC
13
VDDS
ROSC
C40
10
TDA7498MV
GAIN0
31 GAIN1
J3
OUT-1
*
220nF
220nF
330pF
8R
L3
*
22µH
C23
NC
NC
2
NC
7
NC
6
OUTPUT
Load = 6 ohm
R16
11
3
OUT-2
C41
C24
IC3
R3
100nF
C30
PVCC
OUTN
18 PGND
25 SYNCLK
*
C25
100nF
12
OUTN
Frequency shift
8R
220nF
C27
C6
100nF
R15
*
C28
22R
19 VDDPW
input
R9
Q1
KTC3875(S) 180K
3
R13
FS
1
47k
2
R14
100k
*
R6
220nF
2
INPUT
L4
22µH
2200µF
50V
2
+
1
VCC
GND
J2
J6
35
SVCC
C10
100nF 36 VSS
3V3
32
VDDS2
33
SGND2
VDDS
FS
J4
S2
MUTE
1
2
3
120k
R2
33k
R8
6.8k
D1
18V
3V3 Power supply
4
NC
9
Load
L1,L2
C26
C24,C28
NC
8
6 ohm
22 µH
680 nF
220 nF
34
8 ohm
22 µH
470 nF
220 nF
21 MUTE
+
+
LC filter components
C17
C15
2.2µF
20 STBY
16V
SVR
C7
2.2µF
16V
29
10µF
10V
C16
10µF
10V
TDA7498MV
VCC
CLASS-D AMPLIFIER
TDA7498MV
IN
IC2
1 L4931CZ33 3
GND
2
C29
C9
2.2µF
100nF
OUT
5
VREF
R4
S1 STBY
1
2
3
NC
NC
TDA7498MV
5.2
Applications information
Mode selection
The three operating modes of the TDA7498MV are set by the two inputs, STBY (pin 20) and
MUTE (pin 21).
z
Standby mode: all circuits are turned off, very low current consumption.
z
Mute mode: inputs are connected to ground and the positive and negative PWM
outputs are at 50% duty cycle.
z
Play mode: the amplifiers are active.
The protection functions of the TDA7498MV are realized by pulling down the voltages of the
STBY and MUTE inputs shown in Figure 19. The input current of the corresponding pins
must be limited to 200 µA.
Table 7.
Mode settings
Mode
STBY
MUTE
L (1)
Standby
Mute
H
Play
H
X (don’t care)
(1)
L
H
1. Drive levels defined in Table 6: Electrical specifications on page 9
Figure 19. Standby and mute circuits
Standby
3.3 V
0V
STBY
R2
30 kΩ
C7
2.2 µF
R4
30 kΩ
C15
2.2 µF
Mute
MUTE
3.3 V
0V
TDA7498MV
Figure 20. Turn-on/off sequence for minimizing speaker “pop”
VCC
0
t
STBY
0
t
MUTE
0
Input
t
0
t
Output
0
t
Standby Mute
Play
Mute
Standby
Iq
0
t
Doc ID 16505 Rev 3
19/27
Applications information
5.3
TDA7498MV
Gain setting
The gain of the TDA7498MV is set by the two inputs, GAIN0 (pin 30) and GAIN1 (pin31).
Internally, the gain is set by changing the feedback resistors of the amplifier.
Table 8.
Gain settings
GAIN0
5.4
GAIN1
Nominal gain, Gv (dB)
L
L
25.6
L
H
31.6
H
L
35.6
H
H
37.6
Input resistance and capacitance
The input impedance is set by an internal resistor Ri = 60 kΩ (typical). An input capacitor
(Ci) is required to couple the AC input signal.
The equivalent circuit and frequency response of the input components are shown in
Figure 21. For Ci = 470 nF the high-pass filter cut-off frequency is below 20 Hz:
fC = 1 / (2 * π * Ri * Ci)
Figure 21. Input circuit and frequency response
Rf
Input
signal
20/27
Ci
Input
pin
Ri
Doc ID 16505 Rev 3
TDA7498MV
5.5
Applications information
Internal and external clocks
The clock of the class-D amplifier can be generated internally or can be driven by an
external source.
If two or more class-D amplifiers are used in the same system, it is recommended that all
devices operate at the same clock frequency. This can be implemented by using one
TDA7498MV as master clock, while the other devices are in slave mode, that is, externally
clocked. The clock interconnect is via pin SYNCLK of each device. As explained below,
SYNCLK is an output in master mode and an input in slave mode.
5.5.1
Master mode (internal clock)
Using the internal oscillator, the output switching frequency, fSW, is controlled by the
resistor, ROSC, connected to pin ROSC:
fSW = 106 / ((ROSC * 16 + 182) * 4) kHz
where ROSC is in kΩ.
In master mode, pin SYNCLK is used as a clock output pin whose frequency is:
fSYNCLK = 2 * fSW
For master mode to operate correctly then resistor ROSC must be less than 60 kΩ as given
below in Table 9.
5.5.2
Slave mode (external clock)
In order to accept an external clock input the pin ROSC must be left open, that is, floating.
This forces pin SYNCLK to be internally configured as an input as given in Table 9.
The output switching frequency of the slave devices is:
fSW = fSYNCLK / 2
Table 9.
How to set up SYNCLK
Mode
ROSC
SYNCLK
Master
ROSC < 60 kΩ
Output
Slave
Floating (not connected)
Input
Figure 22. Master and slave connection
Master
Slave
TDA7498MV
ROSC
SYNCLK
Output
Cosc
100 nF
TDA7498MV
SYNCLK
ROSC
Input
Rosc
39 kΩ
Doc ID 16505 Rev 3
21/27
Applications information
5.6
TDA7498MV
Output low-pass filter
To avoid EMI problems, it may be necessary to use a low-pass filter before the speaker. The
cut-off frequency should be larger than 22 kHz and much lower than the output switching
frequency. It is necessary to choose the L and C component values depending on the
loudspeaker impedance. Some typical values, which give a cut-off frequency of 27 kHz, are
shown in Figure 23 and Figure 24 below.
Figure 23. Typical LC filter for a 8-Ω speaker
07-?0
U(
OHM
N&
P&
N&
N&
OHM
OHM
N &
N&
U(
07-?.
OHM
Figure 24. Typical LC filter for a 6-Ω speaker
07-?0
U(
OH M
N &
P&
N &
N&
OH M
OH M
N&
N &
U(
07-?.
22/27
Doc ID 16505 Rev 3
OH M
TDA7498MV
5.7
Applications information
Protection function
The TDA7498MV is fully protected against overvoltages, undervoltages, overcurrents and
thermal overloads as explained here.
Overvoltage protection (OVP)
If the supply voltage exceeds the value for VOVP given in Table 6: Electrical specifications on
page 9 the overvoltage protection is activated which forces the outputs to the
high-impedance state. When the supply voltage falls back to within the operating range the
device restarts.
Undervoltage protection (UVP)
If the supply voltage drops below the value for VUVP given in Table 6: Electrical
specifications on page 9 the undervoltage protection is activated which forces the outputs to
the high-impedance state. When the supply voltage recovers to within the operating range
the device restarts.
Overcurrent protection (OCP)
If the output current exceeds the value for IOCP given in Table 6: Electrical specifications on
page 9 the overcurrent protection is activated which forces the outputs to the
high-impedance state. Periodically, the device attempts to restart. If the overcurrent
condition is still present then the OCP remains active. The restart time, TOC, is determined
by the R-C components connected to pin STBY.
Thermal protection (OTP)
If the junction temperature, Tj, reaches 145 °C (nominally), the device goes to mute mode
and the positive and negative PWM outputs are forced to 50% duty cycle. If the junction
temperature reaches the value for Tj given in Table 6: Electrical specifications on page 9 the
device shuts down and the output is forced to the high-impedance state. When the device
cools sufficiently the device restarts.
5.8
Diagnostic output
The output pin DIAG is an open drain transistor. When any protection is activated it switches
to the high-impedance state. The pin can be connected to a power supply (< 39 V) by a pullup resistor whose value is limited by the maximum sinking current (200 µA) of the pin.
Figure 25. Behavior of pin DIAG for various protection conditions
VDD
TDA7498MV
R1
DIAG
Protection logic
VDD
Restart
Restart
Overcurrent
protection
OV, UV, OT
protection
Doc ID 16505 Rev 3
23/27
Package mechanical data
6
TDA7498MV
Package mechanical data
The TDA7498MV comes in a 36-pin PowerSSO package with exposed pad up (EPU).
Figure 26 shows the package outline and Table 10 gives the dimensions.
Table 10.
PowerSSO-36 EPU dimensions
Dimensions in mm
Dimensions in inches
Symbol
Min
Typ
Max
Min
Typ
Max
A
2.15
-
2.45
0.085
-
0.096
A2
2.15
-
2.35
0.085
-
0.093
a1
0
-
0.10
0
-
0.004
b
0.18
-
0.36
0.007
-
0.014
c
0.23
-
0.32
0.009
-
0.013
D
10.10
-
10.50
0.398
-
0.413
E
7.40
-
7.60
0.291
-
0.299
e
-
0.5
-
-
0.020
-
e3
-
8.5
-
-
0.335
-
F
-
2.3
-
-
0.091
-
G
-
-
0.10
-
-
0.004
H
10.10
-
10.50
0.398
-
0.413
h
-
-
0.40
-
-
0.016
k
0
-
8 degrees
-
-
8 degrees
L
0.60
-
1.00
0.024
-
0.039
M
-
4.30
-
-
0.169
-
N
-
-
10 degrees
-
-
10 degrees
O
-
1.20
-
-
0.047
-
Q
-
0.80
-
-
0.031
-
S
-
2.90
-
-
0.114
-
T
-
3.65
-
-
0.144
-
U
-
1.00
-
-
0.039
-
X
4.10
-
4.70
0.161
-
0.185
Y
4.90
-
7.10
0.193
-
0.280
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
24/27
Doc ID 16505 Rev 3
TDA7498MV
Figure 26. PowerSSO-36 EPU outline drawing
h x 45°
Doc ID 16505 Rev 3
Package mechanical data
25/27
Revision history
7
TDA7498MV
Revision history
Table 11.
26/27
Document revision history
Date
Revision
Changes
30-Nov-2009
1
Initial release.
28-Jul-2010
2
Removed datasheet preliminary status, updated features list and
updated device summary table on page 1
Added operating temperature range to Table 3 on page 8
Updated minimum supply voltage and temperature range in Table 5:
Recommended operating conditions on page 8
Updated voltage for logical 1 on pin STBY in Table 6 on page 9
27-Jan-2011
3
Updated applications circuit in Figure 18 on page 18.
Doc ID 16505 Rev 3
TDA7498MV
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 16505 Rev 3
27/27