STMICROELECTRONICS TDA7493

TDA7493
3-watt + 3-watt dual BTL class-D audio amplifier
Features
„
3.0 W + 3.0 W of continuous output power with
RL = 4 Ω, THD = 10%, VCC = 5 V (filterless)
„
2.8 W + 2.8 W of continuous output power with
RL = 4 Ω, THD = 10%, VCC = 5 V (with filter)
„
Single supply voltage range 3.0 V to 5.5 V
„
High efficiency (η = 83%)
„
Four selectable, fixed gain settings of
6 dB, 12 dB, 15.6 dB and 18 dB
„
Differential inputs minimize common-mode
noise
„
Filterless operation
„
Standby feature
„
Short-circuit protection
„
Thermal-overload protection
„
Externally synchronizable
Table 1.
HTSSOP24 package with exposed pad down
Description
The TDA7493 is a dual BTL class-D audio
amplifier, specially designed for LCD TV, LCD
monitors or small speakers on cradles with
single-supply operation.
The filterless operation allows the external
component count to be reduced.
The TDA7493 is assembled in the HTSSOP24
package. Thanks to the high efficiency and to the
exposed-pad-down (EPD) package no separate
heatsink is required.
Device summary
Order codes
Operating temperature
range
Package
Packaging
TDA7493
0 to 70 °C
HTSSOP24 (EPD)
Tube
TDA749313TR
0 to 70 °C
HTSSOP24 (EPD)
Tape and reel
November 2010
Doc ID 14570 Rev 6
1/30
www.st.com
30
Contents
TDA7493
Contents
1
Device block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1
Pin-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2
Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3
Applications circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5
4.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Applications information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.1
Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2
Gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3
Input resistance and capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.4
Filterless modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.5
Internal clock and external clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.6
Output low-pass filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.7
Protection function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.8
Differential input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.8.1
6
Single-ended input application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Electrical characterization curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1
For the configuration with LC filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2
For the configuration without filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8
Heatsink provision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2/30
Doc ID 14570 Rev 6
TDA7493
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
TDA7493 block diagram (only one of two channels shown) . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Typical application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Input high-pass RC filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Device input structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Unipolar PWM output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Schematic for the filterless configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Master and slave modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Typical LC filter for 8 Ω speaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Typical LC filter for 4 Ω speaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Differential input application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Single-ended input application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Anti-pop configuration for single-ended input application . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Simple anti-pop configuration for single-ended input application . . . . . . . . . . . . . . . . . . . . 19
THD vs output power at 1 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
THD vs output power at 100 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
THD vs frequency at 100 mW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
THD vs frequency at 1 W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Output frequency response at 1 W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Crosstalk vs frequency at 1 W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
FFT (0 dB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
FFT (-60 dB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
THD vs output power at 1 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
THD vs output power at 100 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
THD vs frequency at 100 mW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
THD vs frequency at 1 W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Frequency response at 1 W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Crosstalk vs frequency at 1 W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
FFT (0 dB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
FFT (-60 dB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
HTSSOP24 EPD outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Doc ID 14570 Rev 6
3/30
List of tables
TDA7493
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
4/30
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Absolute maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Gain selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Resistance values for input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Master and slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
HTSSOP24 EPD dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Doc ID 14570 Rev 6
TDA7493
1
Device block diagram
Device block diagram
Figure 1 shows the block diagram of one of the two identical channels of the TDA7493.
Figure 1.
TDA7493 block diagram (only one of two channels shown)
SVCC
SVR
STANDBY
SGND
PVCCP
OUTP
ROSC
PGNDP
INP
INN
PVCCN
GAIN0
OUTN
GAIN1
PGNDN
SYNCLK
Doc ID 14570 Rev 6
5/30
Pin description
TDA7493
2
Pin description
2.1
Pin-out
Figure 2.
Pin connection (top view)
1
INNL
INNR
24
2
INPL
INPR
23
3
STANDBY
SVR
22
4
PVCCPL
PVCCPR
21
5
OUTPL
OUTPR
20
6
PGNDPL
PGNDPR
19
7
PGNDNL
PGNDNR
18
8
OUTNL
OUTNR
Exposed
pad (GND)
PVCCNR
PVCCNL
17
9
16
10
SYNCLK
GAIN1
15
11
ROSC
GAIN0
14
12
SGND
SVCC
13
The exposed pad is the device ground and must be connected appropriately
6/30
Doc ID 14570 Rev 6
TDA7493
2.2
Pin description
Pin list
Table 2.
Pin list
Number
Name
Type
Description
1
INNL
IN
Negative differential input of left channel
2
INPL
IN
Positive differential input of left channel
3
STANDBY
IN
Standby mode control (digital):
0: standby
1: play
4
PVCCPL
POWER
Power supply for positive branch in left channel
5
OUTPL
OUT
Positive PWM output for left channel
6
PGNDPL
POWER
Power stage ground for left channel
7
PGNDNL
POWER
Power stage ground for left channel
8
OUTNL
OUT
Negative PWM output for left channel
9
PVCCNL
POWER
Power supply for negative branch in left channel
10
SYNCLK
IN/OUT
Clock in/out for external oscillator
11
ROSC
OUT
Master oscillator frequency setting pin
12
SGND
POWER
Signal ground
13
SVCC
POWER
Signal power supply
14
GAIN0
IN
Gain setting input 1
15
GAIN1
IN
Gain setting input 2
16
PVCCNR
POWER
Power supply for negative branch in right channel
17
OUTNR
OUT
Negative PWM output for right channel
18
PGNDNR
POWER
Power stage ground for right channel
19
PGNDPR
POWER
Power stage ground for right channel
20
OUTPR
OUT
Positive PWM output for right channel
21
PVCCPR
POWER
Power supply for positive branch in right channel
22
SVR
OUTPUT
Supply voltage rejection
23
INPR
IN
Positive differential input of right channel
24
INNR
IN
Negative differential input of right channel
Doc ID 14570 Rev 6
7/30
Applications circuit
Figure 3.
Applications circuit
8/30
3
Typical application circuit
PVCCPL
SVCC
OUTPL
STANDBY
Doc ID 14570 Rev 6
Jumper 5 for
single-ended
input
INPL
PGNDPL
INNL
PVCCNL
GAIN0
GAIN1
SYNCLK
Jumper 6 for
single-ended
input
OUTNL
ROSC
TDA7493
PGNDNL
PVCCPR
OUTPR
INPR
PGNDPR
INNR
PVCCNR
SVR
SGND
OUTNR
PGNDNR
TDA7493
TDA7493
Electrical specifications
4
Electrical specifications
4.1
Absolute maximum ratings
Table 3.
Absolute maximum rating
Symbol
4.2
Negative
value
Parameter
Positive
value
Unit
VCC
DC supply on pins PVCCPL, PVCCPR, PVCCNL,
PVCCNR, SVCC
-0.3
6
V
VCC_STANDBY
Standby DC supply on pins PVCCPL, PVCCPR,
PVCCNL, PVCCNR, SVCC
-0.3
7
V
Vi
Input on pins STANDBY, INNL, INPL, INNR, INPR,
GAIN0, GAIN1
-0.3
6
V
Top
Operating temperature
0
70
°C
Tstg, Tj
Storage and junction temperature
-40
150
°C
Thermal data
Table 4.
Thermal data
Symbol
Parameter
Min
Typ
Max
Unit
Rth j-case
Thermal resistance junction to case
-
2
3
°C/W
Rth j-amb
Thermal resistance junction to ambient
(on recommended PCB) (1)
-
37
-
°C/W
1. FR4 with via holes, copper area 9 cm² as explained in Chapter 8 on page 28.
4.3
Electrical characteristics
Refer to Figure 3: Typical application circuit, VCC = 5 V, RL (load) = 4 Ω, R1 = 39 kΩ,
C4 = 100 nF, f = 1 kHz, GV = 18 dB, Tamb = 25 °C, unless otherwise specified.
Table 5.
Symbol
Electrical characteristics
Parameter
VCC
Supply range
Iq
Condition
Typ
Max
Unit
3.0
-
5.5
V
Total quiescent current No filter, no load
-
7
-
mA
Vos
Output offset voltage
Vi = 0, Gv = 6 dB, no load
-20
-
20
mV
Output power
(filterless)
THD = 10%
-
3.0
-
W
Po
THD = 1%
-
2.4
-
W
Output power (with
filter)
THD = 10%
-
2.8
-
W
THD = 1%
-
2.2
-
W
Po
-
Min
Doc ID 14570 Rev 6
9/30
Electrical specifications
Table 5.
Symbol
TDA7493
Electrical characteristics (continued)
Parameter
Condition
Min
Pd
Dissipated power
Po = 2.8 W + 2.8 W,
THD = 10%
-
1.1
-
W
η
Efficiency
Po = 2.8 W + 2.8 W,
RL = 4 Ω
-
83
-
%
THD
Total harmonic
distortion
RL = 4 Ω, Po = 0.5 W
-
0.05
-
%
Tj
Thermal shut-down
junction temperature
-
-
150
-
°C
-
6.0
-
GAIN1 = high -
12.0
-
GAIN1 = low
-
15.6
-
GAIN1 = high -
18.0
-
GAIN1 = low
Typ
Max
Unit
GAIN0 = low
GV
dB
Closed loop gain
GAIN0 = high
GV
Gain matching
-
-1
-
1
dB
CT
Crosstalk
f = 1 kHz
-
60
-
dB
A curve, Gv = 18 dB
-
50
-
µV
eN
Total output noise
f = 22 Hz to 22 kHz,
Gv = 18 dB
-
60
-
µV
Ri
Input resistance
Differential Input
-
60
-
kΩ
SVRR
Supply voltage
rejection ratio
fr = 100 Hz, Vr = 0.5 V,
CSVR = 1 µF
-
55
-
dB
VOVP
Overvoltage protection
threshold
-
5.8
-
V
tr, tf
Rising and falling time -
-
10
-
ns
Power transistor on
resistance
High side
-
0.44
-
RDSON
Low side
-
0.36
-
fSW
Switching frequency
Internal oscillator
-
315
-
kHz
250
-
400
kHz
With external oscillator (2)
250
-
400
kHz
-
-
1
-
µA
STANDBY = high
Play
STANDBY = low
Standby
High
0.7 *
VCC
-
-
V
Low
-
-
0.3 *
VCC
V
With internal oscillator
fSWR
Output switching
frequency range
IqSTANDBY
Quiescent current in
standby
Function
mode
Standby and play
-
Digital inputs Digital input thresholds
1. fSW = 106 / (ROSC * 64 + 840)
fSYNC = 2 * fSW with R1 = 39 kΩ and fSW in kHz
2. fSW = fSYNC / 2 with the frequency of external oscillator
10/30
(1)
Ω
Doc ID 14570 Rev 6
TDA7493
Applications information
5
Applications information
5.1
Mode selection
Pin STANDBY selects the operating mode, namely standby or play.
z
In standby mode, all the circuits are turned off and there is very low leakage current.
z
In play mode, the amplifiers are powered up.
During the turn on/off sequence, there are four operational states: standby, pre-charge,
mute and play. The pre-charge and mute states are two internal transient states to set up
the normal operating condition and to reduce the speaker pop noise.
Table 6.
Mode selection
Logic level on pin STANDBY
Mode
0
Standby
1
Play
Note:
An internal pull-down resistor on pin STANDBY ensures that the default mode is standby.
5.2
Gain setting
The close loop gain is set by pins GAIN0 and GAIN1 as shown below in Table 7. The gain
setting is implemented by changing the feedback resistors of the amplifiers.
Table 7.
Gain selection
Logic level on pin GAIN0
Note:
Logic level on pin GAIN1
Gv (nominal)
0
0
6.0 dB
0
1
12.0 dB
1
0
15.6 dB
1
1
18.0 dB
Internal pull-down resistors on pins GAIN0 and GAIN1 ensure that the default gain is 6 dB.
Doc ID 14570 Rev 6
11/30
Applications information
5.3
TDA7493
Input resistance and capacitance
The input impedance is set by an internal resistor, Ri, of value 60 kΩ. An input coupling
capacitor (Ci) is required on each input line. These two components together form a
high-pass filter whose cutoff frequency is:
fC = 1 / (2 * π * Ri * Ci)
Figure 4.
Input high-pass RC filter
The value of Ci is chosen depending on the application and the speaker system. For a
cut-off frequency less than 20 Hz, the input capacitors could be 470 nF each.
If a polarized capacitor is used, it is important to connect the positive side of the capacitor to
the terminal with higher DC voltage. The DC voltage on the input pins is VCC / 2.
Figure 5.
Device input structure
Rf
Ci
Ri
+
Input signal
Ci
Ri
Rf
12/30
Doc ID 14570 Rev 6
TDA7493
5.4
Applications information
Filterless modulation
The modulation scheme of BTL is called unipolar PWM output. The differential output
voltage changes between zero and +VCC or between zero and -VCC, as opposed to the
traditional bipolar PWM output between +VCC and -VCC. The other advantage of this
scheme effectively doubles the switching frequency of the differential output waveform.
Signals on OUTP and OUTN are in the same phase when the input is zero, thus the current
is greatly reduced and the loss in the load is small. A tiny delay between OUTP and OUTN is
introduced to avoid high transient currents which could occur if both outputs switch
simultaneously.
TDA7493 can be used without a filter between the PWM output and the speaker since the
switching frequency of the output is beyond the audible range. The audio signal can be
recovered by the inherent inductance of the speaker and natural filter of the human ear.
Figure 6.
Unipolar PWM output
The filterless configuration is usable in applications where the speaker connections to the
amplifier are shorter than 50 cm. In comparison to the low-pass Butterworth filter
configuration, the filterless configuration gives rise to higher EMI. This can be reduced, if
necessary, by inserting a ferrite bead filters close to the device.
Use a ferrite which exhibits high impedance at around 1 MHz and negligible impedance in
the audio band.
It is recommended to use an EMI filter if the speaker cable is longer than 50 cm.
Doc ID 14570 Rev 6
13/30
Schematic for the filterless configuration
PVCCPL
SVCC
8
Doc ID 14570 Rev 6
8
OUTPL
STANDBY
INPL
PGNDPL
INNL
PVCCNL
ROSC
TDA7493
OUTNL
GAIN0
PGNDNL
GAIN1
PVCCPR
SYNCLK
Applications information
14/30
Figure 7.
OUTPR
INPR
PGNDPR
INNR
PVCCNR
OUTNR
SVR
SGND
PGNDNR
Table 8. Resistance values for input configuration
(*1) R2, R3, R4 and R5 are 0-Ω resistors which can be replaced
by ferrite beads if EMI optimization is required
(*2) C14, C15, C17, and C18 are 1-nF capacitors which are needed
when ferrite beads are used for EMI optimization
TDA7493 amplifier (filterless)
TDA7493
TDA7493
5.5
Applications information
Internal clock and external clock
The clock of the class-D amplifier can be generated internally or it can be synchronous with
the external clock. If two or more class-D amplifiers are used in the same system, it is better
to have all devices working at the same frequency. This is realized by using one TDA7493
as clock master and the others as slaves. All SYNCLK pins are connected together as
shown in Figure 8.
In master mode or with a single TDA7493, the output switching frequency is controlled by
the resistor connected to pin ROSC. The switching frequency is:
fSW = 106 / (ROSC * 64 + 840)
where ROSC is in kΩ and fSW is in kHz.
In this configuration pin SYNCLK is an output whose frequency is also determined by ROSC:
fSYNCLK = 106 / (ROSC * 32 + 420) = 2 * fSW
Note:
ROSC should be lower than 60 kΩ in master mode to avoid operating in error mode.
In slave mode, pin ROSC can be floating to force pin SYNCLK as input in order to accept the
master clock. The switching frequency in this mode is:
fSW = fSYNCLK / 2
Table 9.
Master and slave mode
Mode
Pin ROSC
Pin SYNCLK
Master
ROSC < 60 kΩ
Output
Slave
Floating
Input
Figure 8.
Master and slave modes
Master
Slave
TDA7493
TDA7493
ROSC
SYNCLK
Output
COSC
ROSC
100 nF
39 kΩ
Doc ID 14570 Rev 6
SYNCLK
ROSC
Input
15/30
Applications information
5.6
TDA7493
Output low-pass filter
To avoid EMI problems, a low-pass filter can be inserted before the speaker. The cut-off
frequency of the filter should be higher than 22 kHz and much lower than the switching
frequency.
The component values of the filter vary according to the speaker impedance.
A typical LC output filter for a speaker impedance of 8 Ω and with a cut-off frequency of
27 kHz is shown in Figure 9.
Figure 9.
Typical LC filter for 8 Ω speaker
OUTP
33 µH
0.10 µF
330 pF
0.47 µF
20 Ω
8Ω
33 µH
0.10 µF
OUTN
A similar filter for a speaker impedance of 4 Ω and also with a cut-off frequency of 27 kHz is
shown in Figure 10:
Figure 10. Typical LC filter for 4 Ω speaker
OUTP
15 µH
0.22 µF
330 pF
0.47 µF
20 Ω
4Ω
15 µH
OUTN
16/30
Doc ID 14570 Rev 6
0.22 µF
TDA7493
5.7
Applications information
Protection function
The TDA7493 has four types of protection: overvoltage (OV), undervoltage (UV), thermal
(OT) and short circuit (SC):
z
overvoltage protection (OVP) for the supply VCC > 6 V
z
undervoltage protection (UVP) for the supply VCC < 3 V
z
thermal protection (OTP) for the junction temperature Tj > 155 °C
z
short-circuit protection (SCP) across the load (tested at VCC = 5.0 V).
When any of the above protection becomes active, the output goes to a high-impedance
state. The device remains in this state until the condition is cleared or rectified, when the
circuit restarts again.
Differential input
The TDA7493 can be used with either differential or single-ended inputs. In either case, the
device must be AC coupled to the audio source.
To use the device with a differential source, connect the positive lead from the audio source
to the INP input and the negative lead to the INN input as shown in Figure 11. The
differential input stage of the amplifier minimizes the common mode noise effectively.
In the differential input application:
z
input impedance is given by 2 * Rin,
z
cut-off frequency of the input filter is given by
fc = 1 / (2 * π * Cin / 2 * 2 * Rin) = 1 / (2 * π * Cin * Rin).
Typically, Rin = 30 kΩ and Cin > 330 nF to get a cut-off frequency less than 20 Hz.
Figure 11. Differential input application
TDA7493
Rfb
Audio Source
5.8
OUTP
Cin
INP
Rin
OUTN
Cin
INN
Rin
+
Rfb
Input stage
Doc ID 14570 Rev 6
17/30
Applications information
5.8.1
TDA7493
Single-ended input application
To use the device with a single-ended source, one input is AC connected to ground (via a
capacitor) and the other input is connected to the audio source. This is designed as a fully
differential input. The input scheme is shown in Figure 12.
However, to avoid the start-up pop noise, it is important to equalize, as much as possible,
the charging currents in the positive and negative inputs. Any imbalance in these charging
currents will be amplified and result in the familiar turn-on pop.
Figure 12. Single-ended input application
TDA7493
Audio Source
Rfb
Cin
cin
OUTP
INP
+
Rin
Cin
cin
GND
INN
-
Rin
Rfb
Input stage
Since the input charging currents in the circuit of Figure 12 can be different it is necessary to
add two resistors, R0, as shown in the circuit of Figure 13. In this way the currents in the two
branches of the differential input are better balanced and this can lead to the elimination of
the turn-on pop noise.
Figure 13. Anti-pop configuration for single-ended input application
TDA7493
Audio Source
Rfb
Cin
OUTP
INP
Rin
+
R0
Cin
GND
INN
Rin
R0
Rfb
Input stage
18/30
Doc ID 14570 Rev 6
TDA7493
Applications information
The disadvantages of the anti-pop configuration are given below:
z
The input impedance or the load of audio source is no longer 2 * Rin as in the case of
differential input configuration but R0. It means the load effect should be considered
during the application design. At this point, bigger R0 is better because of the lower
load effect.
z
The input signal is also equivalent to
Vin_actual = Vin * 2 * Rin * (Rin + Rfb + R0) / (2 * Rin * (Rin + Rfb + R0) + Rfb * R0), not
the original Vin which means the actual gain is reduced.
When Rin = 30 kΩ, Rfb = 30 kΩ and R0 = 20 kΩ, the gain is reduced by 1 dB.
When Rin = 30 kΩ, Rfb = 120 kΩ and R0 = 20 kΩ, the gain is reduced by 1.84 dB. In
this case, smaller R0 is better.
If the pop noise is not critical, the anti-pop configuration can be simplified as shown in
Figure 14. The suggested value of the resistor R0 is 20 kΩ.
Figure 14. Simple anti-pop configuration for single-ended input application
TDA7493
Audio Source
Rfb
Cin
OUTP
INP
Rin
+
R0
GND
Cin
INN
Rin
Rfb
Input stage
Doc ID 14570 Rev 6
19/30
Electrical characterization curves
TDA7493
6
Electrical characterization curves
6.1
For the configuration with LC filter
z
Test setup as given in Figure 3 on page 8
z
Test conditions VCC = 5 V, C20 = 10 µF, RL = 4 Ω, LC filter 15 µH, 470 nF
Figure 15. THD vs output power at 1 kHz
THD
(%)
10
5
2
1
d
B
r
0.5
0.2
A
0.1
0.05
0.02
0.01
0.005
0.002
0.001100m
200m
300m
400m 500m
700m
1
2
3
1
2
3
Po (W)
Figure 16. THD vs output power at 100 Hz
10
THD
5
(%)
2
1
0.5
0.2
0.1
0.05
0.02
0.01
0.005
0.002
0.001
100m
200m
300m
400m 500m
700m
Po (W)
Figure 17. THD vs frequency at 100 mW
10
THD
5
(%)
2
1
0.5
0.2
0.1
0.05
0.02
0.01
20
50
100
200
500
1k
Frequency
20/30
Doc ID 14570 Rev 6
2k
5k
10k
20k
TDA7493
Electrical characterization curves
Figure 18. THD vs frequency at 1 W
10
THD
5
(%)
2
1
0.5
0.2
0.1
0.05
0.02
0.01
0.005
0.002
0.001
20
50
100
200
500
1k
2k
5k
10k
10k
20k
20k
Frequency
Figure 19. Output frequency response at 1 W
+2
Ampl
(dB)
+1
-0
-1
-2
-3
-4
-5
20
50
100
200
500
1k
2k
5k
50k
Frequency (Hz)
Figure 20. Crosstalk vs frequency at 1 W
+0
Crosstalk
(dB)
T
TT
TT
T
50
100
200
T
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
20
500
1k
2k
5k
10k
20k
Frequency (Hz)
Doc ID 14570 Rev 6
21/30
Electrical characterization curves
TDA7493
Figure 21. FFT (0 dB)
FFT
(dB)
+10
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
20
50
100
200
500
1k
2k
5k
10k
20k
2k
5k
10k
20k
Frequency (Hz)
Figure 22. FFT (-60 dB)
FFT
(dB)
+10
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
20
50
100
200
500
1k
Frequency (Hz)
22/30
Doc ID 14570 Rev 6
TDA7493
6.2
Electrical characterization curves
For the configuration without filter
z
Test setup as given in Figure 7 on page 14
z
Test conditions VCC = 5 V, C20 = 10 µF, RL = 4 Ω + 270 µH, no LC filter
Figure 23. THD vs output power at 1 kHz
THD
(%)
10
5
2
1
0.5
0.2
0.1
0.05
0.02
0.01
100m
200m
300m
400m
600m
800m
1
2
3
4
Po (W)
Figure 24. THD vs output power at 100 Hz
10
THD
(%)
5
2
1
0.5
0.2
0.1
0.05
0.02
0.01
100m
200m
300m 400m
600m 800m
1
2
3
5k
10k
4
Po (W)
Figure 25. THD vs frequency at 100 mW
THD
(%)
10
5
2
1
0.5
0.2
0.1
0.05
0.02
0.01
0.005
0.002
0.001
20
50
100
200
500
1k
2k
20k
frequency (Hz)
Doc ID 14570 Rev 6
23/30
Electrical characterization curves
TDA7493
Figure 26. THD vs frequency at 1 W
10
THD
(%)
5
2
1
0.5
0.2
0.1
0.05
0.02
0.01
0.005
0.002
0.001
20
50
100
200
500
1k
2k
5k
10k
20k
frequency (Hz)
Figure 27. Frequency response at 1 W
Ampl
(dB)
+2
+1
-0
-1
-2
-3
-4
-5
20
50
100
200
500
1k
2k
5k
10k
20k
5k
10k
50k
frequency (Hz)
Figure 28. Crosstalk vs frequency at 1 W
Crosstalk
(dB)
+40
T
TT T T
T
+20
+0
-20
-40
-60
-80
-100
-120
-140
20
50
100
200
500
1k
frequency (Hz)
24/30
Doc ID 14570 Rev 6
2k
20k
TDA7493
Electrical characterization curves
Figure 29. FFT (0 dB)
FFT
(dB)
+10
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
20
50
100
200
500
1k
2k
5k
10k
20k
frequency (Hz)
Figure 30. FFT (-60 dB)
+10
FFT
(dB)
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
20
50
100
200
500
1k
2k
5k
10k
20k
frequency (Hz)
Doc ID 14570 Rev 6
25/30
Package mechanical data
7
TDA7493
Package mechanical data
The TDA7493 comes in a 24-pin HTSSOP exposed-pad-down package. The outline is
shown in Figure 31 and the dimensions are given in Table 10.
The package code is YO and the JEDEC/EIAJ reference number is JEDEC MO-153-ADT.
Figure 31. HTSSOP24 EPD outline
26/30
Doc ID 14570 Rev 6
TDA7493
Package mechanical data
Table 10.
HTSSOP24 EPD dimensions
mm
inch
Reference
Notes
Min
Typ
Max
Min
Typ
Max
A
-
-
1.20
-
-
0.047
-
A1
-
-
0.15
-
-
0.006
-
A2
0.80
1.00
1.05
0.031
0.039
0.041
-
b
0.19
-
0.30
0.007
-
0.012
-
c
0.09
-
0.20
0.004
-
0.008
-
D
7.70
7.80
7.90
0.303
0.307
0.311
(1)
D1
4.80
5.00
5.2
0.189
0.197
0.205
-
E
6.20
6.40
6.60
0.244
0.252
0.260
-
E1
4.30
4.40
4.50
0.169
0.173
0.177
(2)
E2
3.00
3.20
3.40
0.118
0.126
0.134
-
e
-
0.65
-
-
0.026
-
-
L
0.45
0.60
0.75
0.018
0.024
0.030
-
L1
-
1.00
-
-
0.039
-
-
aaa
-
-
0.10
-
-
0.004
-
k
0
-
8
0
-
8
degrees
1. Dimension D does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs
shall not exceed 0.15mm (0.006 inch) per side.
2. Dimension E1 does not include interlead flash or protrusions. Interlead flash or protrusions does not
exceed 0.25mm (0.010 inch) per side.
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Doc ID 14570 Rev 6
27/30
Heatsink provision
8
TDA7493
Heatsink provision
With the exposed-pad packages, it is possible to use the printed circuit board as a heatsink.
Using a PCB copper ground area of 3 x 3 cm2 with 16 via holes to make contact with the
exposed pad, a thermal resistance of 37 °C/W can be achieved.
The amount of power dissipated within the device depends primarily on the supply voltage,
load impedance and output modulation level. The maximum estimated power dissipation for
the TDA7493 is around 1.1 W.
With the suggested copper area of 9 cm2, a maximum junction temperature increase of less
than 40 °C above ambient can be expected, thus giving a maximum junction temperature,
Tj, of approximately 90 °C in consumer environments where 50 °C is specified as the
maximum ambient temperature. This provides a comfortable safety margin to the thermal
protection threshold at Tj = 150 °C.
28/30
Doc ID 14570 Rev 6
TDA7493
9
Revision history
Revision history
Table 11.
Document revision history
Date
Revision
Changes
02-Apr-2008
1
Initial release.
16-Sep-2008
2
Updated application schematic on page 8
Updated Table 5: Electrical characteristics on page 9
Updated schematic of input structure on page 12
Updated Schematic for the filterless configuration on page 14
Updated section 5.8: Differential input on page 17.
01-Dec-2008
3
Added test voltage note to SC protection in section 5.7: Protection
function on page 17.
14-Dec-2008
4
Replaced 2.8 W with 3 W in title on page 1
Added new feature of 3.0 W on on page 1
Updated description for pin STANDBY in Table 2: Pin list on page 7
Added output power for filterless config to Table 5: Electrical
characteristics on page 9
Updated values for digital input thresholds in Table 5: Electrical
characteristics on page 9
Updated text for environmentally-friendly packaging on page 27.
14-Oct-2009
5
Updated minimum operating voltage on page 1 and on page 9
Updated formula for fSW on page 10 and on page 15.
29-Nov-2010
6
Added VCC_STANDBY to Table 3: Absolute maximum rating on page 9
Doc ID 14570 Rev 6
29/30
TDA7493
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
30/30
Doc ID 14570 Rev 6