stgipl20k60 - STMicroelectronics

STGIPL20K60
SLLIMM™ (small low-loss intelligent molded module)
IPM, 3-phase inverter - 20 A, 600 V short-circuit rugged IGBT
Datasheet - production data
• Isolation rating of 2500 Vrms/min
• 5 kΩ NTC for temperature control
• UL Recognized: UL1557 file E81734
Applications
• 3-phase inverters for motor drives
• Home appliances, such as washing machines,
refrigerators, air conditioners and sewing
machines
Description
SDIP-38L
AM01193v1
Features
• IPM 20 A, 600 V 3-phase IGBT inverter bridge
including control ICs for gate driving and freewheeling diodes
• Short-circuit rugged IGBTs
This intelligent power module provides a
compact, high performance AC motor drive in a
simple, rugged design. Combining ST proprietary
control ICs with the most advanced short-circuitrugged IGBT system technology, this device is
ideal for 3-phase inverters in applications such as
home appliances and air conditioners. SLLIMM™
is a trademark of STMicroelectronics.
• VCE(sat) negative temperature coefficient
• 3.3 V, 5 V, 15 V CMOS/TTL inputs
comparators with hysteresis and pull down/pull
up resistors
• Undervoltage lockout
• Internal bootstrap diode
• Interlocking function
• Smart shutdown function
• Comparators for fault protection against
overtemperature and overcurrent
• Op amps for advanced current sensing
• DBC substrate leading to low thermal
resistance
Table 1. Device summary
Order code
Marking
Package
Packaging
STGIPL20K60
GIPL20K60
SDIP-38L
Tube
June 2013
This is information on a product in full production.
DocID018946 Rev 3
1/24
www.st.com
Contents
STGIPL20K60
Contents
1
Internal schematic diagram and pin configuration . . . . . . . . . . . . . . . . 3
2
Electrical ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
2.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1
Control part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.1
3.2
NTC thermistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Waveform definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4
Smart shutdown function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1
Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2/24
DocID018946 Rev 3
STGIPL20K60
1
Internal schematic diagram and pin configuration
Internal schematic diagram and pin configuration
Figure 1. Internal schematic diagram
DocID018946 Rev 3
3/24
24
Internal schematic diagram and pin configuration
STGIPL20K60
Table 2. Pin description
4/24
Pin
Symbol
Description
1
OUTU
High side reference output for U phase
2
Vboot U
Bootstrap voltage for U phase
3
LINU
Low side logic input for U phase
4
HINU
High side logic input for U phase
5
OP-U
Op amp inverting input for U phase
6
OPOUT U
7
OP+U
Op amp non inverting input for U phase
8
CINU
Comparator input for U phase
9
OUTV
High side reference output for V phase
10
Vboot V
Bootstrap voltage for V phase
11
LINV
Low side logic input for V phase
12
HINV
High side logic input for V phase
13
OP-V
Op amp inverting input for V phase
14
OPOUT V
15
OP+V
Op amp non inverting input for V phase
16
CINV
Comparator input for V phase
17
OUTW
High side reference output for W phase
18
Vboot W
Bootstrap voltage for W phase
19
LINW
Low side logic input for W phase
20
HINW
High side logic input for W phase
21
OP-W
Op amp inverting input for W phase
22
OPOUT W
23
OP+W
Op amp non inverting input for W phase
24
CINW
Comparator input for W phase
25
VCC
26
SD / OD
27
GND
28
T2
NTC thermistor terminal 2
29
T1
NTC thermistor terminal 1
30
NW
Negative DC input for W phase
31
W
W phase output
32
P
Positive DC input
33
NV
Negative DC input for V phase
34
V
V phase output
Op amp output for U phase
Op amp output for V phase
Op amp output for W phase
Low voltage power supply
Shutdown logic input (active low) / open drain (comparator output)
Ground
DocID018946 Rev 3
STGIPL20K60
Internal schematic diagram and pin configuration
Table 2. Pin description (continued)
Pin
Symbol
Description
35
P
36
NU
Negative DC input for U phase
37
U
U phase output
38
P
Positive DC input
Positive DC input
Figure 2. Pin layout (bottom view)
Marking area
DocID018946 Rev 3
5/24
24
Electrical ratings
STGIPL20K60
2
Electrical ratings
2.1
Absolute maximum ratings
Table 3. Inverter part
Symbol
Parameter
Value
Unit
VPN
Supply voltage applied between P-NU, NV, NW
450
V
VPN(surge)
Supply voltage (surge) applied between P-NU,
NV, NW
500
V
VCES
Each IGBT collector emitter voltage (VIN(1) = 0)
600
V
± IC(2)
Each IGBT continuous collector current
at TC = 25 °C
20
A
Each IGBT pulsed collector current
40
A
Each IGBT total dissipation at TC = 25 °C
56
W
Short circuit withstand time, VCE = 0.5 V(BR)CES Tj
= 125 °C, VCC = Vboot = 15 V, VIN (1)= 0 - 5 V
5
μs
± ICP (3)
PTOT
tscw
1. Applied between HINi, LINi and GND for i = U, V, W
2. Calculated according to the iterative formula:
T j ( max ) – TC
IC ( T C ) = ------------------------------------------------------------------------------------------------------R thj – c × V CE ( sat ) ( max ) ( Tj ( max ), I C ( TC ) )
3. Pulse width limited by max junction temperature
Table 4. Control part
Symbol
Min.
Max.
Unit
Vboot - 21
Vboot + 0.3
V
VOUT
Output voltage applied between
OUTU, OUTV, OUTW - GND
VCC
Low voltage power supply
- 0.3
21
V
VCIN
Comparator input voltage
- 0.3
VCC + 0.3
V
Vop+
OPAMP non-inverting input
- 0.3
VCC + 0.3
V
Vop-
OPAMP inverting input
- 0.3
VCC + 0.3
V
Vboot
Bootstrap voltage
- 0.3
620
V
Logic input voltage applied between HIN, LIN and
GND
- 0.3
15
V
Open drain voltage
- 0.3
15
V
50
V/ns
VIN
VSD/OD
dVOUT/dt
6/24
Parameter
Allowed output slew rate
DocID018946 Rev 3
STGIPL20K60
Electrical ratings
Table 5. Total system
Symbol
VISO
2.2
Parameter
Isolation withstand voltage applied between each
pin and heatsink plate (AC voltage, t = 60 sec.)
Value
Unit
2500
V
Tj
Power chips operating junction temperature
-40 to 150
°C
TC
Module case operation temperature
-40 to 125
°C
Value
Unit
Thermal resistance junction-case single IGBT
2.2
°C/W
Thermal resistance junction-case single diode
4.5
°C/W
Thermal data
Table 6. Thermal data
Symbol
Parameter
RthJC
DocID018946 Rev 3
7/24
24
Electrical characteristics
3
STGIPL20K60
Electrical characteristics
Tj = 25 °C unless otherwise specified.
Table 7. Inverter part
Value
Symbol
VCE(sat)
ICES
VF
Parameter
Collector-emitter
saturation voltage
Test condition
VCC = VBoot = 15 V, VIN(1)= 0 - 5 V,
IC = 12 A
Unit
Min.
Typ.
Max.
-
2.2
2.75
V
VCC = VBoot = 15 V, VIN(1)= 0 - 5 V,
IC = 12 A, Tj = 125 °C
-
Collector-cut off current
(VIN(1) = 0 “logic state”)
VCE = 550 V
VCC = Vboot = 15 V
-
Diode forward voltage
VIN(1) = 0 “logic state”, IC = 12 A
-
1.7
-
915
-
155
-
375
-
120
-
75
1.8
150
μA
2.1
V
Inductive load switching time and energy
ton
tc(on)
toff
tc(off)
trr
Turn-on time
Crossover time (on)
Turn-off time
Crossover time (off)
Reverse recovery time
VDD = 300 V,
VCC = Vboot = 15 V,
VIN(1) = 0 - 5 V,
IC = 12 A
(see Figure 3)
Eon
Turn-on switching losses
-
300
Eoff
Turn-off switching losses
-
170
ns
μJ
1. Applied between HINi LINi and GND for i = U, V, W (LIN inputs are active-low).
Note:
8/24
ton and toff include the propagation delay time of the internal drive. tC(ON) and tC(OFF) are the
switching time of IGBT itself under the internally given gate driving condition.
DocID018946 Rev 3
STGIPL20K60
Electrical characteristics
Figure 3. Switching time test circuit
Figure 4. Switching time definition
100% IC 100% IC
t rr
IC
VCE
VCE
IC
VIN
VIN
t ON
t OFF
t C(OFF)
t C(ON)
VIN(ON)
10% IC 90% IC 10% VCE
(a) turn-on
VIN(OFF)
10% VCE
(b) turn-off
10% IC
AM09223V1
Figure 4 "Switching time definition" refers to HIN inputs (active high). For LIN inputs (active low), VIN polarity
must be inverted for turn-on and turn-off.
DocID018946 Rev 3
9/24
24
Electrical characteristics
3.1
STGIPL20K60
Control part
Table 8. Low voltage power supply (VCC = 15 V unless otherwise specified)
Symbol
Min.
Typ.
Max.
Unit
Vcc UV hysteresis
1.2
1.5
1.8
V
Vcc_thON
Vcc UV turn ON threshold
11.5
12
12.5
V
Vcc_thOFF
Vcc UV turn OFF threshold
10
10.5
11
V
Vcc_hys
Parameter
Test conditions
Iqccu
Undervoltage quiescent
supply current
VCC = 10 V
SD/OD = 5 V; LIN = 5 V;
HIN = 0, CIN = 0
450
μA
Iqcc
Quiescent current
Vcc = 15 V
SD/OD = 5 V; LIN = 5 V
HIN = 0, CIN = 0
3.5
mA
Vref
Internal comparator (CIN)
reference voltage
0.58
V
0.5
0.54
Table 9. Bootstrapped voltage (VCC = 15 V unless otherwise specified)
Symbol
Min.
Typ.
Max.
Unit
VBS UV hysteresis
1.2
1.5
1.8
V
VBS_thON
VBS UV turn ON threshold
11.1
11.5
12.1
V
VBS_thOFF
VBS UV turn OFF threshold
9.8
10
10.6
V
IQBSU
Undervoltage VBS quiescent
current
VBS < 9 V
SD/OD = 5 V; LIN and
HIN = 5 V; CIN = 0
70
110
μA
IQBS
VBS quiescent current
VBS = 15 V
SD/OD = 5 V; LIN and
HIN = 5 V; CIN = 0
200
300
μA
Bootstrap driver on resistance
LVG ON
120
VBS_hys
RDS(on)
Parameter
Test conditions
W
Table 10. Logic inputs (VCC = 15 V unless otherwise specified)
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
Vil
Low logic level voltage
0.8
1.1
V
Vih
High logic level voltage
1.9
2.25
V
260
μA
1
μA
20
μA
1
μA
300
μA
3
μA
IHINh
HIN logic “1” input bias current
HIN = 15 V
IHINl
HIN logic “0” input bias current
HIN = 0 V
ILINl
LIN logic “1” input bias current
LIN = 0 V
ILINh
LIN logic “0” input bias current
LIN = 15 V
ISDh
SD logic “0” input bias current
SD = 15 V
ISDl
SD logic “1” input bias current
SD = 0 V
Dt
Dead time
see Figure 9
10/24
DocID018946 Rev 3
110
3
30
175
6
120
600
ns
STGIPL20K60
Electrical characteristics
Table 11. Op amp characteristics (VCC = 15 V unless otherwise specified)
Symbol
Parameter
Vio
Input offset voltage
Iio
Input offset current
Input bias current
Iib
(1)
Test condition
Min.
Typ.
Max.
Unit
6
mV
4
40
nA
100
200
nA
Vic = 0 V, Vo = 7.5 V
Vic = 0 V, Vo = 7.5 V
Vicm
Input common mode voltage
range
VOL
Low level output voltage
RL = 10 kΩ to VCC
VOH
High level output voltage
RL = 10 kΩ to GND
14
14.7
V
Source,
Vid = +1; Vo = 0 V
16
30
mA
Sink,
Vid = -1; Vo = VCC
50
80
mA
Slew rate
Vi = 1 - 4 V; CL = 100 pF;
unity gain
2.5
3.8
V/μs
GBWP
Gain bandwidth product
Vo = 7.5 V
8
12
MHz
Avd
Large signal voltage gain
RL = 2 kΩ
70
85
dB
SVR
Supply voltage rejection ratio
vs. VCC
60
75
dB
CMRR
Common mode rejection ratio
55
70
dB
Io
0
V
75
150
mV
Output short circuit current
SR
1. The direction of input current is out of the IC.
Table 12. Sense comparator characteristics (VCC = 15 V unless otherwise specified)
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
Iib
Input bias current
VCIN = 1 V
-
3
μA
Vol
Open-drain low-level output
voltage
Iod = 3 mA
-
0.5
V
Comparator delay
SD/OD pulled to 5 V through
100 kΩ resistor
-
90
130
ns
SR
Slew rate
CL = 180 pF; Rpu = 5 kΩ
-
60
tsd
Shutdown to high / low side
driver propagation delay
VOUT = 0, Vboot = VCC,
VIN = 0 to 3.3 V
50
125
tisd
Comparator triggering to high /
low side driver turn-off
propagation delay
Measured applying a voltage
step from 0 V to 3.3 V to pin
CINi
td_comp
DocID018946 Rev 3
V/μsec
200
ns
50
200
250
11/24
24
Electrical characteristics
STGIPL20K60
Table 13. Truth table
Logic input (VI)
Output
Condition
SD/OD
LIN
HIN
LVG
HVG
Shutdown enable
half-bridge 3-state
L
X
X
L
L
Interlocking
half-bridge 3-state
H
L
H
L
L
0 ‘’logic state”
half-bridge 3-state
H
H
L
L
L
1 “logic state”
low side direct driving
H
L
L
H
L
1 “logic state”
high side direct driving
H
H
H
L
H
Note:
X: don’t care.
Figure 6. Maximum IC(RMS) current vs. fsine(1)
Figure 5. Maximum IC(RMS) current vs. switching
frequency (1)
AM09907v1
26
24
AM09908v1
18
22
TC = 80 °C
17
20
16
V PN = 300 V, Modulaon index = 0.8,
PF = 0.6, Tj = 150 °C, Tc = 100 °C
18
TC = 100 °C
Ic(RMS) [A]
Ic(RMS) [A]
16
15
14
12
14
13
10
12
8
11
fsw = 12 kHz
6
fsw = 16 kHz
10
VPN = 300 V, Modulaon index = 0.8,
PF = 0.6, T j = 150 °C, fSINE = 60 Hz
4
fsw = 20 kHz
9
2
8
1
0
0
4
8
12
16
10
100
fSINE [Hz]
20
fsw[kHz]
1. Simulated curves refer to typical IGBT parameters and maximum Rthj-c.
3.1.1
NTC thermistor
Table 14. NTC thermistor
Symbol
12/24
Parameter
Test conditions
R25
Resistance
TNTC = 25°C to 85°C
R125
Resistance
B
B-constant
T
Operating temperature
Min.
Typ. Max. Unit.
5
kΩ
TNTC = 125°C
300
Ω
TC = 25°C to 85°C
3340
K
DocID018946 Rev 3
-40
125
°C
STGIPL20K60
Electrical characteristics
Equation 1: resistance variation vs. temperature
R ( T ) = R 25 ⋅ e
1
1
B  --- – ----------
 T 298
Where T are temperatures in Kelvin
Figure 7. NTC resistance vs. temperature
AM03795v2
NTC (kΩ)
Figure 8. NTC resistance vs. temperature zoom
AM03795_2v3
NTC (kΩ)
1.8
100
1.6
1.4
80
Max
Min
1.2
60
1.0
0.8
40
Typ
0.6
0.4
20
0.2
0
-40
-20
0
20
40
60
80
100 T (°C)
DocID018946 Rev 3
0
50
60
70
80
90
100
110
120
T (°C)
13/24
24
Electrical characteristics
3.2
STGIPL20K60
Waveform definitions
Figure 9. Dead time and interlocking waveforms definitions
RLO
CK
ING
INTE
RLO
CK
HIN
INTE
CONTROL SIGNAL EDGES
OVERLAPPED:
INTERLOCKING + DEAD TIME
ING
LIN
LVG
DTHL
DTLH
HVG
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
LIN
CONTROL SIGNALS EDGES
SYNCHRONOUS (*):
DEAD TIME
HIN
LVG
DTLH
DTHL
HVG
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
LIN
CONTROL SIGNALS EDGES
NOT OVERLAPPED,
BUT INSIDE THE DEAD TIME:
DEAD TIME
HIN
LVG
DTLH
DTHL
HVG
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
LIN
CONTROL SIGNALS EDGES
NOT OVERLAPPED,
OUTSIDE THE DEAD TIME:
DIRECT DRIVING
HIN
LVG
DTLH
DTHL
HVG
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
14/24
DocID018946 Rev 3
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
STGIPL20K60
4
Smart shutdown function
Smart shutdown function
The STGIPL20K60 integrates a comparator for fault sensing purposes. The comparator
non-inverting input (CIN) can be connected to an external shunt resistor in order to
implement a simple overcurrent protection function. When the comparator triggers, the
device is set in shutdown state and both its outputs are set to low-level leading the halfbridge in 3-state. In the common overcurrent protection architectures the comparator output
is usually connected to the shutdown input through a RC network, in order to provide a
mono-stable circuit, which implements a protection time that follows the fault condition.
Our smart shutdown architecture allows to immediately turn-off the output gate driver in
case of overcurrent, the fault signal has a preferential path which directly switches off the
outputs. The time delay between the fault and the outputs turn-off is no more dependent on
the RC values of the external network connected to the shutdown pin. At the same time the
internal logic turns on the open-drain output and holds it on until the shutdown voltage goes
below the logic input lower threshold. Finally the smart shutdown function provides the
possibility to increase the real disable time without increasing the constant time of the
external RC network.
DocID018946 Rev 3
15/24
24
Smart shutdown function
STGIPL20K60
Figure 10. Smart shutdown timing waveforms
comp Vref
CP+
HIN/LIN
PROTECTION
HVG/LVG
SD/OD
open drain gate
(internal)
disable time
Fast shut down:
the driver outputs are set in SD state immediately after the comparator
triggering even if the SD signal has not yet reach the lower input threshold
An approximation of the disable time is given by:
SHUT DOWN CIRCUIT
VBIAS
where:
RSD
SD/OD
FROM/TO
CONTROLLER
CSD
RON_OD
SMART
SD
LOGIC
RPD_SD
AM12947v1
Pls refer to Table 12 for internal propagation delay time details.
16/24
DocID018946 Rev 3
STGIPL20K60
5
Application information
Application information
Figure 11. Typical application circuit
DocID018946 Rev 3
17/24
24
Application information
5.1
STGIPL20K60
Recommendations
•
•
•
•
Input signal HIN is active high logic. A 85 kΩ (typ.) pull down resistor is built-in for each
high side input. If an external RC filter is used, for noise immunity, pay attention to the
variation of the input signal level.
Input signal LIN is active low logic. A 720 kΩ (typ.) pull-up resistor, connected to an
internal 5 V regulator through a diode, is built-in for each low side input.
To prevent the input signals oscillation, the wiring of each input should be as short as
possible.
By integrating an application specific type HVIC inside the module, direct coupling to
MCU terminals without any opto-coupler is possible.
•
Each capacitor should be located as nearby the pins of IPM as possible.
•
Low inductance shunt resistors should be used for phase leg current sensing.
•
•
Electrolytic bus capacitors should be mounted as close to the module bus terminals as
possible. Additional high frequency ceramic capacitor mounted close to the module
pins will further improve performance.
The SD/OD signal should be pulled up to 5 V / 3.3 V with an external resistor (see
Section 4: Smart shutdown function for detailed info).
Table 15. Recommended operating conditions
Value
Symbol
Parameter
Conditions
Unit
Min.
VPN
Supply voltage
Applied between P-Nu, Nv, Nw
VCC
Control supply voltage
Applied between VCC-GND
VBS
High side bias voltage
Applied between VBOOTi-OUTi for
i = U, V, W
13
tdead
Blanking time to
prevent Arm-short
For each input signal
1
fPWM
PWM input signal
-40°C < Tc < 100°C
-40°C < Tj < 125°C
TC
Case operation
temperature
For further details refer to AN3338.
18/24
DocID018946 Rev 3
13.5
Typ.
Max.
300
400
V
15
18
V
18
V
μs
20
kHz
100
°C
STGIPL20K60
6
Package mechanical data
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
Please refer to dedicated technical note TN0107 for mounting instructions.
Table 16. SDIP-38L mechanical data
mm.
Dimensions
Min.
Typ.
Max.
A
49.10
49.60
50.10
A1
1.10
1.30
1.50
A2
1.40
1.60
1.80
A3
44.10
44.60
45.10
B
24.00
24.50
25.00
B1
11.25
11.85
12.45
B2
27.10
27.60
28.10
B3
28.60
29.10
29.60
C
5.00
5.40
6.00
C1
6.50
7.00
7.50
C2
10.35
10.85
11.35
e
1.10
1.30
1.50
e1
3.20
3.40
3.60
e2
5.80
6.00
6.20
e3
4.60
4.80
5.00
e4
5.60
5.80
6.00
e5
6.30
6.50
6.70
e6
4.50
4.70
4.90
D
38.10
D1
5.75
E
11.80
E1
2.15
F
0.85
1.00
1.15
F1
0.35
0.50
0.65
R
1.55
1.75
1.95
DocID018946 Rev 3
19/24
24
Package mechanical data
STGIPL20K60
Table 16. SDIP-38L mechanical data (continued)
T
0.45
V
0°
0.55
0.65
6°
Figure 12. SDIP-38L package dimensions
8142868_G
20/24
DocID018946 Rev 3
STGIPL20K60
Package mechanical data
8147106_E
Figure 13. SDIP-38L shipping tube type A (dimensions are in mm.)
DocID018946 Rev 3
21/24
24
Package mechanical data
STGIPL20K60
8147106_E
Figure 14. SDIP-38L shipping tube type B (dimensions are in mm.)
22/24
DocID018946 Rev 3
STGIPL20K60
7
Revision history
Revision history
Table 17. Document revision history
Date
Revision
Changes
16-Jun-2011
1
Initial release
28-Aug-2012
2
Modified: Min. and Max. value Table 4 on page 6.
Updated: Figure 13 on page 21.
Added: Figure 14 on page 22.
17-Jun-2013
3
Updated Figure 9: Dead time and interlocking waveforms
definitions.
DocID018946 Rev 3
23/24
24
STGIPL20K60
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE
IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH
PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR
ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED
FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN
WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE,
AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS.
PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE
CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2013 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
24/24
DocID018946 Rev 3