STGIPS20K60 SLLIMM™ small low-loss intelligent molded module IPM, 3-phase inverter 18 A, 600 V short-circuit rugged IGBT Datasheet - production data Applications • 3-phase inverters for motor drives • Home appliances, such as washing machines, refrigerators, air conditioners and sewing machine Description This intelligent power module provides a compact, high performance AC motor drive in a simple, rugged design. Combining ST proprietary control ICs with the most advanced short-circuitrugged IGBT system technology, this device is ideal for 3-phase inverters in applications such as home appliances and air conditioners. SLLIMM™ is a trademark of STMicroelectronics. SDIP-25L Features • IPM 18 A, 600 V 3-phase IGBT inverter bridge including control ICs for gate driving and freewheeling diodes • Short-circuit rugged IGBTs • VCE(sat) negative temperature coefficient • 3.3 V, 5 V, 15 V CMOS/TTL input comparators with hysteresis and pull-down / pull-up resistors • Undervoltage lockout • Internal bootstrap diode • Interlocking function • Smart shutdown function • Comparator for fault protection against overtemperature and overcurrent • DBC leading to low thermal resistance • Isolation rating of 2500 Vrms/min • UL Recognized: UL1557 file E81734 Table 1. Device summary Order code Marking Package Packing STGIPS20K60 GIPS20K60 SDIP-25L Tube April 2015 This is information on a product in full production. DocID16098 Rev 8 1/21 www.st.com Contents STGIPS20K60 Contents 1 Internal block diagram and pin configuration . . . . . . . . . . . . . . . . . . . . 3 2 Electrical ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1 Control part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Waveform definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4 Smart shutdown function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.1 6 7 2/21 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.1 SDIP-25L package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.2 SDIP-25L packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 DocID16098 Rev 8 STGIPS20K60 1 Internal block diagram and pin configuration Internal block diagram and pin configuration Figure 1. Internal block diagram Pin 1 Pin 25 OUT U P VBOOT U LIN Vboot LIN-U SD/OD HVG HIN-U HIN VCC OUT U VCC DT LVG CP+ NU GND OUT V VBOOT V P LIN GND Vboot SD/OD HVG LIN-V HIN HIN-V VCC OUT V DT LVG CP+ NV GND OUT W VBOOT W P LIN Vboot LIN-W SD/OD HVG HIN-W HIN SD/OD VCC CIN OUT W DT LVG Pin 16 CP+ NW GND Pin 17 AM05002v1 DocID16098 Rev 8 3/21 21 Internal block diagram and pin configuration STGIPS20K60 Table 2. Pin description Pin n° Symbol Description 1 OUTU High-side reference output for U phase 2 VbootU Bootstrap voltage for U phase 3 LINU Low-side logic input for U phase 4 HINU High-side logic input for U phase 5 VCC Low voltage power supply 6 OUTV High-side reference output for V phase 7 Vboot V Bootstrap voltage for V phase 8 GND Ground 9 LINV Low-side logic input for V phase 10 HINV High-side logic input for V phase 11 OUTW High-side reference output for W phase 12 Vboot W Bootstrap voltage for W phase 13 LINW Low-side logic input for W phase 14 HINW High-side logic input for W phase 15 SD / OD 16 CIN Comparator input 17 NW Negative DC input for W phase 18 W W phase output 19 P Positive DC input 20 NV 21 V V phase output 22 P Positive DC input 23 NU Negative DC input for U phase 24 U U phase output 25 P Positive DC input Shutdown logic input (active low) / open-drain (comparator output) Negative DC input for V phase Figure 2. Pin layout (bottom view) 0$5.,1*$5($ 4/21 DocID16098 Rev 8 STGIPS20K60 Electrical ratings 2 Electrical ratings 2.1 Absolute maximum ratings Table 3. Inverter part Symbol Parameter Value Unit VPN Supply voltage applied between P - NU, NV, NW 450 V VPN(surge) Supply voltage (surge) applied between P - NU, NV, NW 500 V VCES Each IGBT collector emitter voltage (VIN(1) = 0 V) 600 V ± IC (2) Each IGBT continuous collector current at TC = 25 °C 18 A ± ICP (3) Each IGBT pulsed collector current 40 A Each IGBT total dissipation at TC = 25 °C 52 W Short circuit withstand time, VCE = 0.5 V(BR)CES TJ = 125 °C, VCC = Vboot= 15 V, VIN (1)= 0 to 5 V 5 µs PTOT tscw 1. Applied between HINi, LINi and GND for i = U, V, W 2. Calculated according to the iterative formula: Tj ( max ) – TC IC ( T C ) = ------------------------------------------------------------------------------------------------------R thj – c × V CE ( sat ) ( max ) ( T j ( max ), I C ( T C ) ) 3. Pulse width limited by max junction temperature Table 4. Control part Symbol Parameter Min. Max. Unit Vboot - 21 Vboot + 0.3 V VOUT Output voltage applied between OUTU, OUTV, OUTW - GND VCC Low voltage power supply - 0.3 21 V VCIN Comparator input voltage - 0.3 VCC + 0.3 V Vboot Bootstrap voltage - 0.3 620 V Logic input voltage applied between HIN, LIN and GND - 0.3 15 V Open drain voltage - 0.3 15 V 50 V/ns VIN VSD/OD dVOUT/dt Allowed output slew rate DocID16098 Rev 8 5/21 21 Electrical ratings STGIPS20K60 Table 5. Total system Symbol VISO 2.2 Parameter Isolation withstand voltage applied between each pin and heatsink plate (AC voltage, t = 60 s) Value Unit 2500 V Tj Power chips operating junction temperature - 40 to 150 °C TC Module case operation temperature - 40 to 125 °C Value Unit Thermal data Table 6. Thermal data Symbol RthJC 6/21 Parameter Thermal resistance junction-case single IGBT 2.4 Thermal resistance junction-case single diode 5 °C/W DocID16098 Rev 8 STGIPS20K60 3 Electrical characteristics Electrical characteristics TJ = 25 °C unless otherwise specified. Table 7. Inverter part Value Symbol VCE(sat) ICES VF Parameter Collector-emitter saturation voltage Test conditions VCC = Vboot = 15 V, VIN(1)= 0 ÷ 5 V, IC = 12 A Unit Min. Typ. Max. - 2.2 2.75 V VCC = Vboot = 15 V, VIN(1)= 0 to 5 V, IC = 12 A, TJ = 125 °C - Collector-cut off current (VIN(1)= 0 “logic state”) VCE = 550 V, VCC = VBoot = 15 V - 150 µA Diode forward voltage VIN(1) = 0 V “logic state”, IC = 12 A - 2.1 V 1.8 Inductive load switching time and energy ton tc(on) toff tc(off) trr Turn-on time Crossover time (on) Turn-off time Crossover time (off) Reverse recovery time Eon Turn-on switching losses Eoff Turn-off switching losses VPN = 300 V, VCC = Vboot = 15 V, VIN(1) = 0 to 5 V, IC = 12 A (see Figure 3) - 300 - - 150 - - 730 - - 170 - - 60 - - 290 - - 250 - ns µJ 1. Applied between HINi, LINi and GND for i = U, V, W. (LIN inputs are active-low). Note: tON and tOFF include the propagation delay time of the internal drive. tC(ON) and tC(OFF) are the switching time of IGBT itself under the internally given gate driving condition. DocID16098 Rev 8 7/21 21 Electrical characteristics STGIPS20K60 Figure 3. Switching time test circuit INPUT BUS BOOT /Lin +5 V VBOOT>VCC /SD HVG RSD L Hin VCC OUT Vcc IC DT LVG GND CP+ VCE 0 1 AM17166v1 Figure 4. Switching time definition 100% IC 100% IC t rr IC VCE VIN VIN t ON t C(ON) VIN(ON) 10% IC 90% IC 10% VCE (a) turn-on Note: 8/21 VCE IC t OFF VIN(OFF) t C(OFF) 10% VCE (b) turn-off 10% IC AM09223V1 Figure 4: Switching time definition refers to HIN inputs (active high). For LIN inputs (active low), VIN polarity must be inverted for turn-on and turn-off. DocID16098 Rev 8 STGIPS20K60 3.1 Electrical characteristics Control part Table 8. Low voltage power supply (VCC = 15 V unless otherwise specified) Symbol Min. Typ. Max. Unit VCC UV hysteresis 1.2 1.5 1.8 V VCC_thON VCC UV turn ON threshold 11.5 12 12.5 V VCC_thOFF VCC UV turn OFF threshold 10 10.5 11 V VCC_hys Parameter Test conditions Iqccu Undervoltage quiescent supply current VCC = 10 V SD/OD = 5 V; LIN = 5 V; HIN = 0, CIN = 0 450 µA Iqcc Quiescent current VCC = 15 V SD/OD = 5 V; LIN = 5 V HIN = 0, CIN = 0 3.5 mA Vref Internal comparator (CIN) reference voltage 0.58 V 0.5 0.54 Table 9. Bootstrapped voltage (VCC = 15 V unless otherwise specified) Symbol Min. Typ. Max. Unit VBS UV hysteresis 1.2 1.5 1.8 V VBS_thON VBS UV turn ON threshold 11.1 11.5 12.1 V VBS_thOFF VBS UV turn OFF threshold 9.8 10 10.6 V IQBSU Undervoltage VBS quiescent current VBS < 9 V SD/OD = 5 V; LIN and HIN = 5 V; CIN = 0 70 110 µA IQBS VBS quiescent current VBS = 15 V SD/OD = 5 V; LIN and HIN = 5 V; CIN = 0 210 300 µA Bootstrap driver on resistance LVG ON 120 VBS_hys RDS(on) Parameter Test conditions Ω Table 10. Logic inputs (VCC = 15 V unless otherwise specified) Symbol Parameter Test conditions Min. Typ. Max. Unit Vil Low logic level voltage 0.8 1.1 V Vih High logic level voltage 1.9 2.25 V 260 µA 1 µA 20 µA 1 µA 300 µA 3 µA IHINh HIN logic “1” input bias current HIN = 15 V IHINl HIN logic “0” input bias current HIN = 0 V ILINl LIN logic “1” input bias current LIN = 0 V ILINh LIN logic “0” input bias current LIN = 15 V ISDh SD logic “0” input bias current SD = 15 V ISDl SD logic “1” input bias current SD = 0 V Dt Dead time see Figure 7 DocID16098 Rev 8 110 3 30 175 6 120 600 ns 9/21 21 Electrical characteristics STGIPS20K60 Table 11. Sense comparator characteristics (VCC = 15 V unless otherwise specified) Symbol Parameter Test conditions Min. Typ. Max. Unit Iib Input bias current VCIN = 1 V - 3 µA Vol Open-drain low-level output voltage Iod = 3 mA - 0.5 V Comparator delay SD/OD pulled to 5 V through 100 kΩ resistor - 90 130 ns SR Slew rate CL = 180 pF; Rpu = 5 kΩ - 60 tsd Shut down to high / low side driver propagation delay VOUT = 0, Vboot = VCC, VIN = 0 to 3.3 V 50 125 tisd Comparator triggering to high / low side driver turn-off propagation delay Measured applying a voltage step from 0 V to 3.3 V to pin CIN td_comp V/µsec 200 ns 50 200 250 Table 12. Truth table Logic input (VI) Output Condition SD/OD LIN HIN LVG HVG Shutdown enable half-bridge tri-state L X X L L Interlocking half-bridge tri-state H L H L L 0 ‘’logic state” half-bridge tri-state H H L L L 1 “logic state” low side direct driving H L L H L 1 “logic state” high side direct driving H H H L H Note: 10/21 X: don’t care DocID16098 Rev 8 STGIPS20K60 Electrical characteristics Figure 5. Maximum IC(RMS) current vs. switching frequency (1) Figure 6. Maximum IC(RMS) current vs. fSINE (1) AM07841v1 26 AM07842v1 16 24 15 22 14 VPN = 300 V, Modulation index = 0.8, PF = 0.6, Tj = 150 °C, TC = 100 °C TC = 80 °C 13 I c(RMS) [A] I c(RMS) [A] 20 18 TC = 100 °C 12 16 11 14 10 VPN = 300 V, Modulation index = 0.8, PF = 0.6, Tj = 150 °C, fSINE = 60 Hz 12 fSW = 12 kHz fSW = 16 kHz 9 fSW = 20 kHz 10 4 8 12 16 20 8 1 fSW [kHz] 10 f SINE [Hz] 100 1. Simulated curves refer to typical IGBT parameters and maximum Rthj-c. DocID16098 Rev 8 11/21 21 Electrical characteristics 3.2 STGIPS20K60 Waveform definitions Figure 7. Dead time and interlocking waveform definitions RLO CKIN G HIN INTE CONTROL SIGNAL EDGES OVERLAPPED: INTERLOCKING + DEAD TIME INTE RLO CKIN G LIN LVG DTHL DTLH HVG gate driver outputs OFF (HALF-BRIDGE TRI-STATE) gate driver outputs OFF (HALF-BRIDGE TRI-STATE) LIN CONTROL SIGNALS EDGES SYNCHRONOUS (*): DEAD TIME HIN LVG DTLH DTHL HVG gate driver outputs OFF (HALF-BRIDGE TRI-STATE) gate driver outputs OFF (HALF-BRIDGE TRI-STATE) LIN CONTROL SIGNALS EDGES NOT OVERLAPPED, BUT INSIDE THE DEAD TIME: DEAD TIME HIN LVG DTLH DTHL HVG gate driver outputs OFF (HALF-BRIDGE TRI-STATE) gate driver outputs OFF (HALF-BRIDGE TRI-STATE) LIN CONTROL SIGNALS EDGES NOT OVERLAPPED, OUTSIDE THE DEAD TIME: DIRECT DRIVING HIN LVG DTLH DTHL HVG gate driver outputs OFF (HALF-BRIDGE TRI-STATE) (*) HIN and LIN can be connected together and driven by just one control signal 12/21 DocID16098 Rev 8 gate driver outputs OFF (HALF-BRIDGE TRI-STATE) STGIPS20K60 4 Smart shutdown function Smart shutdown function The STGIPS20K60 integrates a comparator for fault sensing purposes. The comparator has an internal voltage reference Vref connected to the inverting input, while the non-inverting input, available on pin (CIN), can be connected to an external shunt resistor in order to implement a simple over-current protection function. When the comparator triggers, the device is set in shutdown state and both its outputs are set to low-level leading the halfbridge in tri-state. In the common overcurrent protection architectures the comparator output is usually connected to the shutdown input through a RC network, in order to provide a mono-stable circuit, which implements a protection time that follows the fault condition. Our smart shutdown architecture allows to immediately turn-off the output gate driver in case of overcurrent, the fault signal has a preferential path which directly switches off the outputs. The time delay between the fault and the outputs turn-off is no more dependent on the RC values of the external network connected to the shutdown pin. At the same time the DMOS connected to the open-drain output (pin SD/OD) is turned on by the internal logic which holds it on until the shutdown voltage is lower than the logic input lower threshold (Vil). Finally the smart shutdown function provides the possibility to increase the real disable time without increasing the constant time of the external RC network. DocID16098 Rev 8 13/21 21 Smart shutdown function STGIPS20K60 Figure 8. Smart shutdown timing waveforms comp Vref CP+ HIN/LIN PROTECTION HVG/LVG SD/OD open drain gate (internal) disable time Fast shut down: the driver outputs are set in SD state immediately after the comparator triggering even if the SD signal has not yet reach the lower input threshold An approximation of the disable time is given by: SHUT DOWN CIRCUIT VBIAS where: RSD SD/OD FROM/TO CONTROLLER CSD RON_OD SMART SD LOGIC RPD_SD AM12947v1 Please refer to Table 11 for internal propagation delay time details. 14/21 DocID16098 Rev 8 3.3V/5V Line CONTROLLER DocID16098 Rev 8 Csd Rsd Cbw Cbv VCC CIN SD/OD HIN-W LIN-W VBOOT W OUT W HIN-V LIN-V GND VBOOT V OUT V VCC HIN-U LIN-U VBOOT U OUT U Rdt Cvcc Rdt Cvcc Rdt Cvcc Cdt Cdt Cdt OUT HIN OUT HIN OUT HIN GND DT CP+ LVG HVG VCC Vboot SD/OD CP+ LIN GND DT LVG HVG VCC Vboot SD/OD CP+ LIN GND DT LVG HVG SD/OD VCC Vboot LIN Rg Rg Rg Rg Rg Rg T6 T5 T4 T3 T2 T1 D6 D5 D4 D3 D2 D1 C R Nw W Nv V Nu U P Rshunt M + VDC 5 Cbu STGIPS20K60 Application information Application information Figure 9. Typical application circuit AM05001v2 15/21 21 Application information 5.1 STGIPS20K60 Recommendations • Input signal HIN is active high logic. A 85 kΩ (typ.) pull-down resistor is built-in for each high side input. If an external RC filter is used, for noise immunity, pay attention to the variation of the input signal level. • Input signal LIN is active low logic. A 720 kΩ (typ.) pull-up resistor, connected to an internal 5 V regulator through a diode, is built-in for each low side input. • To prevent the input signals oscillation, the wiring of each input should be as short as possible. • By integrating an application specific type HVIC inside the module, direct coupling to MCU terminals without any opto-coupler is possible. • Each capacitor should be located as nearby the pins of IPM as possible. • Low inductance shunt resistors should be used for phase leg current sensing. • Electrolytic bus capacitors should be mounted as close to the module bus terminals as possible. Additional high frequency ceramic capacitor mounted close to the module pins will further improve performance. • The SD/OD signal should be pulled up to 5 V / 3.3 V with an external resistor (see Section 4: Smart shutdown function for detailed info). Table 13. Recommended operating conditions Value Symbol Parameter Conditions Unit Min. VPN Supply Voltage Applied between P-Nu,Nv,Nw VCC Control supply voltage Applied between VCC-GND VBS High side bias voltage Applied between VBOOTi-OUTi for i = U,V,W 13 tdead Blanking time to prevent Arm-short For each input signal 1 fPWM PWM input signal -40°C < Tc < 100°C -40°C < Tj < 125°C TC Case operation temperature For further details refer to AN3338. 16/21 DocID16098 Rev 8 13.5 Typ. Max. 300 400 V 15 18 V 18 V µs 20 kHz 100 °C STGIPS20K60 6 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Please refer to dedicated technical note TN0107 for mounting instructions. 6.1 SDIP-25L package information Figure 10. SDIP-25L package outline B DocID16098 Rev 8 17/21 21 Package information STGIPS20K60 Table 14. SDIP-25L mechanical data mm Dim. 18/21 Min. Typ. Max. A 43.90 44.40 44.90 A1 1.15 1.35 1.55 A2 1.40 1.60 1.80 A3 38.90 39.40 39.90 B 21.50 22.00 22.50 B1 11.25 11.85 12.45 B2 24.83 25.23 25.63 C 5.00 5.40 6.00 C1 6.50 7.00 7.50 C2 11.20 11.70 12.20 C3 2.90 3.00 3.10 e 2.15 2.35 2.55 e1 3.40 3.60 3.80 e2 4.50 4.70 4.90 e3 6.30 6.50 6.70 D 33.30 D1 5.55 E 11.20 E1 1.40 F 0.85 1.00 1.15 F1 0.35 0.50 0.65 R 1.55 1.75 1.95 T 0.45 0.55 0.65 V 0° 6° DocID16098 Rev 8 STGIPS20K60 SDIP-25L packing information 8123127_E AM10488v1 Figure 11. SDIP-25L packing information (dimensions are in mm.) Base quantity: 11 pcs Bulk quantity: 132 pcs 6.2 Package information DocID16098 Rev 8 19/21 21 Revision history 7 STGIPS20K60 Revision history Table 15. Document revision history Date Revision 10-Aug-2009 1 Initial release 01-Jul-2010 2 Document status promoted from preliminary to datasheet. Updated package mechanical data (Section 6: Package information). Minor text changes to improve readability. 23-Sep-2010 3 Updated: Table 3, 5, 10 and Table 11. Modified: Figure 5 and Figure 6. 03-May-2011 4 Updated title with SLLIMM™ in cover page, added SDIP-25L tube dimensions Figure 10: SDIP-25L package outline. 04-Nov-2011 5 Updated title with SLLIMM™ (small low-loss intelligent molded module) IPM, 3-phase inverter - 18 A, 600 V short-circuit rugged IGBT in cover page and SDIP-25L mechanical data Table 14 on page 17, Figure 10 on page 17. 28-Aug-2012 6 Modified: Min. and Max. value Table 4 on page 5. Updated: Figure 11 on page 19. Added: Figure 12 on page 20. 02-May-2013 7 Modified: Figure 3 on page 8 and Figure 8 on page 14. 8 Text and formating changes throughout document. Updated Figure 2: Pin layout (bottom view) Updated Table 7: Inverter part Updated Figure 10: SDIP-25L package outline Updated and renamed Section 6: Package information (was Package mechanical data) 21-Apr-2015 20/21 Changes DocID16098 Rev 8 STGIPS20K60 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics – All rights reserved DocID16098 Rev 8 21/21 21