STMICROELECTRONICS STGIPS10K60T

STGIPS10K60T
SLLIMM™ (small low-loss intelligent molded module)
IPM, 3-phase inverter - 10 A, 600 V short-circuit rugged IGBT
Datasheet - production data
Applications
 3-phase inverters for motor drives
 Home appliances, such as washing machines,
refrigerators, air conditioners and sewing
machines
Description
This intelligent power module provides a
compact, high performance AC motor drive in a
simple, rugged design. Combining ST proprietary
control ICs with the most advanced short-circuitrugged IGBT system technology, this device is
ideal for 3-phase inverters in applications such as
home appliances and air conditioners. SLLIMM™
is a trademark of STMicroelectronics.
SDIP-25L
Features
 IPM 10 A, 600 V 3-phase IGBT inverter bridge
including control ICs for gate driving and freewheeling diodes
 Short-circuit rugged IGBTs
 VCE(sat) negative temperature coefficient
 3.3 V, 5 V, 15 V CMOS/TTL inputs
comparators with hysteresis and pull down /
pull up resistors
 Undervoltage lockout
 Internal bootstrap diode
 Interlocking function
 Shut down function
 DBC substrate leading to low thermal
resistance
 Isolation rating of 2500 Vrms/min
 4.7 k NTC for temperature control
 UL recognized: UL1557 file E81734
Table 1. Device summary
Order code
Marking
Package
Packaging
STGIPS10K60T
GIPS10K60T
SDIP-25L
Tube
April 2013
This is information on a product in full production.
DocID018533 Rev 4
1/20
www.st.com
20
Contents
STGIPS10K60T
Contents
1
Internal block diagram and pin configuration . . . . . . . . . . . . . . . . . . . . 3
2
Electrical ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3
2.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1
Control part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.1
3.2
4
NTC thermistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Waveforms definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Applications information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1
Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2/20
DocID018533 Rev 4
STGIPS10K60T
1
Internal block diagram and pin configuration
Internal block diagram and pin configuration
Figure 1. Internal block diagram
AM09320v2
DocID018533 Rev 4
3/20
Internal block diagram and pin configuration
STGIPS10K60T
Table 2. Pin description
Pin n°
Symbol
Description
1
OUTU
High side reference output for U phase
2
Vboot U
Bootstrap voltage for U phase
3
LINU
Low side logic input for U phase
4
HINU
High side logic input for U phase
5
VCC
Low voltage power supply
6
OUTV
High side reference output for V phase
7
Vboot V
Bootstrap voltage for V phase
8
GND
Ground
9
LINV
Low side logic input for V phase
10
HINV
High side logic input for V phase
11
OUTW
High side reference output for W phase
12
Vboot W
Bootstrap voltage for W phase
13
LINW
Low side logic input for W phase
14
HINW
High side logic input for W phase
15
SD
Shut down logic input (active low)
16
T1
NTC thermistor terminal
17
NW
Negative DC input for W phase
18
W
W phase output
19
P
Positive DC input
20
NV
Negative DC input for V phase
21
V
V phase output
22
P
Positive DC input
23
NU
Negative DC input for U phase
24
U
U phase output
25
P
Positive DC input
Figure 2. Pin layout (bottom view)
4/20
DocID018533 Rev 4
STGIPS10K60T
Electrical ratings
2
Electrical ratings
2.1
Absolute maximum ratings
Table 3. Inverter part
Symbol
Parameter
Value
Unit
VPN
Supply voltage applied between P - NU, NV, NW
450
V
VPN(surge)
Supply voltage (surge) applied between P - NU,
NV, NW
500
V
VCES
Each IGBT collector emitter voltage (VIN(1) = 0)
600
V
± IC(2)
Each IGBT continuous collector current at
TC = 25°C
10
A
Each IGBT pulsed collector current
20
A
Each IGBT total dissipation at TC = 25°C
33
W
Short-circuit withstand time, VCE = 0.5 V(BR)CES
Tj = 125 °C, VCC = Vboot= 15 V, VIN (1)= 5 V
5
µs
± ICP (3)
PTOT
tscw
1. Applied between HINi, LINi and GND for i = U, V, W.
2. Calculated according to the iterative formula:
T j  max  – T C
I C  T C  = ------------------------------------------------------------------------------------------------------R thj – c  V CE  sat   max   T j  max  I C  T C  
3. Pulse width limited by max junction temperature.
Table 4. Control part
Symbol
Parameter
Min.
Max.
Unit
Vboot - 21
Vboot + 0.3
V
VOUT
Output voltage applied between OUTU, OUTV,
OUTW - GND
VCC
Low voltage power supply
- 0.3
21
V
Vboot
Bootstrap voltage
- 0.3
620
V
VIN
Logic input voltage applied between HIN, LIN and
GND
- 0.3
15
V
VSD
SD voltage
- 0.3
15
V
50
V/ns
dVOUT/dt
Allowed output slew rate
Table 5. Total system
Symbol
VISO
Parameter
Isolation withstand voltage applied between each
pin and heatsink plate (AC voltage, t = 60 sec.)
Value
Unit
2500
V
TC
Module case operation temperature
-40 to 125
°C
TJ
Power chips operating junction temperature
-40 to 150
°C
DocID018533 Rev 4
5/20
Electrical ratings
2.2
STGIPS10K60T
Thermal data
Table 6. Thermal data
Symbol
RthJC
6/20
Parameter
Value
Unit
Thermal resistance junction-case single IGBT max.
3.8
°C/W
Thermal resistance junction-case single diode max.
5.5
°C/W
DocID018533 Rev 4
STGIPS10K60T
3
Electrical characteristics
Electrical characteristics
TJ = 25 °C unless otherwise specified.
Table 7. Inverter part
Value
Symbol
VCE(sat)
ICES
VF
Parameter
Test conditions
Unit
Min.
Typ.
Max.
VCC = Vboot = 15 V,
VIN(1)= 5 V,
IC = 5 A
-
2.1
2.5
VCC = Vboot = 15 V,
VIN(1)= 5 V,
IC = 5 A, Tj = 125 °C
-
Collector-cut off current
(VIN(1) = 0 “logic state”)
VCE = 550 V
VCC = Vboot = 15 V
-
150
µA
Diode forward voltage
(VIN(1) = 0 “logic state”), IC =
5A
-
1.9
V
Collector-emitter
saturation voltage
V
1.8
Inductive load switching time and energy
ton
tc(on)
toff
tc(off)
trr
Turn-on time
-
320
-
Crossover time (on)
-
70
-
-
430
-
-
135
-
-
130
-
Turn-off time
Crossover time (off)
Reverse recovery time
VDD = 300 V,
VCC = Vboot = 15 V,
VIN(1)= 0 ÷5 V,
IC = 5 A (see Figure 4)
Eon
Turn-on switching losses
-
65
-
Eoff
Turn-off switching losses
-
75
-
ns
µJ
1. Applied between HINi, LINi and GND for i = U, V, W (LIN inputs are active-low).
Note:
tON and tOFF include the propagation delay time of the internal drive. tC(ON) and tC(OFF) are
the switching time of IGBT itself under the internally given gate driving condition.
DocID018533 Rev 4
7/20
Electrical characteristics
STGIPS10K60T
Figure 3. Switching time test circuit
INPUT
+5V
VBOOT>VCC
/SD
HVG
RSD
Hin
VCC
BUS
BOOT
/Lin
L
OUT
Vcc
IC
DT
LVG
GND
CP+
VCE
0
1
AM17167v1
Figure 4. Switching time definition
100% IC 100% IC
t rr
IC
VCE
VCE
IC
VIN
VIN
t ON
t OFF
t C(OFF)
t C(ON)
VIN(ON)
10% IC 90% IC 10% VCE
(a) turn-on
Note:
8/20
VIN(OFF)
10% VCE
(b) turn-off
10% IC
AM09223V1
Figure 4 "Switching time definition" refers to HIN inputs (active high). For LIN inputs (active
low), VIN polarity must be inverted for turn-on and turn-off.
DocID018533 Rev 4
STGIPS10K60T
3.1
Electrical characteristics
Control part
Table 8. Low voltage power supply (VCC = 15 V unless otherwise specified)
Symbol
Min.
Typ.
Max.
Unit
Vcc UV hysteresis
1.2
1.5
1.8
V
Vcc_thON
Vcc UV turn ON threshold
11.5
12
12.5
V
Vcc_thOFF
Vcc UV turn OFF threshold
10
10.5
11
V
Vcc_hys
Parameter
Test conditions
Iqccu
Undervoltage quiescent
supply current
VCC = 10 V
SD = 5 V; LIN = 5 V;
HIN = 0
450
µA
Iqcc
Quiescent current
Vcc = 15 V
SD = 5 V; LIN = 5 V
HIN = 0
3.5
mA
Table 9. Bootstrapped voltage (VCC = 15 V unless otherwise specified)
Symbol
Min.
Typ.
Max.
Unit
VBS UV hysteresis
1.2
1.5
1.8
V
VBS_thON
VBS UV turn ON threshold
11.1
11.5
12.1
V
VBS_thOFF
VBS UV turn OFF threshold
9.8
10
10.6
V
IQBSU
Undervoltage VBS quiescent
current
VBS < 9 V
SD = 5 V; LIN and
HIN = 5 V
70
110
µA
IQBS
VBS quiescent current
VBS = 15 V
SD = 5 V; LIN and
HIN = 5 V
200
300
µA
Bootstrap driver on resistance
LVG ON
120
VBS_hys
RDS(on)
Parameter
Test conditions
W
Table 10. Logic inputs (VCC = 15 V unless otherwise specified)
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
Vil
Low logic level voltage
0.8
1.1
V
Vih
High logic level voltage
1.9
2.25
V
260
µA
1
µA
20
µA
1
µA
300
µA
3
µA
IHINh
HIN logic “1” input bias current
HIN = 15 V
IHINl
HIN logic “0” input bias current
HIN = 0 V
ILINl
LIN logic “1” input bias current
LIN = 0 V
ILINh
LIN logic “0” input bias current
LIN = 15 V
ISDh
SD logic “0” input bias current
SD = 15 V
ISDl
SD logic “1” input bias current
SD = 0 V
Dt
Dead time
see Figure 9
DocID018533 Rev 4
110
3
30
175
6
120
600
ns
9/20
Electrical characteristics
STGIPS10K60T
Table 11. Shut down characteristics (VCC = 15 V unless otherwise specified)
Symbol
Parameter
Test conditions
Shut down to high / low side
driver propagation delay
tsd
Min.
Typ.
Max.
Unit
50
125
200
ns
VOUT = 0, Vboot = VCC,
VIN = 0 to 3.3 V
Table 12. Truth table
Logic input (VI)
Output
Condition
SD
LIN
HIN
LVG
HVG
Shutdown enable
half-bridge tri-state
L
X
X
L
L
Interlocking
half-bridge tri-state
H
L
H
L
L
0 ‘’logic state”
half-bridge tri-state
H
H
L
L
L
1 “logic state”
low side direct driving
H
L
L
H
L
1 “logic state”
high side direct driving
H
H
H
L
H
Note:
X: don’t care
Figure 5. Maximum IC(RMS) current vs. switching
frequency (1)
AM03801v1
IC (RMS)
(A)
VPN = 300 V, Modulation index = 0.8,
PF = 0.6, Tj= 150 °C, f SINE = 60 Hz
Figure 6. Maximum IC(RMS) current vs. fSINE (1)
IC (RMS)
(A)
AM03802v1
VPN = 300 V, Modulation index = 0.8,
PF = 0.6, Tj = 150°C, Tc = 100 °C
8
12
7
TC = 80°C
10
fsw = 12 kHz
6
fsw = 16 kHz
8
5
TC = 100°C
6
4
6
8
10
fsw = 20 kHz
12
14
16
4
fsw(kHz)
1
1. Simulated curves refer to typical IGBT parameters and maximum RthJC.
10/20
DocID018533 Rev 4
10
fSINE(Hz)
STGIPS10K60T
3.1.1
Electrical characteristics
NTC thermistor
Table 13. NTC thermistor
Symbol
Parameter
Test conditions
Min.
Typ. Max. Unit.
R25
Resistance
T = 25 °C
4.7
k
R125
Resistance
T = 125 °C
160

B
B-constant
T = 25 °C to 85 °C
3950
K
T
Operating temperature
-40
150
°C
Equation 1: resistance variation vs. temperature
R  T  = R 25  e
1
1
B  --- – ----------
 T 298
Where T are temperatures in Kelvins
Figure 7. NTC resistance vs. temperature
AM17168v1
NTC [kΩ]
180
160
140
120
100
80
MAX.
60
CENTER
40
20
0
MIN.
-40
-20
0
20
40
60
80
100 120 140 (°C)
Figure 8. NTC resistance vs. temperature (zoom)
AM17169v1
NTC [kΩ]
1.8
1.6
1.4
1.2
1.0
0.8
MAX.
0.6
CENTER
0.4
MIN.
0.2
0.0
50
60
70
80
90
100 110 120 130 140 (°C)
DocID018533 Rev 4
11/20
Electrical characteristics
3.2
STGIPS10K60T
Waveforms definitions
Figure 9. Dead time and interlocking waveforms definitions
RLO
CK
ING
INTE
RLO
CK
HIN
INTE
CONTROL SIGNAL EDGES
OVERLAPPED:
INTERLOCKING + DEAD TIME
ING
LIN
LVG
DTHL
DTLH
HVG
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
LIN
CONTROL SIGNALS EDGES
SYNCHRONOUS (*):
DEAD TIME
HIN
LVG
DTLH
DTHL
HVG
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
LIN
CONTROL SIGNALS EDGES
NOT OVERLAPPED,
BUT INSIDE THE DEAD TIME:
DEAD TIME
HIN
LVG
DTLH
DTHL
HVG
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
LIN
CONTROL SIGNALS EDGES
NOT OVERLAPPED,
OUTSIDE THE DEAD TIME:
DIRECT DRIVING
HIN
LVG
DTLH
DTHL
HVG
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
(*) HIN and LIN can be connected together and driven by just one control signal
12/20
DocID018533 Rev 4
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
STGIPS10K60T
4
Applications information
Applications information
Figure 10. Typical application circuit
AM09321v2
DocID018533 Rev 4
13/20
Applications information
4.1
STGIPS10K60T
Recommendations

Input signal HIN is active high logic. A 85 k (typ.) pull down resistor is built-in for each
high side input. If an external RC filter is used, for noise immunity, pay attention to the
variation of the input signal level.

Input signal /LIN is active low logic. A 720 k (typ.) pull-up resistor, connected to an
internal 5 V regulator through a diode, is built-in for each low side input.

To prevent the input signals oscillation, the wiring of each input should be as short as
possible.

By integrating an application specific type HVIC inside the module, direct coupling to
MCU terminals without any opto-coupler is possible.

Each capacitor should be located as nearby the pins of IPM as possible.

Low inductance shunt resistors should be used for phase leg current sensing.

Electrolytic bus capacitors should be mounted as close to the module bus terminals as
possible. Additional high frequency ceramic capacitor mounted close to the module
pins will further improve performance.

The SD signal should be pulled up to 5 V / 3.3 V with an external resistor.
Table 14. Recommended operating conditions
Value
Symbol
Parameter
Conditions
Unit
Min.
VPN
Supply voltage
Applied between P-Nu, Nv, Nw
VCC
Control supply voltage
Applied between VCC-GND
VBS
High side bias voltage
Applied between VBOOTi-OUTi for
i = U, V, W
13
tdead
Blanking time to
prevent arm-short
For each input signal
1
fPWM
Pwm input signal
-40°C < Tc < 100°C
-40°C < Tj < 125°C
TC
Case operation
temperature
For further details refer to AN3338.
14/20
DocID018533 Rev 4
13.5
Typ.
Max.
300
400
V
15
18
V
18
V
µs
20
kHz
100
°C
STGIPS10K60T
5
Package mechanical data
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Please refer to dedicated technical note TN0107 for mounting instructions.
Table 15. SDIP-25L mechanical data
mm.
Dim.
Min.
Typ.
Max.
A
43.90
44.40
44.90
A1
1.15
1.35
1.55
A2
1.40
1.60
1.80
A3
38.90
39.40
39.90
B
21.50
22.00
22.50
B1
11.25
11.85
12.45
B2
24.83
25.23
25.63
C
5.00
5.40
6.00
C1
6.50
7.00
7.50
C2
11.20
11.70
12.20
e
2.15
2.35
2.55
e1
3.40
3.60
3.80
e2
4.50
4.70
4.90
e3
6.30
6.50
6.70
D
33.30
D1
5.55
E
11.20
E1
1.40
F
0.85
1.00
1.15
F1
0.35
0.50
0.65
R
1.55
1.75
1.95
T
0.45
0.55
0.65
V
0°
DocID018533 Rev 4
6°
15/20
Package mechanical data
STGIPS10K60T
Figure 11. SDIP-25L drawing dimensions data
8154676_H
16/20
DocID018533 Rev 4
STGIPS10K60T
Package mechanical data
Base quantity: 11 pcs
Bulk quantity: 132 pcs
8123127_E
AM10488v1
Figure 12. Packaging specifications of SDIP-25L package
DocID018533 Rev 4
17/20
Package mechanical data
STGIPS10K60T
Base quantity: 11 pcs
Bulk quantity: 132 pcs
8123127_E
ANTIS TATIC S
03 PVC
AM10487v1
Figure 13. SDIP-25L shipping tube type B (dimensions are in mm.)
18/20
DocID018533 Rev 4
STGIPS10K60T
6
Revision history
Revision history
Table 16. Document revision history
Date
Revision
07-Mar-2011
1
Initial release.
14-Sep-2011
2
Modified Section 3.1.1 on page 11.
3
Modified: Min. and Max. value Table 4 on page 5.
Updated: Table 15 on page 15, Figure 11 on page 16 and
Figure 12 on page 17.
Added: Figure 13 on page 18.
28-Aug-2012
Changes
Modified:
30-Apr-2013
4
– description pin 15 Table 2 on page 4,
VSD parameter Table 4 on page 5.
– Figure 3 on page 8 and Figure 7 on page 11.
Added:
– Figure 8 on page 11.
DocID018533 Rev 4
19/20
STGIPS10K60T
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE
IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH
PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR
ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED
FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN
WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE,
AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS.
PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE
CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2013 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
20/20
DocID018533 Rev 4