VN7010AJ - STMicroelectronics

VN7010AJ
High-side driver with MultiSense analog feedback for automotive
applications
Datasheet - production data
−
−
−
Loss of ground and loss of VCC
Reverse battery with external
components
Electrostatic discharge protection
Applications
•
Features
Max transient supply voltage
VCC
40 V
Operating voltage range
VCC
4 to 28 V
Typ. on-state resistance (per Ch)
RON
10 mΩ
Current limitation (typ)
ILIMH
91 A
Standby current (max)
ISTBY
0.5 µA
•
•
•
•
Automotive qualified
General
−
Single channel smart high-side driver
with MultiSense analog feedback
−
Very low standby current
−
Compatible with 3 V and 5 V CMOS
outputs
MultiSense diagnostic functions
−
Multiplexed analog feedback of: load
current with high precision proportional
current mirror, VCC supply voltage and
TCHIP device temperature
−
Overload and short to ground (power
limitation) indication
−
Thermal shutdown indication
−
OFF-state open-load detection
−
Output short to VCC detection
−
Sense enable/disable
Protections
−
Undervoltage shutdown
−
Overvoltage clamp
−
Load current limitation
−
Self limiting of fast thermal transients
−
Configurable latch-off on
overtemperature or power limitation
with dedicated fault reset pin
May 2015
•
All types of Automotive resistive, inductive
and capacitive loads
Specially intended for Automotive
Headlamps
Description
The device is a single channel high-side driver
manufactured using ST proprietary VIPower® M07 technology and housed in PowerSSO-16
package. The device is designed to drive 12 V
automotive grounded loads through a 3 V and
5 V CMOS-compatible interface, providing
protection and diagnostics.
The device integrates advanced protective
functions such as load current limitation, overload
active management by power limitation and
overtemperature shutdown with configurable
latch-off.
A FaultRST pin unlatches the output in case of
fault or disables the latch-off functionality.
A dedicated multifunction multiplexed analog
output pin delivers sophisticated diagnostic
functions including high precision proportional
load current sense, supply voltage feedback and
chip temperature sense, in addition to the
detection of overload and short circuit to ground,
short to VCC and OFF-state open-load.
A sense enable pin allows OFF-state diagnosis to
be disabled during the module low-power mode
as well as external sense resistor sharing among
similar devices.
DocID027394 Rev 1
This is information on a product in full production.
1/45
www.st.com
Contents
VN7010AJ
Contents
1
Block diagram and pin description ................................................ 5
2
Electrical specification.................................................................... 7
3
4
2.1
Absolute maximum ratings ................................................................ 7
2.2
Thermal data ..................................................................................... 8
2.3
Main electrical characteristics ........................................................... 8
2.4
Waveforms ...................................................................................... 19
2.5
Electrical characteristics curves ...................................................... 21
Protections..................................................................................... 25
3.1
Power limitation ............................................................................... 25
3.2
Thermal shutdown........................................................................... 25
3.3
Current limitation ............................................................................. 25
3.4
Negative voltage clamp ................................................................... 25
Application information ................................................................ 26
4.1
GND protection network against reverse battery............................. 26
4.1.1
Diode (DGND) in the ground line ..................................................... 27
4.2
Immunity against transient electrical disturbances .......................... 27
4.3
MCU I/Os protection........................................................................ 27
4.4
Multisense - analog current sense .................................................. 28
4.4.1
Principle of Multisense signal generation ......................................... 29
4.4.2
TCASE and VCC monitor ................................................................. 31
4.4.3
Short to VCC and OFF-state open-load detection ........................... 32
5
Maximum demagnetization energy (VCC = 16 V) ........................ 34
6
Package and PCB thermal data .................................................... 35
6.1
7
PowerSSO-16 thermal data ............................................................ 35
Package information ..................................................................... 38
7.1
PowerSSO-16 package information ................................................ 38
7.2
PowerSSO-16 packing information ................................................. 40
7.3
PowerSSO-16 marking information ................................................. 42
8
Order codes ................................................................................... 43
9
Revision history ............................................................................ 44
2/45
DocID027394 Rev 1
VN7010AJ
List of tables
List of tables
Table 1: Pin functions ................................................................................................................................. 5
Table 2: Suggested connections for unused and not connected pins ........................................................ 6
Table 3: Absolute maximum ratings ........................................................................................................... 7
Table 4: Thermal data ................................................................................................................................. 8
Table 5: Power section ............................................................................................................................... 8
Table 6: Switching....................................................................................................................................... 9
Table 7: Logic inputs ................................................................................................................................. 10
Table 8: Protections .................................................................................................................................. 11
Table 9: MultiSense .................................................................................................................................. 11
Table 10: Truth table ................................................................................................................................. 18
Table 11: MultiSense multiplexer addressing ........................................................................................... 18
Table 12: ISO 7637-2 - electrical transient conduction along supply line................................................. 27
Table 13: MultiSense pin levels in off-state .............................................................................................. 31
Table 14: PCB properties ......................................................................................................................... 35
Table 15: Thermal parameters ................................................................................................................. 37
Table 16: PowerSSO-16 mechanical data................................................................................................ 38
Table 17: Reel dimensions ....................................................................................................................... 40
Table 18: PowerSSO-16 carrier tape dimensions .................................................................................... 41
Table 19: Device summary ....................................................................................................................... 43
Table 20: Document revision history ........................................................................................................ 44
DocID027394 Rev 1
3/45
List of figures
VN7010AJ
List of figures
Figure 1: Block diagram .............................................................................................................................. 5
Figure 2: Configuration diagram (top view)................................................................................................. 6
Figure 3: Current and voltage conventions ................................................................................................. 7
Figure 4: IOUT/ISENSE versus IOUT....................................................................................................... 15
Figure 5: Current sense accuracy versus IOUT ....................................................................................... 15
Figure 6: Switching time and Pulse skew ................................................................................................. 16
Figure 7: MultiSense timings (current sense mode) ................................................................................. 16
Figure 8: Multisense timings (chip temperature and VCC sense mode) .................................................. 17
Figure 9: TDSTKON.................................................................................................................................. 17
Figure 10: Latch functionality - behavior in hard short circuit condition (TAMB << TTSD) ...................... 19
Figure 11: Latch functionality - behavior in hard short circuit condition.................................................... 19
Figure 12: Latch functionality - behavior in hard short circuit condition (autorestart mode + latch off) .... 20
Figure 13: Standby mode activation ......................................................................................................... 20
Figure 14: Standby state diagram ............................................................................................................. 21
Figure 15: OFF-state output current ......................................................................................................... 21
Figure 16: Standby current ....................................................................................................................... 21
Figure 17: IGND(ON) vs. Iout ................................................................................................................... 22
Figure 18: Logic Input high level voltage .................................................................................................. 22
Figure 19: Logic Input low level voltage.................................................................................................... 22
Figure 20: High level logic input current ................................................................................................... 22
Figure 21: Low level logic input current .................................................................................................... 22
Figure 22: Logic Input hysteresis voltage ................................................................................................. 22
Figure 23: FaultRST Input clamp voltage ................................................................................................. 23
Figure 24: Undervoltage shutdown ........................................................................................................... 23
Figure 25: On-state resistance vs. Tcase ................................................................................................. 23
Figure 26: On-state resistance vs. VCC ................................................................................................... 23
Figure 27: Turn-on voltage slope .............................................................................................................. 23
Figure 28: Turn-off voltage slope .............................................................................................................. 23
Figure 29: Won vs. Tcase ......................................................................................................................... 24
Figure 30: Woff vs. Tcase ......................................................................................................................... 24
Figure 31: ILIMH vs. Tcase ....................................................................................................................... 24
Figure 32: OFF-state open-load voltage detection threshold ................................................................... 24
Figure 33: Vsense clamp vs. Tcase.......................................................................................................... 24
Figure 34: Vsenseh vs. Tcase .................................................................................................................. 24
Figure 35: Application diagram ................................................................................................................. 26
Figure 36: Simplified internal structure ..................................................................................................... 26
Figure 37: MultiSense and diagnostic – block diagram ............................................................................ 28
Figure 38: MultiSense block diagram ....................................................................................................... 29
Figure 39: Analogue HSD – open-load detection in off-state ................................................................... 30
Figure 40: Open-load / short to VCC condition ......................................................................................... 31
Figure 41: GND voltage shift .................................................................................................................... 32
Figure 42: Maximum turn off current versus inductance .......................................................................... 34
Figure 43: PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5) ............................................ 35
Figure 44: PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7) ........................................... 35
Figure 45: Rthj-amb vs PCB copper area in open box free air condition (one channel on) ..................... 36
Figure 46: PowerSSO-16 thermal impedance junction ambient single pulse (one channel on) .............. 36
Figure 47: Thermal fitting model of a double-channel HSD in PowerSSO-16.......................................... 37
Figure 48: PowerSSO-16 package dimensions ........................................................................................ 38
Figure 49: PowerSSO-16 reel 13" ............................................................................................................ 40
Figure 50: PowerSSO-16 carrier tape ...................................................................................................... 41
Figure 51: PowerSSO-16 schematic drawing of leader and trailer tape .................................................. 41
Figure 52: PowerSSO-16 marking information ......................................................................................... 42
4/45
DocID027394 Rev 1
VN7010AJ
Block diagram and pin description
Figure 1: Block diagram
VCC
Internal supply
VCC – GND
Clamp
Undervoltage
shut-down
Con trol & Diagnostic
VCC – OUT
Clamp
FaultRST
INPUT
Gate Driver
SEL1
T
VCC
VON
Limitation
SEL0
Current
Limitation
SEn
MultiSense
MUX
1
Block diagram and pin description
Power Limitation
Overtemperature
T
Short to VCC
Open-Load in OFF
Current
Sense
Fault
VSENSEH
GND
OUTPUT
GAPGCFT00328
Table 1: Pin functions
Name
VCC
Function
Battery connection.
OUTPUT Power outputs. All the pins must be connected together.
GND
INPUT
Ground connection. Must be reverse battery protected by an external diode / resistor
network.
Voltage controlled input pin with hysteresis, compatible with 3 V and 5 V CMOS outputs.
It controls output switch state.
MultiSense
Multiplexed analog sense output pin; it delivers a current proportional to the selected
diagnostic: load current, supply voltage or chip temperature.
SEn
Active high compatible with 3 V and 5 V CMOS outputs pin; it enables the MultiSense
diagnostic pin.
SEL0,1
Active high compatible with 3 V and 5 V CMOS outputs pin; they address the MultiSense
multiplexer.
FaultRST
Active low compatible with 3 V and 5 V CMOS outputs pin; it unlatches the output in case
of fault; If kept low, sets the outputs in auto-restart. mode
DocID027394 Rev 1
5/45
Block diagram and pin description
VN7010AJ
Figure 2: Configuration diagram (top view)
PowerSSO-16
INPUT0
FaultRS T
SEn
GND
SEL0
SEL1
MultiSense
N.C.
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
OUTPU T
OUTPU T
OUTPU T
OUTPU T
OUTPU T
OUTPU T
OUTPU T
OUTPU T
TAB = V CC
GAPGCFT00329
Pins 9, 10, 11 and 12 are internally connected; Pins 13, 14, 15 and 16 are
internally connected; All output pins must be connected together on PCB.
Table 2: Suggested connections for unused and not connected pins
SEn, SELx,
Connection /
pin
MultiSense
N.C.
Output
Input
Floating
Not allowed
X (1)
X
X
X
To ground
Through 1 kΩ
resistor
X
Not
allowed
Through 15 kΩ
resistor
Through 15 kΩ
resistor
Notes:
(1)X:
6/45
do not care.
DocID027394 Rev 1
FaultRST
VN7010AJ
2
Electrical specification
Electrical specification
Figure 3: Current and voltage conventions
IS
VCC
FaultRST
I SEn
I OUT
OUTPUT
VSEn
I SEL
MultiSense
SEL 0,1
VSEL
VOUT
I SENSE
SE n
VFR
VCC
VFn
I FR
VSENSE
I IN
VIN
INPUT
I GND
GAPGCFT00330
VFn = VOUTn - VCC during reverse battery condition.
2.1
Absolute maximum ratings
Stressing the device above the rating listed in Table 3: "Absolute maximum ratings" may
cause permanent damage to the device. These are stress ratings only and operation of the
device at these or any other conditions above those indicated in the operating sections of
this specification is not implied. Exposure to the conditions in table below for extended
periods may affect device reliability.
Table 3: Absolute maximum ratings
Symbol
Parameter
Value
Unit
VCC
DC supply voltage
38
-VCC
Reverse DC supply voltage
0.3
VCCPK
Maximum transient supply voltage (ISO 16750-2:2010 Test B
clamped to 40 V; RL = 4 Ω)
40
V
VCCJS
Maximum jump start voltage for single pulse short circuit protection
28
V
-IGND
DC reverse ground pin current
200
mA
IOUT
OUTPUT DC output current
Internally limited
-IOUT
Reverse DC output current
35
IIN
INPUT DC input current
ISEn
SEn DC input current
ISEL
SEL0,1 DC input current
IFR
FaultRST DC input current
VFR
FaultRST DC input voltage
DocID027394 Rev 1
V
A
-1 to 10
mA
7.5
V
7/45
Electrical specification
VN7010AJ
Symbol
Parameter
Unit
MultiSense pin DC output current (VGND = VCC and VSENSE < 0 V)
10
MultiSense pin DC output current in reverse (VCC < 0 V)
-20
EMAX
Maximum switching energy (single pulse) (TDEMAG = 0.4 ms;
Tjstart = 150 °C)
168
mJ
VESD
Electrostatic discharge (JEDEC 22A-114F)
•
INPUT
•
MultiSense
•
SEn, SEL0,1, FaultRST
•
OUTPUT
•
VCC
4000
2000
4000
4000
4000
V
V
V
V
V
VESD
Charge device model (CDM-AEC-Q100-011)
750
V
ISENSE
Tj
Tstg
2.2
Value
mA
Junction operating temperature
-40 to 150
Storage temperature
-55 to 150
°C
Thermal data
Table 4: Thermal data
Symbol
Parameter
Typ. value
Rthj-board Thermal resistance junction-board (JEDEC JESD 51-5 / 51-8)
Rthj-amb
Rthj-amb
(1)
Unit
3.9
Thermal resistance junction-ambient (JEDEC JESD 51-5)
(2)
55
Thermal resistance junction-ambient (JEDEC JESD 51-7)
(1)
21.2
°C/W
Notes:
2.3
(1)Device
mounted on four-layers 2s2p PCB
(2)Device
mounted on two-layers 2s0p PCB with 2 cm2 heatsink copper trace
Main electrical characteristics
7 V < VCC < 18 V; -40°C < Tj < 150°C, unless otherwise specified.
All typical values refer to VCC = 13 V; Tj = 25°C, unless otherwise specified.
Table 5: Power section
Symbol
Parameter
VCC
Operating supply
voltage
VUSD
Test conditions
Typ.
4
13
Max. Unit
28
V
Undervoltage shutdown
4
V
VUSDReset
Undervoltage shutdown
reset
5
V
VUSDhyst
Undervoltage shutdown
hysteresis
0.3
IOUT = 5 A; Tj = 25°C
RON
8/45
Min.
On-state resistance
V
10
IOUT = 5 A; Tj = 150°C
20
IOUT = 5 A; VCC = 4 V; Tj = 25°C
15
DocID027394 Rev 1
mΩ
VN7010AJ
Electrical specification
Symbol
Vclamp
ISTBY
Parameter
Test conditions
Clamp voltage
Min.
Typ.
IS = 20 mA; 25°C < Tj < 150°C
41
46
IS = 20 mA; Tj = -40°C
38
IS(ON)
IGND(ON)
IL(off)
VCC = 13 V;
VIN = VOUT = VFR = VSEn = 0 V;
VSEL0,1 = 0 V; Tj = 25°C
0.5
VCC = 13 V;
Supply current in
VIN = VOUT = VFR = VSEn = 0 V;
standby at VCC = 13 V (1)
VSEL0,1 = 0 V; Tj = 85°C (2)
0.5
VCC = 13 V;
Standby mode blanking
VIN = 5 V; VSEn = VFR = VSEL0,1 = 0 V;
time
IOUT = 0 V
Supply current
VCC = 13 V;
VSEn = VFR = VSEL0,1 = 0 V; VIN = 5 V;
IOUT = 0 A
Control stage current
consumption in ON
state. All channels
active.
VCC = 13 V; VSEn = 5 V;
VFR = VSEL0,1 = 0 V; VIN = 5 V;
IOUT = 5 A
Off-state output current
at VCC = 13 V
Output - VCC diode
voltage
VF
52
V
V
VCC = 13 V;
VIN = VOUT = VFR = VSEn = 0 V;
VSEL0,1 = 0 V; Tj = 125°C
tD_STBY
Max. Unit
µA
3
60
VIN = VOUT = 0 V; VCC = 13 V;
Tj = 25°C
0
VIN = VOUT = 0 V; VCC = 13 V;
Tj = 125°C
0
300
550
µs
3
5
mA
6
mA
0.01
0.5
µA
3
IOUT = -5 A; Tj = 150°C
0.7
V
Notes:
(1)PowerMOS
(2)Parameter
leakage included.
specified by design; not subject to production test.
Table 6: Switching
VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified
Symbol
Parameter
td(on)(1)
Turn-on delay time at Tj = 25 °C
td(off)(1)
Turn-off delay time at Tj = 25 °C
(dVOUT/dt)on(1) Turn-on voltage slope at Tj = 25 °C
(dVOUT/dt)off
(1)
Turn-off voltage slope at Tj = 25 °C
Test conditions Min. Typ. Max. Unit
RL = 2.6 Ω
RL = 2.6 Ω
10
70
120
10
40
100
0.1
0.2
0.7
0.1
0.3
0.7
µs
V/µs
WON
Switching energy losses at turn-on (twon)
RL = 2.6 Ω
—
0.9 1.2(2) mJ
WOFF
Switching energy losses at turn-off (twoff)
RL = 2.6 Ω
—
0.6 0.8(2) mJ
Differential Pulse skew (tPHL - tPLH)
RL = 2.6 Ω
-90
-40
tSKEW (1)
10
µs
Notes:
(1)See
Figure 6: "Switching time and Pulse skew".
(2)Parameter
guaranteed by design and characterization; not subject to production test.
DocID027394 Rev 1
9/45
Electrical specification
VN7010AJ
Table 7: Logic inputs
7 V < VCC < 28 V; -40°C < Tj < 150°C
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
0.9
V
INPUT characteristics
VIL
Input low level voltage
IIL
Low level input current
VIH
Input high level voltage
IIH
High level input current
VI(hyst)
Input hysteresis voltage
VICL
VIN = 0.9 V
µA
2.1
V
VIN = 2.1 V
10
0.2
IIN = 1 mA
Input clamp voltage
1
V
5.3
IIN = -1 mA
µA
7.2
-0.7
V
FaultRST characteristics
VFRL
Input low level voltage
IFRL
Low level input current
VFRH
Input high level voltage
IFRH
High level input current
VFR(hyst)
Input hysteresis voltage
VFRCL
0.9
VIN = 0.9 V
1
µA
2.1
V
VIN = 2.1 V
10
0.2
IIN = 1 mA
Input clamp voltage
V
V
5.3
IIN = -1 mA
µA
7.5
-0.7
V
SEL0,1 characteristics (7 V < VCC < 18 V)
VSELL
Input low level voltage
ISELL
Low level input current
VSELH
Input high level voltage
ISELH
High level input current
VSEL(hyst)
Input hysteresis voltage
VSELCL
0.9
VIN = 0.9 V
µA
2.1
V
VIN = 2.1 V
10
0.2
IIN = 1 mA
Input clamp voltage
1
µA
V
5.3
IIN = -1 mA
V
7.2
-0.7
V
SEn characteristics (7 V < VCC < 18 V)
VSEnL
Input low level voltage
ISEnL
Low level input current
VSEnH
Input high level voltage
ISEnH
High level input current
VSEn(hyst)
Input hysteresis voltage
VSEnCL
10/45
Input clamp voltage
0.9
VIN = 0.9 V
1
µA
2.1
V
VIN = 2.1 V
10
0.2
IIN = 1 mA
IIN = -1 mA
DocID027394 Rev 1
V
µA
V
5.3
7.2
-0.7
V
VN7010AJ
Electrical specification
Table 8: Protections
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol
Parameter
Test conditions
ILIMH
DC short circuit current
ILIML
Short circuit current
during thermal cycling
TTSD
Shutdown temperature
VCC = 13 V
4 V < VCC < 18 V
Reset temperature
TRS
Thermal reset of fault
diagnostic indication
VFR = 0 V; VSEn = 5 V
Thermal hysteresis
(TTSD - TR)(1)
ΔTJ_SD
Dynamic temperature
Tj = -40°C; VCC = 13 V
Fault reset time for
output unlatch(1)
VFR = 5 V to 0 V; VSEn = 5 V;
VIN = 5 V; VSEL0 = 0 V;
VSEL1 = 0 V
VDEMAG
VON
65
91
Max.
Unit
130
A
VCC = 13 V;
TR < Tj < TTSD
THYST
tLATCH_RST
Typ.
(1)
(1)
TR
Min.
30
150
175
200
TRS + 1
TRS + 7
°C
135
7
Turn-off output voltage
clamp
Output voltage drop
limitation
60
3
K
10
20
µs
IOUT = 2 A; L = 6 mH;
Tj = -40°C
VCC - 38
V
IOUT = 2 A; L = 6 mH;
Tj = 25°C to 150°C
VCC - 41 VCC - 46 VCC - 52
V
20
mV
IOUT = 0.2 A
Notes:
(1)Parameter
guaranteed by design and characterization; not subject to production test.
Table 9: MultiSense
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol
VSENSE_CL
Parameter
MultiSense clamp
voltage
Test conditions
Min.
Typ. Max. Unit
VSEn = 0 V; ISENSE = 1 mA
-17
-12
V
VSEn = 0 V; ISENSE = -1 mA
7
CurrentSense characteristics
K0
dK0/K0(1)(2)
K1
dK1/K1(1)(2)
K2
IOUT/ISENSE
IOUT = 0.9 A; VSENSE = 0.5 V;
VSEn = 5 V
Current sense ratio
drift
IOUT = 0.9 A; VSENSE = 0.5 V;
VSEn = 5 V
IOUT/ISENSE
IOUT = 1.5 A; VSENSE = 4 V;
VSEn = 5 V
Current sense ratio
drift
IOUT = 1.5 A; VSENSE = 4 V;
VSEn = 5 V
IOUT/ISENSE
IOUT = 6 A; VSENSE = 4 V;
VSEn = 5 V
DocID027394 Rev 1
3190 5210 7450
-20
20
%
3530 4950 6560
-15
15
%
3840 4720 5640
11/45
Electrical specification
VN7010AJ
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol
dK2/K2(1)(2)
K3
dK3/K3(1)(2)
Parameter
Test conditions
Typ. Max. Unit
-10
10
Current sense ratio
drift
IOUT = 6 A; VSENSE = 4 V;
VSEn = 5 V
IOUT/ISENSE
IOUT = 18 A; VSENSE = 4 V;
VSEn = 5 V
Current sense ratio
drift
IOUT = 18 A; VSENSE = 4 V;
VSEn = 5 V
-5
5
MultiSense disabled: VSEn = 0 V
0
0.5
-0.5
0.5
MultiSense enabled: VSEn = 5 V;
Channel ON; IOUT = 0 A;
Diagnostic selected; VIN = 5 V;
VSEL0 = 0 V; VSEL1 = 0 V; IOUT = 0 A
0
2
MultiSense enabled: VSEn = 5 V;
Channel OFF; Diagnostic selected:
VIN = 0 V; VSEL0 = 0 V; VSEL1 = 0 V
0
2
MultiSense disabled:
-1 V < VSENSE < 5 V(1)
ISENSE0
Min.
MultiSense leakage
current
%
4260 4710 5140
%
µA
VOUT_MSD(1)
VIN = 5 V; VSEn = 5 V; VSEL0 = 0 V;
Output Voltage for
VSEL1 = 0 V; RSENSE = 2.7 kΩ;
MultiSense shutdown
IOUT = 5 A
VSENSE_SAT
VCC = 7 V; RSENSE = 2.7 kΩ;
Multisense saturation VSEn = 5 V; VIN = 5 V; VSEL0 = 0 V;
VSEL1 = 0 V; IOUT = 18 A;
voltage
Tj = 150°C
5
V
ISENSE_SAT(1)
VCC = 7 V; VSENSE = 4 V; VIN = 5 V;
CS saturation current VSEn = 5 V; VSEL0 = 0 V;
VSEL1 = 0 V; Tj = 150°C
4
mA
VCC = 7 V; VSENSE = 4 V; VIN = 5 V;
VSEn = 5 V; VSEL0 = 0 V;
VSEL1 = 0 V; Tj = 150°C
24
A
VIN = 0 V; VSEn = 5 V; VSEL0 = 0 V;
VSEL1 = 0 V
2
IOUT_SAT(1)
Output saturation
current
5
V
OFF-state diagnostic
VOL
IL(off2)
12/45
OFF-state open-load
voltage detection
threshold
3
OFF-state output sink VIN = 0 V; VOUT = VOL; Tj = -40°C to
-100
125°C
current
tDSTKON
OFF-state diagnostic
delay time from falling VIN = 5 V to 0 V; VSEn = 5 V;
VSEL0 = 0 V; VSEL1 = 0 V;
edge of INPUT (see
IOUT = 0 A; VOUT = 4 V
Figure 9:
"TDSTKON")
tD_OL_V
Settling time for valid
OFF-state open load
diagnostic indication
from rising edge of
SEn
tD_VOL
OFF-state diagnostic
VIN = 0 V; VSEn = 5 V; VSEL0 = 0 V;
delay time from rising
VSEL1 = 0 V; VOUT = 0 V to 4 V
edge of VOUT
100
350
VIN = 0 V; VFR = 0 V; VSEL0 = 0 V;
VSEL1 = 0 V; VOUT = 4 V; VSEn = 0 V
to 5 V
DocID027394 Rev 1
5
4
V
-15
µA
700
µs
60
µs
30
µs
VN7010AJ
Electrical specification
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol
Parameter
Test conditions
Min.
Typ. Max. Unit
Chip temperature analog feedback
VSENSE_TC
dVSENSE_TC/dT
MultiSense output
voltage proportional
to chip temperature
Temperature
coefficient
VSEn = 5 V; VSEL0 = 0 V;
VSEL1 = 5 V; VIN = 0 V;
RSENSE = 1 kΩ; Tj = -40°C
2.325 2.41 2.495
V
VSEn = 5 V; VSEL0 = 0 V;
VSEL1 = 5 V; VIN = 0 V;
RSENSE = 1 kΩ; Tj = 25°C
1.985 2.07 2.155
V
VSEn = 5 V; VSEL0 = 0 V;
VSEL1 = 5 V; VIN = 0 V;
RSENSE = 1 kΩ; Tj = 125°C
1.435 1.52 1.605
V
-5.5
mV/
K
Tj = -40°C to 150°C
Transfer function
VSENSE_TC (T) = VSENSE_TC (T0) + dVSENSE_TC / dT * (T - T0)
VCC supply voltage analog feedback
VSENSE_VCC
MultiSense output
VCC = 13 V; VSEn = 5 V;
voltage proportional
VSEL0 = 5 V; VSEL1 = 5 V; VIN = 0 V;
to VCC supply voltage RSENSE = 1 kΩ
Transfer function (3)
3.16
3.23
3.3
V
6.6
V
30
mA
VSENSE_VCC = VCC / 4
Fault diagnostic feedback (see Table 10: "Truth table")
VSENSEH
MultiSense output
voltage in fault
condition
VCC = 13 V; VIN = 0 V; VSEn = 5 V;
VSEL0 = 0 V; VSEL1 = 0 V;
IOUT = 0 A; VOUT = 4 V;
RSENSE = 1 kΩ;
5
ISENSEH
MultiSense output
current in fault
condition
VCC = 13 V; VSENSE = 5 V
7
20
MultiSense timings (current sense mode - see Figure 7: "MultiSense timings (current sense
mode)")(4)
tDSENSE1H
Current sense settling
VIN = 5 V; VSEn = 0 V to 5 V;
time from rising edge
RSENSE = 1 kΩ; RL = 2.6 Ω
of SEn
tDSENSE1L
Current sense disable
VIN = 5 V; VSEn = 5 V to 0 V;
delay time from falling
RSENSE = 1 kΩ; RL = 2.6 Ω
edge of SEn
tDSENSE2H
Current sense settling
VIN = 0 V to 5 V; VSEn = 5 V;
time from rising edge
RSENSE = 1 kΩ; RL = 2.6 Ω
of INPUT
ΔtDSENSE2H
tDSENSE2L
60
µs
5
20
µs
100
250
µs
100
µs
250
µs
Current sense settling
time from rising edge VIN = 5 V; VSEn = 5 V;
of IOUT (dynamic
RSENSE = 1 kΩ; ISENSE = 90 % of
response to a step
ISENSEMAX; RL = 2.6 Ω
change of IOUT)
Current sense turn-off
VIN = 5 V to 0 V; VSEn = 5 V;
delay time from falling
RSENSE = 1 kΩ; RL = 2.6 Ω
edge of INPUT
DocID027394 Rev 1
50
13/45
Electrical specification
VN7010AJ
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol
Parameter
Test conditions
Min.
Typ. Max. Unit
MultiSense timings (chip temperature sense mode - see Figure 8: "Multisense timings (chip
temperature and VCC sense mode)" )(4)
tDSENSE3H
VSENSE_TC settling time
VSEn = 0 V to 5 V; VSEL0 = 0 V;
from rising edge of
VSEL1 = 5 V; RSENSE = 1 kΩ
SEn
60
µs
tDSENSE3L
VSENSE_TC disable
VSEn = 5 V to 0 V; VSEL0 = 0 V;
delay time from falling
VSEL1 = 5 V; RSENSE = 1 kΩ
edge of SEn
20
µs
MultiSense timings (VCC voltage sense mode - see Figure 8: "Multisense timings (chip
temperature and VCC sense mode)")(4)
tDSENSE4H
VSENSE_VCC settling
time from rising edge
of SEn
VSEn = 0 V to 5 V; VSEL0 = 5 V;
VSEL1 = 5 V; RSENSE = 1 kΩ
60
µs
tDSENSE4L
VSENSE_VCC disable
VSEn = 5 V to 0 V; VSEL0 = 5 V;
delay time from falling
VSEL1 = 5 V; RSENSE = 1 kΩ
edge of SEn
20
µs
MultiSense timings (Multiplexer transition times)(4)
tD_CStoTC
MultiSense transition
delay from current
sense to TC sense
VIN = 5 V; VSEn = 5 V; VSEL0 = 0 V;
VSEL1 = 0 V to 5 V; IOUT = 2.5 A;
RSENSE = 1 kΩ
60
µs
tD_TCtoCS
MultiSense transition
delay from TC sense
to current sense
VIN = 5 V; VSEn = 5 V; VSEL0 = 0 V;
VSEL1 = 5 V to 0 V; IOUT = 2.5 A;
RSENSE = 1 kΩ
20
µs
tD_CStoVCC
MultiSense transition
delay from current
sense to VCC sense
VIN = 5 V; VSEn = 5 V; VSEL0 = 5 V;
VSEL1 = 0 V to 5 V; IOUT = 2.5A;
RSENSE = 1 kΩ
60
µs
tD_VCCtoCS
MultiSense transition VIN = 5 V; VSEn = 5 V; VSEL0 = 5 V;
delay from VCC sense VSEL1 = 5 V to 0 V; IOUT = 2.5 A;
to current sense
RSENSE = 1 kΩ
20
µs
tD_TCtoVCC
MultiSense transition
delay from TC sense
to VCC sense
VCC = 13 V; Tj = 125°C; VSEn = 5 V;
VSEL0 = 0 V to 5 V; VSEL1 = 5 V;
RSENSE = 1 kΩ
20
µs
tD_VCCtoTC
MultiSense transition VCC = 13 V; Tj = 125°C; VSEn = 5 V;
delay from VCC sense VSEL0 = 5 V to 0 V; VSEL1 = 5 V;
to TC sense
RSENSE = 1 kΩ
20
µs
Notes:
(1)Parameter
(2)All
(3)V
CC
sensing and TC are referred to GND potential.
(4)Transition
14/45
specified by design; not subject to production test.
values refer to VCC = 13 V; Tj = 25°C, unless otherwise specified.
delay are measured up to +/- 10% of final conditions.
DocID027394 Rev 1
VN7010AJ
Electrical specification
K-factor
Figure 4: IOUT/ISENSE versus IOUT
8000
7500
7000
6500
6000
5500
5000
4500
4000
3500
3000
2500
2000
1500
1000
500
0
Max
Min
Typ
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19
IOUT [A]
GAPG0508131345CFT
Figure 5: Current sense accuracy versus IOUT
65
60
55
50
45
40
35
%
30
25
20
15
10
5
0
Current sense uncalibrated precision
Current sense calibrated precision
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19
IOUT [A]
GAPG0508131350CFT
DocID027394 Rev 1
15/45
Electrical specification
VN7010AJ
Figure 6: Switching time and Pulse skew
twon
VOUT
twoff
Vcc
80% Vcc
ON
OFF
dVOUT/dt
dVOUT/dt
20% Vcc
t
INPUT
td(off)
td(on)
tpLH
tpHL
t
GAPG2609141134CFT
Figure 7: MultiSense timings (current sense mode)
IN1
High
SEn
Low
High
SEL0
Low
High
SEL1
Low
IOUT1
CURRENT SENSE
tDSENSE2H
tDSENSE1L
tDSENSE1H
tDSENSE2L
GAPGCFT00318
16/45
DocID027394 Rev 1
VN7010AJ
Electrical specification
Figure 8: Multisense timings (chip temperature and VCC sense mode)
High
SEn
Low
High
SEL0
Low
High
SEL1
Low
VCC
VSENSE = VSENSE_VCC
VSENSE = VSENSE_TC
SENSE
tDSENSE4H
tDSENSE3H
tDSENSE4L
VCC VOLTAGE SENSE MODE
tDSENSE3L
CHIP TEMPERATURE SENSE MODE
GAPGCFT00319
Figure 9: TDSTKON
VINPU T
VOU T
VOU T > VOL
MultiSense
TDSTKON
GAPG2609141140CFT
DocID027394 Rev 1
17/45
Electrical specification
VN7010AJ
Table 10: Truth table
Mode
Conditions
Standby
INX FR SEn SELX OUTX MultiSense
All logic inputs low
Normal
L
L
L
X
Nominal load
H
connected; Tj < 150 °C
L
H
Overload or short to
GND causing:
Tj > TTSD or
ΔTj > ΔTj_SD
Overload
Hi-Z
L
See (1)
H
See (1)
Outputs configured
for auto-restart
H
H
See (1)
Outputs configured
for Latch-off
L
X
L
See (1)
H
L
H
See (1)
Output cycles with
temperature
hysteresis
H
H
L
See (1)
Output latches-off
L
L
Hi-Z
Hi-Z
Re-start when
VCC > VUSD +
VUSDhyst (rising)
H
See (1)
H
See (1)
<0V
See (1)
VCC < VUSD (falling)
X
X
OFF-state
diagnostics
Short to VCC
L
X
Open-load
L
X
Negative output
Inductive loads turn-off L
voltage
X
L
Low quiescent
current
consumption
L
Undervoltage
L
Comments
See (1)
See (1)
X
X
See (1)
See (1)
External pull-up
Notes:
(1)Refer
to Table 11: "MultiSense multiplexer addressing"
Table 11: MultiSense multiplexer addressing
MultiSense output
SEn SEL1 SEL0 MUX channel
Normal mode
Overload
OFF-state diag.
(1)
L
X
X
H
L
L
H
L
H
Output
diagnostic
H
H
L
TCHIP Sense
VSENSE = VSENSE_TC
H
H
H
VCC Sense
VSENSE = VSENSE_VCC
Negative
output
Hi-Z
ISENSE =
1/K * IOUT
VSENSE =
VSENSEH
VSENSE =
VSENSEH
Hi-Z
Notes:
(1)In
case the output channel corresponding to the selected MUX channel is latched off while the relevant input is
low, Multisense pin delivers feedback according to OFF-State diagnostic. Example 1: FR = 1; IN = 0; OUT = L
(latched); MUX channel = channel 0 diagnostic; Mutisense = 0. Example 2: FR = 1; IN = 0; OUT = latched,
VOUT > VOL; MUX channel = channel 0 diagnostic; Mutisense = VSENSEH
18/45
DocID027394 Rev 1
VN7010AJ
2.4
Electrical specification
Waveforms
Figure 10: Latch functionality - behavior in hard short circuit condition (TAMB << TTSD)
Figure 11: Latch functionality - behavior in hard short circuit condition
DocID027394 Rev 1
19/45
Electrical specification
VN7010AJ
Figure 12: Latch functionality - behavior in hard short circuit condition (autorestart mode +
latch off)
Figure 13: Standby mode activation
20/45
DocID027394 Rev 1
VN7010AJ
Electrical specification
Figure 14: Standby state diagram
2.5
Electrical characteristics curves
Figure 16: Standby current
Figure 15: OFF-state output current
Iloff [nA]
ISTBY [µA]
1600
1.8
1400
1.6
Vcc = 13V
1.4
1200
Off State
Vcc = 13V
Vin = Vout = 0
1000
1.2
1
800
0.8
600
0.6
400
0.4
200
0.2
0
0
-50
-25
0
25
50
75
100
125
150
175
T [°C]
-50
-25
0
25
50
75
100
125
150
175
T [°C]
GAPG0805131355CFT
DocID027394 Rev 1
GAPG0805131358CFT
21/45
Electrical specification
VN7010AJ
Figure 17: IGND(ON) vs. Iout
Figure 18: Logic Input high level voltage
IGND(ON) [mA]
ViH, VFRH, VSELH, VSEnH [V]
3.5
2
1.8
3.0
1.6
2.5
1.4
Vcc = 13V
Iout = 5A
2.0
1.2
1
1.5
0.8
0.6
1.0
0.4
0.5
0.2
0
0.0
-50
-25
0
25
50
75
100
125
150
-50
175
-25
0
25
50
75
100
125
150
175
T [°C]
T [°C]
GAPG0805131409CFT
GAPG0805131359CFT
Figure 20: High level logic input current
Figure 19: Logic Input low level voltage
VilL VFRL, VSELL, VSEnL [V]
IiH, IFRH, ISELH, ISEnH [µA]
2
4
1.8
3.5
1.6
3
1.4
2.5
1.2
1
2
0.8
1.5
0.6
1
0.4
0.5
0.2
0
0
-50
-25
0
25
50
75
100
125
150
-50
175
-25
0
25
50
75
100
125
150
175
T [°C]
T [°C]
GAPG0805131411CFT
Figure 21: Low level logic input current
GAPG0805131413CFT
Figure 22: Logic Input hysteresis voltage
IiL, IFRL, ISELL, ISEnL [µA]
Vi(hyst), VFR(hyst), VSEL(hyst), VSEn(hyst) [V]
4
1
3.5
0.9
0.8
3
0.7
2.5
0.6
2
0.5
0.4
1.5
0.3
1
0.2
0.5
0.1
0
0
-50
-25
0
25
50
75
100
125
150
175
GAPG0805131415CFT
22/45
-50
-25
0
25
50
75
100
125
150
175
T [°C]
T [°C]
DocID027394 Rev 1
GAPG0805131416CFT
VN7010AJ
Electrical specification
Figure 23: FaultRST Input clamp voltage
Figure 24: Undervoltage shutdown
VUSD [V]
VFRCL [V]
8
8
7
7
Iin = 1mA
6
6
5
5
4
4
3
3
2
2
1
Iin = -1mA
0
1
0
-1
-50
-25
0
25
50
75
100
125
150
-50
175
-25
0
25
50
75
100
125
150
175
T [°C]
T [°C]
GAPG0805131421CFT
Figure 25: On-state resistance vs. Tcase
Ron [mOhm]
GAPG0805131423CFT
Figure 26: On-state resistance vs. VCC
Ron [mOhm]
50
25
45
40
20
35
T = 150 °C
Iout = 5A
Vcc = 13V
30
15
T = 125 °C
25
20
T = 25 °C
10
15
T = -40 °C
10
5
5
0
0
-50
-25
0
25
50
75
100
125
150
175
0
5
10
15
T [°C]
20
25
30
35
40
Vcc [V]
GAPG0805131426CFT
GAPG0805131425CFT
Figure 27: Turn-on voltage slope
(dVout/dt)On [V/µs]
Figure 28: Turn-off voltage slope
(dVout/dt)Off [V/µs]
1
1
0.9
0.9
0.8
0.8
Vcc = 13V
Rl = 2.6Ω
0.7
Vcc = 13V
Rl = 2.6Ω
0.7
0.6
0.6
0.5
0.5
0.4
0.4
0.3
0.3
0.2
0.2
0.1
0.1
0
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
50
75
100
125
150
175
T [°C]
T [°C]
GAPG0805131428CFT
DocID027394 Rev 1
GAPG0805131430CFT
23/45
Electrical specification
VN7010AJ
Figure 29: Won vs. Tcase
Figure 30: Woff vs. Tcase
Won [mJ]
Woff [mJ]
1
1.5
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-50
-25
0
25
50
75
100
125
150
-50
175
-25
0
25
50
75
100
125
150
175
T [°C]
T [°C]
GAPG0805131431CFT
GAPG0805131433CFT
Figure 32: OFF-state open-load voltage
detection threshold
Figure 31: ILIMH vs. Tcase
Ilimh [A]
VOL [V]
120
4
115
3.5
110
3
105
2.5
100
Vcc = 13V
2
95
1.5
90
1
85
0.5
80
-50
-25
0
25
50
75
100
125
150
175
0
-50
T [°C]
-25
0
25
GAPG0805131434CFT
50
75
T [°C]
100
125
150
175
GAPG0805131435CFT
Figure 33: Vsense clamp vs. Tcase
VSENSEH [V]
VSENSE_CL [V]
10
10
9
9
8
8
7
Iin = 1mA
7
6
6
5
5
4
4
3
3
2
2
1
Iin = -1mA
1
0
0
-1
-50
-25
0
25
50
75
T [°C]
100
125
150
175
GAPG0805131447CFT
24/45
Figure 34: Vsenseh vs. Tcase
DocID027394 Rev 1
-50
-25
0
25
50
75
T [°C]
100
125
150
175
GAPG0805131448CFT
VN7010AJ
Protections
3
Protections
3.1
Power limitation
The basic working principle of this protection consists of an indirect measurement of the
junction temperature swing ΔTj through the direct measurement of the spatial temperature
gradient on the device surface in order to automatically shut off the output MOSFET as
soon as ΔTj exceeds the safety level of ΔTj_SD. According to the voltage level on the
FaultRST pin, the output MOSFET switches on and cycles with a thermal hysteresis
according to the maximum instantaneous power which can be handled (FaultRST = Low)
or remains off (FaultRST = High). The protection prevents fast thermal transient effects
and, consequently, reduces thermo-mechanical fatigue.
3.2
Thermal shutdown
In case the junction temperature of the device exceeds the maximum allowed threshold
(typically 175°C), it automatically switches off and the diagnostic indication is triggered.
According to the voltage level on the FaultRST pin, the device switches on again as soon
as its junction temperature drops to TR (FaultRST = Low) or remains off (FaultRST = High).
3.3
Current limitation
The device is equipped with an output current limiter in order to protect the silicon as well
as the other components of the system (e.g. bonding wires, wiring harness, connectors,
loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or
during load power-up, the output current is clamped to a safety level, ILIMH, by operating the
output power MOSFET in the active region.
3.4
Negative voltage clamp
In case the device drives inductive load, the output voltage reaches a negative value during
turn off. A negative voltage clamp structure limits the maximum negative voltage to a
certain value, VDEMAG, allowing the inductor energy to be dissipated without damaging the
device.
DocID027394 Rev 1
25/45
Application information
4
VN7010AJ
Application information
Figure 35: Application diagram
4.1
GND protection network against reverse battery
Figure 36: Simplified internal structure
26/45
DocID027394 Rev 1
VN7010AJ
4.1.1
Application information
Diode (DGND) in the ground line
A resistor (typ. RGND = 4.7 kΩ) should be inserted in parallel to DGND if the device drives an
inductive load.
This small signal diode can be safely shared amongst several different HSDs. Also in this
case, the presence of the ground network produces a shift (≈600 mV) in the input threshold
and in the status output values if the microprocessor ground is not common to the device
ground. This shift does not vary if more than one HSD shares the same diode/resistor
network.
4.2
Immunity against transient electrical disturbances
The immunity of the device against transient electrical emissions, conducted along the
supply lines and injected into the VCC pin, is tested in accordance with ISO7637-2:2011 (E)
and ISO 16750-2:2010.
The related function performance status classification is shown in Table 12: "ISO 7637-2 electrical transient conduction along supply line".
Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and
in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present
device only, without components and accessed through VCC and GND terminals.
Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as
follows: “The function does not perform as designed during the test but returns
automatically to normal operation after the test”.
Table 12: ISO 7637-2 - electrical transient conduction along supply line
Test
Pulse
2011(E)
Test pulse severity
level with Status II
functional performance
status
Minimum
number of
pulses or test
time
Burst cycle / pulse
repetition time
Pulse duration and
pulse generator
internal impedance
Level
US(1)
1
III
-112V
500 pulses
0,5 s
2a
III
+55V
500 pulses
0,2 s
5s
50µs, 2Ω
3a
IV
-220V
1h
90 ms
100 ms
0.1µs, 50Ω
3b
IV
+150V
1h
90 ms
100 ms
0.1µs, 50Ω
IV
-7V
1 pulse
4
(2)
min
max
2ms, 10Ω
100ms, 0.01Ω
Load dump according to ISO 16750-2:2010
Test B (3)
40V
5 pulse
1 min
400ms, 2Ω
Notes:
(1)U
S
4.3
is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.
(2)Test
pulse from ISO 7637-2:2004(E).
(3)With
40 V external suppressor referred to ground (-40°C < Tj < 150°C).
MCU I/Os protection
If a ground protection network is used and negative transients are present on the VCC line,
the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line both to
prevent the microcontroller I/O pins to latch-up and to protect the HSD inputs.
DocID027394 Rev 1
27/45
Application information
VN7010AJ
The value of these resistors is a compromise between the leakage current of
microcontroller and the current required by the HSD I/Os (Input levels compatibility) with
the latch-up limit of microcontroller I/Os.
Equation
VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC - VIH - VGND) / IIHmax
Calculation example:
For VCCpeak = -150 V; Ilatchup ≥ 20 mA; VOHµC ≥ 4.5 V
7.5 kΩ ≤ Rprot ≤ 140 kΩ.
Recommended values: Rprot = 15 kΩ
4.4
Multisense - analog current sense
Diagnostic information on device and load status are provided by an analog output pin
(MultiSense) delivering the following signals:
•
•
•
Current monitor: current mirror of channel output current
VCC monitor: voltage propotional to VCC
TCASE: voltage propotional to chip temperature
Those signals are routed through an analog multiplexer which is configured and controlled
by means of SELx and SEn pins, according to the address map in MultiSense multiplexer
addressing Table.
Figure 37: MultiSense and diagnostic – block diagram
28/45
DocID027394 Rev 1
VN7010AJ
4.4.1
Application information
Principle of Multisense signal generation
Figure 38: MultiSense block diagram
Current monitor
When current mode is selected in the MultiSense, this output is capable to provide:
•
•
Current mirror proportional to the load current in normal operation, delivering current
proportional to the load according to known ratio named K
Diagnostics flag in fault conditions delivering fixed voltage VSENSEH
The current delivered by the current sense circuit, ISENSE, can be easily converted to a
voltage VSENSE by using an external sense resistor, RSENSE, allowing continuous load
monitoring and abnormal condition detection.
Normal operation (channel ON, no fault, SEn active)
While device is operating in normal conditions (no fault intervention), VSENSE calculation can
be done using simple equations
Current provided by MultiSense output: ISENSE = IOUT/K
Voltage on RSENSE: VSENSE = RSENSE · ISENSE = RSENSE · IOUT/K
Where:
•
•
VSENSE is voltage measurable on RSENSE resistor
ISENSE is current provided from MultiSense pin in current output mode
DocID027394 Rev 1
29/45
Application information
•
•
VN7010AJ
IOUT is current flowing through output
K factor represents the ratio between PowerMOS cells and SenseMOS cells; its
spread includes geometric factor spread, current sense amplifier offset and process
parameters spread of overall circuitry specifying ratio between IOUT and ISENSE.
Failure flag indication
In case of power limitation/overtemperature, the fault is indicated by the MultiSense pin
which is switched to a “current limited” voltage source, VSENSEH.
In any case, the current sourced by the MultiSense in this condition is limited to ISENSEH.
The typical behavior in case of overload or hard short circuit is shown in Waveforms
section.
Figure 39: Analogue HSD – open-load detection in off-state
30/45
DocID027394 Rev 1
VN7010AJ
Application information
Figure 40: Open-load / short to VCC condition
Table 13: MultiSense pin levels in off-state
Condition
Output
VOUT > VOL
Open-load
VOUT < VOL
4.4.2
Short to VCC
VOUT > VOL
Nominal
VOUT < VOL
MultiSense
SEn
Hi-Z
L
VSENSEH
H
Hi-Z
L
0
H
Hi-Z
L
VSENSEH
H
Hi-Z
L
0
H
TCASE and VCC monitor
In this case, MultiSense output operates in voltage mode and output level is referred to
device GND. Care must be taken in case a GND network protection is used, because of a
voltage shift is generated between device GND and the microcontroller input GND
reference.
Figure 41: "GND voltage shift" shows link between VMEASURED and real VSENSE signal.
DocID027394 Rev 1
31/45
Application information
VN7010AJ
Figure 41: GND voltage shift
VCC monitor
Battery monitoring channel provides VSENSE = VCC / 4.
Case temperature monitor
Case temperature monitor is capable to provide information about the actual device
temperature. Since a diode is used for temperature sensing, the following equation
describes the link between temperature and output VSENSE level:
VSENSE_TC (T) = VSENSE_TC (T0) + dVSENSE_TC / dT * (T - T0)
where dVSENSE_TC / dT ~ typically -5.5 mV/K (for temperature range (-40 °C to 150 °C).
4.4.3
Short to VCC and OFF-state open-load detection
Short to VCC
A short circuit between VCC and output is indicated by the relevant current sense pin set to
VSENSEH during the device off-state. Small or no current is delivered by the current sense
during the on-state depending on the nature of the short circuit.
OFF-state open-load with external circuitry
Detection of an open-load in off mode requires an external pull-up resistor RPU connecting
the output to a positive supply voltage VPU.
It is preferable VPU to be switched off during the module standby mode in order to avoid the
overall standby current consumption to increase in normal conditions, i.e. when load is
connected.
RPU must be selected in order to ensure VOUT > VOLmax in accordance with the following
equation:
32/45
DocID027394 Rev 1
VN7010AJ
Application information
Equation
RPU <
VPU - 4
IL(off2)min @ 4V
DocID027394 Rev 1
33/45
Maximum demagnetization energy (VCC = 16 V)
5
VN7010AJ
Maximum demagnetization energy (VCC = 16 V)
Figure 42: Maximum turn off current versus inductance
VN7010AJ - Maximum turn off current versus inductance
100
I (A)
10
1
VN7010AJ - Single Pulse
Repetitive pulse Tjstart=100°C
Repetitive pulse Tjstart=125°C
0.1
0.1
1
10
L (mH)
100
1000
VN7010AJ - Maximum turn off Energy versus Tdemag
10000
VN7010AJ - Single Pulse
1000
Repetitive pulse Tjstart=100°C
E [mJ]
Repetitive pulse Tjstart=125°C
100
10
1
0.01
0.1
1
Tdemag [ms]
10
100
GAPGCFT01216
Values are generated with RL = 0 Ω.
In case of repetitive pulses, Tjstart (at the beginning of each demagnetization) of
every pulse must not exceed the temperature specified above for curves A and B.
34/45
DocID027394 Rev 1
VN7010AJ
Package and PCB thermal data
6
Package and PCB thermal data
6.1
PowerSSO-16 thermal data
Figure 43: PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5)
Figure 44: PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7)
Table 14: PCB properties
Dimension
Value
Board finish thickness
1.6 mm +/- 10%
Board dimension
77 mm x 86 mm
Board Material
FR4
Copper thickness (top and bottom layers)
0.070 mm
Copper thickness (inner layers)
0.035 mm
Thermal vias separation
1.2 mm
Thermal via diameter
0.3 mm +/- 0.08 mm
Copper thickness on vias
0.025 mm
Footprint dimension (top layer)
2.2 mm x 3.9 mm
Heatsink copper area dimension (bottom layer)
DocID027394 Rev 1
Footprint, 2 cm2 or 8 cm2
35/45
Package and PCB thermal data
VN7010AJ
Figure 45: Rthj-amb vs PCB copper area in open box free air condition (one channel on)
RTHjamb
90
RTHjamb
80
70
60
50
40
30
0
2
4
6
8
10
GAPGCFT01055
Figure 46: PowerSSO-16 thermal impedance junction ambient single pulse (one channel on)
ZTH (°C/W)
100
10
1
Cu=foot print
Cu=2 cm2
Cu=8 cm2
4 Layer
0 .1
0.0001
0.001
0.01
0.1
1
Time (s)
10
100
1000
GAPGCFT01056
Equation: pulse calculation formula
ZTHδ = RTH · δ + ZTHtp (1 - δ)
where δ = tP/T
36/45
DocID027394 Rev 1
VN7010AJ
Package and PCB thermal data
Figure 47: Thermal fitting model of a double-channel HSD in PowerSSO-16
The fitting model is a simplified thermal tool and is valid for transient evolutions
where the embedded protections (power limitation or thermal cycling during
thermal shutdown) are not triggered.
Table 15: Thermal parameters
Area/island (cm2)
Footprint
R1 (°C/W)
0.15
R2 (°C/W)
1.7
R3 (°C/W)
2
8
4L
7
7
7
5
R4 (°C/W)
16
6
6
4
R5 (°C/W)
30
20
10
3
R6 (°C/W)
26
20
18
7
C1 (W.s/°C)
0.0015
C2 (W.s/°C)
0.02
C3 (W.s/°C)
0.1
C4 (W.s/°C)
0.2
0.3
0.3
0.4
C5 (W.s/°C)
0.4
1
1
4
C6 (W.s/°C)
3
5
7
18
DocID027394 Rev 1
37/45
Package information
7
VN7010AJ
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
7.1
PowerSSO-16 package information
Figure 48: PowerSSO-16 package dimensions
Table 16: PowerSSO-16 mechanical data
Millimeters
Symbol
Min.
Max.
Θ
0°
Θ1
0°
Θ2
5°
15°
Θ3
5°
15°
A
38/45
Typ.
8°
1.70
A1
0.00
0.10
A2
1.10
1.60
DocID027394 Rev 1
VN7010AJ
Package information
Millimeters
Symbol
Min.
b
0.20
b1
0.20
c
0.19
c1
0.19
D
D1
Typ.
Max.
0.30
0.25
0.28
0.25
0.20
0.23
4.9 BSC
3.60
4.20
e
0.50 BSC
E
6.00 BSC
E1
3.90 BSC
E2
1.90
2.50
h
0.25
0.50
L
0.40
0.60
L1
1.00 REF
N
16
R
0.07
R1
0.07
S
0.20
0.85
Tolerance of form and position
aaa
0.10
bbb
0.10
ccc
0.08
ddd
0.08
eee
0.10
fff
0.10
ggg
0.15
DocID027394 Rev 1
39/45
Package information
7.2
VN7010AJ
PowerSSO-16 packing information
Figure 49: PowerSSO-16 reel 13"
Table 17: Reel dimensions
Description
Value(1)
Base quantity
2500
Bulk quantity
2500
A (max)
330
B (min)
1.5
C (+0.5, -0.2)
13
D (min)
20.2
N
100
W1 (+2 /-0)
12.4
W2 (max)
18.4
Notes:
(1)All
40/45
dimensions are in mm.
DocID027394 Rev 1
VN7010AJ
Package information
Figure 50: PowerSSO-16 carrier tape
0.30 ±0.05
P2
P0
2.0 ±0.1
4.0 ±0.1
X
1.55 ±0.05
1.75 ±0.1
B0
W
F
1.6±0.1
R 0.5
Typical
K1
Y
Y
X
K0
P1
A0
REF 4.18
REF 0.6
SECTION X - X
REF 0.5
SECTION Y - Y
GAPG2204151242CFT
Table 18: PowerSSO-16 carrier tape dimensions
Description
Value(1)
A0
6.50 ± 0.1
B0
5.25 ± 0.1
K0
2.10 ± 0.1
K1
1.80 ± 0.1
F
5.50 ± 0.1
P1
8.00 ± 0.1
W
12.00 ± 0.3
Notes:
(1)All
dimensions are in mm.
Figure 51: PowerSSO-16 schematic drawing of leader and trailer tape
DocID027394 Rev 1
41/45
Package information
7.3
VN7010AJ
PowerSSO-16 marking information
Figure 52: PowerSSO-16 marking information
Marking area
1
2
3
4
5
6
7
8
Special function digit
&: Engineering sample
<blank>: Commercial sample
PowerSSO-16 TOP VIEW
(not in scale)
GAPG0401151415CFT
Engineering Samples: these samples can be clearly identified by a dedicated
special symbol in the marking of each unit. These samples are intended to be
used for electrical compatibility evaluation only; usage for any other purpose may
be agreed only upon written authorization by ST. ST is not liable for any customer
usage in production and/or in reliability qualification trials.
Commercial Samples: fully qualified parts from ST standard production with no
usage restrictions.
42/45
DocID027394 Rev 1
VN7010AJ
8
Order codes
Order codes
Table 19: Device summary
Order codes
Package
Tape and reel
PowerSSO-16
VN7010AJTR
DocID027394 Rev 1
43/45
Revision history
9
VN7010AJ
Revision history
Table 20: Document revision history
44/45
Date
Revision
19-May-2015
1
DocID027394 Rev 1
Changes
Initial release.
VN7010AJ
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the
design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
DocID027394 Rev 1
45/45