STM32L162VD-X - STMicroelectronics

STM32L162VD-X
Ultra-low-power 32-bit MCU ARM®-based Cortex®-M3 with 384KB
Flash, 80KB SRAM, 16KB EEPROM, LCD, USB, ADC, DAC, AES
Datasheet - production data
Features
• Ultra-low-power platform
– 1.65 V to 3.6 V power supply
– -40 °C to 105 °C temperature range
– 290 nA Standby mode (3 wakeup pins)
– 1.11 µA Standby mode + RTC
– 560 nA Stop mode (16 wakeup lines)
– 1.4 µA Stop mode + RTC
– 11 µA Low-power run mode down to 4.6 µA
in Low-power sleep mode
– 195 µA/MHz Run mode
– 10 nA ultra-low I/O leakage
– 8 µs wakeup time
• AES 128-bit encryption hardware accelerator
• Core: ARM® Cortex®-M3 32-bit CPU
– From 32 kHz up to 32 MHz max
– 1.25 DMIPS/MHz (Dhrystone 2.1)
– Memory protection unit
WLCSP104
(0.400 mm pitch)
• Up to 116 fast I/Os (102 I/Os 5V tolerant), all
mappable on 16 external interrupt vectors
• Memories
– 384 KB Flash memory with ECC (with 2
banks of 192 KB enabling RWW capability)
– 80 KB RAM
– 16 KB of true EEPROM with ECC
– 128 byte backup register
• LCD driver up to 8x40 segments, contrast
adjustment, blinking mode, step-up converter
• Rich analog peripherals (down to 1.8 V)
– 2x operational amplifiers
– 12-bit ADC 1 Msps up to 40 channels
– 12-bit DAC 2 ch with output buffers
– 2x ultra-low-power comparators
(window mode and wakeup capability)
• Up to 23 capacitive sensing channels
• CRC calculation unit, 96-bit unique ID
• Reset and supply management
– Low-power, ultrasafe BOR (brownout reset)
with 5 selectable thresholds
– Ultra-low-power POR/PDR
– Programmable voltage detector (PVD)
• Clock sources
– 1 to 24 MHz crystal oscillator
– 32 kHz oscillator for RTC with calibration
– Internal 16 MHz oscillator factory trimmed
RC(+/-1%) with PLL option
– Internal low-power 37 kHz oscillator
– Internal multispeed low-power 65 kHz to
4.2 MHz oscillator
– PLL for CPU clock and USB (48 MHz)
• DMA controller 12x channels
• 11x peripheral communication interfaces
– 1x USB 2.0 (internal 48 MHz PLL)
– 5x USART
– 3x SPI 16 Mbits/s (2x SPI with I2S)
– 2x I2C (SMBus/PMBus)
• 11x timers: 1x 32-bit, 6x 16-bit with up to 4
IC/OC/PWM channels, 2x 16-bit basic timers,
2x watchdog timers (independent and window)
• Development support: serial wire debug, JTAG
and trace
• Pre-programmed bootloader
– USB and USART supported
April 2015
This is information on a product in full production.
DocID027268 Rev 2
1/115
www.st.com
Contents
STM32L162VD-X
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3
2/115
2.1
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2
Ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.2.1
Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2
Shared peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3
Common system strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2
ARM® Cortex®-M3 core with MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3
Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.1
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.4
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4
Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5
Low-power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 22
3.6
GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.7
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.8
DMA (direct memory access) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.9
LCD (liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.10
ADC (analog-to-digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.10.1
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.10.2
Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.11
DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.12
Operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.13
Ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 26
3.14
System configuration controller and routing interface . . . . . . . . . . . . . . . 26
3.15
Touch sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
DocID027268 Rev 2
STM32L162VD-X
Contents
3.16
AES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.17
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.18
3.17.1
General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM9, TIM10 and
TIM11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.17.2
Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.17.3
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.17.4
Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.17.5
Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.18.1
I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.18.2
Universal synchronous/asynchronous receiver transmitter (USART) . . 29
3.18.3
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.18.4
Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.18.5
Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.19
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 29
3.20
Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.20.1
Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.20.2
Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4
Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.7
Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.8
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3.2
Embedded reset and power control block characteristics . . . . . . . . . . . 54
DocID027268 Rev 2
3/115
4
Contents
7
STM32L162VD-X
6.3.3
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.4
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.5
Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3.6
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3.7
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.8
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.9
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.10
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.11
Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.12
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.13
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.14
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.15
TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.16
Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.17
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3.18
DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3.19
Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.20
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.21
Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.22
LCD controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.1
WLCSP104, 0.4 mm pitch wafer level chip scale package
information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.2
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
9
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4/115
DocID027268 Rev 2
STM32L162VD-X
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Ultra-low-power STM32L162VD-X device features
and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Functionalities depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . 14
CPU frequency range depending on dynamic voltage scaling . . . . . . . . . . . . . . . . . . . . . . 15
Functionalities depending on the working mode (from Run/active down to
standby) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
STM32L162VD-X pin definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Alternate function input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 54
Embedded internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Current consumption in Run mode, code with data processing running from Flash. . . . . . 58
Current consumption in Run mode, code with data processing running from RAM . . . . . . 59
Current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Current consumption in Low-power run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Current consumption in Low-power sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 63
Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 65
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Flash memory and data EEPROM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Flash memory and data EEPROM endurance and retention . . . . . . . . . . . . . . . . . . . . . . . 79
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
DocID027268 Rev 2
5/115
6
List of tables
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
6/115
STM32L162VD-X
SCL frequency (fPCLK1= 32 MHz, VDD = VDD_I2C = 3.3 V). . . . . . . . . . . . . . . . . . . . . . . . 89
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
USB: full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
ADC clock frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Maximum source impedance RAIN max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
LCD controller characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
WLCSP104, 0.4 mm pitch wafer level chip scale package mechanical data . . . . . . . . . . 109
WLCSP104, 0.4 mm pitch recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . 110
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
STM32L162VD-X Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
DocID027268 Rev 2
STM32L162VD-X
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Ultra-low-power STM32L162VD-X block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
STM32L162VD-X WLCSP104 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Maximum dynamic current consumption on VREF+ supply pin during ADC
conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
WLCSP104, 0.4 mm pitch wafer level chip scale package outline . . . . . . . . . . . . . . . . . . 108
WLCSP104, 0.4 mm pitch wafer level chip scale package recommended footprint. . . . . 109
WLCSP104, 0.4 mm pitch wafer level chip scale package top view example . . . . . . . . . 110
Thermal resistance suffix 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Thermal resistance suffix 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
DocID027268 Rev 2
7/115
7
Introduction
1
STM32L162VD-X
Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32L162VD-X ultra-low-power ARM® Cortex®-M3 based microcontroller product
line. The STM32L162VD-X device is a microcontroller with a Flash memory density of
384 Kbytes.
The ultra-low-power STM32L162VD-X is available in a 104-pin package. the description
below gives an overview of the complete range of peripherals proposed in this device.
These features make the ultra-low-power STM32L162VD-X microcontroller suitable for a
wide range of applications:
•
Medical and handheld equipment
•
Application control and user interface
•
PC peripherals, gaming, GPS and sport equipment
•
Alarm systems, wired and wireless sensors, video intercom
•
Utility metering
This STM32L162VD-X datasheet should be read in conjunction with the STM32L1xxxx
reference manual (RM0038). The application note “Getting started with STM32L1xxxx
hardware development” (AN3216) gives a hardware implementation overview. Both
documents are available from the STMicroelectronics website www.st.com.
For information on the ARM® Cortex®-M3 core please refer to the ARM® Cortex®-M3
technical reference manual, available from the www.arm.com website. Figure 1 shows the
general block diagram of the device.
8/115
DocID027268 Rev 2
STM32L162VD-X
2
Description
Description
The ultra-low-power STM32L162VD-X device incorporates the connectivity power of the
universal serial bus (USB) with the high-performance ARM® Cortex®-M3 32-bit RISC core
operating at a frequency of 32 MHz (33.3 DMIPS), a memory protection unit (MPU), highspeed embedded memories (Flash memory up to 384 Kbytes and RAM up to 80 Kbytes)
and an extensive range of enhanced I/Os and peripherals connected to two APB buses.
The STM32L162VD-X device offers two operational amplifiers, one 12-bit ADC, two DACs,
two ultra-low-power comparators, AES, one general-purpose 32-bit timer, six generalpurpose 16-bit timers and two basic timers, which can be used as time bases.
Moreover, the STM32L162VD-X device contains standard and advanced communication
interfaces: up to two I2Cs, three SPIs, two I2S, two UARTs, three USARTs and an USB. The
STM32L162VD-X device offers up to 23 capacitive sensing channels to simply add a touch
sensing functionality to any application.
It also includes a real-time clock and a set of backup registers that remain powered in
Standby mode.
Finally, the integrated LCD controller has a built-in LCD voltage generator that allows to
drive up to 8 multiplexed LCDs with the contrast independent of the supply voltage.
The ultra-low-power STM32L162VD-X device operates from a 1.8 to 3.6 V power supply
(down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without
BOR option. They are available in the -40 to +85 °C and -40 to +105 °C temperature ranges.
A comprehensive set of power-saving modes allows the design of low-power applications.
DocID027268 Rev 2
9/115
48
Description
2.1
STM32L162VD-X
Device overview
Table 1. Ultra-low-power STM32L162VD-X device features
and peripheral counts
Peripheral
STM32L162VD-X
Flash (Kbytes)
384
Data EEPROM (Kbytes)
16
RAM (Kbytes)
80
AES
1
Timers
32 bit
1
Generalpurpose
6
Basic
2
3/(2)
SPI/(I2S)
Communication
interfaces
I2C
2
USART
5
USB
1
GPIOs
83
Operational amplifiers
2
12-bit synchronized ADC
Number of channels
1
25
12-bit DAC
Number of channels
2
2
LCD
COM x SEG
1
4x44 or 8x40
Comparators
2
Capacitive sensing channels
23
Max. CPU frequency
Operating voltage
Operating temperatures
32 MHz
1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option
1.65 V to 3.6 V without BOR option
Ambient operating temperature: -40 °C to 85 °C / -40 °C to 105 °C
Junction temperature: –40 to + 110 °C
Packages
Note:
10/115
WLCSP104
There is no FSMC and SDIO peripheral.
DocID027268 Rev 2
STM32L162VD-X
2.2
Description
Ultra-low-power device continuum
The ultra-low-power family offers a large choice of cores and features. From proprietary 8bit to up to Cortex-M3, including the Cortex-M0+, the STM32Lx series are the best choice to
answer your needs, in terms of ultra-low-power features. The STM32 ultra-low-power series
are the best fit, for instance, for gas/water meter, keyboard/mouse or fitness and healthcare,
wearable applications. Several built-in features like LCD drivers, dual-bank
memory, Low-power run mode, op-amp, AES 128-bit, DAC, USB crystal-less and many
others will clearly allow to build very cost-optimized applications by reducing BOM.
Note:
STMicroelectronics as a reliable and long-term manufacturer ensures as much as possible
the pin-to-pin compatibility between any STM8Lxxxxx and STM32Lxxxxx devices and
between any of the STM32Lx and STM32Fx series. Thanks to this unprecedented
scalability, your old applications can be upgraded to respond to the latest market features
and efficiency demand.
2.2.1
Performance
All families incorporate highly energy-efficient cores with both Harvard architecture and
pipelined execution: advanced STM8 core for STM8L families and ARM Cortex-M3 core for
STM32L family. In addition specific care for the design architecture has been taken to
optimize the mA/DMIPS and mA/MHz ratios.
This allows the ultra-low-power performance to range from 5 up to 33.3 DMIPs.
2.2.2
Shared peripherals
STM8L15xxx, STM32L15xxx and STM32L162xx share identical peripherals which ensure a
very easy migration from one family to another:
2.2.3
•
Analog peripherals: ADC, DAC and comparators
•
Digital peripherals: RTC and some communication interfaces
Common system strategy.
To offer flexibility and optimize performance, the STM8L15xxx, STM32L15xxx and
STM32L162xx family uses a common architecture:
2.2.4
•
Same power supply range from 1.65 V to 3.6 V
•
Architecture optimized to reach ultra-low consumption both in low-power modes and
Run mode
•
Fast startup strategy from low-power modes
•
Flexible system clock
•
Ultrasafe reset: same reset strategy including power-on reset, power-down reset,
brownout reset and programmable voltage detector
Features
ST ultra-low-power continuum also lies in feature compatibility:
•
More than 15 packages with pin count from 20 to 144 pins and size down to 3 x 3 mm
•
Memory density ranging from 2 to 512 Kbytes
DocID027268 Rev 2
11/115
48
Functional overview
3
STM32L162VD-X
Functional overview
Figure 1. Ultra-low-power STM32L162VD-X block diagram
75$&(&.75$&('75$&('75$&('75$&('
-7$*6:
#9''
32:(5
9''&25(
7UDFH&RQWUROOHU(70
SEXV
92/75(*
)PD[0+]
REO
'EXV
DV$)
038
6\VWHP
19,&
*3'0$FKDQQHOV
6XSSO\PRQLWRULQJ
3'5
65$0.
#9''
$+%3&/.
$3%3&/.
+&/.
;7$/26&
0+]
966$
0JPW
:'*.
6WDQGE\
LQWHUIDFH
5&+6,
5&06,
,QW
39'
;7$/N+]
#5&/6,
9 '' $
3$>@
*3,23257$
3%>@
*3,23257%
3&>@
*3,23257&
3'>@
*3,23257'
3(>@
*3,23257(
3+>@
*3,23257+
#9''$
%DFNXS
5HJ
%DFNXSLQWHUIDFH
/&'%RRVWHU
3*>@
$)
*3,23257)
*3,23257*
7,0(5
FKDQQHOV
7,0(5
FKDQQHOV
7,0(5
FKDQQHOV
63,
5;7;&76576
6PDUW&DUGDV$)
86$57
$+%$3%
$+%$3%
9665()B$'&
7HPSVHQVRU
,)
:LQ:$7&+'2*
7,0(5
$3%)PD[ 0+]
ELW$'&
$3%)PD[ 0+]
$)
9''5()B$'&
86$57
86$57
5;7;&76576
6PDUW&DUGDV$)
86$57
86%65$0%
#9''$
63,,6
[[ELW
026,0,626&.166:6&.
0&.6'DV$)
,&
6&/6'$
$V$)
,&
6&/6'$60%XV30%XV
$V$)
86%)6GHYLFH
7,0(5
FKDQQHO
7,0(5
86%B'3
86%B'0
&DSVHQVLQJ
FKDQQHO
5;7;DV$)
63,,6
[[ELW
*HQHUDOSXUSRVH
WLPHUV
7,0(5
5;7;DV$)
026,0,626&.166:6&.
0&.6'DV$)
7,0(5
FKDQQHOV
FKDQQHOV
5;7;&76576
6PDUW&DUGDV$)
86$57
(;7,7
:.83
026,0,62
6&.166DV$)
9/&' 9WR9
$(6
7,0(56ELWV
3)>@
7$03(5
#9''
9/&'
383'
57&9
$:8
$+%)PD[ 0+]
*3&RPS
26&B,1
26&B287
57&B287
&DSVHQV
&203[B,1[
26&B287
&ORFN
6XSSO\
%25
26&B,1
3//
)&/.
%25%JDS
1567
3'5
#9''$
PRQLWRULQJ
9VV
9UHI
.%352*5$0
.%'$7$
.%%227
'8$/%$1.
*3'0$FKDQQHOV
9''$
9'' 9WR9
((3520ELW
,QWHUIDFH
-7066:'$7
-7'2
LEXV
((3520
0&38
%XV0DWUL[06
1-7567
-7',
-7&.6:&/.
/&'[
23$03
3[
6(*[
&20[
#9''$
23$03
ELW'$&
'$&B287DV$)
ELW'$&
'$&B287DV$)
,)
,,)
)
9,13
9,13
9,10
9,10
9287
9287
06Y9
12/115
DocID027268 Rev 2
STM32L162VD-X
3.1
Functional overview
Low-power modes
The ultra-low-power STM32L162VD-X device supports dynamic voltage scaling to optimize
its power consumption in run mode. The voltage from the internal low-drop regulator that
supplies the logic can be adjusted according to the system’s maximum operating frequency
and the external voltage supply.
There are three power consumption ranges:
•
Range 1 (VDD range limited to 1.71 V - 3.6 V), with the CPU running at up to 32 MHz
•
Range 2 (full VDD range), with a maximum CPU frequency of 16 MHz
•
Range 3 (full VDD range), with a maximum CPU frequency limited to 4 MHz (generated
only with the multispeed internal RC oscillator clock source)
Seven low-power modes are provided to achieve the best compromise between low-power
consumption, short startup time and available wakeup sources:
•
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at
16 MHz is about 1 mA with all peripherals off.
•
Low-power run mode
This mode is achieved with the multispeed internal (MSI) RC oscillator set to the
minimum clock (131 kHz), execution from SRAM or Flash memory, and internal
regulator in low-power mode to minimize the regulator's operating current. In low-power
run mode, the clock frequency and the number of enabled peripherals are both limited.
•
Low-power sleep mode
This mode is achieved by entering Sleep mode with the internal voltage regulator in
Low-power mode to minimize the regulator’s operating current. In Low-power sleep
mode, both the clock frequency and the number of enabled peripherals are limited; a
typical example would be to have a timer running at 32 kHz.
When wakeup is triggered by an event or an interrupt, the system reverts to the run
mode with the regulator on.
•
Stop mode with RTC
Stop mode achieves the lowest power consumption while retaining the RAM and
register contents and real time clock. All clocks in the VCORE domain are stopped, the
PLL, MSI RC, HSI RC and HSE crystal oscillators are disabled. The LSE or LSI is still
running. The voltage regulator is in the low-power mode.
The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI
line source can be one of the 16 external lines. It can be the PVD output, the
Comparator 1 event or Comparator 2 event (if internal reference voltage is on), it can
be the RTC alarm(s), the USB wakeup, the RTC tamper events, the RTC timestamp
event or the RTC wakeup.
DocID027268 Rev 2
13/115
48
Functional overview
•
STM32L162VD-X
Stop mode without RTC
Stop mode achieves the lowest power consumption while retaining the RAM and
register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, LSE and
HSE crystal oscillators are disabled. The voltage regulator is in the low-power mode.
The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI
line source can be one of the 16 external lines. It can be the PVD output, the
Comparator 1 event or Comparator 2 event (if internal reference voltage is on). It can
also be wakened by the USB wakeup.
•
Standby mode with RTC
Standby mode is used to achieve the lowest power consumption and real time clock.
The internal voltage regulator is switched off so that the entire VCORE domain is
powered off. The PLL, MSI RC, HSI RC and HSE crystal oscillators are also switched
off. The LSE or LSI is still running. After entering Standby mode, the RAM and register
contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG,
RTC, LSI, LSE Crystal 32K osc, RCC_CSR).
The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG
reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B),
RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.
•
Standby mode without RTC
Standby mode is used to achieve the lowest power consumption. The internal voltage
regulator is switched off so that the entire VCORE domain is powered off. The PLL, MSI
RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After
entering Standby mode, the RAM and register contents are lost except for registers in
the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc,
RCC_CSR).
The device exits Standby mode in 60 µs when an external reset (NRST pin) or a rising
edge on one of the three WKUP pin occurs.
Note:
The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by
entering Stop or Standby mode.
Table 2. Functionalities depending on the operating power supply range
Functionalities depending on the operating power supply range
Operating power supply
range
DAC and ADC
operation
USB
Dynamic voltage
scaling range
I/O operation
VDD= VDDA = 1.65 to 1.71 V
Not functional
Not functional
Range 2 or
Range 3
Degraded speed
performance
Not functional
Not functional
Range 1, Range 2
or Range 3
Degraded speed
performance
Conversion time up
to 500 Ksps
Not functional
Range 1, Range 2
or
Range 3
Degraded speed
performance
VDD=VDDA= 1.71 to 1.8 V(1)
VDD=VDDA= 1.8 to 2.0 V
14/115
DocID027268 Rev 2
STM32L162VD-X
Functional overview
Table 2. Functionalities depending on the operating power supply range (continued)
Functionalities depending on the operating power supply range
Operating power supply
range
DAC and ADC
operation
USB
Dynamic voltage
scaling range
I/O operation
VDD=VDDA = 2.0 to 2.4 V
Conversion time up
to 500 Ksps
Functional(2)
Range 1, Range 2
or Range 3
Full speed operation
VDD=VDDA = 2.4 to 3.6 V
Conversion time up
to 1 Msps
Functional(2)
Range 1, Range 2
or Range 3
Full speed operation
1. CPU frequency changes from initial to final must respect “FCPU initial < 4*FCPU final” to limit VCORE drop due to current
consumption peak when frequency increases. It must also respect 5 µs delay between two changes. For example to switch
from 4.2 MHz to 32 MHz, you can switch from 4.2 MHz to 16 MHz, wait 5 µs, then switch from 16 MHz to 32 MHz.
2. Should be USB compliant from I/O voltage standpoint, the minimum VDD is 3.0 V.
Table 3. CPU frequency range depending on dynamic voltage scaling
CPU frequency range
Dynamic voltage scaling range
16 MHz to 32 MHz (1ws)
32 kHz to 16 MHz (0ws)
Range 1
8 MHz to 16 MHz (1ws)
32 kHz to 8 MHz (0ws)
Range 2
2.1MHz to 4.2 MHz (1ws)
32 kHz to 2.1 MHz (0ws)
Range 3
DocID027268 Rev 2
15/115
48
Functional overview
STM32L162VD-X
Table 4. Functionalities depending on the working mode (from Run/active down to
standby)
Standby
Run/Active
Sleep
CPU
Y
--
Y
--
--
--
--
--
Flash
Y
Y
Y
Y
--
--
--
--
RAM
Y
Y
Y
Y
Y
--
--
--
Backup Registers
Y
Y
Y
Y
Y
--
Y
--
EEPROM
Y
Y
Y
Y
Y
--
--
--
Brown-out rest
(BOR)
Y
Y
Y
Y
Y
Y
Y
--
DMA
Y
Y
Y
Y
--
--
--
--
Programmable
Voltage Detector
(PVD)
Y
Y
Y
Y
Y
Y
Y
--
Power On Reset
(POR)
Y
Y
Y
Y
Y
Y
Y
--
Power Down Rest
(PDR)
Y
Y
Y
Y
Y
--
Y
--
High Speed
Internal (HSI)
Y
Y
--
--
--
--
--
--
High Speed
External (HSE)
Y
Y
--
--
--
--
--
--
Low Speed Internal
(LSI)
Y
Y
Y
Y
Y
--
--
--
Low Speed
External (LSE)
Y
Y
Y
Y
Y
--
--
--
Multi-Speed
Internal (MSI)
Y
Y
Y
Y
--
--
--
--
Inter-Connect
Controller
Y
Y
Y
Y
--
--
--
--
RTC
Y
Y
Y
Y
Y
Y
Y
--
RTC Tamper
Y
Y
Y
Y
Y
Y
Y
Y
Auto WakeUp
(AWU)
Y
Y
Y
Y
Y
Y
Y
Y
LCD
Y
Y
Y
Y
Y
--
--
--
USB
Y
Y
--
--
--
Y
--
--
--
--
Ips
Lowpower
Sleep
Stop
Lowpower
Run
Wakeup
capability
Wakeup
capability
USART
Y
Y
Y
Y
Y
(1)
SPI
Y
Y
Y
Y
--
--
--
--
I2C
Y
Y
Y
Y
--
(1)
--
--
16/115
DocID027268 Rev 2
STM32L162VD-X
Functional overview
Table 4. Functionalities depending on the working mode (from Run/active down to
standby) (continued)
Standby
Run/Active
Sleep
ADC
Y
Y
--
--
--
--
--
--
DAC
Y
Y
Y
Y
Y
--
--
--
Tempsensor
Y
Y
Y
Y
Y
--
--
--
OP amp
Y
Y
Y
Y
Y
--
--
--
Comparators
Y
Y
Y
Y
Y
Y
--
--
16-bit and 32-bit
Timers
Y
Y
Y
Y
--
--
--
--
IWDG
Y
Y
Y
Y
Y
Y
Y
Y
WWDG
Y
Y
Y
Y
--
--
--
--
Touch sensing
Y
Y
--
--
--
--
--
--
Systic Timer
Y
Y
Y
Y
--
--
--
GPIOs
Y
Y
Y
Y
Y
--
3 pins
0 µs
0.4 µs
3 µs
46 µs
Ips
Wakeup time to
Run mode
Consumption
VDD=1.8 to 3.6 V
(Typ)
Down to 195
µA/MHz (from
Flash)
Down to 38
µA/MHz (from
Flash)
Down to
11 µA
Lowpower
Sleep
Stop
Lowpower
Run
Down to
4.6 µA
Wakeup
capability
Y
Wakeup
capability
< 8 µs
58 µs
0.53 µA
(no RTC)
VDD=1.8V
0.285 µA
(no RTC)
VDD=1.8V
1.2 µA
(with RTC)
VDD=1.8V
0.97 µA
(with RTC)
VDD=1.8V
0.56 µA
(no RTC)
VDD=3.0V
0.29 µA
(no RTC)
VDD=3.0V
1.4 µA
(with RTC)
VDD=3.0V
1.11 µA
(with RTC)
VDD=3.0V
1. The startup on communication line wakes the CPU which was made possible by an EXTI, this induces a delay before
entering run mode.
3.2
ARM® Cortex®-M3 core with MPU
The ARM® Cortex®-M3 processor is the industry leading processor for embedded systems.
It has been developed to provide a low-cost platform that meets the needs of MCU
implementation, with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced system response to interrupts.
The ARM® Cortex®-M3 32-bit RISC processor features exceptional code-efficiency,
delivering the high-performance expected from an ARM core in the memory size usually
associated with 8- and 16-bit devices.
DocID027268 Rev 2
17/115
48
Functional overview
STM32L162VD-X
The memory protection unit (MPU) improves system reliability by defining the memory
attributes (such as read/write access permissions) for different memory regions. It provides
up to eight different regions and an optional predefined background region.
Owing to its embedded ARM core, the STM32L162VD-X device is compatible with all ARM
tools and software.
Nested vectored interrupt controller (NVIC)
The ultra-low-power STM32L162VD-X device embeds a nested vectored interrupt controller
able to handle up to 56 maskable interrupt channels (not including the 16 interrupt lines of
ARM® Cortex®-M3) and 16 priority levels.
•
Closely coupled NVIC gives low-latency interrupt processing
•
Interrupt entry vector table address passed directly to the core
•
Closely coupled NVIC core interface
•
Allows early processing of interrupts
•
Processing of late arriving, higher-priority interrupts
•
Support for tail-chaining
•
Processor state automatically saved
•
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt
latency.
3.3
Reset and supply management
3.3.1
Power supply schemes
3.3.2
•
VDD = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided
externally through VDD pins.
•
VSSA, VDDA = 1.65 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs
and PLL (minimum voltage to be applied to VDDA is 1.8 V when the ADC is used). VDDA
and VSSA must be connected to VDD and VSS, respectively.
Power supply supervisor
The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset
(PDR) that can be coupled with a brownout reset (BOR) circuitry.
The device exists in two versions:
•
The version with BOR activated at power-on operates between 1.8 V and 3.6 V.
•
The other version without BOR operates between 1.65 V and 3.6 V.
After the VDD threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or
not at power-on), the option byte loading process starts, either to confirm or modify default
thresholds, or to disable the BOR permanently: in this case, the VDD min value becomes
1.65 V (whatever the version, BOR active or not, at power-on).
When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever
the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the
18/115
DocID027268 Rev 2
STM32L162VD-X
Functional overview
power ramp-up should guarantee that 1.65 V is reached on VDD at least 1 ms after it exits
the POR area.
Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To
reduce the power consumption in Stop mode, it is possible to automatically switch off the
internal reference voltage (VREFINT) in Stop mode. The device remains in reset mode when
VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for any external
reset circuit.
Note:
The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for a device with BOR inactive
at power-up.
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD/VDDA power supply and compares it to the VPVD threshold. This PVD offers 7 different
levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An
interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when
VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate
a warning message and/or put the MCU into a safe state. The PVD is enabled by software.
3.3.3
Voltage regulator
The regulator has three operation modes: main (MR), low-power (LPR) and power down.
3.3.4
•
MR is used in Run mode (nominal regulation)
•
LPR is used in the Low-power run, Low-power sleep and Stop modes
•
Power down is used in Standby mode. The regulator output is high impedance, the
kernel circuitry is powered down, inducing zero consumption but the contents of the
registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC,
LSI, LSE crystal 32K osc, RCC_CSR).
Boot modes
At startup, boot pins are used to select one of three boot options:
•
Boot from Flash memory
•
Boot from System memory
•
Boot from embedded RAM
The boot from Flash usually boots at the beginning of the Flash (bank 1). An additional boot
mechanism is available through user option byte, to allow booting from bank 2 when bank 2
contains valid code. This dual boot capability can be used to easily implement a secure field
software update mechanism.
The boot loader is located in System memory. It is used to reprogram the Flash memory by
using USART1, USART2 or USB. See Application note “STM32 microcontroller system
memory boot mode” (AN2606) for details.
DocID027268 Rev 2
19/115
48
Functional overview
3.4
STM32L162VD-X
Clock management
The clock controller distributes the clocks coming from different oscillators to the core and
the peripherals. It also manages clock gating for low-power modes and ensures clock
robustness. It features:
•
Clock prescaler: to get the best trade-off between speed and current consumption, the
clock frequency to the CPU and peripherals can be adjusted by a programmable
prescaler.
•
Safe clock switching: clock sources can be changed safely on the fly in run mode
through a configuration register.
•
Clock management: to reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
•
System clock source: three different clock sources can be used to drive the master
clock SYSCLK:
•
–
1-24 MHz high-speed external crystal (HSE), that can supply a PLL
–
16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can
supply a PLL
–
Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 7
frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz).
When a 32.768 kHz clock source is available in the system (LSE), the MSI
frequency can be trimmed by software down to a ±0.5% accuracy.
Auxiliary clock source: two ultra-low-power clock sources that can be used to drive
the LCD controller and the real-time clock:
–
32.768 kHz low-speed external crystal (LSE)
–
37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
The LSI clock can be measured using the high-speed internal RC oscillator for
greater precision.
•
RTC and LCD clock sources: the LSI, LSE or HSE sources can be chosen to clock
the RTC and the LCD, whatever the system clock.
•
USB clock source: the embedded PLL has a dedicated 48 MHz clock output to supply
the USB interface.
•
Startup clock: after reset, the microcontroller restarts by default with an internal 2 MHz
clock (MSI). The prescaler ratio and clock source can be changed by the application
program as soon as the code execution starts.
•
Clock security system (CSS): this feature can be enabled by software. If a HSE clock
failure occurs, the master clock is automatically switched to HSI and a software
interrupt is generated if enabled.
•
Clock-out capability (MCO: microcontroller clock output): it outputs one of the
internal clocks for external use by the application.
Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and
APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See
Figure 2 for details on the clock tree.
20/115
DocID027268 Rev 2
STM32L162VD-X
Functional overview
Figure 2. Clock tree
3TANDBYSUPPLIEDVOLTAGEDOMAIN
ENABLE
7ATCHDOG
,3)2#
,3)TEMPO
,3%/3#
,3%TEMPO
7ATCHDOG
,3
24#ENABLE
24#
2ADIO3LEEP4IMER
2ADIO3LEEP4IMERENABLE
,3
,3 ,3
,3
6$$#/2%
-(Z
,#$ENABLE
6
-3)2#
LEVELSHIFTERS
6$$#/2%
#+?!$#
!$#ENABLE
CK?LSI
CK?LSE
#+?,#$
-#/
NOTDEEPSLEEP
#+?072
6
NOTDEEPSLEEP
(3)2#
NOTSLEEPOR
DEEPSLEEP
LEVELSHIFTERS
6$$#/2%
3YSTEM
CLOCK
6
(3%
/3#
CK?MSI
CK?HSI
CK?HSE
LEVELSHIFTERS
6$$#/2%
!("
PRESCALER
6 CK?PLL
0,,
CK?PLLIN 8
,3
6
-(ZCLOCK
DETECTOR
NOTSLEEPOR
DEEPSLEEP
#+?&#,+
#+?#05
#+?4)-393
!0"
!0"
PRESCALER PRESCALER
(3%PRESENTORNOT
,3
#+?53"
LEVELSHIFTERS
6$$#/2%
#LOCK
SOURCE
CONTROL
USBENANDNOTDEEPSLEEP
CK?USB6CO6COMUSTBEAT-(
Z
#+?4)-4'/
#+?!0"
#+?!0"
TIMERENANDNOTDEEPSLEEP
APBPERIPHENANDNOTDEEPSLEEP
IF!0"PRESCX
X
ELSE
APBPERIPHENANDNOTDEEPSLEEP
-36
1. For the USB function to be available, both HSE and PLL must be enabled, with the CPU running at either
24 MHz or 32 MHz.
DocID027268 Rev 2
21/115
48
Functional overview
3.5
STM32L162VD-X
Low-power real-time clock and backup registers
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain
the sub-second, second, minute, hour (12/24 hour), week day, date, month, year, in BCD
(binary-coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the
month are made automatically. The RTC provides two programmable alarms and
programmable periodic interrupts with wakeup from Stop and Standby modes.
The programmable wakeup time ranges from 120 µs to 36 hours.
The RTC can be calibrated with an external 512 Hz output, and a digital compensation
circuit helps reduce drift due to crystal deviation.
The RTC can also be automatically corrected with a 50/60Hz stable powerline.
The RTC calendar can be updated on the fly down to sub second precision, which enables
network system synchronization.
A time stamp can record an external event occurrence, and generates an interrupt.
There are thirty-two 32-bit backup registers provided to store 128 bytes of user application
data. They are cleared in case of tamper detection.
Three pins can be used to detect tamper events. A change on one of these pins can reset
backup register and generate an interrupt. To prevent false tamper event, like ESD event,
these three tamper inputs can be digitally filtered.
3.6
GPIOs (general-purpose inputs/outputs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions, and can be individually
remapped using dedicated AFIO registers. All GPIOs are high current capable. The
alternate function configuration of I/Os can be locked if needed following a specific
sequence in order to avoid spurious writing to the I/O registers. The I/O controller is
connected to the AHB with a toggling speed of up to 16 MHz.
External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 24 edge detector lines used to generate
interrupt/event requests. Each line can be individually configured to select the trigger event
(rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 115 GPIOs can be connected
to the 16 external interrupt lines. The 8 other lines are connected to RTC, PVD, USB,
comparator events or capacitive sensing acquisition.
22/115
DocID027268 Rev 2
STM32L162VD-X
3.7
Functional overview
Memories
The STM32L162VD-X device has the following features:
•
80 Kbytes of embedded RAM accessed (read/write) at CPU clock speed with 0 wait
states. With the enhanced bus matrix, operating the RAM does not lead to any
performance penalty during accesses to the system bus (AHB and APB buses).
•
The non-volatile memory is divided into three arrays:
–
384 Kbytes of embedded Flash program memory
–
16 Kbytes of data EEPROM
–
Options bytes
Flash program and data EEPROM are divided into two banks, this enables writing in
one bank while running code or reading data in the other bank.
The options bytes are used to write-protect or read-out protect the memory (with 4 KB
granularity) and/or readout-protect the whole memory with the following options:
–
Level 0: no readout protection
–
Level 1: memory readout protection, the Flash memory cannot be read from or
written to if either debug features are connected or boot in RAM is selected
–
Level 2: chip readout protection, debug features (ARM Cortex-M3 JTAG and serial
wire) and boot in RAM selection disabled (JTAG fuse)
The whole non-volatile memory embeds the error correction code (ECC) feature.
3.8
DMA (direct memory access)
The flexible 12-channel, general-purpose DMA is able to manage memory-to-memory,
peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports
circular buffer management, avoiding the generation of interrupts when the controller
reaches the end of the buffer.
Each channel is connected to dedicated hardware DMA requests, with software trigger
support for each channel. Configuration is done by software and transfer sizes between
source and destination are independent.
The DMA can be used with the main peripherals: AES, SPI, I2C, USART, general-purpose
timers, DAC and ADC.
DocID027268 Rev 2
23/115
48
Functional overview
3.9
STM32L162VD-X
LCD (liquid crystal display)
The LCD drives up to 8 common terminals and 44 segment terminals to drive up to 320
pixels.
3.10
•
Internal step-up converter to guarantee functionality and contrast control irrespective of
VDD. This converter can be deactivated, in which case the VLCD pin is used to provide
the voltage to the LCD
•
Supports static, 1/2, 1/3, 1/4 and 1/8 duty
•
Supports static, 1/2, 1/3 and 1/4 bias
•
Phase inversion to reduce power consumption and EMI
•
Up to 8 pixels can be programmed to blink
•
Unneeded segments and common pins can be used as general I/O pins
•
LCD RAM can be updated at any time owing to a double-buffer
•
The LCD controller can operate in Stop mode
ADC (analog-to-digital converter)
A 12-bit analog-to-digital converters is embedded into STM32L162VD-X device with up to
40 external channels, performing conversions in single-shot or scan mode. In scan mode,
automatic conversion is performed on a selected group of analog inputs with up to 28
external channels in a group.
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all scanned channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
The events generated by the general-purpose timers (TIMx) can be internally connected to
the ADC start triggers, to allow the application to synchronize A/D conversions and timers.
An injection mode allows high priority conversions to be done by interrupting a scan mode
which runs in as a background task.
The ADC includes a specific low-power mode. The converter is able to operate at maximum
speed even if the CPU is operating at a very low frequency and has an auto-shutdown
function. The ADC’s runtime and analog front-end current consumption are thus minimized
whatever the MCU operating mode.
3.10.1
Temperature sensor
The temperature sensor (TS) generates a voltage VSENSE that varies linearly with
temperature.
The temperature sensor is internally connected to the ADC_IN16 input channel which is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
24/115
DocID027268 Rev 2
STM32L162VD-X
Functional overview
stored by ST in the system memory area, accessible in read-only mode. See Table 59:
Temperature sensor calibration values.
3.10.2
Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC and Comparators. VREFINT is internally connected to the ADC_IN17 input channel. It
enables accurate monitoring of the VDD value (when no external voltage, VREF+, is
available for ADC). The precise voltage of VREFINT is individually measured for each part by
ST during production test and stored in the system memory area. It is accessible in readonly mode. See Table 14: Embedded internal reference voltage calibration values.
3.11
DAC (digital-to-analog converter)
The two 12-bit buffered DAC channels can be used to convert two digital signals into two
analog voltage signal outputs. The chosen design structure is composed of integrated
resistor strings and an amplifier in non-inverting configuration.
This dual digital Interface supports the following features:
•
Two DAC converters: one for each output channel
•
8-bit or 12-bit monotonic output
•
Left or right data alignment in 12-bit mode
•
Synchronized update capability
•
Noise-wave generation
•
Triangular-wave generation
•
Dual DAC channels, independent or simultaneous conversions
•
DMA capability for each channel (including the underrun interrupt)
•
External triggers for conversion
•
Input reference voltage VREF+
Eight DAC trigger inputs are used in the STM32L162VD-X device. The DAC channels are
triggered through the timer update outputs that are also connected to different DMA
channels.
3.12
Operational amplifier
The STM32L162VD-X device embeds two operational amplifiers with external or internal
follower routing capability (or even amplifier and filter capability with external components).
When one operational amplifier is selected, one external ADC channel is used to enable
output measurement.
The operational amplifiers feature:
•
Low input bias current
•
Low offset voltage
•
Low-power mode
•
Rail-to-rail input
DocID027268 Rev 2
25/115
48
Functional overview
3.13
STM32L162VD-X
Ultra-low-power comparators and reference voltage
The STM32L162VD-X device embeds two comparators sharing the same current bias and
reference voltage. The reference voltage can be internal or external (coming from an I/O).
•
One comparator with fixed threshold
•
One comparator with rail-to-rail inputs, fast or slow mode. The threshold can be one of
the following:
–
DAC output
–
External I/O
–
Internal reference voltage (VREFINT) or a sub-multiple (1/4, 1/2, 3/4)
Both comparators can wake up from Stop mode, and be combined into a window
comparator.
The internal reference voltage is available externally via a low-power / low-current output
buffer (driving current capability of 1 µA typical).
3.14
System configuration controller and routing interface
The system configuration controller provides the capability to remap some alternate
functions on different I/O ports.
The highly flexible routing interface allows the application firmware to control the routing of
different I/Os to the TIM2, TIM3 and TIM4 timer input captures. It also controls the routing of
internal analog signals to ADC1, COMP1 and COMP2 and the internal reference voltage
VREFINT.
3.15
Touch sensing
The STM32L162VD-X devices provide a simple solution for adding capacitive sensing
functionality to any application. These devices offer up to 23 capacitive sensing channels
distributed over 11 analog I/O groups. Both software and timer capacitive sensing
acquisition modes are supported.
Capacitive sensing technology is able to detect the presence of a finger near a sensor which
is protected from direct touch by a dielectric (glass, plastic...). The capacitive variation
introduced by the finger (or any conductive object) is measured using a proven
implementation based on a surface charge transfer acquisition principle. It consists of
charging the sensor capacitance and then transferring a part of the accumulated charges
into a sampling capacitor until the voltage across this capacitor has reached a specific
threshold. The capacitive sensing acquisition only requires few external components to
operate. This acquisition is managed directly by the GPIOs, timers and analog I/O groups
(see Section 3.14: System configuration controller and routing interface).
Reliable touch sensing functionality can be quickly and easily implemented using the free
STM32L1xx STMTouch touch sensing firmware library.
3.16
AES
The AES Hardware Accelerator can be used to encrypt and decrypt data using the AES
26/115
DocID027268 Rev 2
STM32L162VD-X
Functional overview
algorithm (compatible with FIPS PUB 197, 2001 Nov 26).
•
Key scheduler
•
Key derivation for decryption
•
128-bit data block processed
•
128-bit key length
•
213 clock cycles to encrypt/decrypt one 128-bit block
•
Electronic codebook (ECB), cypher block chaining (CBC), and counter mode (CTR)
supported by hardware.
AES data flow can be served by 2ch (DIN/DOUT) of the DMA2 controller
3.17
Timers and watchdogs
The ultra-low-power STM32L162VD-X device includes seven general-purpose timers, two
basic timers, and two watchdog timers.
Table 5 compares the features of the general-purpose and basic timers.
Table 5. Timer feature comparison
DMA
Capture/compare Complementary
request
channels
outputs
generation
Timer
Counter
resolution
Counter type
Prescaler factor
TIM2,
TIM3,
TIM4
16-bit
Up, down,
up/down
Any integer between
1 and 65536
Yes
4
No
TIM5
32-bit
Up, down,
up/down
Any integer between
1 and 65536
Yes
4
No
TIM9
16-bit
Up, down,
up/down
Any integer between
1 and 65536
No
2
No
TIM10,
TIM11
16-bit
Up
Any integer between
1 and 65536
No
1
No
TIM6,
TIM7
16-bit
Up
Any integer between
1 and 65536
Yes
0
No
3.17.1
General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM9, TIM10 and
TIM11)
There are seven synchronizable general-purpose timers embedded in the STM32L162VD-X
device (see Table 5 for differences).
TIM2, TIM3, TIM4, TIM5
TIM2, TIM3, TIM4 are based on 16-bit auto-reload up/down counter. TIM5 is based on a 32bit auto-reload up/down counter. They include a 16-bit prescaler. They feature four
independent channels each for input capture/output compare, PWM or one-pulse mode
output. This gives up to 16 input captures/output compares/PWMs on the largest packages.
TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together or with the TIM10,
TIM11 and TIM9 general-purpose timers via the Timer Link feature for synchronization or
DocID027268 Rev 2
27/115
48
Functional overview
STM32L162VD-X
event chaining. Their counter can be frozen in debug mode. Any of the general-purpose
timers can be used to generate PWM outputs.
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation.
These timers are capable of handling quadrature (incremental) encoder signals and the
digital outputs from 1 to 3 hall-effect sensors.
TIM10, TIM11 and TIM9
TIM10 and TIM11 are based on a 16-bit auto-reload upcounter. TIM9 is based on a 16-bit
auto-reload up/down counter. They include a 16-bit prescaler. TIM10 and TIM11 feature one
independent channel, whereas TIM9 has two independent channels for input capture/output
compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3,
TIM4, TIM5 full-featured general-purpose timers.
They can also be used as simple time bases and be clocked by the LSE clock source
(32.768 kHz) to provide time bases independent from the main CPU clock.
3.17.2
Basic timers (TIM6 and TIM7)
These timers are mainly used for DAC trigger generation. They can also be used as generic
16-bit time bases.
3.17.3
SysTick timer
This timer is dedicated to the OS, but could also be used as a standard downcounter. It is
based on a 24-bit downcounter with autoreload capability and a programmable clock
source. It features a maskable system interrupt generation when the counter reaches 0.
3.17.4
Independent watchdog (IWDG)
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 37 kHz internal RC and, as it operates independently of the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes. The counter
can be frozen in debug mode.
3.17.5
Window watchdog (WWDG)
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
3.18
Communication interfaces
3.18.1
I²C bus
Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support
standard and fast modes.
28/115
DocID027268 Rev 2
STM32L162VD-X
Functional overview
They support dual slave addressing (7-bit only) and both 7- and 10-bit addressing in master
mode. A hardware CRC generation/verification is embedded.
They can be served by DMA and they support SM Bus 2.0/PM Bus.
3.18.2
Universal synchronous/asynchronous receiver transmitter (USART)
The three USART and two UART interfaces are able to communicate at speeds of up to 4
Mbit/s. They support IrDA SIR ENDEC and have LIN Master/Slave capability. The three
USARTs provide hardware management of the CTS and RTS signals and are ISO 7816
compliant.
All USART/UART interfaces can be served by the DMA controller.
3.18.3
Serial peripheral interface (SPI)
Up to three SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in
full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC
generation/verification supports basic SD Card/MMC modes.
The SPIs can be served by the DMA controller.
3.18.4
Inter-integrated sound (I2S)
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can
operate in master or slave mode, and can be configured to operate with a 16-/32-bit
resolution as input or output channels. Audio sampling frequencies from 8 kHz up to 192
kHz are supported. When either or both of the I2S interfaces is/are configured in master
mode, the master clock can be output to the external DAC/CODEC at 256 times the
sampling frequency.
The I2Ss can be served by the DMA controller.
3.18.5
Universal serial bus (USB)
The STM32L162VD-X device embeds a USB device peripheral compatible with the USB
full-speed 12 Mbit/s. The USB interface implements a full-speed (12 Mbit/s) function
interface. It has software-configurable endpoint setting and supports suspend/resume. The
dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use
a HSE crystal oscillator).
3.19
CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.
DocID027268 Rev 2
29/115
48
Functional overview
STM32L162VD-X
3.20
Development support
3.20.1
Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
The JTAG JTMS and JTCK pins are shared with SWDAT and SWCLK, respectively, and a
specific sequence on the JTMS pin is used to switch between JTAG-DP and SW-DP.
The JTAG port can be permanently disabled with a JTAG fuse.
3.20.2
Embedded Trace Macrocell™
The ARM® Embedded Trace Macrocell provides a greater visibility of the instruction and
data flow inside the CPU core by streaming compressed data at a very high rate from the
STM32L162VD-X devices through a small number of ETM pins to an external hardware
trace port analyzer (TPA) device. The TPA is connected to a host computer using USB,
Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can
be recorded and then formatted for display on the host computer running debugger
software. TPA hardware is commercially available from common development tool vendors.
It operates with third party debugger software tools.
30/115
DocID027268 Rev 2
STM32L162VD-X
4
Pin descriptions
Pin descriptions
Figure 3. STM32L162VD-X WLCSP104 ballout
ϵ
ϴ
sͺϯ
Wϭ
Wϱ
Wϭϯ
t<hWϮ
Wϭϱ
Wϭϰ
K^ϯϮKhd K^ϯϮ/E
&
'
sͺϱ
W,ϭ
K^Khd
WϮ
ϳ
ϲ
KKdϬ
ϱ
ϰ
ϯ
Ϯ
ϭ
Wϱ
Wϰ
Wϳ
Wϰ
WϬ
s^^ͺϮ
sͺϯ
WϬ
Wϳ
Wϯ
Wϲ
Wϱ
WϭϮ
Wϭϱ
Wϰ
s^^ͺϯ
Wϵ
Wϲ
Wϯ
WϮ
Wϭϭ
sͺϮ
Wϯ
WϮ
Wϴ
Wϭ
Wϭϰ
s^^ͺϮ
W,Ϯ
s^^ͺϱ
s>
Wϲ
t<hWϯ
WϭϬ
Wϭϯ
WϭϮ
Wϭϭ
W,Ϭ
K^/E
EZ^d
WϬ
Wϵ
Wϴ
WϭϬ
Wϵ
Wϯ
sZ&н
s
Wϭϭ
Wϭϱ
Wϴ
Wϳ
Wϴ
WϭϮ
Wϭϯ
Wϲ
Wϵ
Wϭϰ
,
Wϭ
sZ&Ͳ
Wϯ
Wϲ
:
s^^
WϮ
Wϰ
WϬ
WϭϬ
WϭϮ
Wϭϯ
<
WϬ
t<hWϭ
s^^ͺϰ
Wϳ
Wϭ
Wϭϯ
Wϭϱ
sͺϭ
Wϭϱ
WϭϬ
>
Wϭ
sͺϰ
Wϰ
Wϳ
Wϭϭ
Wϭϰ
Wϭϭ
s^^ͺϭ
Wϭϰ
sͺϰ
Wϱ
Wϱ
WϮ
Wϴ
Wϵ
WϭϮ
WϭϬ
s^^ͺϭ
D
D^ϯϯϬϬϰsϭ
1. This figure shows the package bottom view.
DocID027268 Rev 2
31/115
48
Pin descriptions
STM32L162VD-X
Table 6. Legend/abbreviations used in the pinout table
Name
Abbreviation
Pin name
Definition
Unless otherwise specified in brackets below the pin name, the pin function
during and after reset is the same as the actual pin name
Pin type
I/O structure
S
Supply pin
I
Input only pin
I/O
Input / output pin
FT
5 V tolerant I/O
TC
Standard 3.3 V I/O
B
Dedicated BOOT0 pin
RST
Bidirectional reset pin with embedded weak pull-up resistor
Unless otherwise specified by a note, all I/Os are set as floating inputs during
and after reset
Notes
Alternate
Functions selected through GPIOx_AFR registers
functions
Pin
functions
Additional
Functions directly selected/enabled through peripheral registers
functions
Table 7. STM32L162VD-X pin definitions
Pins
32/115
WLCSP104
Pin name
Pin Type(1)
I / O structure
Pin functions
Main
function(2)
(after
reset)
D6
PE2
I/O
FT
PE2
TIM3_ETR/LCD_SEG38/
TRACECLK
-
D7
PE3
I/O
FT
PE3
TIM3_CH1/LCD_SEG39/
TRACED0
-
C8
PE4
I/O
FT
PE4
TIM3_CH2/TRACED1
-
B9
PE5
I/O
FT
PE5
TIM9_CH1/TRACED2
-
E6
PE6WKUP3
I/O
FT
PE6
TIM9_CH2/TRACED3
WKUP3/RTC_TAMP3
E7
VLCD
S
-
VLCD
-
-
C9
PC13WKUP2
I/O
FT
PC13
-
WKUP2/RTC_TAMP1
/RTC_TS/RTC_OUT
Alternate functions
Additional functions
DocID027268 Rev 2
STM32L162VD-X
Pin descriptions
Table 7. STM32L162VD-X pin definitions (continued)
Pins
I / O structure
Main
function(2)
(after
reset)
D8
PC14I/O
OSC32_IN(3)
TC
PC14
-
OSC32_IN
D9
PC15I/O
OSC32_OUT
TC
PC15
-
OSC32_OUT
WLCSP104
Pin Type(1)
Pin functions
Pin name
Alternate functions
Additional functions
E8
VSS_5
S
VSS_5
-
-
E9
VDD_5
S
VDD_5
-
-
F8
PH0OSC_IN(4)
I/O
TC
PH0
-
OSC_IN
PH1I/O
OSC_OUT(4)
TC
PH1
-
OSC_OUT
NRST
-
-
F9
F7
NRST
F6
PC0
I/O
FT
PC0
LCD_SEG18
ADC_IN10/
COMP1_INP
H9
PC1
I/O
FT
PC1
LCD_SEG19
ADC_IN11/
COMP1_INP
G9
PC2
I/O
FT
PC2
LCD_SEG20
ADC_IN12/
COMP1_INP
G8
PC3
I/O
TC
PC3
LCD_SEG21
ADC_IN13/
COMP1_INP
J9
VSSA
S
-
VSSA
-
-
H8
VREF-
S
-
VREF-
-
-
G7
VREF+
S
-
VREF+
-
-
G6
VDDA
S
-
VDDA
-
-
FT
PA0
TIM2_CH1_ETR/
TIM5_CH1/USART2_CTS
WKUP1/RTC_TAMP2
/ADC_IN0/
COMP1_INP
K9
I/O RST
PA0-WKUP1 I/O
L9
PA1
I/O
FT
PA1
TIM2_CH2/TIM5_CH2/
USART2_RTS/
LCD_SEG0
ADC_IN1/
COMP1_INP/
OPAMP1_VINP
J8
PA2
I/O
FT
PA2
TIM2_CH3/TIM5_CH3/
TIM9_CH1/
USART2_TX/LCD_SEG1
ADC_IN2/
COMP1_INP/
OPAMP1_VINM
DocID027268 Rev 2
33/115
48
Pin descriptions
STM32L162VD-X
Table 7. STM32L162VD-X pin definitions (continued)
Pins
34/115
WLCSP104
Pin name
Pin Type(1)
I / O structure
Pin functions
Main
function(2)
(after
reset)
H7
PA3
I/O
TC
PA3
TIM2_CH4/TIM5_CH4/
TIM9_CH2/
USART2_RX/LCD_SEG2
ADC_IN3/
COMP1_INP/
OPAMP1_VOUT
K8
VSS_4
S
-
VSS_4
-
-
L8,M9
VDD_4
S
-
VDD_4
-
-
J7
PA4
I/O
TC
PA4
SPI1_NSS/SPI3_NSS/
I2S3_WS/
USART2_CK
ADC_IN4/DAC_OUT1
/COMP1_INP
M8
PA5
I/O
TC
PA5
TIM2_CH1_ETR/
SPI1_SCK
ADC_IN5/
DAC_OUT2/
COMP1_INP
H6
PA6
I/O
FT
PA6
TIM3_CH1/TIM10_CH1/
SPI1_MISO/
LCD_SEG3
ADC_IN6/
COMP1_INP/
OPAMP2_VINP
K7
PA7
I/O
FT
PA7
TIM3_CH2/TIM11_CH1/
SPI1_MOSI/
LCD_SEG4
ADC_IN7/
COMP1_INP/
OPAMP2_VINM
L7
PC4
I/O
FT
PC4
LCD_SEG22
ADC_IN14/
COMP1_INP
M7
PC5
I/O
FT
PC5
LCD_SEG23
ADC_IN15/
COMP1_INP
Alternate functions
Additional functions
J6
PB0
I/O
TC
PB0
TIM3_CH3/LCD_SEG5
ADC_IN8/
COMP1_INP/
OPAMP2_VOUT/
VREF_OUT
K6
PB1
I/O
FT
PB1
TIM3_CH4/LCD_SEG6
ADC_IN9/
COMP1_INP/
VREF_OUT
M6
PB2
I/O
FT
PB2/
BOOT1
BOOT1
ADC_IN0b
L6
PE7
I/O
TC
PE7
-
ADC_IN22/
COMP1_INP
M5
PE8
I/O
TC
PE8
-
ADC_IN23/
COMP1_INP
DocID027268 Rev 2
STM32L162VD-X
Pin descriptions
Table 7. STM32L162VD-X pin definitions (continued)
Pins
WLCSP104
Pin name
Pin Type(1)
I / O structure
Pin functions
Main
function(2)
(after
reset)
M4
PE9
I/O
TC
PE9
TIM2_CH1_ETR
ADC_IN24/
COMP1_INP
J5
PE10
I/O
TC
PE10
TIM2_CH2
ADC_IN25/
COMP1_INP
L5
PE11
I/O
FT
PE11
TIM2_CH3
-
M3
PE12
I/O
FT
PE12
TIM2_CH4/SPI1_NSS
-
K5
PE13
I/O
FT
PE13
SPI1_SCK
-
L4
PE14
I/O
FT
PE14
SPI1_MISO
-
K4
PE15
I/O
FT
PE15
SPI1_MOSI
-
M2
PB10
I/O
FT
PB10
TIM2_CH3/I2C2_SCL/
USART3_TX/
LCD_SEG10
-
L3
PB11
I/O
FT
PB11
TIM2_CH4/I2C2_SDA/
USART3_RX/LCD_SEG11
-
L2,M1
VSS_1
S
-
VSS_1
-
-
K3
VDD_1
S
-
VDD_1
-
-
PB12
TIM10_CH1/I2C2_SMBA/
SPI2_NSS/I2S2_WS/
USART3_CK/
LCD_SEG12
ADC_IN18/
COMP1_INP
ADC_IN19/
COMP1_INP
J4
PB12
I/O
FT
Alternate functions
Additional functions
J3
PB13
I/O
FT
PB13
TIM9_CH1/SPI2_SCK/
I2S2_CK/
USART3_CTS/
LCD_SEG13
L1
PB14
I/O
FT
PB14
TIM9_CH2/SPI2_MISO/US
ART3_RTS/
LCD_SEG14
ADC_IN20/
COMP1_INP
K2
PB15
I/O
FT
PB15
TIM11_CH1/SPI2_MOSI/
I2S2_SD/
LCD_SEG15
ADC_IN21/
COMP1_INP/
RTC_REFIN
H4
PD8
I/O
FT
PD8
USART3_TX/LCD_SEG28
-
J2
PD9
I/O
FT
PD9
USART3_RX/LCD_SEG29
-
K1
PD10
I/O
FT
PD10
USART3_CK/LCD_SEG30
-
DocID027268 Rev 2
35/115
48
Pin descriptions
STM32L162VD-X
Table 7. STM32L162VD-X pin definitions (continued)
Pins
WLCSP104
Pin name
Pin Type(1)
I / O structure
Main
function(2)
(after
reset)
G4
PD11
I/O
FT
PD11
USART3_CTS/
LCD_SEG31
-
H3
PD12
I/O
FT
PD12
TIM4_CH1/USART3_RTS/
LCD_SEG32
-
H2
PD13
I/O
FT
PD13
TIM4_CH2/LCD_SEG33
-
J1
PD14
I/O
FT
PD14
TIM4_CH3/LCD_SEG34
-
G3
PD15
I/O
FT
PD15
TIM4_CH4/LCD_SEG35
-
H1
PC6
I/O
FT
PC6
TIM3_CH1/I2S2_MCK/
LCD_SEG24
-
G1
PC7
I/O
FT
PC7
TIM3_CH2/I2S3_MCK/
LCD_SEG25
-
G2
PC8
I/O
FT
PC8
TIM3_CH3/LCD_SEG26
-
F4
PC9
I/O
FT
PC9
TIM3_CH4/LCD_SEG27
-
F3
PA8
I/O
FT
PA8
USART1_CK/MCO/
LCD_COM0
-
F1
PA9
I/O
FT
PA9
USART1_TX / LCD_COM1
-
F2
PA10
I/O
FT
PA10
USART1_RX /
LCD_COM2
-
E1
PA11
I/O
FT
PA11
USART1_CTS/SPI1_MISO
USB_DM
E2
PA12
I/O
FT
PA12
USART1_RTS/SPI1_MOSI
USB_DP
E3
PA13
I/O
FT
JTMSSWDIO
JTMS-SWDIO
-
D1
PH2
I/O
FT
PH2
-
-
D2,A1
VSS_2
S
-
VSS_2
-
-
C1
VDD_2
S
-
VDD_2
-
-
D3
PA14
I/O
FT
JTCKSWCLK
JTCK-SWCLK
-
JTDI
TIM2_CH1_ETR/
SPI1_NSS/SPI3_NSS/
I2S3_WS/LCD_SEG17/
JTDI
-
B1
36/115
Pin functions
PA15
I/O
FT
Alternate functions
Additional functions
DocID027268 Rev 2
STM32L162VD-X
Pin descriptions
Table 7. STM32L162VD-X pin definitions (continued)
E4
C2
Pin name
PC10
PC11
I/O
I/O
I / O structure
Pin functions
Pin Type(1)
WLCSP104
Pins
FT
FT
Main
function(2)
(after
reset)
Alternate functions
Additional functions
PC10
SPI3_SCK/I2S3_CK/
USART3_TX/ UART4_TX/
LCD_SEG28/LCD_SEG40
/LCD_COM4
-
PC11
SPI3_MISO/USART3_RX/
UART4_RX/
LCD_SEG29/LCD_SEG41
/LCD_COM5
-
-
B2
PC12
I/O
FT
PC12
SPI3_MOSI/I2S3_SD/
USART3_CK/
UART5_TX/LCD_SEG30/
LCD_SEG42/
LCD_COM6
A2
PD0
I/O
FT
PD0
TIM9_CH1/SPI2_NSS/
I2S2_WS
-
D4
PD1
I/O
FT
PD1
SPI2_SCK/I2S2_CK
-
C3
PD2
I/O
FT
PD2
TIM3_ETR/UART5_RX/
LCD_SEG31/
LCD_SEG43/LCD_COM7
-
C4
PD3
I/O
FT
PD3
SPI2_MISO/USART2_CTS
-
A3
PD4
I/O
FT
PD4
SPI2_MOSI/I2S2_SD/
USART2_RTS
-
B3
PD5
I/O
FT
PD5
USART2_TX
-
B4
PD6
I/O
FT
PD6
USART2_RX
-
A4
PD7
I/O
FT
PD7
TIM9_CH2/USART2_CK
-
B5
PB3
I/O
FT
JTDO
TIM2_CH2/SPI1_SCK/
SPI3_SCK/ I2S3_CK/
LCD_SEG7/JTDO
COMP2_INM
A5
PB4
I/O
FT
NJTRST
TIM3_CH1/SPI1_MISO/
SPI3_MISO/
LCD_SEG8/NJTRST
COMP2_INP
PB5
TIM3_CH2/I2C1_SMBA/
SPI1_MOSI/
SPI3_MOSI/I2S3_SD/
LCD_SEG9
COMP2_INP
A6
PB5
I/O
FT
DocID027268 Rev 2
37/115
48
Pin descriptions
STM32L162VD-X
Table 7. STM32L162VD-X pin definitions (continued)
Pins
WLCSP104
Pin name
Pin Type(1)
I / O structure
Pin functions
Main
function(2)
(after
reset)
C5
PB6
I/O
FT
PB6
TIM4_CH1/I2C1_SCL/
USART1_TX
COMP2_INP
B6
PB7
I/O
FT
PB7
TIM4_CH2/I2C1_SDA/
USART1_RX
COMP2_INP/PVD_IN
A7
BOOT0
I
B
BOOT0
-
-
D5
PB8
I/O
FT
PB8
TIM4_CH3/TIM10_CH1/
I2C1_SCL/LCD_SEG16
-
C6
PB9
I/O
FT
PB9
TIM4_CH4/
TIM11_CH1/I2C1_SDA/
LCD_COM3
-
B7
PE0
I/O
FT
PE0
TIM4_ETR/TIM10_CH1/
LCD_SEG36
-
A8
PE1
I/O
FT
PE1
TIM11_CH1/LCD_SEG37
-
C7
VSS_3
S
-
VSS_3
-
-
B8,A9
VDD_3
S
-
VDD_3
-
-
Alternate functions
Additional functions
1. I = input, O = output, S = supply.
2. Function availability depends on the chosen device.
3. The PC14 and PC15 I/Os are only configured as OSC32_IN/OSC32_OUT when the LSE oscillator is ON
(by setting the LSEON bit in the RCC_CSR register). The LSE oscillator pins OSC32_IN/OSC32_OUT can
be used as general-purpose PH0/PH1 I/Os, respectively, when the LSE oscillator is off (after reset, the
LSE oscillator is off). The LSE has priority over the GPIO function. For more details, refer to Using the
OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins section in the STM32L151xx, STM32L152xx
and STM32L162xx reference manual (RM0038).
4. The PH0 and PH1 I/Os are only configured as OSC_IN/OSC_OUT when the HSE oscillator is ON (by
setting the HSEON bit in the RCC_CR register). The HSE oscillator pins OSC_IN/OSC_OUT can be used
as general-purpose PH0/PH1 I/Os, respectively, when the HSE oscillator is off (after reset, the HSE
oscillator is off). The HSE has priority over the GPIO function.
38/115
DocID027268 Rev 2
Table 8. Alternate function input/output
Digital alternate function number
AFIO0
AFIO1
AFIO2
AFIO3
AFIO4
AFIO5
AFIO6
AFIO7
AFIO8
.
.
AFIO11
AFIO14
.
.
AFIO15
STM32L162VD-X
Alternate functions
Port name
Alternate function
SYSTEM
TIM2
TIM3/4/
5
TIM9/
10/11
I2C1/2
SPI1/2
SPI3
USART1/2/ UART4/
3
5
LCD
-
CPRI
SYSTEM
EVENT
OUT
DocID027268 Rev 2
BOOT0
BOOT0
-
-
-
-
-
-
-
-
-
-
-
-
NRST
NRST
-
-
-
-
-
-
-
-
-
-
-
-
-
- TIMx_IC1
EVENT
OUT
-
-
TIM2_CH1_
ETR
TIM5_CH1
-
-
-
-
USART2_CTS
-
-
PA1
-
TIM2_CH2
TIM5_CH2
-
-
-
-
USART2_RTS
-
- SEG0
-
TIMx_IC2
EVENT
OUT
PA2
-
TIM2_CH3
TIM5_CH3
TIM9_CH1
-
-
-
USART2_TX
-
- SEG1
- TIMx_IC3
EVENT
OUT
PA3
-
TIM2_CH4
TIM5_CH4
TIM9_CH2
-
-
-
USART2_RX
-
- SEG2
- TIMx_IC4
EVENT
OUT
PA4
-
-
-
-
-
SPI1_NSS
USART2_CK
-
-
-
- TIMx_IC1
EVENT
OUT
PA5
-
TIM2_CH1_
ETR
-
-
-
SPI1_SCK
-
-
-
-
-
- TIMx_IC2
EVENT
OUT
PA6
-
-
TIM3_CH1
TIM10_CH1
-
SPI1_MISO
-
-
-
- SEG3
- TIMx_IC3
EVENT
OUT
PA7
-
-
TIM3_CH2
TIM11_CH1
-
SPI1_MOSI
-
-
-
- SEG4
- TIMx_IC4
EVENT
OUT
-
-
-
-
-
-
USART1_CK
-
- COM0
- TIMx_IC1
EVENT
OUT
PA8
MCO
SPI3_NSS
I2S3_WS
39/115
PA9
-
-
-
-
-
-
-
USART1_TX
-
- COM1
- TIMx_IC2
EVENT
OUT
PA10
-
-
-
-
-
-
-
USART1_RX
-
- COM2
- TIMx_IC3
EVENT
OUT
Pin descriptions
PA0-WKUP1
Digital alternate function number
AFIO0
AFIO1
AFIO2
AFIO3
AFIO4
AFIO5
AFIO6
AFIO7
AFIO8
.
.
AFIO11
AFIO14
.
.
AFIO15
Port name
Alternate function
SYSTEM
TIM2
TIM3/4/
5
TIM9/
10/11
I2C1/2
SPI1/2
SPI3
USART1/2/ UART4/
3
5
PA11
-
-
-
-
-
SPI1_MISO
-
USART1_CTS
-
-
-
- TIMx_IC4
EVENT
OUT
PA12
-
-
-
-
-
SPI1_MOSI
-
USART1_RTS
-
-
-
- TIMx_IC1
EVENT
OUT
LCD
-
CPRI
SYSTEM
DocID027268 Rev 2
PA13
JTMSSWDIO
-
-
-
-
-
-
-
-
-
-
- TIMx_IC2
EVENT
OUT
PA14
JTCKSWCLK
-
-
-
-
-
-
-
-
-
-
- TIMx_IC3
EVEN
TOUT
PA15
JTDI
TIM2_CH1_
ETR
-
-
-
SPI1_NSS
-
-
- SEG17
- TIMx_IC4
EVEN
TOUT
SPI3_NSS
I2S3_WS
-
-
TIM3_CH3
-
-
-
-
-
-
- SEG5
-
-
EVEN
TOUT
PB1
-
-
TIM3_CH4
-
-
-
-
-
-
- SEG6
-
-
EVENT
OUT
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
-
-
-
SPI1_SCK
-
-
- SEG7
-
-
EVENT
OUT
-
TIM3_CH1
-
-
SPI1_MISO SPI3_MISO
-
-
- SEG8
-
-
EVENT
OUT
SPI1_MOSI
SPI3_MOSI
I2S3_SD
-
-
- SEG9
-
-
EVENT
OUT
-
EVENT
OUT
BOOT1
PB3
JTDO
PB4
NJTRST
TIM2_CH2
SPI3_SCK
I2S3_CK
PB5
-
-
TIM3_CH2
-
I2C1_
SMBA
PB6
-
-
TIM4_CH1
-
I2C1_SCL
-
-
USART1_TX
-
-
-
-
PB7
-
-
TIM4_CH2
-
I2C1_SDA
-
-
USART1_RX
-
-
-
-
PB8
-
-
TIM4_CH3
TIM10_CH1
I2C1_SCL
-
-
-
- SEG16
-
-
EVENT
OUT
-
EVENT
OUT
STM32L162VD-X
PB0
PB2
Pin descriptions
40/115
Table 8. Alternate function input/output (continued)
Digital alternate function number
AFIO0
AFIO1
AFIO2
AFIO3
AFIO4
AFIO5
AFIO6
AFIO7
AFIO8
.
.
AFIO11
AFIO14
.
.
AFIO15
Port name
Alternate function
DocID027268 Rev 2
SYSTEM
TIM2
TIM3/4/
5
TIM9/
10/11
I2C1/2
SPI1/2
SPI3
PB9
-
-
TIM4_CH4
TIM11_CH1
I2C1_SDA
-
-
PB10
-
TIM2_CH3
-
-
I2C2_SCL
-
-
PB11
-
TIM2_CH4
-
-
I2C2_SDA
-
PB12
-
-
-
TIM10_CH1
I2C2_SM
BA
PB13
-
-
-
TIM9_CH1
PB14
-
-
-
PB15
-
-
PC0
-
PC1
USART1/2/ UART4/
3
5
LCD
-
CPRI
SYSTEM
- COM3
-
-
EVENT
OUT
USART3_TX
-
- SEG10
-
-
EVENT
OUT
-
USART3_RX
-
- SEG11
-
-
EVENT
OUT
SPI2_NSS
I2S2_WS
-
USART3_CK
-
- SEG12
-
-
EVENT
OUT
-
SPI2_SCK
I2S2_CK
-
USART3_CTS
-
- SEG13
-
-
EVENT
OUT
TIM9_CH2
-
SPI2_MISO
-
USART3_RTS
-
- SEG14
-
-
EVENT
OUT
-
TIM11_CH1
-
SPI2_MOSI
I2S2_SD
-
-
-
- SEG15
-
-
EVENT
OUT
-
-
-
-
-
-
-
-
- SEG18
- TIMx_IC1
EVENT
OUT
-
-
-
-
-
-
-
-
-
- SEG19
- TIMx_IC2
EVENT
OUT
PC2
-
-
-
-
-
-
-
-
-
- SEG20
- TIMx_IC3
EVENT
OUT
PC3
-
-
-
-
-
-
-
-
-
- SEG21
- TIMx_IC4
EVENT
OUT
PC4
-
-
-
-
-
-
-
-
-
- SEG22
- TIMx_IC1
EVENT
OUT
PC5
-
-
-
-
-
-
-
-
-
- SEG23
- TIMx_IC2
EVENT
OUT
PC6
-
-
TIM3_CH1
-
-
I2S2_MCK
-
-
-
- SEG24
- TIMx_IC3
EVENT
OUT
Pin descriptions
41/115
-
-
STM32L162VD-X
Table 8. Alternate function input/output (continued)
Digital alternate function number
AFIO0
AFIO1
AFIO2
AFIO3
AFIO4
AFIO5
AFIO6
AFIO7
AFIO8
.
.
AFIO11
AFIO14
.
.
AFIO15
Port name
Alternate function
DocID027268 Rev 2
TIM2
TIM3/4/
5
TIM9/
10/11
I2C1/2
SPI1/2
PC7
-
-
TIM3_CH2
-
-
-
PC8
-
-
TIM3_CH3
-
-
-
PC9
-
-
TIM3_CH4
-
-
-
PC10
-
-
-
-
-
-
SPI3_SCK
I2S3_CK
PC11
-
-
-
-
-
-
PC12
-
-
-
-
-
PC13-WKUP2
-
-
-
-
PC14
OSC32_IN
-
-
-
PC15
OSC32_OUT
-
-
-
PD0
-
-
-
PD1
-
-
-
PD2
-
-
PD3
-
-
SPI3
USART1/2/ UART4/
3
5
LCD
-
CPRI
SYSTEM
-
-
- SEG25
- TIMx_IC4
EVENT
OUT
-
-
-
- SEG26
- TIMx_IC1
EVENT
OUT
-
-
-
- SEG27
- TIMx_IC2
EVENT
OUT
USART3_TX
UART4_TX
COM4/
- SEG28/
SEG40
- TIMx_IC3
EVENT
OUT
SPI3_MISO
USART3_RX
COM5/
UART4_RX - SEG29
/SEG41
- TIMx_IC4
EVENT
OUT
-
SPI3_MOSI
I2S3_SD
USART3_CK
UART5_TX
COM6/
- SEG30/
SEG42
- TIMx_IC1
EVENT
OUT
-
-
-
-
-
-
-
- TIMx_IC2
EVENT
OUT
-
-
-
-
-
-
-
-
- TIMx_IC3
EVENT
OUT
-
-
-
-
-
-
-
-
- TIMx_IC4
EVENT
OUT
-
SPI2_NSS
I2S2_WS
-
-
-
-
-
- TIMx_IC1
EVENT
OUT
-
-
SPI2 SCK
I2S2_CK
-
-
-
-
-
- TIMx_IC2
EVENT
OUT
TIM3_ETR
-
-
-
-
-
- TIMx_IC3
EVENT
OUT
-
-
-
SPI2_MISO
-
USART2_CTS
- TIMx_IC4
EVENT
OUT
TIM9_CH1
I2S3_MCK
COM7/
UART5_RX - SEG31/
SEG43
-
-
-
STM32L162VD-X
SYSTEM
Pin descriptions
42/115
Table 8. Alternate function input/output (continued)
Digital alternate function number
AFIO0
AFIO1
AFIO2
AFIO3
AFIO4
AFIO5
AFIO6
AFIO7
AFIO8
.
.
AFIO11
AFIO14
.
.
AFIO15
Port name
Alternate function
DocID027268 Rev 2
TIM2
TIM3/4/
5
TIM9/
10/11
I2C1/2
SPI1/2
SPI3
PD4
-
-
-
-
-
SPI2_MOSI
I2S2_SD
-
USART2_RTS
-
-
-
- TIMx_IC1
EVENT
OUT
PD5
-
-
-
-
-
-
-
USART2_TX
-
-
-
- TIMx_IC2
EVENT
OUT
PD6
-
-
-
-
-
-
-
USART2_RX
-
-
-
- TIMx_IC3
EVENT
OUT
PD7
-
-
-
-
-
-
USART2_CK
-
-
-
- TIMx_IC4
EVENT
OUT
PD8
-
-
-
-
-
-
-
USART3_TX
-
- SEG28
- TIMx_IC1
EVENT
OUT
PD9
-
-
-
-
-
-
-
USART3_RX
-
- SEG29
- TIMx_IC2
EVENT
OUT
PD10
-
-
-
-
-
-
-
USART3_CK
-
- SEG30
- TIMx_IC3
EVENT
OUT
PD11
-
-
-
-
-
-
-
USART3_CTS
-
- SEG31
- TIMx_IC4
EVENT
OUT
PD12
-
-
TIM4_CH1
-
-
-
-
USART3_RTS
-
- SEG32
- TIMx_IC1
EVENT
OUT
PD13
-
-
TIM4_CH2
-
-
-
-
-
-
- SEG33
- TIMx_IC2
EVENT
OUT
PD14
-
-
TIM4_CH3
-
-
-
-
-
-
- SEG34
- TIMx_IC3
EVENT
OUT
PD15
-
-
TIM4_CH4
-
-
-
-
-
-
- SEG35
- TIMx_IC4
EVENT
OUT
PE0
-
-
TIM4_ETR
TIM10_CH1
-
-
-
-
-
- SEG36
- TIMx_IC1
EVENT
OUT
PE1
-
-
-
TIM11_CH1
-
-
-
-
-
- SEG37
- TIMx_IC2
EVENT
OUT
TIM9_CH2
USART1/2/ UART4/
3
5
LCD
-
CPRI
SYSTEM
Pin descriptions
43/115
SYSTEM
STM32L162VD-X
Table 8. Alternate function input/output (continued)
Digital alternate function number
AFIO0
AFIO1
AFIO2
AFIO3
AFIO4
AFIO5
AFIO6
AFIO7
AFIO8
.
.
AFIO11
AFIO14
.
.
AFIO15
Port name
Alternate function
SYSTEM
TIM2
TIM3/4/
5
TIM9/
10/11
I2C1/2
SPI1/2
SPI3
USART1/2/ UART4/
3
5
LCD
-
CPRI
Pin descriptions
44/115
Table 8. Alternate function input/output (continued)
SYSTEM
DocID027268 Rev 2
PE2
TRACECK
-
TIM3_ETR
-
-
-
-
-
-
- SEG 38
- TIMx_IC3
EVENT
OUT
PE3
TRACED0
-
TIM3_CH1
-
-
-
-
-
-
- SEG 39
- TIMx_IC4
EVENT
OUT
PE4
TRACED1
-
TIM3_CH2
-
-
-
-
-
-
-
-
- TIMx_IC1
EVENT
OUT
PE5
TRACED2
-
-
TIM9_CH1
-
-
-
-
-
-
-
- TIMx_IC2
EVENT
OUT
PE6WKUP3
TRACED3
-
-
TIM9_CH2
-
-
-
-
-
-
-
- TIMx_IC3
EVENT
OUT
-
-
-
-
-
-
-
-
-
-
-
- TIMx_IC4
EVENT
OUT
PE8
-
-
-
-
-
-
-
-
-
-
-
- TIMx_IC1
EVENT
OUT
PE9
-
TIM2_CH1_
ETR
-
-
-
-
-
-
-
-
-
- TIMx_IC2
EVENT
OUT
PE10
-
TIM2_CH2
-
-
-
-
-
-
-
-
-
- TIMx_IC3
EVENT
OUT
PE11
-
TIM2_CH3
-
-
-
-
-
-
-
-
-
- TIMx_IC4
EVENT
OUT
PE12
-
TIM2_CH4
-
-
-
SPI1_NSS
-
-
-
-
-
- TIMx_IC1
EVENT
OUT
PE13
-
-
-
-
-
SPI1_SCK
-
-
-
-
-
- TIMx_IC2
EVENT
OUT
PE14
-
-
-
-
-
SPI1_MISO
-
-
-
-
-
- TIMx_IC3
EVENT
OUT
PE15
-
-
-
-
-
SPI1_MOSI
-
-
-
-
-
- TIMx_IC4
EVENT
OUT
STM32L162VD-X
PE7
Digital alternate function number
AFIO0
AFIO1
AFIO2
AFIO3
AFIO4
AFIO5
AFIO6
AFIO7
AFIO8
.
.
AFIO11
AFIO14
.
.
AFIO15
Port name
Alternate function
DocID027268 Rev 2
SYSTEM
TIM2
TIM3/4/
5
TIM9/
10/11
I2C1/2
SPI1/2
SPI3
USART1/2/ UART4/
3
5
PF0
-
-
-
-
-
-
-
-
-
PF1
-
-
-
-
-
-
-
-
PF2
-
-
-
-
-
-
-
PF3
-
-
-
-
-
-
PF4
-
-
-
-
-
PF5
-
-
-
-
PF6
-
-
TIM5_ETR
PF7
-
-
PF8
-
PF9
-
CPRI
SYSTEM
-
-
-
-
EVENT
OUT
-
-
-
-
-
EVENT
OUT
-
-
-
-
-
-
EVENT
OUT
-
-
-
-
-
-
-
EVENT
OUT
-
-
-
-
-
-
-
-
EVENT
OUT
-
-
-
-
-
-
-
-
-
EVENT
OUT
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
TIM5_CH2
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
-
TIM5_CH3
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
-
-
TIM5_CH4
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PF10
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PF11
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PF12
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PF13
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
Pin descriptions
45/115
LCD
STM32L162VD-X
Table 8. Alternate function input/output (continued)
Digital alternate function number
AFIO0
AFIO1
AFIO2
AFIO3
AFIO4
AFIO5
AFIO6
AFIO7
AFIO8
.
.
AFIO11
AFIO14
.
.
AFIO15
Port name
Alternate function
DocID027268 Rev 2
SYSTEM
TIM2
TIM3/4/
5
TIM9/
10/11
I2C1/2
SPI1/2
SPI3
USART1/2/ UART4/
3
5
PF14
-
-
-
-
-
-
-
-
-
PF15
-
-
-
-
-
-
-
-
PG0
-
-
-
-
-
-
-
PG1
-
-
-
-
-
-
PG2
-
-
-
-
-
PG3
-
-
-
-
PG4
-
-
-
PG5
-
-
PG6
-
PG7
-
CPRI
SYSTEM
-
-
-
-
EVENT
OUT
-
-
-
-
-
EVENT
OUT
-
-
-
-
-
-
EVENT
OUT
-
-
-
-
-
-
-
EVENT
OUT
-
-
-
-
-
-
-
-
EVENT
OUT
-
-
-
-
-
-
-
-
-
EVENT
OUT
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PG8
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PG9
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PG10
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PG11
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
STM32L162VD-X
LCD
Pin descriptions
46/115
Table 8. Alternate function input/output (continued)
Digital alternate function number
AFIO0
AFIO1
AFIO2
AFIO3
AFIO4
AFIO5
AFIO6
AFIO7
AFIO8
.
.
AFIO11
AFIO14
.
.
AFIO15
Port name
Alternate function
DocID027268 Rev 2
SYSTEM
TIM2
TIM3/4/
5
TIM9/
10/11
I2C1/2
SPI1/2
SPI3
USART1/2/ UART4/
3
5
PG12
-
-
-
-
-
-
-
-
-
PG13
-
-
-
-
-
-
-
-
PG14
-
-
-
-
-
-
-
PG15
-
-
-
-
-
-
PH0OSC_IN
-
-
-
-
-
PH1OSC_OUT
-
-
-
-
PH2
-
-
-
-
LCD
-
CPRI
-
-
-
-
EVENT
OUT
-
-
-
-
-
EVENT
OUT
-
-
-
-
-
-
EVENT
OUT
-
-
-
-
-
-
-
EVENT
OUT
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
STM32L162VD-X
Table 8. Alternate function input/output (continued)
SYSTEM
Pin descriptions
47/115
Memory mapping
5
STM32L162VD-X
Memory mapping
Figure 4. Memory map
$3%PHPRU\VSDFH
[))
[
[
[
[
[
[&
[
[))))))))
[
[
[(
[(
[
[&
[
[
[
[&
[
[
&RUWH[0,QWHUQDO
3HULSKHUDOV
[&
[
[&
[
[
[
[$
[&
$(6
UHVHUYHG
'0$
'0$
UHVHUYHG
)ODVK,QWHUIDFH
5&&
UHVHUYHG
&5&
UHVHUYHG
3RUW*
3RUW)
3RUW+
3RUW(
3RUW'
3RUW&
3RUW%
3RUW$
UHVHUYHG
86$57
UHVHUYHG
63,
UHVHUYHG
[
[
[
[
[
[)))
[))
[))
[))
[
2SWLRQ %\WHV
%DQN
UHVHUYHG
2SWLRQ %\WHV
%DQN
UHVHUYHG
[
[))
3HULSKHUDOV
[))
[
[
[
6\VWHPPHPRU\
UHVHUYHG
%DQN
[
6\VWHPPHPRU\
%DQN
[
[
[
[
[
[
[&
[))
[&
UHVHUYHG
[&
[
[
65$0
[
1RQ
YRODWLOH
PHPRU\
[
[
[
[
[
[
5HVHUYHG
[
'DWD ((3520
%DQN
'DWD ((3520
%DQN
UHVHUYHG
)ODVKPHPRU\
%DQN
UHVHUYHG
)ODVKPHPRU\
%DQN
$OLDVHGWR)ODVKRUV\VWHP
PHPRU\GHSHQGLQJRQ
[ %227SLQV
[
[&
[
[
[
[&
[
[
[
[&
[
[
[&
[
[
[&
[
[
[
$'&
UHVHUYHG
7,0
7,0
7,0
(;7,
6<6&)*
UHVHUYHG
&2035,
UHVHUYHG
'$&
3:5
UHVHUYHG
E\WH86%
86%5HJLVWHUV
,&
,&
8$57
8$57
86$57
86$57
UHVHUYHG
63,
63,
UHVHUYHG
,:'*
::'*
57&
/&'
UHVHUYHG
7,0
7,0
7,0
7, 0
7, 0
7, 0
06Y9
48/115
DocID027268 Rev 2
STM32L162VD-X
Electrical characteristics
6
Electrical characteristics
6.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the device with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3σ).
6.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.6 V (for the
1.65 V ≤VDD ≤3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ±2σ).
6.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 5.
6.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 6.
Figure 5. Pin loading conditions
Figure 6. Pin input voltage
0&8SLQ
0&8SLQ
& S)
9,1
DLF
DocID027268 Rev 2
DLG
49/115
107
Electrical characteristics
6.1.6
STM32L162VD-X
Power supply scheme
Figure 7. Power supply scheme
287
*3,2V
,1
9''
9''
/HYHOVKLIWHU
6WDQGE\SRZHUFLUFXLWU\
/6(57&:DNHXS
ORJLF57&EDFNXS
UHJLVWHUV
,2
/RJLF
.HUQHOORJLF
&38
'LJLWDO
0HPRULHV
5HJXODWRU
1îQ)
î—)
966
9''$
9''$
95()
Q)
—)
Q)
—)
95()
95()
$'&
'$&
$QDORJ
26&3//&203
«
966$
1±QXPEHURI
9''966SDLUV
50/115
069
DocID027268 Rev 2
STM32L162VD-X
6.1.7
Electrical characteristics
Optional LCD power supply scheme
Figure 8. Optional LCD power supply scheme
96(/
9''
1[Q)
[—)
2SWLRQ
9''1
6WHSXS
&RQYHUWHU
9/&'
Q)
/&'
9/&'
2SWLRQ
&(;7
9661
069
1. Option 1: LCD power supply is provided by a dedicated VLCD supply source, VSEL switch is open.
2. Option 2: LCD power supply is provided by the internal step-up converter, VSEL switch is closed, an
external capacitance is needed for correct behavior of this converter.
6.1.8
Current consumption measurement
Figure 9. Current consumption measurement scheme
$
1[Q)
[—)
1[9''
1[966
9/&'
9''$
Q)
—)
95()
95()
966$
069
DocID027268 Rev 2
51/115
107
Electrical characteristics
6.2
STM32L162VD-X
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 9: Voltage characteristics,
Table 10: Current characteristics, and Table 11: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
Table 9. Voltage characteristics
Symbol
VDD–VSS
VIN(2)
Ratings
Min
Max
–0.3
4.0
Input voltage on five-volt tolerant pin
VSS −0.3
VDD+4.0
Input voltage on any other pin
VSS − 0.3
4.0
External main supply voltage
(including VDDA and VDD)(1)
|ΔVDDx|
Variations between different VDD power pins
-
50
|VSSX − VSS|
Variations between all different ground pins
-
50
VREF+ –VDDA
Allowed voltage difference for VREF+ > VDDA
-
0.4
Electrostatic discharge voltage
(human body model)
see Section 6.3.11
VESD(HBM)
Unit
V
mV
V
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range.
2.
VIN maximum must always be respected. Refer to Table 10 for maximum allowed injected current values.
Table 10. Current characteristics
Symbol
IVDD(Σ)
IVSS(Σ)
(2)
Ratings
Max.
Total current into sum of all VDD_x power lines (source)(1)
100
(sink)(1)
100
Total current out of sum of all VSS_x ground lines
IVDD(PIN)
Maximum current into each VDD_x power pin
(source)(1)
70
IVSS(PIN)
Maximum current out of each VSS_x ground pin (sink)(1)
-70
Output current sunk by any I/O and control pin
25
IIO
ΣIIO(PIN)
IINJ(PIN) (3)
ΣIINJ(PIN)
Output current sourced by any I/O and control pin
- 25
Total output current sunk by sum of all IOs and control pins
(2)
Total output current sourced by sum of all IOs and control pins(2)
Injected current on five-volt tolerant I/O(4), RST and B pins
Injected current on any other pin
(5)
Unit
mA
60
-60
-5/+0
±5
(6)
Total injected current (sum of all I/O and control pins)
± 25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.17.
4. Positive current injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must never be
exceeded. Refer to Table 9 for maximum allowed input voltage values.
52/115
DocID027268 Rev 2
STM32L162VD-X
Electrical characteristics
5. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be
exceeded. Refer to Table 9: Voltage characteristics for the maximum allowed input voltage values.
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 11. Thermal characteristics
Symbol
TSTG
TJ
Ratings
Storage temperature range
Maximum junction temperature
6.3
Operating conditions
6.3.1
General operating conditions
Value
Unit
–65 to +150
°C
150
°C
Table 12. General operating conditions
Symbol
Parameter
Conditions
Min
Max
fHCLK
Internal AHB clock frequency
-
0
32
fPCLK1
Internal APB1 clock frequency
-
0
32
fPCLK2
Internal APB2 clock frequency
-
0
32
BOR detector disabled
1.65
3.6
BOR detector enabled, at
power on
1.8
3.6
BOR detector disabled, after
power on
1.65
3.6
1.65
3.6
1.8
3.6
FT pins; 2.0 V ≤VDD
-0.3
5.5(3)
FT pins; VDD < 2.0 V
-0.3
5.25(3)
0
5.5
-0.3
VDD+0.3
-
435
Ambient temperature for 6 suffix version Maximum power dissipation(5)
–40
85
Ambient temperature for 7 suffix version Maximum power dissipation
–40
105
6 suffix version
–40
105
7 suffix version
–40
110
VDD
(1)
VDDA
VIN
Standard operating voltage
Analog operating voltage
(ADC and DAC not used)
Analog operating voltage
(ADC or DAC used)
I/O input voltage
Must be the same voltage as
VDD(2)
BOOT0 pin
Any other pin
PD
TA
TJ
Power dissipation at TA = 85 °C for
suffix 6 or TA = 105 °C for suffix 7(4)
Junction temperature range
WLCSP104 package
Unit
MHz
V
V
V
mW
°C
°C
1. When the ADC is used, refer to Table 54: ADC characteristics.
2. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and
VDDA can be tolerated during power-up .
DocID027268 Rev 2
53/115
107
Electrical characteristics
STM32L162VD-X
3. To sustain a voltage higher than VDD+0.3V, the internal pull-up/pull-down resistors must be disabled.
4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJ max (see Table 66: Thermal characteristics
on page 111).
5. In low-power dissipation state, TA can be extended to -40°C to 105°C temperature range as long as TJ does not exceed TJ
max (see Table 66: Thermal characteristics on page 111).
6.3.2
Embedded reset and power control block characteristics
The parameters given in the following table are derived from the tests performed under the
conditions summarized in Table 12.
Table 13. Embedded reset and power control block characteristics
Symbol
Parameter
VDD rise time rate
tVDD(1)
VDD fall time rate
TRSTTEMPO(1)
Reset temporization
VPOR/PDR
Power on/power down reset
threshold
VBOR0
Brown-out reset threshold 0
VBOR1
Brown-out reset threshold 1
VBOR2
Brown-out reset threshold 2
54/115
Conditions
Min
Typ
Max
BOR detector enabled
0
-
∞
BOR detector disabled
0
-
1000
BOR detector enabled
20
-
∞
BOR detector disabled
0
-
1000
VDD rising, BOR enabled
-
2
3.3
0.4
0.7
1.6
Falling edge
1
1.5
1.65
Rising edge
1.3
1.5
1.65
Falling edge
1.67
1.7
1.74
Rising edge
1.69
1.76
1.8
Falling edge
1.87
1.93
1.97
Rising edge
1.96
2.03
2.07
Falling edge
2.22
2.30
2.35
Rising edge
2.31
2.41
2.44
VDD rising, BOR
DocID027268 Rev 2
disabled(2)
Unit
µs/V
ms
V
STM32L162VD-X
Electrical characteristics
Table 13. Embedded reset and power control block characteristics (continued)
Symbol
Parameter
Conditions
VBOR3
Brown-out reset threshold 3
VBOR4
Brown-out reset threshold 4
VPVD0
Programmable voltage detector
threshold 0
VPVD1
PVD threshold 1
VPVD2
PVD threshold 2
VPVD3
PVD threshold 3
VPVD4
PVD threshold 4
VPVD5
PVD threshold 5
VPVD6
PVD threshold 6
Vhyst
Hysteresis voltage
Min
Typ
Max
Falling edge
2.45
2.55
2.6
Rising edge
2.54
2.66
2.7
Falling edge
2.68
2.8
2.85
Rising edge
2.78
2.9
2.95
Falling edge
1.8
1.85
1.88
Rising edge
1.88
1.94
1.99
Falling edge
1.98
2.04
2.09
Rising edge
2.08
2.14
2.18
Falling edge
2.20
2.24
2.28
Rising edge
2.28
2.34
2.38
Falling edge
2.39
2.44
2.48
Rising edge
2.47
2.54
2.58
Falling edge
2.57
2.64
2.69
Rising edge
2.68
2.74
2.79
Falling edge
2.77
2.83
2.88
Rising edge
2.87
2.94
2.99
Falling edge
2.97
3.05
3.09
Rising edge
3.08
3.15
3.20
BOR0 threshold
-
40
-
All BOR and PVD
thresholds excepting BOR0
-
100
-
Unit
V
mV
1. Guaranteed by characterization results, not tested in production.
2. Valid for device version without BOR at power up. Please see option “D” in Ordering information scheme for more details.
DocID027268 Rev 2
55/115
107
Electrical characteristics
6.3.3
STM32L162VD-X
Embedded internal reference voltage
The parameters given in Table 15 are based on characterization results, unless otherwise
specified.
Table 14. Embedded internal reference voltage calibration values
Calibration value name
Description
Raw data acquired at
temperature of 30 °C ±5 °C
VDDA= 3 V ±10 mV
VREFINT_CAL
Memory address
0x1FF8 00F8 - 0x1FF8 00F9
Table 15. Embedded internal reference voltage
Symbol
VREFINT out
Parameter
(1)
Conditions
Internal reference voltage
Min
Typ
– 40 °C < TJ < +110 °C 1.202 1.224
Max
Unit
1.242
V
Internal reference current
consumption
-
-
1.4
2.3
µA
TVREFINT
Internal reference startup time
-
-
2
3
ms
VVREF_MEAS
VDDA and VREF+ voltage during
VREFINT factory measure
-
2.99
3
3.01
V
AVREF_MEAS
Including uncertainties
Accuracy of factory-measured VREF
due to ADC and
(2)
value
VDDA/VREF+ values
-
-
±5
mV
TCoeff(3)
Temperature coefficient
–40 °C < TJ < +110 °C
-
25
100
ppm/°
C
ACoeff(3)
Long-term stability
1000 hours, T= 25 °C
-
-
1000
ppm
VDDCoeff(3)
Voltage coefficient
3.0 V < VDDA < 3.6 V
-
-
2000
ppm/V
TS_vrefint(3)
ADC sampling time when reading
the internal reference voltage
-
4
-
-
µs
TADC_BUF(3)
Startup time of reference voltage
buffer for ADC
-
-
-
10
µs
IBUF_ADC(3)
Consumption of reference voltage
buffer for ADC
-
-
13.5
25
µA
IVREF_OUT(3)
VREF_OUT output current (4)
-
-
-
1
µA
CVREF_OUT(3)
VREF_OUT output load
-
-
-
50
pF
Consumption of reference voltage
buffer for VREF_OUT and COMP
-
-
730
1200
nA
VREFINT_DIV1(3)
1/4 reference voltage
-
24
25
26
VREFINT_DIV2(3)
1/2 reference voltage
-
49
50
51
VREFINT_DIV3(3)
3/4 reference voltage
-
74
75
76
IREFINT
ILPBUF(3)
1. Guaranteed by test in production.
2. The internal VREF value is individually measured in production and stored in dedicated EEPROM bytes.
3. Guaranteed by characterization results, not tested in production.
4. To guarantee less than 1% VREF_OUT deviation.
56/115
DocID027268 Rev 2
%
VREFIN
T
STM32L162VD-X
6.3.4
Electrical characteristics
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, temperature, I/O pin loading, device software configuration, operating
frequencies, I/O pin switching rate, program location in memory and executed binary code.
The current consumption is measured as described in Figure 9: Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to the Dhrystone 2.1 code, unless
otherwise specified. The current consumption values are derived from tests performed
under ambient temperature TA = 25 °C and VDD supply voltage conditions summarized in
Table 12: General operating conditions, unless otherwise specified.
The MCU is placed under the following conditions:
•
All I/O pins are configured in analog input mode
•
All peripherals are disabled except when explicitly mentioned.
•
The Flash memory access time, 64-bit access and prefetch is adjusted depending on
fHCLK frequency and voltage range to provide the best CPU performance.
•
When the peripherals are enabled fAPB1 = fAPB2 = fAHB.
•
When PLL is ON, the PLL inputs are equal to HSI = 16 MHz (if internal clock is used) or
HSE = 16 MHz (if HSE bypass mode is used).
•
The HSE user clock applied to OSCI_IN input follows the characteristic specified in
Table 25: High-speed external user clock characteristics.
•
For maximum current consumption VDD = VDDA = 3.6 V is applied to all supply pins.
•
For typical current consumption VDD = VDDA = 3.0 V is applied to all supply pins if not
specified otherwise.
DocID027268 Rev 2
57/115
107
Electrical characteristics
STM32L162VD-X
Table 16. Current consumption in Run mode, code with data processing running from
Flash
Symbol Parameter
fHCLK
Typ
Max(1)
1 MHz
225
500
2 MHz
420
750
4 MHz
780
1200
4 MHz
0.98
1.6
8 MHz
1.85
2.9
16 MHz
3.6
5.2
8 MHz
2.2
3.5
16 MHz
4.4
6.5
32 MHz
8.6
12
Range 2, VCORE=1.5
V VOS[1:0] = 10
16 MHz
3.6
5.2
Range 1, VCORE=1.8
V VOS[1:0] = 01
32 MHz
8.7
12.3
65 kHz
42
145
524 kHz
135
250
4.2 MHz
820
1200
Conditions
Range 3, VCORE=1.2
V VOS[1:0] = 11
IDD
(Run
from
Flash)
Supply
current in
Run mode,
code
executed
from Flash
fHSE = fHCLK up to
16 MHz included,
Range 2, VCORE=1.5
fHSE = fHCLK/2
V VOS[1:0] = 10
above 16 MHz (PLL
(2)
ON)
Range 1, VCORE=1.8
V VOS[1:0] = 01
HSI clock source
(16 MHz)
MSI clock, 65 kHz
MSI clock, 524 kHz
Range 3, VCORE=1.2
V VOS[1:0] = 11
MSI clock, 4.2 MHz
1. Guaranteed by characterization results, not tested in production, unless otherwise specified.
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
58/115
DocID027268 Rev 2
Unit
µA
mA
µA
STM32L162VD-X
Electrical characteristics
Table 17. Current consumption in Run mode, code with data processing running from
RAM
Symbol
Parameter
Conditions
Typ
1 MHz
200
470
2 MHz
360
780
4 MHz
685
1200
4 MHz
0.80
1.5
8 MHz
1.6
3
16 MHz
3.1
5
8 MHz
1.9
3.5
16 MHz
3.7
5.55
32 MHz
7.55
10.9
Range 2,
VCORE=1.5 V
VOS[1:0] = 10
16 MHz
3.15
4.8
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
32 MHz
7.75
11.7
65 kHz
40
130
524 kHz
115
215
4.2 MHz
715
1100
Range 3,
VCORE=1.2 V
VOS[1:0] = 11
fHSE = fHCLK up to
16 MHz included,
fHSE = fHCLK/2
above 16 MHz
(PLL ON)(2)
IDD
(Run
from
RAM)
Supply current
in Run mode,
code executed
from RAM,
Flash switched
off
Range 2,
VCORE=1.5 V
VOS[1:0] = 10
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
HSI clock source
(16 MHz)
Max(1) Unit
fHCLK
MSI clock, 65 kHz
Range 3,
MSI clock, 524 kHz VCORE=1.2 V
VOS[1:0] = 11
MSI clock, 4.2 MHz
µA
mA
µA
1. Guaranteed by characterization results, not tested in production, unless otherwise specified.
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
DocID027268 Rev 2
59/115
107
Electrical characteristics
STM32L162VD-X
Table 18. Current consumption in Sleep mode
Symbol
Parameter
Conditions
Range 3,
VCORE=1.2 V
VOS[1:0] = 11
fHSE = fHCLK up to
16 MHz included,
Range 2,
fHSE = fHCLK/2
VCORE=1.5 V
above 16 MHz (PLL VOS[1:0] = 10
ON)(2)
Supply current
in Sleep
mode, Flash
OFF
HSI clock source
(16 MHz)
Typ
Max(1)
1 MHz
51
220
2 MHz
81
300
4 MHz
140
380
4 MHz
175
500
8 MHz
330
700
16 MHz
625
1100
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
8 MHz
395
800
16 MHz
760
1250
32 MHz
1700
2700
Range 2,
VCORE=1.5 V
VOS[1:0] = 10
16 MHz
670
1100
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
32 MHz
1750
2700
65 kHz
19
92
524 kHz
33
110
4.2 MHz
150
273
1 MHz
63
250
2 MHz
93
300
4 MHz
155
380
4 MHz
190
500
MSI clock, 65 kHz
IDD (Sleep)
fHCLK
Range 3,
MSI clock, 524 kHz VCORE=1.2 V
VOS[1:0] = 11
MSI clock, 4.2 MHz
Range 3,
VCORE=1.2 V
VOS[1:0] = 11
fHSE = fHCLK up to
16 MHz included,
Range 2,
fHSE = fHCLK/2
VCORE=1.5 V
above 16 MHz (PLL VOS[1:0] = 10
Supply current ON)(2)
in Sleep
Range 1,
mode, Flash
VCORE=1.8 V
ON
VOS[1:0] = 01
8 MHz
340
700
16 MHz
640
1120
8 MHz
410
800
16 MHz
770
1300
32 MHz
1750
2700
Range 2,
VCORE=1.5 V
VOS[1:0] = 10
16 MHz
690
1160
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
32 MHz
1750
2800
65 kHz
31
105
524 kHz
45
125
4.2 MHz
160
290
HSI clock source
(16 MHz)
Supply current MSI clock, 65 kHz
Range 3,
in Sleep
MSI clock, 524 kHz VCORE=1.2V
mode, Flash
VOS[1:0] = 11
ON
MSI clock, 4.2 MHz
1. Guaranteed by characterization results, not tested in production, unless otherwise specified.
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register)
60/115
DocID027268 Rev 2
Unit
µA
STM32L162VD-X
Electrical characteristics
Table 19. Current consumption in Low-power run mode
Symbol
Parameter
All
peripherals
OFF, code
executed
from RAM,
Flash
switched
OFF, VDD
from 1.65 V
to 3.6 V
IDD (LP
Run)
Typ
Max(1)
11
16
TA = 85 °C
36.2
40
TA = 105 °C
65.4
102
TA =-40 °C to 25 °C
16.5
23
TA = 85 °C
41.9
48
TA = 105 °C
72.1
108
30
45
TA = 55 °C
36.1
48
TA = 85 °C
55.7
66
TA = 105 °C
86.6
125
26
40.5
TA = 85 °C
53.2
67
TA = 105 °C
92.1
120
33
49
TA = 85 °C
60.2
75
TA = 105 °C
95.6
130
TA = -40 °C to 25 °C
48.5
71
TA = 55 °C
54.7
75
TA = 85 °C
76.1
95
TA = 105 °C
112
140
-
200
Conditions
Supply
current in
Low-power
run mode
MSI clock, 65 kHz
fHCLK = 32 kHz
MSI clock, 65 kHz
fHCLK = 65 kHz
TA = -40 °C to 25 °C
MSI clock, 131 kHz
fHCLK = 131 kHz
MSI clock, 65 kHz
fHCLK = 32 kHz
All
peripherals
OFF, code
executed
from Flash,
VDD from
1.65 V to
3.6 V
Max allowed
VDD from
IDD max current in
1.65 V to
(LP Run) Low-power
3.6 V
run mode
TA = -40 °C to 25 °C
MSI clock, 65 kHz
fHCLK = 65 kHz
MSI clock, 131 kHz
fHCLK = 131 kHz
TA = -40 °C to 25 °C
TA = -40 °C to 25 °C
-
-
Unit
µA
1. Guaranteed by characterization results, not tested in production, unless otherwise specified.
DocID027268 Rev 2
61/115
107
Electrical characteristics
STM32L162VD-X
Table 20. Current consumption in Low-power sleep mode
Symbol
Parameter
MSI clock, 65 kHz
fHCLK = 32 kHz
Flash OFF
MSI clock, 65 kHz
fHCLK = 32 kHz
Flash ON
All peripherals
OFF, VDD from
1.65 V to 3.6 V
IDD
(LP Sleep)
Typ
Max(1)
TA = -40 °C to 25 °C
5.5
-
TA = -40 °C to 25 °C
18.5
21
TA = 85 °C
26.8
29
TA = 105 °C
37
47
TA = -40 °C to 25 °C
18.5
21
TA = 85 °C
27.2
29
TA = 105 °C
37.3
47
TA = -40 °C to 25 °C
21.5
25
23.7
26
29.8
32
TA = 105 °C
39.7
50
TA = -40 °C to 25 °C
18.5
21
TA = 85 °C
26.8
29
TA = 105 °C
38.3
47
TA = -40 °C to 25 °C
18.5
21
TA = 85 °C
27.2
29
TA = 105 °C
38.5
47
TA = -40 °C to 25 °C
21.5
25
23.7
26
29.8
32
41.2
50
-
200
Conditions
MSI clock, 65 kHz
fHCLK = 65 kHz,
Flash ON
MSI clock, 131 kHz T = 55 °C
A
fHCLK = 131 kHz,
TA = 85 °C
Flash ON
Supply
current in
Low-power
sleep mode
MSI clock, 65 kHz
fHCLK = 32 kHz
TIM9 and
USART1
enabled, Flash
ON, VDD from
1.65 V to 3.6 V
MSI clock, 65 kHz
fHCLK = 65 kHz
MSI clock, 131 kHz TA = 55 °C
fHCLK = 131 kHz
TA = 85 °C
TA = 105 °C
IDD max
(LP Sleep)
Max
allowed
VDD from 1.65 V
current in
to 3.6 V
Low-power
sleep mode
-
-
1. Guaranteed by characterization results, not tested in production, unless otherwise specified.
62/115
DocID027268 Rev 2
Unit
µA
STM32L162VD-X
Electrical characteristics
Table 21. Typical and maximum current consumptions in Stop mode
Symbol
Parameter
Conditions
LCD
OFF
RTC clocked by LSI
or LSE external clock
(32.768kHz),
regulator in LP mode,
HSI and HSE OFF
(no independent
watchdog)
Typ
TA = -40°C to 25°C
VDD = 1.8 V
1.18
-
TA = -40°C to 25°C
1.4
4-
TA = 55°C
3.02
6
TA= 85°C
7.44
11
TA = 105°C
15.5
27
1.5
6
4.65
7
9.07
13
15.6
31
3.9
10
5.19
11
9.8
17
TA = 105°C
18.4
48
TA = -40°C to 25°C
1.65
-
TA = 55°C
3.32
-
TA= 85°C
7.83
-
16
-
1.75
-
4.9
-
9.41
-
15.8
-
4.1
-
5.53
-
10
-
TA = 105°C
18.5
-
TA = -40°C to 25°C
VDD = 1.8V
1.33
-
TA = -40°C to 25°C
VDD = 3.0V
1.62
-
TA = -40°C to 25°C
VDD = 3.6V
1.87
-
TA = -40°C to 25°C
LCD
TA = 55°C
ON
(static T = 85°C
A
duty)(2)
TA = 105°C
TA = -40°C to 25°C
LCD
TA = 55°C
ON (1/8
duty)(3) TA= 85°C
IDD (Stop
with RTC)
Supply current in
Stop mode with RTC
enabled
LCD
OFF
TA = 105°C
TA = -40°C to 25°C
LCD
TA = 55°C
ON
(static T = 85°C
A
duty)(2)
TA = 105°C
RTC clocked by LSE
external quartz
(32.768kHz),
regulator in LP mode,
TA = -40°C to 25°C
HSI and HSE OFF
LCD
TA = 55°C
(no independent
ON
(1/8
watchdog(4)
duty)(3) TA= 85°C
LCD
OFF
DocID027268 Rev 2
Max(1) Unit
µA
63/115
107
Electrical characteristics
STM32L162VD-X
Table 21. Typical and maximum current consumptions in Stop mode (continued)
Symbol
Parameter
Conditions
Regulator in LP mode, HSI and
HSE OFF, independent
watchdog and LSI enabled
IDD (Stop)
Supply current in
Stop mode (RTC
disabled)
Typ
TA = -40°C to 25°C
1.8
2.2
TA = -40°C to 25°C
0.560
1.5
2.18
4
6.6
12
14.9
26
2
-
1.45
-
1.45
-
Regulator in LP mode, LSI, HSI T = 55°C
A
and HSE OFF (no independent
TA= 85°C
watchdog)
TA = 105°C
IDD
(WU from
Stop)
MSI = 4.2 MHz
Supply current during
wakeup from Stop
MSI = 1.05 MHz
mode
MSI = 65 kHz(5)
Max(1) Unit
TA = -40°C to 25°C
µA
mA
1. Guaranteed by characterization results, not tested in production, unless otherwise specified.
2. LCD enabled with external VLCD, static duty, division ratio = 256, all pixels active, no LCD connected.
3. LCD enabled with external VLCD, 1/8 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.
4. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF
loading capacitors.
5. When MSI = 64 kHz, the RMS current is measured over the first 15 µs following the wakeup event. For the remaining part
of the wakeup period, the current corresponds the Run mode current.
64/115
DocID027268 Rev 2
STM32L162VD-X
Electrical characteristics
Table 22. Typical and maximum current consumptions in Standby mode
Symbol
Parameter
Typ
Max(1)
0.865
-
1.11
1.9
1.72
2.2
TA= 85 °C
2.12
4
TA = 105 °C
2.54
8.3(2)
TA = -40 °C to 25 °C
VDD = 1.8 V
0.97
-
TA = -40 °C to 25 °C
1.28
-
TA = 55 °C
2.01
-
TA= 85 °C
2.5
-
TA = 105 °C
2.98
-
1
1.7
0.29
1
0.96
1.3
1.38
3
1.98
7(2)
1
-
Conditions
TA = -40 °C to 25 °C
VDD = 1.8 V
T = -40 °C to 25 °C
RTC clocked by LSI (no A
independent watchdog) TA = 55 °C
IDD
(Standby
with RTC)
Supply current in
Standby mode with RTC
enabled
RTC clocked by LSE
external quartz (no
independent
watchdog)(3)
Independent watchdog
TA = -40 °C to 25 °C
and LSI enabled
IDD
(Standby)
Supply current in
Standby mode (RTC
disabled)
TA = -40 °C to 25 °C
Independent watchdog TA = 55 °C
and LSI OFF
TA = 85 °C
TA = 105 °C
IDD
(WU from
Standby)
Supply current during
wakeup time from
Standby mode
-
TA = -40 °C to 25 °C
Unit
µA
mA
1. Guaranteed by characterization results, not tested in production, unless otherwise specified.
2. Guaranteed by test in production.
3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF
loading capacitors.
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in the following table. The MCU
is placed under the following conditions:
•
all I/O pins are in input mode with a static value at VDD or VSS (no load)
•
all peripherals are disabled unless otherwise mentioned
•
the given value is calculated by measuring the current consumption
–
with all peripherals clocked off
–
with only one peripheral clocked on
DocID027268 Rev 2
65/115
107
Electrical characteristics
STM32L162VD-X
Table 23. Peripheral current consumption(1)
Typical consumption, VDD = 3.0 V, TA = 25 °C
Peripheral
APB1
66/115
Range 1,
Range 2,
Range 3,
VCORE=
VCORE=
VCORE=
Low-power
1.8 V
1.5 V
1.2 V
sleep and run
VOS[1:0] = 01 VOS[1:0] = 10 VOS[1:0] = 11
TIM2
12.0
10.0
8.0
10.0
TIM3
10.5
8.8
7.0
8.8
TIM4
10.4
8.8
7.0
8.8
TIM5
13.8
11.5
9.1
11.5
TIM6
3.9
3.0
2.5
3.0
TIM7
3.8
3.3
2.6
3.3
LCD
4.2
3.6
2.8
3.6
WWDG
2.9
2.5
2.1
2.5
SPI2
5.4
4.4
3.5
4.4
SPI3
5.5
4.6
3.7
4.6
USART2
7.6
6.2
4.9
6.2
USART3
7.6
6.2
5.0
6.2
USART4
7.3
6.1
4.8
6.1
USART5
7.6
6.3
5.0
6.3
I2C1
7.3
6.1
4.8
6.1
I2C2
7.2
5.9
4.7
5.9
USB
13.0
11.2
8.9
11.2
PWR
2.6
2.3
1.9
2.3
DAC
5.9
5.0
4.0
5.0
COMP
3.9
3.3
2.6
3.3
DocID027268 Rev 2
Unit
µA/MHz
(fHCLK)
STM32L162VD-X
Electrical characteristics
Table 23. Peripheral current consumption(1) (continued)
Typical consumption, VDD = 3.0 V, TA = 25 °C
Peripheral
APB2
AHB
Range 1,
Range 2,
Range 3,
VCORE=
VCORE=
VCORE=
Low-power
1.8 V
1.5 V
1.2 V
sleep and run
VOS[1:0] = 01 VOS[1:0] = 10 VOS[1:0] = 11
SYSCFG & RI
2.9
2.4
2.0
2.4
TIM9
8.2
6.9
5.5
6.9
TIM10
6.2
5.1
4.1
5.1
TIM11
6.2
5.1
4.1
5.1
ADC
9.5
7.9
6.2
7.9
SPI1
4.8
3.9
3.2
3.9
USART1
8.2
6.9
5.4
6.9
GPIOA
6.3
5.3
4.1
5.3
GPIOB
6.3
5.3
4.1
5.3
GPIOC
6.3
5.2
4.1
5.2
GPIOD
8.1
6.8
5.4
6.8
GPIOE
6.7
5.7
4.5
5.7
GPIOF
5.9
4.9
3.9
4.9
GPIOG
7.2
6.1
4.9
6.1
GPIOH
1.7
1.4
1.1
1.4
CRC
0.8
0.7
0.5
0.7
AES
5
4
3
4
FLASH
21.6
18.1
16.0
-(6)
DMA1
16.8
14.5
11.5
14.5
DMA2
15.7
13.6
10.8
13.6
227
188
163
169.9
(2)
All enabled
IDD (RTC)
0.4
IDD (LCD)
3.1
IDD (ADC)(3)
1450
IDD (DAC)(4)
340
IDD (COMP1)
0.16
IDD (COMP2)
Slow mode
2
Fast mode
5
IDD (PVD / BOR)(5)
2.6
IDD (IWDG)
0.25
DocID027268 Rev 2
Unit
µA/MHz
(fHCLK)
µA
67/115
107
Electrical characteristics
STM32L162VD-X
1. Data based on differential IDD measurement between all peripherals OFF an one peripheral with clock enabled, in the
following conditions: fHCLK = 32 MHz (range 1), fHCLK = 16 MHz (range 2), fHCLK = 4 MHz (range 3), fHCLK = 64kHz (Lowpower run/sleep), fAPB1 = fHCLK, fAPB2 = fHCLK, default prescaler value for each peripheral. The CPU is in Sleep mode in
both cases. No I/O pins toggling. Not tested in production.
2. HSI oscillator is OFF for this measure.
3. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC conversion (HSI
consumption not included).
4. Data based on a differential IDD measurement between DAC in reset configuration and continuous DAC conversion of
VDD/2. DAC is in buffered mode, output is left floating.
5. Including supply current of internal reference voltage.
6
In Low-power sleep and run mode, the Flash memory must always be in power-down mode.
6.3.5
Wakeup time from low-power mode
The wakeup times given in the following table are measured with the MSI RC oscillator. The
clock source used to wake up the device depends on the current operating mode:
•
Sleep mode: the clock source is the clock that was set before entering Sleep mode
•
Stop mode: the clock source is the MSI oscillator in the range configured before
entering Stop mode
•
Standby mode: the clock source is the MSI oscillator running at 2.1 MHz
All timings are derived from tests performed under the conditions summarized in Table 12.
68/115
DocID027268 Rev 2
STM32L162VD-X
Electrical characteristics
Table 24. Low-power mode wakeup timings
Symbol
Parameter
tWUSLEEP
Conditions
Wakeup from Sleep mode
tWUSLEEP_LP
tWUSTDBY
Max(1) Unit
fHCLK = 32 MHz
0.4
-
fHCLK = 262 kHz
Flash enabled
46
-
fHCLK = 262 kHz
Flash switched OFF
46
-
fHCLK = fMSI = 4.2 MHz
8.2
-
fHCLK = fMSI = 4.2 MHz
Voltage range 1 and 2
7.7
8.9
fHCLK = fMSI = 4.2 MHz
Voltage range 3
8.2
13.1
fHCLK = fMSI = 2.1 MHz
10.2
13.4
fHCLK = fMSI = 1.05 MHz
16
20
fHCLK = fMSI = 524 kHz
31
37
fHCLK = fMSI = 262 kHz
57
66
fHCLK = fMSI = 131 kHz
112
123
fHCLK = MSI = 65 kHz
221
236
Wakeup from Standby mode
ULP bit = 1 and FWU bit = 1
fHCLK = MSI = 2.1 MHz
58
104
Wakeup from Standby mode
FWU bit = 0
fHCLK = MSI = 2.1 MHz
2.6
3.25
Wakeup from Low-power sleep
mode, fHCLK = 262 kHz
Wakeup from Stop mode,
regulator in Run mode
ULP bit = 1 and FWU bit = 1
tWUSTOP
Typ
Wakeup from Stop mode,
regulator in low-power mode
ULP bit = 1 and FWU bit = 1
µs
ms
1. Guaranteed by characterization, not tested in production, unless otherwise specified
6.3.6
External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.The
external clock signal has to respect the I/O characteristics in Section 6.3.12. However, the
recommended clock input waveform is shown in Figure 10.
Table 25. High-speed external user clock characteristics(1)
Symbol
fHSE_ext
Parameter
User external clock source
frequency
Conditions
Min
Typ
Max
Unit
CSS is on or
PLL is used
1
8
32
MHz
CSS is off, PLL
not used
0
8
32
MHz
DocID027268 Rev 2
69/115
107
Electrical characteristics
STM32L162VD-X
Table 25. High-speed external user clock characteristics(1) (continued)
Symbol
Parameter
VHSEH
VHSEL
Conditions
Min
Typ
Max
OSC_IN input pin high level voltage
0.7VDD
-
VDD
OSC_IN input pin low level voltage
VSS
-
0.3VDD
12
-
-
tw(HSEH)
tw(HSEL)
OSC_IN high or low time
tr(HSE)
tf(HSE)
OSC_IN rise or fall time
-
-
20
OSC_IN input capacitance
-
2.6
-
Cin(HSE)
-
Unit
V
ns
pF
1. Guaranteed by design, not tested in production.
Figure 10. High-speed external clock source AC timing diagram
WZ+6(+
9+6(+
9+6(/
WU+6(
WI+6(
WZ+6(/
W
7+6(
069
70/115
DocID027268 Rev 2
STM32L162VD-X
Electrical characteristics
Low-speed external user clock generated from an external source
The characteristics given in the following table result from tests performed using a lowspeed external clock source, and under the conditions summarized in Table 12.
Table 26. Low-speed external user clock characteristics(1)
Symbol
Parameter
Conditions
fLSE_ext
User external clock source
frequency
VLSEH
OSC32_IN input pin high level
voltage
VLSEL
OSC32_IN input pin low level
voltage
tw(LSEH)
tw(LSEL)
OSC32_IN high or low time
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time
CIN(LSE)
Min
Typ
Max
Unit
1
32.768
1000
kHz
0.7VDD
-
VDD
V
-
VSS
-
0.3VDD
465
-
ns
OSC32_IN input capacitance
-
-
-
10
-
0.6
-
pF
1. Guaranteed by design, not tested in production
Figure 11. Low-speed external clock source AC timing diagram
WZ/6(+
9/6(+
9/6(/
WU/6(
WI/6(
W
WZ/6(/
7/6(
069
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 1 to 24 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 27. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
DocID027268 Rev 2
71/115
107
Electrical characteristics
STM32L162VD-X
Table 27. HSE oscillator characteristics(1)(2)
Symbol
fOSC_IN
Parameter
Conditions
Min Typ
Max
Unit
24
MHz
Oscillator frequency
-
1
RF
Feedback resistor
-
-
200
-
kΩ
C
Recommended load
capacitance versus
equivalent serial
resistance of the crystal
(RS)(3)
RS = 30 Ω
-
20
-
pF
VDD= 3.3 V,
VIN = VSS with 30 pF
load
-
-
3
mA
C = 20 pF
fOSC = 16 MHz
-
-
2.5 (startup)
0.7 (stabilized)
C = 10 pF
fOSC = 16 MHz
-
-
2.5 (startup)
0.46 (stabilized)
Startup
3.5
-
-
mA /V
VDD is stabilized
-
1
-
ms
IHSE
IDD(HSE)
gm
tSU(HSE)(4)
HSE driving current
HSE oscillator power
consumption
Oscillator
transconductance
Startup time
mA
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Guaranteed by characterization results, not tested in production.
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid
environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into
account if the MCU is used in tough humidity conditions.
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is
reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 12). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST
microcontrollers” available from the ST website www.st.com.
72/115
DocID027268 Rev 2
STM32L162VD-X
Electrical characteristics
Figure 12. HSE oscillator circuit diagram
I+6(WRFRUH
5P
5)
&2
/P
&/
26&B,1
&P
JP
5HVRQDWRU
&RQVXPSWLRQ
FRQWURO
5HVRQDWRU
670
26&B287
&/
DLE
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 28. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 28. LSE oscillator characteristics (fLSE = 32.768 kHz)(1)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
fLSE
Low speed external oscillator
frequency
-
-
32.768
-
kHz
RF
Feedback resistor
-
-
1.2
-
MΩ
C(2)
Recommended load capacitance
versus equivalent serial
resistance of the crystal (RS)(3)
RS = 30 kΩ
-
8
-
pF
ILSE
LSE driving current
VDD = 3.3 V, VIN = VSS
-
-
1.1
µA
VDD = 1.8 V
-
450
-
VDD = 3.0 V
-
600
-
VDD = 3.6V
-
750
-
-
3
-
-
µA/V
VDD is stabilized
-
1
-
s
IDD (LSE)
gm
LSE oscillator current
consumption
Oscillator transconductance
tSU(LSE)(4) Startup time
nA
1. Guaranteed by characterization results, not tested in production.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator
design guide for ST microcontrollers”.
3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with
small RS value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details.
DocID027268 Rev 2
73/115
107
Electrical characteristics
4.
STM32L162VD-X
tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized
32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary
significantly with the crystal manufacturer.
Note:
For CL1 and CL2, it is recommended to use high-quality ceramic capacitors in the 5 pF to
15 pF range selected to match the requirements of the crystal or resonator (see Figure 13).
CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load
capacitance which is the series combination of CL1 and CL2.
Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where
Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is
between 2 pF and 7 pF.
Caution:
To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended
to use a resonator with a load capacitance CL ≤7 pF. Never use a resonator with a load
capacitance of 12.5 pF.
Example: if you choose a resonator with a load capacitance of CL = 6 pF and Cstray = 2 pF,
then CL1 = CL2 = 8 pF.
Figure 13. Typical application with a 32.768 kHz crystal
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
&/
I/6(
26&B,1
N+]
UHVRQDWRU
5)
26&B287
%LDV
FRQWUROOHG
JDLQ
670/[[
&/
DLE
74/115
DocID027268 Rev 2
STM32L162VD-X
6.3.7
Electrical characteristics
Internal clock source characteristics
The parameters given in Table 29 are derived from tests performed under the conditions
summarized in Table 12.
High-speed internal (HSI) RC oscillator
Table 29. HSI oscillator characteristics
Symbol
fHSI
TRIM
(1)(2)
Parameter
Conditions
Min
Typ
Max
Unit
Frequency
VDD = 3.0 V
-
16
-
MHz
HSI user-trimmed
resolution
Trimming code is not a multiple of 16
-
± 0.4
0.7
%
Trimming code is a multiple of 16
-
Accuracy of the
ACCHSI(2) factory-calibrated
HSI oscillator
-
± 1.5
%
VDDA = 3.0 V, TA = 25 °C
-1(3)
-
1(3)
%
VDDA = 3.0 V, TA = 0 to 55 °C
-1.5
-
1.5
%
VDDA = 3.0 V, TA = -10 to 70 °C
-2
-
2
%
VDDA = 3.0 V, TA = -10 to 85 °C
-2.5
-
2
%
VDDA = 3.0 V, TA = -10 to 105 °C
-4
-
2
%
VDDA = 1.65 V to 3.6 V
TA = -40 to 105 °C
-4
-
3
%
tSU(HSI)(2)
HSI oscillator
startup time
-
-
3.7
6
µs
IDD(HSI)(2)
HSI oscillator
power consumption
-
-
100
140
µA
1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are
multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).
2. Guaranteed by characterization results, not tested in production.
3. Guaranteed by test in production.
Low-speed internal (LSI) RC oscillator
Table 30. LSI oscillator characteristics
Symbol
fLSI(1)
DLSI(2)
tsu(LSI)(3)
IDD(LSI)
(3)
Parameter
Min
Typ
Max
Unit
LSI frequency
26
38
56
kHz
LSI oscillator frequency drift
0°C ≤TA ≤ 105°C
-10
-
4
%
LSI oscillator startup time
-
-
200
µs
LSI oscillator power consumption
-
400
510
nA
1. Guaranteed by test in production.
2. This is a deviation for an individual part, once the initial frequency has been measured.
3. Guaranteed by design, not tested in production.
DocID027268 Rev 2
75/115
107
Electrical characteristics
STM32L162VD-X
Multi-speed internal (MSI) RC oscillator
Table 31. MSI oscillator characteristics
Symbol
Condition
Typ
MSI range 0
65.5
-
MSI range 1
131
-
MSI range 2
262
-
MSI range 3
524
-
MSI range 4
1.05
-
MSI range 5
2.1
-
MSI range 6
4.2
-
Frequency error after factory calibration
-
±0.5
-
%
DTEMP(MSI)(1)
MSI oscillator frequency drift
0 °C ≤TA ≤105 °C
-
±3
-
%
DVOLT(MSI)(1)
MSI oscillator frequency drift
1.65 V ≤VDD ≤3.6 V, TA = 25 °C
-
-
2.5
%/V
MSI range 0
0.75
-
MSI range 1
1
-
MSI range 2
1.5
-
MSI range 3
2.5
-
MSI range 4
4.5
-
MSI range 5
8
-
MSI range 6
15
-
MSI range 0
30
-
MSI range 1
20
-
MSI range 2
15
-
MSI range 3
10
-
MSI range 4
6
-
MSI range 5
5
-
MSI range 6,
Voltage range 1
and 2
3.5
-
MSI range 6,
Voltage range 3
5
-
fMSI
ACCMSI
IDD(MSI)(2)
tSU(MSI)
76/115
Parameter
Frequency after factory calibration, done at
VDD= 3.3 V and TA = 25 °C
MSI oscillator power consumption
MSI oscillator startup time
DocID027268 Rev 2
Max Unit
kHz
MHz
µA
µs
STM32L162VD-X
Electrical characteristics
Table 31. MSI oscillator characteristics (continued)
Symbol
tSTAB(MSI)(2)
fOVER(MSI)
Parameter
MSI oscillator stabilization time
MSI oscillator frequency overshoot
Condition
Typ
Max Unit
MSI range 0
-
40
MSI range 1
-
20
MSI range 2
-
10
MSI range 3
-
4
MSI range 4
-
2.5
MSI range 5
-
2
MSI range 6,
Voltage range 1
and 2
-
2
MSI range 3,
Voltage range 3
-
3
Any range to
range 5
-
4
Any range to
range 6
-
µs
MHz
6
1. This is a deviation for an individual part, once the initial frequency has been measured.
2. Guaranteed by characterization results, not tested in production.
DocID027268 Rev 2
77/115
107
Electrical characteristics
6.3.8
STM32L162VD-X
PLL characteristics
The parameters given in Table 32 are derived from tests performed under the conditions
summarized in Table 12.
Table 32. PLL characteristics
Value
Symbol
Parameter
Unit
Min
Typ
Max(1)
PLL input clock(2)
2
-
24
MHz
PLL input clock duty cycle
45
-
55
%
fPLL_OUT
PLL output clock
2
-
32
MHz
tLOCK
PLL lock time
PLL input = 16 MHz
PLL VCO = 96 MHz
-
115
160
µs
Jitter
Cycle-to-cycle jitter
-
-
± 600
ps
IDDA(PLL)
Current consumption on VDDA
-
220
450
IDD(PLL)
Current consumption on VDD
-
120
150
fPLL_IN
µA
1. Guaranteed by characterization results, not tested in production.
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with
the range defined by fPLL_OUT.
6.3.9
Memory characteristics
The characteristics are given at TA = -40 to 105 °C unless otherwise specified.
RAM memory
Table 33. RAM and hardware registers
Symbol
VRM
Parameter
Conditions
Data retention mode(1)
STOP mode (or RESET)
Min
Typ
Max
Unit
1.65
-
-
V
1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware
registers (only in Stop mode).
78/115
DocID027268 Rev 2
STM32L162VD-X
Electrical characteristics
Flash memory and data EEPROM
Table 34. Flash memory and data EEPROM characteristics
Symbol
Conditions
Min
Typ
Max(1)
Unit
-
1.65
-
3.6
V
Erasing
-
3.28
3.94
Programming
-
3.28
3.94
Average current during
the whole programming /
erase operation
-
600
-
µA
Maximum current (peak) TA = 25 °C, VDD = 3.6 V
during the whole
programming / erase
operation
-
1.5
2.5
mA
Parameter
VDD
Operating voltage
Read / Write / Erase
tprog
Programming/ erasing
time for byte / word /
double word / half-page
IDD
ms
1. Guaranteed by design, not tested in production.
Table 35. Flash memory and data EEPROM endurance and retention
Value
Symbol
NCYC(2)
Parameter
Cycling (erase / write)
Program memory
Cycling (erase / write)
EEPROM data memory
Data retention (program memory) after
10 kcycles at TA = 85 °C
tRET
(2)
Data retention (EEPROM data memory)
after 300 kcycles at TA = 85 °C
Data retention (program memory) after
10 kcycles at TA = 105 °C
Data retention (EEPROM data memory)
after 300 kcycles at TA = 105 °C
Conditions
TA = -40°C to
105 °C
Min(1) Typ Max
10
-
-
300
-
-
30
-
-
30
-
-
10
-
-
10
-
-
Unit
kcycles
TRET = +85 °C
years
TRET = +105 °C
1. Guaranteed by characterization results, not tested in production.
2. Characterization is done according to JEDEC JESD22-A117.
DocID027268 Rev 2
79/115
107
Electrical characteristics
6.3.10
STM32L162VD-X
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
•
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
•
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 36. They are based on the EMS levels and classes
defined in application note AN1709.
Table 36. EMS characteristics
Symbol
Parameter
Conditions
Level/
Class
VFESD
VDD = 3.3 V, , TA = +25 °C,
Voltage limits to be applied on any I/O pin to
fHCLK = 32 MHz
induce a functional disturbance
conforms to IEC 61000-4-2
4B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, , TA = +25 °C,
fHCLK = 32 MHz
conforms to IEC 61000-4-4
4A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
•
Corrupted program counter
•
Unexpected reset
•
Critical data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1
second.
80/115
DocID027268 Rev 2
STM32L162VD-X
Electrical characteristics
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
Table 37. EMI characteristics
Max vs. frequency range
Symbol Parameter
SEMI
6.3.11
Monitored
frequency band
Conditions
VDD = 3.6 V,
TA = 25 °C,
Peak level package
compliant with IEC
61967-2
4 MHz
16 MHz 32 MHz
voltage voltage voltage
range 3 range 2 range 1
0.1 to 30 MHz
-14
-6
-4
30 to 130 MHz
-11
0
9
130 MHz to 1GHz
-7
-1
9
SAE EMI Level
1
2
2.5
Unit
dBµV
-
Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Table 38. ESD absolute maximum ratings
Symbol
Ratings
Conditions
Class
Maximum
Unit
value(1)
Electrostatic discharge
VESD(HBM) voltage (human body
model)
TA = +25 °C, conforming to
JESD22-A114
2
2000
V
Electrostatic discharge
VESD(CDM) voltage (charge device
model)
TA = +25 °C, conforming to
ANSI/ESD STM5.3.1.
II
500
V
1. Guaranteed by characterization results, not tested in production.
DocID027268 Rev 2
81/115
107
Electrical characteristics
STM32L162VD-X
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
•
A supply overvoltage is applied to each power supply pin
•
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 39. Electrical sensitivities
Symbol
LU
6.3.12
Parameter
Static latch-up class
Conditions
Class
TA = +105 °C conforming to JESD78A
II level A
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard pins) should be avoided during normal product operation.
However, in order to give an indication of the robustness of the microcontroller in cases
when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of –5 µA/+0 µA range), or other functional failure (for example reset occurrence oscillator
frequency deviation, LCD levels).
The test results are given in the Table 40.
Table 40. I/O current injection susceptibility
Functional susceptibility
Symbol
Description
Injected current on all 5 V tolerant (FT) pins
IINJ
Injected current on BOOT0
Injected current on any other pin
Negative
injection
Positive
injection
-5 (1)
NA
-0
NA
-5
(1)
+5
1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject
negative currents.
82/115
DocID027268 Rev 2
Unit
mA
STM32L162VD-X
6.3.13
Electrical characteristics
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 47 are derived from tests
performed under the conditions summarized in Table 12. All I/Os are CMOS and TTL
compliant.
Table 41. I/O static characteristics
Symbol
VIL
VIH
Parameter
Conditions
Input low level voltage
Ilkg
Input leakage current
(4)
Max
0.3
Unit
VDD(1)(2)
-
-
BOOT0
-
-
0.14 VDD(2)
TC I/O
0.45 VDD+0.38(2)
-
-
FT I/O
0.39
VDD+0.59(2)
-
-
0.15
VDD+0.56(2)
-
-
Input high level voltage
I/O Schmitt trigger voltage
hysteresis(2)
Typ
TC and FT I/O
BOOT0
Vhys
Min
V
TC and FT I/O
-
10% VDD(3)
-
BOOT0
-
0.01
-
VSS ≤VIN ≤VDD
I/Os with LCD
-
-
±50
VSS ≤VIN ≤VDD
I/Os with analog
switches
-
-
±50
VSS ≤VIN ≤VDD
I/Os with analog
switches and LCD
-
-
±50
VSS ≤VIN ≤VDD
I/Os with USB
-
-
±250
VSS ≤VIN ≤VDD
TC and FT I/Os
-
-
±50
FT I/O
VDD ≤VIN ≤5V
-
-
±10
µA
nA
RPU
Weak pull-up equivalent
resistor(5)(1)
VIN = VSS
30
45
60
kΩ
RPD
Weak pull-down equivalent
resistor(5)
VIN = VDD
30
45
60
kΩ
CIO
I/O pin capacitance
-
-
5
-
pF
1. Guaranteed by test in production
2. Guaranteed by design, not tested in production.
3. With a minimum of 200 mV.
4. The max. value may be exceeded if negative current is injected on adjacent pins.
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
MOS/NMOS contribution to the series resistance is minimum (~10% order).
DocID027268 Rev 2
83/115
107
Electrical characteristics
STM32L162VD-X
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±20 mA with the non-standard VOL/VOH specifications given in Table 42.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2:
•
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD(Σ) (see Table 10).
•
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
IVSS(Σ) (see Table 10).
Output voltage levels
Unless otherwise specified, the parameters given in Table 42 are derived from tests
performed under the conditions summarized in Table 12. All I/Os are CMOS and TTL
compliant.
Table 42. Output voltage characteristics
Symbol
VOL(1)(2)
Parameter
Output low level voltage for an I/O pin
VOH
(2)(3)
Output high level voltage for an I/O pin
VOL
(3)(4)
Output low level voltage for an I/O pin
VOH (3)(4) Output high level voltage for an I/O pin
VOL(1)(4)
VOH
(3)(4)
Conditions
Min
Max
IIO = 8 mA
2.7 V < VDD < 3.6 V
-
0.4
VDD-0.4
-
IIO = 4 mA
1.65 V < VDD < 3.6 V V -0.45
DD
Output low level voltage for an I/O pin
Output high level voltage for an I/O pin
IIO = 20 mA
2.7 V < VDD < 3.6 V
Unit
0.45
-
-
1.3
VDD-1.3
-
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 10
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
2. Guaranteed by test in production.
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 10 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
4. Guaranteed by characterization results, not tested in production.
84/115
DocID027268 Rev 2
V
STM32L162VD-X
Electrical characteristics
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 14 and
Table 43, respectively.
Unless otherwise specified, the parameters given in Table 43 are derived from tests
performed under the conditions summarized in Table 12.
Table 43. I/O AC characteristics(1)
OSPEEDRx
[1:0] bit
value(1)
Symbol
Maximum frequency(3)
tf(IO)out
tr(IO)out
Output rise and fall time
fmax(IO)out
Maximum frequency(3)
tf(IO)out
tr(IO)out
Output rise and fall time
00
01
Fmax(IO)out Maximum frequency(3)
10
Output rise and fall time
Fmax(IO)out Maximum frequency(3)
11
-
Max(2)
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
400
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
400
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
625
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
625
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
2
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
1
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
125
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
250
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
10
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
2
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
25
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
125
CL = 30 pF, VDD = 2.7 V to 3.6 V
-
50
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
8
CL = 30 pF, VDD = 2.7 V to 3.6 V
-
5
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
30
Conditions
fmax(IO)out
tf(IO)out
tr(IO)out
Min
Parameter
tf(IO)out
tr(IO)out
Output rise and fall time
tEXTIpw
Pulse width of external
signals detected by the
EXTI controller
-
Unit
kHz
ns
MHz
ns
MHz
ns
MHz
ns
8
-
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32L151xx, STM32L152xx and STM32L162xx
reference manual for a description of GPIO Port configuration register.
2. Guaranteed by design, not tested in production.
3. The maximum frequency is defined in Figure 14.
DocID027268 Rev 2
85/115
107
Electrical characteristics
STM32L162VD-X
Figure 14. I/O AC characteristics definition
%84%2.!,
/54054
/.P&
TR)/OUT
TF)/OUT
4
-AXIMUMFREQUENCYISACHIEVEDIFT RTF”4ANDIFTHEDUTYCYCLEIS
WHENLOADEDBYP&
6.3.14
AIC
NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 44)
Unless otherwise specified, the parameters given in Table 44 are derived from tests
performed under the conditions summarized in Table 12.
Table 44. NRST pin characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
VIL(NRST)(1)
NRST input low level
voltage
-
-
-
0.3 VDD
VIH(NRST)(1)
NRST input high
level voltage
-
0.39VDD+0.59
-
-
VOL(NRST)(1)
NRST output low
level voltage
Unit
V
IOL = 2 mA
2.7 V < VDD < 3.6 V
-
IOL = 1.5 mA
1.65 V < VDD < 2.7 V
-
-
0.4
Vhys(NRST)(1)
NRST Schmitt trigger
voltage hysteresis
-
-
10%VDD(2)
-
mV
RPU
Weak pull-up
equivalent resistor(3)
VIN = VSS
30
45
60
kΩ
VF(NRST)(1)
NRST input filtered
pulse
-
-
-
50
ns
VNF(NRST)(3)
NRST input not
filtered pulse
-
350
-
-
ns
1. Guaranteed by design, not tested in production.
2. With a minimum of 200 mV.
3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance is around 10%.
86/115
DocID027268 Rev 2
STM32L162VD-X
Electrical characteristics
Figure 15. Recommended NRST pin protection
([WHUQDOUHVHWFLUFXLW
1567
9''
538
,QWHUQDOUHVHW
)LOWHU
—)
670/[[
DLE
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 44. Otherwise the reset will not be taken into account by the device.
6.3.15
TIM timer characteristics
The parameters given in the Table 45 are guaranteed by design.
Refer to Section 6.3.13: I/O port characteristics for details on the input/output ction
characteristics (output compare, input capture, external clock, PWM output).
Table 45. TIMx(1) characteristics
Symbol
tres(TIM)
fEXT
ResTIM
tCOUNTER
Parameter
Timer resolution time
Conditions
Min
Max
Unit
-
1
-
tTIMxCLK
fTIMxCLK = 32 MHz
31.25
-
ns
0
fTIMxCLK/2
MHz
0
16
MHz
16
bit
65536
tTIMxCLK
2048
µs
Timer external clock
frequency on CH1 to CH4 f
TIMxCLK = 32 MHz
Timer resolution
-
16-bit counter clock
period when internal clock
is selected (timer’s
prescaler disabled)
-
tMAX_COUNT Maximum possible count
1
fTIMxCLK = 32 MHz 0.0312
-
-
65536 × 65536
tTIMxCLK
fTIMxCLK = 32 MHz
-
134.2
s
1. TIMx is used as a general term to refer to the TIM2, TIM3 and TIM4 timers.
DocID027268 Rev 2
87/115
107
Electrical characteristics
6.3.16
STM32L162VD-X
Communications interfaces
I2C interface characteristics
The device I2C interface meets the requirements of the standard I2C communication
protocol with the following restrictions: SDA and SCL are not “true” open-drain I/O pins.
When configured as open-drain, the PMOS connected between the I/O pin and VDD is
disabled, but is still present.
The I2C characteristics are described in Table 46. Refer also to Section 6.3.13: I/O port
characteristics for more details on the input/output ction characteristics (SDA and SCL).
Table 46. I2C characteristics
Symbol
Parameter
Standard mode
I2C(1)(2)
Fast mode I2C(1)(2)
Unit
Min
Max
Min
Max
tw(SCLL)
SCL clock low time
4.7
-
1.3
-
tw(SCLH)
SCL clock high time
4.0
-
0.6
-
tsu(SDA)
SDA setup time
250
-
100
-
th(SDA)
SDA data hold time
-
3450(3)
-
900(3)
tr(SDA)
tr(SCL)
SDA and SCL rise time
-
1000
-
300
tf(SDA)
tf(SCL)
SDA and SCL fall time
-
300
-
300
th(STA)
Start condition hold time
4.0
-
0.6
-
tsu(STA)
Repeated Start condition
setup time
4.7
-
0.6
-
tsu(STO)
Stop condition setup time
4.0
-
0.6
-
μs
tw(STO:STA)
Stop to Start condition time
(bus free)
4.7
-
1.3
-
μs
Cb
Capacitive load for each bus
line
-
400
-
400
pF
tSP
Pulse width of spikes that
are suppressed by the
analog filter
0
50(4)
0
50(4)
ns
µs
ns
µs
1. Guaranteed by design, not tested in production.
2. fPCLK1 must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to
achieve fast mode I²C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I²C fast
mode clock.
3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL
signal.
4. The minimum width of the spikes filtered by the analog filter is above tSP(max).
88/115
DocID027268 Rev 2
STM32L162VD-X
Electrical characteristics
Figure 16. I2C bus AC waveforms and measurement circuit
sͺ/Ϯ
sͺ/Ϯ
ZW
ZW
^dDϯϮ>ϭdždž
Z^
^
/ϮďƵƐ
Z^
^>
^ dZdZWd
^ dZd
^ dZd
ƚƐƵ;^dͿ
^
ƚĨ;^Ϳ
ƚƌ;^Ϳ
ƚƐƵ;^Ϳ
ƚŚ;^dͿ
ƚǁ;^<>Ϳ
ƚŚ;^Ϳ
ƚƐƵ;^d͗^dKͿ
^ dKW
^>
ƚƌ;^<Ϳ
ƚǁ;^<,Ϳ
ƚĨ;^<Ϳ
ƚƐƵ;^dKͿ
ĂŝϭϳϴϱϱĐ
1. RS = series protection resistor.
2. RP = external pull-up resistor.
3. VDD_I2C is the I2C bus power supply.
4. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
Table 47. SCL frequency (fPCLK1= 32 MHz, VDD = VDD_I2C = 3.3 V)(1)(2)
I2C_CCR value
fSCL (kHz)
RP = 4.7 kΩ
400
0x801B
300
0x8024
200
0x8035
100
0x00A0
50
0x0140
20
0x0320
1. RP = External pull-up resistance, fSCL = I2C speed.
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the
tolerance on the achieved speed is ±2%. These variations depend on the accuracy of the external
components used to design the application.
DocID027268 Rev 2
89/115
107
Electrical characteristics
STM32L162VD-X
SPI characteristics
Unless otherwise specified, the parameters given in the following table are derived from
tests performed under the conditions summarized in Table 12.
Refer to Section 6.3.12: I/O current injection characteristics for more details on the
input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Table 48. SPI characteristics(1)
Symbol
Min
Max(2)
Master mode
-
16
Slave mode
-
16
Slave transmitter
-
12(3)
-
6
ns
%
Parameter
Conditions
fSCK
1/tc(SCK)
SPI clock frequency
tr(SCK)(2)
tf(SCK)(2)
SPI clock rise and fall time
Capacitive load: C = 30 pF
SPI slave input clock duty cycle
Slave mode
30
70
tsu(NSS)
NSS setup time
Slave mode
4tHCLK
-
th(NSS)
NSS hold time
Slave mode
2tHCLK
-
SCK high and low time
Master mode
tSCK/2−5
tSCK/2+3
Master mode
5
-
Slave mode
6
-
Master mode
5
-
Slave mode
5
-
DuCy(SCK)
tw(SCKH)(2)
tw(SCKL)(2)
tsu(MI)(2)
tsu(SI)(2)
th(MI)
th(SI)
Data input setup time
(2)
(2)
Data input hold time
ta(SO)(4)
Data output access time
Slave mode
0
3tHCLK
tv(SO) (2)
Data output valid time
Slave mode
-
33
(2)
Data output valid time
Master mode
-
6.5
Slave mode
17
-
Master mode
0.5
-
tv(MO)
th(SO)
(2)
th(MO)(2)
Data output hold time
Unit
MHz
ns
1. The characteristics above are given for voltage range 1.
2. Guaranteed by characterization results, not tested in production.
3. The maximum SPI clock frequency in slave transmitter mode is given for an SPI slave input clock duty cycle (DuCy(SCK))
ranging between 40 to 60%.
4. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.
90/115
DocID027268 Rev 2
STM32L162VD-X
Electrical characteristics
Figure 17. SPI timing diagram - slave mode and CPHA = 0
E^^ŝŶƉƵƚ
ƚĐ;^<Ϳ
ƚŚ;E^^Ϳ
^</ŶƉƵƚ
ƚ^h;E^^Ϳ
W,сϬ
WK>сϬ
ƚǁ;^<,Ϳ
ƚǁ;^<>Ϳ
W,сϬ
WK>сϭ
ƚĂ;^KͿ
D/^K
KhdW hd
ƚǀ;^KͿ
ƚŚ;^KͿ
D^ K hd
/dϲ Khd
D^ /E
/ dϭ /E
ƚƌ;^<Ϳ
ƚĨ;^<Ϳ
ƚĚŝƐ;^KͿ
>^ Khd
ƚƐƵ;^/Ϳ
DK^/
/EWhd
>^ /E
ƚŚ;^/Ϳ
DLF
Figure 18. SPI timing diagram - slave mode and CPHA = 1(1)
166LQSXW
6&.,QSXW
W68166
&3+$ &32/ &3+$ &32/ WF6&.
WZ6&.+
WZ6&./
WY62
WD62
0,62
287 3 87
WK62
06 % 2 87
WVX6,
026,
, 1387
WK166
%, 7 287
WU6&.
WI6&.
WGLV62
/6% 287
WK6,
% , 7 ,1
0 6% ,1
/6% ,1
DL
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
DocID027268 Rev 2
91/115
107
Electrical characteristics
STM32L162VD-X
Figure 19. SPI timing diagram - master mode(1)
(IGH
.33INPUT
3#+/UTPUT
#0(! #0/,
3#+/UTPUT
TC3#+
#0(!
#0/,
#0(! #0/,
#0(!
#0/,
TSU-)
-)3/
).0 54
TW3#+(
TW3#+,
TR3#+
TF3#+
-3 ").
") 4).
,3").
TH-)
-/3)
/54054
- 3"/54
TV-/
" ) 4/54
,3"/54
TH-/
AI6
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
92/115
DocID027268 Rev 2
STM32L162VD-X
Electrical characteristics
USB characteristics
The USB interface is USB-IF certified (full speed).
Table 49. USB startup time
Symbol
tSTARTUP
Parameter
(1)
USB transceiver startup time
Max
Unit
1
µs
1. Guaranteed by design, not tested in production.
Table 50. USB DC electrical characteristics
Symbol
Parameter
Conditions
Min.(1)
Max.(1)
Unit
-
3.0
3.6
V
0.2
-
Input levels
VDD
USB operating voltage
VDI(2)
Differential input sensitivity
VCM(2)
Differential common mode range Includes VDI range
0.8
2.5
VSE(2)
Single ended receiver threshold
1.3
2.0
-
0.3
2.8
3.6
I(USB_DP, USB_DM)
-
V
Output levels
VOL(3)
VOH
RL of 1.5 kΩ to 3.6 V(4)
Static output level low
(3)
Static output level high
RL of 15 kΩ to VSS
(4)
V
1. All the voltages are measured from the local ground potential.
2. Guaranteed by characterization results, not tested in production.
3. Guaranteed by test in production.
4. RL is the load connected on the USB drivers.
Figure 20. USB timings: definition of data signal rise and fall time
&URVVRYHU
SRLQWV
'LIIHUHQWLDO
GDWDOLQHV
9&56
966
WU
WI
DL
Table 51. USB: full speed electrical characteristics
Driver characteristics(1)
Symbol
Parameter
Conditions
Min
Max
Unit
tr
Rise time(2)
CL = 50 pF
4
20
ns
tf
Time(2)
CL = 50 pF
4
20
ns
Fall
DocID027268 Rev 2
93/115
107
Electrical characteristics
STM32L162VD-X
Table 51. USB: full speed electrical characteristics (continued)
Driver characteristics(1)
Symbol
trfm
VCRS
Parameter
Conditions
Min
Max
Unit
tr/tf
90
110
%
1.3
2.0
V
Rise/ fall time matching
Output signal crossover voltage
1. Guaranteed by design, not tested in production.
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
Specification - Chapter 7 (version 2.0).
I2S characteristics
Table 52. I2S characteristics
Symbol
fMCK
Parameter
Conditions
Min
Max
256 x 8K 256xFs (1)
I2S Main Clock Output
Master data: 32 bits
-
64xFs
Slave data: 32 bits
-
64xFs
30
70
fCK
I2S clock frequency
DCK
I2S clock frequency duty cycle Slave receiver, 48KHz
tr(CK)
I2S clock rise time
tf(CK)
I2S clock fall time
tv(WS)
-
WS valid time
Master mode
4
24
th(WS)
WS hold time
Master mode
0
-
tsu(WS)
WS setup time
Slave mode
15
-
th(WS)
WS hold time
Slave mode
0
-
tsu(SD_MR) Data input setup time
Master receiver
8
-
tsu(SD_SR) Data input setup time
Slave receiver
9
-
th(SD_MR)
Master receiver
5
-
Slave receiver
4
-
th(SD_SR)
MHz
MHz
%
8
Capacitive load CL=30pF
Data input hold time
Unit
8
tv(SD_ST)
Data output valid time
Slave transmitter
(after enable edge)
-
64
th(SD_ST)
Data output hold time
Slave transmitter
(after enable edge)
22
-
tv(SD_MT) Data output valid time
Master transmitter
(after enable edge)
-
12
th(SD_MT) Data output hold time
Master transmitter
(after enable edge)
8
-
ns
1. The maximum for 256xFs is 8 MHz
Note:
94/115
Refer to the I2S section of the product reference manual for more details about the sampling
frequency (Fs), fMCK, fCK and DCK values. These values reflect only the digital peripheral
behavior, source clock precision might slightly change them. DCK depends mainly on the
DocID027268 Rev 2
STM32L162VD-X
Electrical characteristics
ODD bit value, digital contribution leads to a min of (I2SDIV/(2*I2SDIV+ODD) and a max of
(I2SDIV+ODD)/(2*I2SDIV+ODD). Fs max is supported for each mode/condition.
Figure 21. I2S slave timing diagram (Philips protocol)(1)
&.,QSXW
WF&.
&32/ &32/ WZ&.+
WK:6
WZ&./
:6LQSXW
WY6'B67
WVX:6
6'WUDQVPLW
/6%WUDQVPLW
06%WUDQVPLW
%LWQWUDQVPLW
WVX6'B65
/6%UHFHLYH
6'UHFHLYH
WK6'B67
/6%WUDQVPLW
WK6'B65
06%UHFHLYH
%LWQUHFHLYH
/6%UHFHLYH
DLE
1. Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 22. I2S master timing diagram (Philips protocol)(1)
TF#+
TR#+
#+OUTPUT
TC#+
#0/,
TW#+(
#0/,
TV73
TH73
TW#+,
73OUTPUT
TV3$?-4
3$TRANSMIT
,3"TRANSMIT
-3"TRANSMIT
3$RECEIVE
,3"TRANSMIT
TH3$?-2
TSU3$?-2
,3"RECEIVE
"ITNTRANSMIT
TH3$?-4
-3"RECEIVE
"ITNRECEIVE
,3"RECEIVE
AIB
1. Guaranteed by characterization results, not tested in production.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
DocID027268 Rev 2
95/115
107
Electrical characteristics
6.3.17
STM32L162VD-X
12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 54 are guaranteed by design.
Table 53. ADC clock frequency
Symbol
fADC
Parameter
ADC clock
frequency
Conditions
2.4 V ≤VDDA ≤3.6 V
Voltage
range 1 & 2
Min
VREF+ = VDDA
16
VREF+ < VDDA
VREF+ > 2.4 V
8
VREF+ < VDDA
VREF+ ≤2.4 V
1.8 V ≤VDDA ≤2.4 V
Max
0.480
4
VREF+ = VDDA
8
VREF+ < VDDA
4
Voltage range 3
Unit
MHz
4
Table 54. ADC characteristics
Symbol
VDDA
Parameter
Power supply
Conditions
Min
Typ
Max
-
1.8
-
3.6
-
VDDA
VREF+
Positive reference voltage
-
1.8(1)
VREF-
Negative reference voltage
-
-
VSSA
-
IVDDA
Current on the VDDA input pin
-
-
1000
1450
Peak
-
IVREF(2)
VAIN
Current on the VREF input pin
Conversion voltage range(3)
12-bit sampling rate
10-bit sampling rate
fS
8-bit sampling rate
6-bit sampling rate
96/115
Average
400
700
V
µA
450
-
0(4)
-
VREF+
Direct channels
-
-
1
Multiplexed channels
-
-
0.76
Direct channels
-
-
1.07
Multiplexed channels
-
-
0.8
Direct channels
-
-
1.23
Multiplexed channels
-
-
0.89
Direct channels
-
-
1.45
Multiplexed channels
-
-
1
DocID027268 Rev 2
Unit
V
Msps
Msps
Msps
Msps
STM32L162VD-X
Electrical characteristics
Table 54. ADC characteristics (continued)
Symbol
tS(5)
Parameter
Sampling time
tCONV
Total conversion time
(including sampling time)
CADC
Internal sample and hold
capacitor
fTRIG
External trigger frequency
Regular sequencer
fTRIG
External trigger frequency
Injected sequencer
RAIN(6)
Signal source impedance
Conditions
Min
Typ
Max
Direct channels
2.4 V ≤VDDA ≤3.6 V
0.25
-
-
Multiplexed channels
2.4 V ≤VDDA ≤3.6 V
0.56
-
-
Direct channels
1.8 V ≤VDDA ≤2.4 V
0.56
-
-
Multiplexed channels
1.8 V ≤VDDA ≤2.4 V
1
-
-
-
4
-
384
1/fADC
fADC = 16 MHz
1
-
24.75
µs
-
Unit
µs
4 to 384 (sampling phase) +12
(successive approximation)
1/fADC
Direct channels
-
Multiplexed channels
-
12-bit conversions
-
-
6/8/10-bit conversions
-
-
12-bit conversions
-
-
Tconv+2 1/fADC
6/8/10-bit conversions
-
-
Tconv+1 1/fADC
-
-
50
kΩ
16
-
pF
-
Tconv+1 1/fADC
Tconv
1/fADC
tlat
Injection trigger conversion
latency
fADC = 16 MHz
219
-
281
ns
-
3.5
-
4.5
1/fADC
tlatr
Regular trigger conversion
latency
fADC = 16 MHz
156
-
219
ns
-
2.5
-
3.5
1/fADC
-
-
-
3.5
µs
tSTAB
Power-up time
1. The Vref+ input can be grounded if neither the ADC nor the DAC are used (this allows to shut down an external voltage
reference).
2. The current consumption through VREF is composed of two parameters:
- one constant (max 300 µA)
- one variable (max 400 µA), only during sampling time + 2 first conversion pulses
So, peak consumption is 300+400 = 700 µA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 µA at
1Msps
3. VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA, depending on the package.
Refer to Section 4: Pin descriptions for further details.
4. VSSA or VREF- must be tied to ground.
5. Minimum sampling time is reached for an external input impedance limited to a value as defined in Table 56: Maximum
source impedance RAIN max
6. External impedance has another high value limitation when using short sampling time as defined in Table 56: Maximum
source impedance RAIN max
DocID027268 Rev 2
97/115
107
Electrical characteristics
STM32L162VD-X
Table 55. ADC accuracy(1)(2)
Symbol
Parameter
ET
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
ENOB
Effective number of bits
SINAD
Signal-to-noise and
distortion ratio
SNR
Signal-to-noise ratio
THD
Total harmonic distortion
ENOB
Effective number of bits
SINAD
Signal-to-noise and
distortion ratio
SNR
Signal-to-noise ratio
THD
Total harmonic distortion
Test conditions
2.4 V ≤ VDDA ≤ 3.6 V
2.4 V ≤ VREF+ ≤ 3.6 V
fADC = 8 MHz, RAIN = 50 Ω
TA = -40 to 105 ° C
2.4 V ≤ VDDA ≤ 3.6 V
VDDA = VREF+
fADC = 16 MHz, RAIN = 50 Ω
TA = -40 to 105 ° C
Finput=10kHz
1.8 V ≤ VDDA ≤ 2.4 V
VDDA = VREF+
fADC = 8 MHz or 4 MHz, RAIN = 50 Ω
TA = -40 to 105 ° C
Finput=10kHz
Min(3)
Typ
Max(3)
-
2.5
4
-
1
2
-
1.5
3.5
-
1
2
-
2.2
3
9.2
10
-
57.5
62
-
57.5
62
-
-
-70
-65
9.2
10
-
57.5
62
-
57.5
62
-
-
-70
-65
-
4
6.5
-
1.5
4
-
3.5
6
-
1
2
ET
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
-
2.5
3
ET
Total unadjusted error
-
2
3
EO
Offset error
-
1
1.5
EG
Gain error
-
1.5
2
ED
Differential linearity error
-
1
2
EL
Integral linearity error
-
2.2
3
2.4 V ≤ VDDA ≤ 3.6 V
1.8 V ≤ VREF+ ≤ 2.4 V
fADC = 4 MHz, RAIN = 50 Ω
TA = -40 to 105 ° C
1.8 V ≤ VDDA ≤ 2.4 V
1.8 V ≤ VREF+ ≤ 2.4 V
fADC = 4 MHz, RAIN = 50 Ω
TA = -40 to 105 ° C
Unit
LSB
bits
dB
bits
dB
LSB
LSB
1. ADC DC accuracy values are measured after internal calibration.
2. ADC accuracy vs. negative injection current: Injecting a negative current on any analog input pins should be avoided as
this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to
add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.12 does not affect the ADC
accuracy.
3. Guaranteed by characterization results, not tested in production.
98/115
DocID027268 Rev 2
STM32L162VD-X
Electrical characteristics
Figure 23. ADC accuracy characteristics
9''$
95()
RUGHSHQGLQJRQSDFNDJH
>/6%,'($/ (*
([DPSOHRIDQDFWX DOWUDQVIH UFXUYH
7KHLGHDOWUDQVIHUFX UYH
(QGSRLQWFRUUHODWLRQOLQH
(7 7RWDOXQDGMXVWHG(UURUPD[LPXPGHYLDWLRQ
EHWZHHQWKHDFWXDODQGWKHLGHDOWUDQVIHUFXUYHV
(2 2IIVHW(UURUGHYLDWLRQEHWZHHQWKHILUVWDFWXDO
WUDQVLWLRQDQGWKHODVWDFWXDORQH
(* *DLQ(UURUGHYLDWLRQEHWZHHQWKHODVWLGHDO
WUDQVLWLRQDQGWKHODVWDFWXDORQH
(' 'LIIHUHQWLDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ
EHWZHHQDFWXDOVWHSVDQGWKHLGHDORQH
(/ ,QWHJUDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ
EHWZHHQDQ\DFWXDOWUDQVLWLRQDQGWKHHQGSRLQW
FRUUHODWLRQOLQH
(7
(2
(/
('
/6%,'($/
966$
9''$
DLH
Figure 24. Typical connection diagram using the ADC
9''$
670/[[
6DPSOHDQGKROG
$'&FRQYHUWHU
5$,1
9$,1
$,1[
&SDUDVLWLF
,/“Q$
ELW
FRQYHUWHU
&$'&
DLH
1. Refer to Table 56: Maximum source impedance RAIN max for the value of RAIN and Table 54: ADC
characteristics for the value of CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
DocID027268 Rev 2
99/115
107
Electrical characteristics
STM32L162VD-X
Figure 25. Maximum dynamic current consumption on VREF+ supply pin during ADC
conversion
Sampling (n cycles)
Conversion (12 cycles)
ADC clock
Iref+
700µA
300µA
MS36686V1
Table 56. Maximum source impedance RAIN max(1)
RAIN max (kΩ)
Ts
(µs)
Multiplexed channels
Ts (cycles)
Direct channels
fADC=16 MHz(2)
2.4 V < VDDA < 3.6 V 1.8 V < VDDA < 2.4 V 2.4 V < VDDA < 3.6 V 1.8 V < VDDA < 2.4 V
0.25
Not allowed
Not allowed
0.7
Not allowed
4
0.5625
0.8
Not allowed
2.0
1.0
9
1
2.0
0.8
4.0
3.0
16
1.5
3.0
1.8
6.0
4.5
24
3
6.8
4.0
15.0
10.0
48
6
15.0
10.0
30.0
20.0
96
12
32.0
25.0
50.0
40.0
192
24
50.0
50.0
50.0
50.0
384
1. Guaranteed by design, not tested in production.
2. Number of samples calculated for fADC = 16 MHz. For fADC = 8 and 4 MHz the number of sampling cycles can be reduced
with respect to the minimum sampling time Ts (µs),
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 7. The applicable
procedure depends on whether VREF+ is connected to VDDA or not. The 100 nF capacitors
should be ceramic (good quality). They should be placed as close as possible to the chip.
100/115
DocID027268 Rev 2
STM32L162VD-X
6.3.18
Electrical characteristics
DAC electrical specifications
Data guaranteed by design, not tested in production, unless otherwise specified.
Table 57. DAC characteristics
Symbol
Parameter
Conditions
VDDA
Analog supply voltage
VREF+
Reference supply
voltage
VREF-
Lower reference voltage
IDDVREF+(1)
Current consumption on No load, middle code (0x800)
VREF+ supply
No load, worst code (0x000)
VREF+ = 3.3 V
IDDA(1)
Current consumption on No load, middle code (0x800)
VDDA supply
No load, worst code (0xF1C)
VDDA = 3.3 V
RL(2)
Resistive load
CL
(2)
Capacitive load
Output impedance
RO
VDAC_OUT
DNL
(1)
(1)
INL
Offset(1)
Offset1(1)
VREF+ must always be below
VDDA
Min
Typ
Max
1.8
-
3.6
1.8
-
3.6
Unit
V
VSSA
-
130
220
-
220
350
-
210
320
-
320
520
5
-
-
kΩ
-
-
50
pF
DAC output buffer OFF
12
16
20
kΩ
DAC output buffer ON
0.2
-
VDDA – 0.2
V
DAC output buffer OFF
0.5
-
VREF+ –
1LSB
mV
CL ≤ 50 pF, RL ≥ 5 kΩ
DAC output buffer ON
-
1.5
3
No RL, CL ≤ 50 pF
DAC output buffer OFF
-
1.5
3
CL ≤ 50 pF, RL ≥ 5 kΩ
DAC output buffer ON
-
2
4
No RL, CL ≤ 50 pF
DAC output buffer OFF
-
2
4
CL ≤ 50 pF, RL ≥ 5 kΩ
DAC output buffer ON
-
±10
±25
No RL, CL ≤ 50 pF
DAC output buffer OFF
-
±5
±8
No RL, CL ≤ 50 pF
DAC output buffer OFF
-
±1.5
±5
DAC output buffer ON
µA
Voltage on DAC_OUT
output
Differential non
linearity(3)
Integral non
linearity(4)
Offset error at code
0x800 (5)
Offset error at code
0x001(6)
DocID027268 Rev 2
LSB
101/115
107
Electrical characteristics
STM32L162VD-X
Table 57. DAC characteristics (continued)
Symbol
Parameter
Conditions
VDDA = 3.3V
VREF+ = 3.0V
TA = 0 to 50 ° C
DAC output buffer OFF
Offset
error
temperature
dOffset/dT(1)
coefficient (code 0x800) V
= 3.3V
Min
Typ
Max
-20
-10
0
Unit
µV/°C
DDA
VREF+ = 3.0V
TA = 0 to 50 ° C
DAC output buffer ON
0
20
50
CL ≤ 50 pF, RL ≥ 5 kΩ
DAC output buffer ON
-
+0.1 / -0.2%
+0.2 / -0.5%
No RL, CL ≤ 50 pF
DAC output buffer OFF
-
+0 / -0.2%
+0 / -0.4%
VDDA = 3.3V
VREF+ = 3.0V
TA = 0 to 50 ° C
DAC output buffer OFF
-10
-2
0
VDDA = 3.3V
VREF+ = 3.0V
TA = 0 to 50 ° C
DAC output buffer ON
-40
-8
0
CL ≤ 50 pF, RL ≥ 5 kΩ
DAC output buffer ON
-
12
30
No RL, CL ≤ 50 pF
DAC output buffer OFF
-
8
12
tSETTLING
Settling time (full scale:
for a 12-bit code
transition between the
lowest and the highest
CL ≤ 50 pF, RL ≥ 5 kΩ
input codes till
DAC_OUT reaches final
value ±1LSB
-
7
12
µs
Update rate
Max frequency for a
correct DAC_OUT
change (95% of final
value) with 1 LSB
variation in the input
code
CL ≤ 50 pF, RL ≥ 5 kΩ
-
-
1
Msps
tWAKEUP
Wakeup time from off
state (setting the ENx bit
CL ≤ 50 pF, RL ≥ 5 kΩ
in the DAC Control
(8)
register)
-
9
15
µs
PSRR+
VDDA supply rejection
ratio (static DC
measurement)
-
-60
-35
dB
Gain(1)
dGain/dT(1)
TUE(1)
Gain error(7)
Gain error temperature
coefficient
Total unadjusted error
CL ≤ 50 pF, RL ≥ 5 kΩ
1. Data based on characterization results.
2. Connected between DAC_OUT and VSSA.
3. Difference between two consecutive codes - 1 LSB.
102/115
DocID027268 Rev 2
%
µV/°C
LSB
STM32L162VD-X
Electrical characteristics
4. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.
5. Difference between the value measured at Code (0x800) and the ideal value = VREF+/2.
6. Difference between the value measured at Code (0x001) and the ideal value.
7. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when
buffer is OFF, and from code giving 0.2 V and (VDDA – 0.2) V when buffer is ON.
8. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).
Figure 26. 12-bit buffered /non-buffered DAC
%XIIHUHG1RQEXIIHUHG'$&
%XIIHU
5/
'$&B287[
ELW
GLJLWDOWR
DQDORJ
FRQYHUWHU
&/
AI6
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external
loads directly without the use of an external operational amplifier. The buffer can be bypassed by
configuring the BOFFx bit in the DAC_CR register.
6.3.19
Operational amplifier characteristics
Table 58. Operational amplifier characteristics
Symbol
CMIR
VIOFFSET
Condition(1)
Min(2)
Typ
Max(2)
-
0
-
VDD
Maximum
calibration range
-
-
-
±15
After offset
calibration
-
-
-
±1.5
-
-
-
±40
-
-
-
±80
-
-
1
-
-
10
Parameter
Common mode input range
Input offset voltage
ΔVIOFFSET
Input offset voltage Normal mode
drift
Low-power mode
IIB
Input current bias
ILOAD
Drive current
IDD
Consumption
CMRR
Common mode
rejection ration
mV
Dedicated input
General purpose
input
75 °C
Normal mode
-
-
-
500
Low-power mode
-
-
-
100
-
100
220
-
30
60
Normal mode
Low-power mode
Unit
No load,
quiescent mode
Normal mode
-
-
-85
-
Low-power mode
-
-
-90
-
DocID027268 Rev 2
µV/°C
nA
µA
µA
dB
103/115
107
Electrical characteristics
STM32L162VD-X
Table 58. Operational amplifier characteristics (continued)
Symbol
PSRR
Condition(1)
Parameter
Power supply
rejection ratio
Normal mode
Low-power mode
Normal mode
GBW
Bandwidth
Low-power mode
Normal mode
Low-power mode
SR
Slew rate
RL
Resistive load
CL
Capacitive load
VOHSAT
High saturation
voltage
VDD<2.4 V
Max(2)
-
-85
-
-
-90
-
400
1000
3000
150
300
800
200
500
2200
70
150
800
VDD>2.4 V
(between 0.1 V and
VDD-0.1 V)
-
700
-
Low-power mode
VDD>2.4 V
-
100
-
-
300
-
-
50
-
Normal mode
55
100
-
Low-power mode
65
110
-
4
-
-
20
-
-
-
-
50
VDD100
-
-
VDD-50
-
-
-
-
100
-
-
50
Low-power mode
Open loop gain
VDD>2.4 V
Typ
Normal mode
Normal mode
AO
DC
Min(2)
Normal mode
Low-power mode
VDD<2.4 V
VDD<2.4 V
-
Normal mode
Low-power mode
Normal mode
ILOAD = max or
RL = min
Unit
dB
kHZ
V/ms
dB
kΩ
pF
mV
VOLSAT
Low saturation
voltage
ϕm
Phase margin
-
-
60
-
°
GM
Gain margin
-
-
-12
-
dB
tOFFTRIM
Offset trim time: during calibration,
minimum time needed between two
steps to have 1 mV accuracy
-
-
1
-
ms
10
-
tWAKEUP
Low-power mode
Normal mode
CL ≤50 pf,
RL ≥ 4 kΩ
-
Low-power mode
CL ≤50 pf,
RL ≥ 20 kΩ
-
Wakeup time
µs
30
-
1. Operating conditions are limited to junction temperature (0 °C to 105 °C) when VDD is below 2 V. Otherwise to the full
ambient temperature range (-40 °C to 85 °C, -40 °C to 105 °C).
2. Guaranteed by characterization results, not tested in production.
104/115
DocID027268 Rev 2
STM32L162VD-X
6.3.20
Electrical characteristics
Temperature sensor characteristics
Table 59. Temperature sensor calibration values
Calibration value name
Description
Memory address
TS_CAL1
TS ADC raw data acquired at
temperature of 30 °C ±5 °C
VDDA= 3 V ±10 mV
0x1FF8 00FA - 0x1FF8 00FB
TS_CAL2
TS ADC raw data acquired at
temperature of 110 °C ±5 °C
VDDA= 3 V ±10 mV
0x1FF8 00FE - 0x1FF8 00FF
Table 60. Temperature sensor characteristics
Symbol
Parameter
TL(1)
VSENSE linearity with temperature
Avg_Slope(1)
Average slope
V110
Voltage at 110°C
I
±5°C(2)
Min
Typ
Max
Unit
-
±1
±2
°C
1.48
1.61
1.75
mV/°C
612
626.8
641.5
mV
µA
Current consumption
-
3.4
6
tSTART(3)
Startup time
-
-
10
TS_temp(3)
ADC sampling time when reading the
temperature
4
-
-
(3)
DDA(TEMP)
µs
1. Guaranteed by characterization results, not tested in production.
2. Measured at VDD = 3 V ±10 mV. V110 ADC conversion result is stored in the TS_CAL2 byte.
3. Guaranteed by design, not tested in production.
6.3.21
Comparator
Table 61. Comparator 1 characteristics
Symbol
Parameter
Conditions
Min(1)
Typ
Max(1)
Unit
3.6
V
VDDA
Analog supply voltage
-
1.65
R400K
R400K value
-
-
400
-
R10K
R10K value
-
-
10
-
Comparator 1 input
voltage range
-
0.6
-
VDDA
Comparator startup time
-
-
7
10
VIN
tSTART
(2)
kΩ
V
µs
td
Propagation delay
-
-
3
10
Voffset
Comparator offset
-
-
±3
±10
mV
VDDA = 3.6 V
Comparator offset
VIN+ = 0 V
variation in worst voltage
VIN- = VREFINT
stress conditions
TA = 25 ° C
0
1.5
10
mV/1000 h
Current consumption(3)
-
160
260
nA
dVoffset/dt
ICOMP1
-
DocID027268 Rev 2
105/115
107
Electrical characteristics
STM32L162VD-X
1. Guaranteed by characterization results, not tested in production.
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference.
3. Comparator consumption only. Internal reference voltage not included.
Table 62. Comparator 2 characteristics
Symbol
VDDA
VIN
Parameter
Min
Analog supply voltage
-
1.65
-
3.6
V
Comparator 2 input voltage range
-
0
-
VDDA
V
Fast mode
-
15
20
Slow mode
-
20
25
1.65 V ≤VDDA ≤2.7 V
-
1.8
3.5
2.7 V ≤VDDA ≤3.6 V
-
2.5
6
1.65 V ≤VDDA ≤2.7 V
-
0.8
2
2.7 V ≤VDDA ≤3.6 V
-
1.2
4
-
±4
±20
mV
VDDA = 3.3V
TA = 0 to 50 ° C
V- =VREFINT,
3/4 VREFINT,
1/2 VREFINT,
1/4 VREFINT.
-
15
100
ppm
/°C
Fast mode
-
3.5
5
Slow mode
-
0.5
2
tSTART
Comparator startup time
td slow
Propagation delay(2) in slow mode
td fast
Propagation delay(2) in fast mode
Voffset
Comparator offset error
dThreshold/ Threshold voltage temperature
dt
coefficient
ICOMP2
Typ Max(1) Unit
Conditions
Current consumption(3)
1. Guaranteed by characterization results, not tested in production.
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference.
3. Comparator consumption only. Internal reference voltage (necessary for comparator operation) is not
included.
106/115
DocID027268 Rev 2
µs
µA
STM32L162VD-X
6.3.22
Electrical characteristics
LCD controller
The device embeds a built-in step-up converter to provide a constant LCD reference voltage
independently from the VDD voltage. An external capacitor Cext must be connected to the
VLCD pin to decouple this converter.
Table 63. LCD controller characteristics
Symbol
Parameter
Min
Typ
Max
Unit
VLCD
LCD external voltage
-
-
3.6
VLCD0
LCD internal reference voltage 0
-
2.6
-
VLCD1
LCD internal reference voltage 1
-
2.73
-
VLCD2
LCD internal reference voltage 2
-
2.86
-
VLCD3
LCD internal reference voltage 3
-
2.98
-
VLCD4
LCD internal reference voltage 4
-
3.12
-
VLCD5
LCD internal reference voltage 5
-
3.26
-
VLCD6
LCD internal reference voltage 6
-
3.4
-
VLCD7
LCD internal reference voltage 7
-
3.55
-
0.1
-
2
Supply current at VDD = 2.2 V
-
3.3
-
Supply current at VDD = 3.0 V
-
3.1
-
Low drive resistive network overall value
5.28
6.6
7.92
MΩ
High drive resistive network total value
192
240
288
kΩ
V
Cext
ILCD(1)
RHtot(2)
RL
(2)
VLCD external capacitance
V44
Segment/Common highest level voltage
-
-
VLCD
V34
Segment/Common 3/4 level voltage
-
3/4 VLCD
-
V23
Segment/Common 2/3 level voltage
-
2/3 VLCD
-
V12
Segment/Common 1/2 level voltage
-
1/2 VLCD
-
V13
Segment/Common 1/3 level voltage
-
1/3 VLCD
-
V14
Segment/Common 1/4 level voltage
-
1/4 VLCD
-
V0
Segment/Common lowest level voltage
0
-
-
Segment/Common level voltage error
TA = -40 to 105 ° C
-
-
± 50
ΔVxx(3)
V
µF
µA
V
mV
1. LCD enabled with 3 V internal step-up active, 1/8 duty, 1/4 bias, division ratio= 64, all pixels active, no LCD
connected.
2. Guaranteed by design, not tested in production.
3. Guaranteed by characterization results, not tested in production.
DocID027268 Rev 2
107/115
107
Package information
7
STM32L162VD-X
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
7.1
WLCSP104, 0.4 mm pitch wafer level chip scale package
information
Figure 27. WLCSP104, 0.4 mm pitch wafer level chip scale package outline
$EDOOORFDWLRQ
H
EEE =
)
*
'HWDLO$
H
H
$
$
$
H
%RWWRPYLHZ
%XPSVLGH
6LGHYLHZ
;
<
'
%XPS
(
$
$
HHH =
‘E
UHIHUHQFH
$RULHQWDWLRQ
7RSYLHZ
:DIHUEDFNVLGH
‘ĐĐĐ 0 = ;
‘ĚĚĚ 0 =
DDD =
<
6HDWLQJ
SODQH
=
'HWDLO$
5RWDWHGƒ
ϬzzͺDͺsϮ
1. Drawing is not to scale.
108/115
DocID027268 Rev 2
STM32L162VD-X
Package information
Table 64. WLCSP104, 0.4 mm pitch wafer level chip scale package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.525
0.555
0.585
0.0207
0.0219
0.023
A1
-
0.175
-
-
0.0069
-
A2
-
0.38
-
-
0.015
-
(2)
-
0.025
-
-
0.001
-
(3)
øb
0.22
0.25
0.28
0.0087
0.0098
0.011
D
4.06
4.095
4.13
0.1598
0.1612
0.1626
E
5.059
5.094
5.129
0.1992
0.2006
0.2019
e
-
0.4
-
-
0.0157
-
e1
-
3.2
-
-
0.126
-
e2
-
4.4
-
-
0.1732
-
F
-
0.447
-
-
0.0176
-
G
-
0.347
-
-
0.0137
-
aaa
-
-
0.1
-
-
0.0039
bbb
-
-
0.1
-
-
0.0039
ccc
-
-
0.1
-
-
0.0039
ddd
-
-
0.05
-
-
0.002
eee
-
-
0.05
-
-
0.002
A3
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Back side coating.
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
Figure 28. WLCSP104, 0.4 mm pitch wafer level chip scale package recommended
footprint
'SDG
'VP
DocID027268 Rev 2
069
109/115
114
Package information
STM32L162VD-X
Table 65. WLCSP104, 0.4 mm pitch recommended PCB design rules
Dimension
Recommended values
Pitch
0.4
260 µm max. (circular)
Dpad
220 µm recommended
Dsm
300 µm min. (for 260 µm diameter pad)
PCB pad design
Non-solder mask defined via underbump allowed.
Marking of engineering samples
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Figure 29. WLCSP104, 0.4 mm pitch wafer level chip scale package top view example
3URGXFWLGHQWLILFDWLRQ
-7%:9
'DWHFRGH
5HYLVLRQFRGH
: 88 3
%DOO$
LGHQWLILHU
069
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
110/115
DocID027268 Rev 2
STM32L162VD-X
7.2
Package information
Thermal characteristics
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max × ΘJA)
Where:
•
TA max is the maximum ambient temperature in ° C,
•
ΘJA is the package junction-to-ambient thermal resistance, in ° C/W,
•
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
•
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Table 66. Thermal characteristics
Symbol
ΘJA
Parameter
Thermal resistance junction-ambient
WLCSP104 - 0.400 mm pitch
Value
Unit
46
°C/W
Figure 30. Thermal resistance suffix 6
&ŽƌďŝĚĚĞŶĂƌĞĂd:хd:ŵĂdž
3'P:
t>^WϭϬϰϭϬdžϭϬŵŵ
7HPSHUDWXUHƒ&
06Y9
DocID027268 Rev 2
111/115
114
Package information
STM32L162VD-X
Figure 31. Thermal resistance suffix 7
&ŽƌďŝĚĚĞŶĂƌĞĂd:хd:ŵĂdž
3'P:
t>^WϭϬϰϭϬdžϭϬŵŵ
7HPSHUDWXUHƒ&
06Y9
7.2.1
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
112/115
DocID027268 Rev 2
STM32L162VD-X
8
Part numbering
Part numbering
Table 67. STM32L162VD-X Ordering information scheme
Example:
STM32
L
162 V
D
Y
6
X
D
TR
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
L = Low-power
Device subfamily
162: Devices without LCD
Pin count
V = 100/104 pins
Flash memory size
D=384 Kbytes of Flash memory
Package
Y = WLCSP104
Temperature range
6 = Industrial temperature range, –40 to 85 °C
7 = Industrial temperature range, –40 to 105 °C
Options
X = device generation X
Options
No character = VDD range: 1.8 to 3.6 V and BOR enabled
D = VDD range: 1.65 to 3.6 V and BOR disabled
Packing
TR = tape and reel
No character = tray or tube
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
DocID027268 Rev 2
113/115
114
Revision History
9
STM32L162VD-X
Revision History
Table 68. Document revision history
Date
Revision
22-Jan-2015
1
Initial release.
2
Updated Section 7: Package information structure: paragraph titles
and paragraph heading level.
Updated Section 7: Package information for WLCSP104 package
device marking adding text in for device orientation versus ball A1
identifier.
Updated Figure 27: WLCSP104, 0.4 mm pitch wafer level chip scale
package outline.
Updated Table 64: WLCSP104, 0.4 mm pitch wafer level chip scale
package mechanical data.
Added Figure 28: WLCSP104, 0.4 mm pitch wafer level chip scale
package recommended footprint.
Added Table 65: WLCSP104, 0.4 mm pitch recommended PCB design
rules.
Updated Table 7: STM32L162VD-X pin definitions ADC inputs.
Updated Table 15: Embedded internal reference voltage temperature
coefficient at 100ppm/°C and table footnote 3: “guaranteed by design”
changed by “guaranteed by characterization results”.
Updated Table 62: Comparator 2 characteristics new maximum
threshold voltage temperature coefficient at 100ppm/°C.
30-Apr-2015
114/115
Changes
DocID027268 Rev 2
STM32L162VD-X
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
DocID027268 Rev 2
115/115
115