STM32F031x4 STM32F031x6 ARM®-based 32-bit MCU with up to 32 Kbyte Flash, timers, ADC and communication interfaces, 2.0 - 3.6 V Datasheet - production data Features Core: ARM® 32-bit Cortex®-M0 CPU, frequency up to 48 MHz LQFP32 7x7 mm UFQFPN32 5x5 mm WLCSP25 LQFP48 7x7 mm UFQFPN28 4x4 mm (2.1x2.1 mm) Memories – 16 to 32 Kbytes of Flash memory – 4 Kbytes of SRAM with HW parity CRC calculation unit Reset and power management – Digital and I/Os supply: 2.0 to 3.6 V – Analog supply: VDDA = from VDD to 3.6 V – Power-on/Power-down reset (POR/PDR) – Programmable voltage detector (PVD) – Low power modes: Sleep, Stop and Standby – VBAT supply for RTC and backup registers Clock management – 4 to 32 MHz crystal oscillator – 32 kHz oscillator for RTC with calibration – Internal 8 MHz RC with x6 PLL option – Internal 40 kHz RC oscillator Up to 39 fast I/Os – All mappable on external interrupt vectors – Up to 25 I/Os with 5 V tolerant capability TSSOP20 – 1 x 16-bit timer, with IC/OC and OCN, deadtime generation, emergency stop and modulator gate for IR control – 1 x 16-bit timer with 1 IC/OC – Independent and system watchdog timers – SysTick timer: 24-bit downcounter Calendar RTC with alarm and periodic wakeup from Stop/Standby Communication interfaces – 1 x I2C interface; supporting Fast Mode Plus (1 Mbit/s) with 20 mA current sink, SMBus/PMBus, and wakeup from Stop mode – 1 x USART supporting master synchronous SPI and modem control; one with ISO7816 interface, LIN, IrDA capability auto baud rate detection and wakeup feature – 1 x SPI (18 Mbit/s) with 4 to 16 programmable bit frames, with I2S interface multiplexed 5-channel DMA controller Serial wire debug (SWD) 1 × 12-bit, 1.0 µs ADC (up to 10 channels) – Conversion range: 0 to 3.6V – Separate analog supply from 2.4 up to 3.6 V Extended temperature range: -40 to +105°C ® All packages ECOPACK 2 Up to 9 timers – 1 x 16-bit 7-channel advanced-control timer for 6 channels PWM output, with deadtime generation and emergency stop – 1 x 32-bit and 1 x 16-bit timer, with up to 4 IC/OC, usable for IR control decoding – 1 x 16-bit timer, with 2 IC/OC, 1 OCN, deadtime generation and emergency stop August 2015 This is information on a product in full production. 96-bit unique ID Table 1. Device summary Reference STM32F031x4 Part number STM32F031C4, STM32F031F4, STM32F031G4, STM32F031K4 STM32F031C6, STM32F031E6, STM32F031x6 STM32F031F6, STM32F031G6, STM32F031K6 DocID025743 Rev 3 1/113 www.st.com Contents STM32F031x4 STM32F031x6 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 ARM®-Cortex®-M0 core with embedded Flash and SRAM . . . . . . . . . . . 12 3.2 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 13 3.5 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5.2 Power supply supervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.6 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.8 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.9 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.10 3.11 2/113 3.5.1 3.9.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 16 3.9.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 16 Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.10.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.10.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.11.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.11.2 General-purpose timers (TIM2..3, TIM14, 16, 17) . . . . . . . . . . . . . . . . . 19 3.11.3 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.11.4 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.11.5 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.12 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 20 3.13 Inter-integrated circuit interfaces (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.14 Universal synchronous/asynchronous receiver transmitters (USART) . . 22 DocID025743 Rev 3 STM32F031x4 STM32F031x6 Contents 3.15 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S) . 23 3.16 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 43 6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 43 6.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.3.6 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.3.10 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.3.16 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3.17 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.3.18 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.3.19 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 DocID025743 Rev 3 3/113 4 Contents STM32F031x4 STM32F031x6 6.3.20 7 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 7.1 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 7.2 LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7.3 UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 7.4 UFQFPN28 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 7.5 WLCSP25 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7.6 WLCSP25 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7.7 TSSOP20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.8 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7.8.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7.8.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 107 8 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 4/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 STM32F031x4/x6 family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . 10 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 STM32F031x4/x6 I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 STM32F031x4/x6 USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 STM32F031x4/x6 SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Alternate functions selected through GPIOA_AFR registers for port A . . . . . . . . . . . . . . . 32 Alternate functions selected through GPIOB_AFR registers for port B . . . . . . . . . . . . . . . 33 STM32F031x4/x6 peripheral register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . 35 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 43 Programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Typical and maximum current consumption from the VDD supply at VDD = 3.6 V . . . . . . . 46 Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . 47 Typical and maximum current consumption in Stop and Standby modes . . . . . . . . . . . . 48 Typical and maximum current consumption from the VBAT supply. . . . . . . . . . . . . . . . . . . 49 Typical current consumption, code executing from Flash, running from HSE 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 HSI14 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 DocID025743 Rev 3 5/113 6 List of tables Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. 6/113 STM32F031x4 STM32F031x6 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 IWDG min/max timeout period at 40 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 WWDG min/max timeout value at 48 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 UFQFPN28 - 28-lead, 4x4 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 WLCSP25 - 25-ball, 2.423 x 2.325 mm, 0.4 mm pitch wafer level chip scale package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 WLCSP25 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 101 TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 DocID025743 Rev 3 STM32F031x4 STM32F031x6 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 LQFP48 48-pin package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 LQFP32 32-pin package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 UFQFPN32 32-pin package pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 UFQFPN28 28-pin package pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 WLCSP25 25-ball package ballout (bump side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 TSSOP20 20-pin package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 STM32F031x4/x6 memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 HSI oscillator accuracy characterization results for soldered parts . . . . . . . . . . . . . . . . . . 62 HSI14 oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 TC and TTa I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Five volt tolerant (FT and FTf) I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 I2S slave timing diagram (Philips protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 I2S master timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 87 LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 91 LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 LQFP32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 UFQFPN32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 UFQFPN28 - 28-lead, 4x4 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 UFQFPN28 - 28-lead, 4x4 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 UFQFPN28 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 DocID025743 Rev 3 7/113 8 List of figures Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. 8/113 STM32F031x4 STM32F031x6 WLCSP25 - 25-ball, 2.423 x 2.325 mm, 0.4 mm pitch wafer level chip scale package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 WLCSP25 - 25-ball, 2.133 x 2.070 mm, 0.4 mm pitch wafer level chip scale package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 WLCSP25 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 TSSOP20 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 DocID025743 Rev 3 STM32F031x4 STM32F031x6 1 Introduction Introduction This datasheet provides the ordering information and mechanical device characteristics of the STM32F031x4/x6 microcontrollers. This document should be read in conjunction with the STM32F0xxxx reference manual (RM0091). The reference manual is available from the STMicroelectronics website www.st.com. For information on the ARM® Cortex®-M0 core, please refer to the Cortex®-M0 Technical Reference Manual, available from the www.arm.com website. DocID025743 Rev 3 9/113 23 Description 2 STM32F031x4 STM32F031x6 Description The STM32F031x4/x6 microcontrollers incorporate the high-performance ARM® Cortex®M0 32-bit RISC core operating at a 48 MHz maximum frequency, high-speed embedded memories (up to 32 Kbytes of Flash memory and 4 Kbytes of SRAM), and an extensive range of enhanced peripherals and I/Os. All devices offer standard communication interfaces (one I2C, one SPI/ I2S and one USART), one 12-bit ADC, five 16-bit timers, one 32-bit timer and an advanced-control PWM timer. The STM32F031x4/x6 microcontrollers operate in the -40 to +85 °C and -40 to +105 °C temperature ranges, from a 2.0 to 3.6 V power supply. A comprehensive set of powersaving modes allows the design of low-power applications. The STM32F031x4/x6 microcontrollers include devices in six different packages ranging from 20 pins to 48 pins with a die form also available upon request. Depending on the device chosen, different sets of peripherals are included. The description below provides an overview of the complete range of STM32F031x4/x6 peripherals proposed. These features make the STM32F031x4/x6 microcontrollers suitable for a wide range of applications such as application control and user interfaces, hand-held equipment, A/V receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, video intercoms, and HVACs. Table 2. STM32F031x4/x6 family device features and peripheral counts Peripheral Flash (Kbyte) STM32F031Fx STM32F031Ex STM32F031Gx 16 32 32 16 32 SRAM (Kbyte) Advanced control 1 (16-bit) General purpose 4 (16-bit) 1 (32-bit) SPI [I2S](1) 1 USART 1 GPIOs 1 (9 ext. + 3 int.) 15 20 23 25 (on LQFP32) 27 (on UFQFPN32) 39 2.0 to 3.6 V Ambient operating temperature: -40°C to 85°C / -40°C to 105°C Junction temperature: -40°C to 105°C / -40°C to 125°C TSSOP20 WLCSP25 UFQFPN28 1. The SPI interface can be used either in SPI mode or in I2S audio mode. 10/113 32 48 MHz Operating voltage Packages 16 1 (10 ext. + 3 int.) Max. CPU frequency Operating temperature 32 1 [1] I2C 12-bit ADC (number of channels) 16 STM32F031Cx 4 Timers Comm. interfaces STM32F031Kx DocID025743 Rev 3 LQFP32 UFQFPN32 LQFP48 STM32F031x4 STM32F031x6 Description Figure 1. Block diagram 6HULDO:LUH 'HEXJ 19,& *3'0$ FKDQQHOV %XV0DWUL[ 19,& )/$6+ .% ELWV 65$0 .% 65$0 &257(;0&38 I+&/. 0+] IODVK REO ,QWHUIDFH 9'' FRQWUROOHU 6:&/. 6:'$7 DV$) 32:(5 92/7 5(* 97WR 9 9'' WR 9 966 #9'' 325 5HVHW ,QW #9''$ 6833/< 683(59,6,21 325 3'5 9 '' 39' 5&+60+] 5&+60+] 1567 9''$ #9''$ #9'' 5&/6 ;7$/ 26& 0+] 3// 26&,1 3) 26&287 3) ,:'* 3$>@ *3,2SRUW$ 3%>@ *3,2SRUW% 3&>@ *3,2SRUW& 3)>@ *3,2SRUW) $+% GHFRGHU 5(6(7 &/2&. &21752/ $+%3&/. $3%3&/. $'&&/. &(&&/. 86$57&/. +&/. )&/. 3RZHU &RQWUROOHU ;7$/ N+] 57& &5& 9%$7 9 WR 9 #96: %DFNXS UHJ 26&B,1 26&B287 7$03(557& $/$50 287 57& LQWHUIDFH 7,0(5 FKDQQHOV FRPSO FKDQQHOV %5. (75 LQSXW DV $) 7,0(5 FK (75 DV $) 7,0(5 FK (75 DV $) 7,0(5 FKDQQHO DV $) 7,0(5 FKDQQHO FRPSO %5. DV $) 7,0(5 FKDQQHO FRPSO %5. DV $) $+% $3% $) 026,6' 0,620&. 6&.&. 166:6DV$) (;7,7 :.83 ,5B287DV$) ::'* 63,,6 '%*0&8 6<6&)* ,) 86$57 ,& 5;7; &76 576 &. DV $) 6&/6'$60%DO P$ IRU )0 DV $) 7HPS VHQVRU $'&B,1 ELW$'& ,) 9''$ 966$ /HJHQG #9''$ 6XSSOLHGE\9''$ 6XSSOLHGE\9%$7 DocID025743 Rev 3 6XSSOLHGE\9'' 069 11/113 23 Functional overview STM32F031x4 STM32F031x6 3 Functional overview 3.1 ARM®-Cortex®-M0 core with embedded Flash and SRAM The ARM® Cortex®-M0 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts. The ARM® Cortex®-M0 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The STM32F0xx family has an embedded ARM core and is therefore compatible with all ARM tools and software. Figure 1 shows the general block diagram of the device family. 3.2 Memories The device has the following features: 4 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states and featuring embedded parity checking with exception generation for fail-critical applications. The non-volatile memory is divided into two arrays: – 16 to 32 Kbytes of embedded Flash memory for programs and data – Option bytes The option bytes are used to write-protect the memory (with 4 KB granularity) and/or readout-protect the whole memory with the following options: – Level 0: no readout protection – Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected ® Level 2: chip readout protection, debug features (Cortex -M0 serial wire) and boot in RAM selection disabled – 3.3 Boot modes At startup, the boot pin and boot selector option bit are used to select one of the three boot options: Boot from User Flash Boot from System Memory Boot from embedded SRAM The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART on pins PA14/PA15 or PA9/PA10. 12/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 3.4 Functional overview Cyclic redundancy check calculation unit (CRC) The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a CRC-32 (Ethernet) polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. 3.5 Power management 3.5.1 Power supply schemes VDD = VDDIO1 = 2.0 to 3.6 V: external power supply for I/Os (VDDIO1) and the internal regulator. It is provided externally through VDD pins. VDDA = from VDD to 3.6 V: external analog power supply for ADC, Reset blocks, RCs and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC is used). It is provided externally through VDDA pin. The VDDA voltage level must be always greater or equal to the VDD voltage level and must be established first. VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. For more details on how to connect power pins, refer to Figure 12: Power supply scheme. 3.5.2 Power supply supervisors The device has integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold, VPOR/PDR, without the need for an external reset circuit. The POR monitors only the VDD supply voltage. During the startup phase it is required that VDDA should arrive first and be greater than or equal to VDD. The PDR monitors both the VDD and VDDA supply voltages, however the VDDA power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that VDDA is higher than or equal to VDD. The device features an embedded programmable voltage detector (PVD) that monitors the VDD power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD drops below the VPVD threshold and/or when VDD is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. 3.5.3 Voltage regulator The regulator has two operating modes and it is always enabled after reset. Main (MR) is used in normal operating mode (Run). Low power (LPR) can be used in Stop mode where the power demand is reduced. DocID025743 Rev 3 13/113 23 Functional overview STM32F031x4 STM32F031x6 In Standby mode, it is put in power down mode. In this mode, the regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost). 3.5.4 Low-power modes The STM32F031x4/x6 microcontrollers support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. Stop mode Stop mode achieves very low power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode. The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line source can be one of the 16 external lines, the PVD output, RTC, I2C1 or USART1. The peripherals listed above can be configured to enable the HSI RC oscillator for processing incoming data. If this is used when the voltage regulator is put in low power mode, the regulator is first switched to normal mode before the clock is provided to the given peripheral. Standby mode The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the RTC domain and Standby circuitry. The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pins, or an RTC event occurs. Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode. 3.6 Clocks and startup System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator). Several prescalers allow the application to configure the frequency of the AHB and the APB domains. The maximum frequency of the AHB and the APB domains is 48 MHz. 14/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 Functional overview Figure 2. Clock tree )/,7)&/. WR)ODVKSURJUDPPLQJLQWHUIDFH +6, WR,& 6<6&/. WR,6 0+] +6, +6,5& +&/. 3//65& 3//08/ 3// [[ [ 6: +6, 3//&/. +6( $+% $+% SUHVFDOHU 6<6&/. 26&B287 26&B,1 26&B,1 26&B287 35(',9 &66 3&/. ,I$3%SUHVFDOHU [HOVH[ 3&/. 6<6&/. +6, /6( 0+] +6(26& /6(26& N+] $3% SUHVFDOHU WR$+%EXVFRUH PHPRU\DQG'0$ WRFRUWH[6\VWHPWLPHU )&/.&RUWH[IUHHUXQQLQJFORFN 57&&/. WR$3% SHULSKHUDOV WR7,0 WR86$57 WR57& /6( 57&6(/>@ /6, /6,5& N+] WR,:'* 3//12',9 0&235( 0&2 0DLQFORFN RXWSXW WR7,0 3//&/. +6, +6, +6( 6<6&/. /6, /6( 0+] +6, +6,5& WR$'& DV\QFKURQRXV FORFNLQSXW 0&2 069 DocID025743 Rev 3 15/113 23 Functional overview 3.7 STM32F031x4 STM32F031x6 General-purpose inputs/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. The I/O configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers. 3.8 Direct memory access controller (DMA) The 5-channel general-purpose DMAs manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA supports circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent. DMA can be used with the main peripherals: SPI, I2S, I2C, USART, all TIMx timers (except TIM14) and ADC. 3.9 Interrupts and events 3.9.1 Nested vectored interrupt controller (NVIC) The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to ® 32 maskable interrupt channels (not including the 16 interrupt lines of Cortex -M0) and 4 priority levels. Closely coupled NVIC gives low latency interrupt processing Interrupt entry vector table address passed directly to the core Closely coupled NVIC core interface Allows early processing of interrupts Processing of late arriving higher priority interrupts Support for tail-chaining Processor state automatically saved Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimal interrupt latency. 3.9.2 Extended interrupt/event controller (EXTI) The extended interrupt/event controller consists of 24 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 39 GPIOs can be connected to the 16 external interrupt lines. 16/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 3.10 Functional overview Analog to digital converter (ADC) The 12-bit analog to digital converter has up to 16 external and 3 internal (temperature sensor, voltage reference, VBAT voltage measurement) channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs. The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. 3.10.1 Temperature sensor The temperature sensor (TS) generates a voltage VSENSE that varies linearly with temperature. The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value. The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. Table 3. Temperature sensor calibration values Calibration value name 3.10.2 Description Memory address TS_CAL1 TS ADC raw data acquired at a temperature of 30 °C (5 °C), VDDA= 3.3 V (10 mV) TS_CAL2 TS ADC raw data acquired at a temperature of 110 °C (5 °C), 0x1FFF F7C2 - 0x1FFF F7C3 VDDA= 3.3 V (10 mV) 0x1FFF F7B8 - 0x1FFF F7B9 Internal voltage reference (VREFINT) The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and comparators. VREFINT is internally connected to the ADC_IN17 input channel. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode. Table 4. Internal voltage reference calibration values Calibration value name VREFINT_CAL Description Memory address Raw data acquired at a temperature of 30 °C (5 °C), 0x1FFF F7BA - 0x1FFF F7BB VDDA= 3.3 V (10 mV) DocID025743 Rev 3 17/113 23 Functional overview 3.10.3 STM32F031x4 STM32F031x6 VBAT battery voltage monitoring This embedded hardware feature allows the application to measure the VBAT battery voltage using the internal ADC channel ADC_IN18. As the VBAT voltage may be higher than VDDA, and thus outside the ADC input range, the VBAT pin is internally connected to a bridge divider by 2. As a consequence, the converted digital value is half the VBAT voltage. 3.11 Timers and watchdogs The STM32F031x4/x6 devices include up to five general-purpose timers and an advanced control timer. Table 5 compares the features of the different timers. Table 5. Timer feature comparison Timer type Timer Counter resolution Counter type Prescaler factor DMA request generation Advanced control TIM1 16-bit Up, down, up/down Any integer between 1 and 65536 Yes 4 3 TIM2 32-bit Up, down, up/down Any integer between 1 and 65536 Yes 4 No TIM3 16-bit Up, down, up/down Any integer between 1 and 65536 Yes 4 No TIM14 16-bit Up Any integer between 1 and 65536 No 1 No TIM16, TIM17 16-bit Up Any integer between 1 and 65536 Yes 1 1 General purpose 3.11.1 Capture/compare Complementary channels outputs Advanced-control timer (TIM1) The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six channels. It has complementary PWM outputs with programmable inserted dead times. It can also be seen as a complete general-purpose timer. The four independent channels can be used for: Input capture Output compare PWM generation (edge or center-aligned modes) One-pulse mode output If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%). The counter can be frozen in debug mode. 18/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 Functional overview Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers via the Timer Link feature for synchronization or event chaining. 3.11.2 General-purpose timers (TIM2..3, TIM14, 16, 17) There are six synchronizable general-purpose timers embedded in the STM32F031x4/x6 devices (see Table 5 for differences). Each general-purpose timer can be used to generate PWM outputs, or as simple time base. TIM2, TIM3 STM32F031x4/x6 devices feature two synchronizable 4-channel general-purpose timers. TIM2 is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages. The TIM2 and TIM3 general-purpose timers can work together or with the TIM1 advancedcontrol timer via the Timer Link feature for synchronization or event chaining. TIM2 and TIM3 both have independent DMA request generation. These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. Their counters can be frozen in debug mode. TIM14 This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output. Its counter can be frozen in debug mode. TIM16 and TIM17 Both timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. They each have a single channel for input capture/output compare, PWM or one-pulse mode output. TIM16 and TIM17 have a complementary output with dead-time generation and independent DMA request generation. Their counters can be frozen in debug mode. DocID025743 Rev 3 19/113 23 Functional overview 3.11.3 STM32F031x4 STM32F031x6 Independent watchdog (IWDG) The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode. 3.11.4 System window watchdog (WWDG) The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB clock (PCLK). It has an early warning interrupt capability and the counter can be frozen in debug mode. 3.11.5 SysTick timer This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features: 3.12 A 24-bit down counter Autoreload capability Maskable system interrupt generation when the counter reaches 0 Programmable clock source (HCLK or HCLK/8) Real-time clock (RTC) and backup registers The RTC and the five backup registers are supplied through a switch that takes power either on VDD supply when present or through the VBAT pin. The backup registers are five 32-bit registers used to store 20 bytes of user application data when VDD power is not present. They are not reset by a system or power reset, or when the device wakes up from Standby mode. The RTC is an independent BCD timer/counter. Its main features are the following: 20/113 Calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format. Automatic correction for 28, 29 (leap year), 30, and 31 day of the month. Programmable alarm with wake up from Stop and Standby mode capability. On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize the RTC with a master clock. Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy. Two anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection. Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection. Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision. DocID025743 Rev 3 STM32F031x4 STM32F031x6 Functional overview The RTC clock sources can be: 3.13 A 32.768 kHz external crystal A resonator or oscillator The internal low-power RC oscillator (typical frequency of 40 kHz) The high-speed external clock divided by 32 Inter-integrated circuit interfaces (I2C) The I2C interface (I2C1) can operate in multimaster or slave modes. It can support Standard mode (up to 100 kbit/s), Fast mode (up to 400 kbit/s) and Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive. It supports 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two addresses, one with configurable mask). It also includes programmable analog and digital noise filters. Table 6. Comparison of I2C analog and digital filters Analog filter Digital filter Pulse width of suppressed spikes 50 ns Programmable length from 1 to 15 I2C peripheral clocks Benefits Available in Stop mode 1. Extra filtering capability vs. standard requirements. 2. Stable length Drawbacks Variations depending on temperature, voltage, process Wakeup from Stop on address match is not available when digital filter is enabled. In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. I2C1 also has a clock domain independent from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address match. The I2C interface can be served by the DMA controller. Table 7. STM32F031x4/x6 I2C implementation I2C features(1) I2C1 7-bit addressing mode X 10-bit addressing mode X Standard mode (up to 100 kbit/s) X Fast mode (up to 400 kbit/s) X Fast Mode Plus with output drive I/Os (up to 1 Mbit/s) X Independent clock X SMBus X Wakeup from STOP X DocID025743 Rev 3 21/113 23 Functional overview STM32F031x4 STM32F031x6 1. X = supported. 3.14 Universal synchronous/asynchronous receiver transmitters (USART) The device embeds one universal synchronous/asynchronous receiver transmitter (USART1), which communicate at speeds of up to 6 Mbit/s. It provides hardware management of the CTS, RTS and RS485 DE signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. USART1 supports also SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability and auto baud rate feature, and has a clock domain independent from the CPU clock, allowing to wake up the MCU from Stop mode. The USART interface can be served by the DMA controller. Table 8. STM32F031x4/x6 USART implementation USART modes/features(1) Hardware flow control for modem X Continuous communication using DMA X Multiprocessor communication X Synchronous mode X Smartcard mode X Single-wire half-duplex communication X IrDA SIR ENDEC block X LIN mode X Dual clock domain and wakeup from Stop mode X Receiver timeout interrupt X Modbus communication X Auto baud rate detection X Driver Enable X 1. X = supported. 22/113 USART1 DocID025743 Rev 3 STM32F031x4 STM32F031x6 3.15 Functional overview Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S) The SPI is able to communicate up to 18 Mbit/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits. One standard I2S interface (multiplexed with SPI1) supporting four different audio standards can operate as master or slave at half-duplex communication mode. It can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by an 8-bit programmable linear prescaler. When operating in master mode, it can output a clock for an external audio component at 256 times the sampling frequency. Table 9. STM32F031x4/x6 SPI/I2S implementation SPI features(1) SPI Hardware CRC calculation X Rx/Tx FIFO X NSS pulse mode X I2S mode X TI mode X 1. X = supported. 3.16 Serial wire debug port (SW-DP) An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU. DocID025743 Rev 3 23/113 23 Pinouts and pin description 4 STM32F031x4 STM32F031x6 Pinouts and pin description 3$ 3$ 3% 3% 3% 3% 3% %227 3% 3% 966 9'' Figure 3. LQFP48 48-pin package pinout 9%$7 3) 3& 3) 3&26&B,1 3$ 3&26&B287 3$ 3)26&B,1 3$ 3$ 3$ 3$ 3% 3% 3% 3% 3)26&B287 /4)3 1567 966$ 9''$ 3$ 3$ 3$ 9'' 966 3% 3% 3% 3% 3% 3$ 3$ 3$ 3$ 3$ 069 3$ 3% 3% 3% 3% 3% %227 966 Figure 4. LQFP32 32-pin package pinout 9'' 3$ 3)26&B,1 3$ 3)26&B287 3$ 1567 3$ 9''$ 3$ 3$ 3$ 3$ 3$ 3$ 9'' /4)3 966 3% 3% 3$ 3$ 3$ 3$ 3$ 069 24/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 Pinouts and pin description 3% %227 3% 3% 3% 3% 3% 3$ Figure 5. UFQFPN32 32-pin package pinout 966 966$ 3$ 3$ 3$ 3$ 3$ 3$ 3$ 9'' 3$ 3$ 3$ 3$ 3$ 3% 3% 3% 9'' 3)26&B,1 3)26&B287 1567 9''$ 3$ 3$ 3$ 069 3% 3% 3% 3% 3% 3$ 3$ Figure 6. UFQFPN28 28-pin package pinout 3$ 3$ 3$ 3$ 9'' 966 3% 3$ 3% 3$ 3$ 3$ 3$ 3$ %227 3)26&B,1 3)26&B287 1567 9''$ 3$ 3$ 069 DocID025743 Rev 3 25/113 33 Pinouts and pin description STM32F031x4 STM32F031x6 Figure 7. WLCSP25 25-ball package ballout (bump side) $ 3) %227 3% 3$ 3$ % 3) 3$ 3$ 3% 3$ & 1567 3$ 3$ 3% 3$ ' 9''$ 3$ 3$ 3$ 9'' ( 3$ 3$ 3% 3% 966 06Y9 Figure 8. TSSOP20 20-pin package pinout %227 3$ 3)26&B,1 3$ 3)26&B287 3$ 1567 3$ 9''$ 9'' 3$ 966 3$ 3% 3$ 3$ 3$ 3$ 3$ 3$ 069 26/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 Pinouts and pin description Table 10. Legend/abbreviations used in the pinout table Name Abbreviation Pin name Definition Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name S Supply pin I Input only pin I/O Input / output pin FT 5 V tolerant I/O FTf 5 V tolerant I/O, FM+ capable TTa 3.3 V tolerant I/O directly connected to ADC TC Standard 3.3V I/O B Dedicated BOOT0 pin RST Bidirectional reset pin with embedded weak pull-up resistor Pin type I/O structure Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset Notes Alternate Functions selected through GPIOx_AFR registers functions Pin functions Additional Functions directly selected/enabled through peripheral registers functions Table 11. Pin definitions Pin number UFQFPN32 UFQFPN28 WLCSP25 TSSOP20 - - - - - I/O structure LQFP32 1 Pin name (function after reset) Pin type LQFP48 Pin functions Notes VBAT S - - Alternate functions Additional functions Backup power supply 2 - - - - - PC13 I/O TC (1)(2) - RTC_TAMP1, RTC_TS, RTC_OUT, WKUP2 3 - - - - - PC14-OSC32_IN (PC14) I/O TC (1)(2) - OSC32_IN 4 - - - - - PC15OSC32_OUT (PC15) I/O TC (1)(2) - OSC32_OUT 5 2 2 2 A5 2 PF0-OSC_IN (PF0) I/O FT - - OSC_IN DocID025743 Rev 3 27/113 33 Pinouts and pin description STM32F031x4 STM32F031x6 Table 11. Pin definitions (continued) Pin number LQFP48 LQFP32 UFQFPN32 UFQFPN28 WLCSP25 TSSOP20 Pin type I/O structure Pin functions Notes 6 3 3 3 B5 3 PF1-OSC_OUT (PF1) I/O FT - 7 4 4 4 C5 4 NRST I/O RST - Device reset input / internal reset output (active low) 8 - 0 - E1 - VSSA S - Analog ground 9 5 5 5 D5 5 VDDA S - Analog power supply 10 6 6 6 B4 6 PA0 I/O TTa - TIM2_CH1_ETR, USART1_CTS ADC_IN0, RTC_TAMP2, WKUP1 11 7 7 7 C4 7 PA1 I/O TTa - TIM2_CH2, EVENTOUT, USART1_RTS ADC_IN1 12 8 8 8 D4 8 PA2 I/O TTa - TIM2_CH3, USART1_TX ADC_IN2 13 9 9 9 E5 9 PA3 I/O TTa - TIM2_CH4, USART1_RX ADC_IN3 - SPI1_NSS, I2S1_WS, TIM14_CH1, USART1_CK ADC_IN4 - SPI1_SCK, I2S1_CK, TIM2_CH1_ETR ADC_IN5 - SPI1_MISO, I2S1_MCK, TIM3_CH1, TIM1_BKIN, TIM16_CH1, EVENTOUT ADC_IN6 - SPI1_MOSI, I2S1_SD, TIM3_CH2, TIM14_CH1, TIM1_CH1N, TIM17_CH1, EVENTOUT ADC_IN7 14 15 16 17 10 11 12 13 28/113 10 11 12 13 10 11 12 13 B3 C3 D3 E4 10 11 12 13 Pin name (function after reset) PA4 PA5 PA6 PA7 I/O I/O I/O I/O TTa TTa TTa TTa DocID025743 Rev 3 Alternate functions Additional functions - OSC_OUT STM32F031x4 STM32F031x6 Pinouts and pin description Table 11. Pin definitions (continued) Pin number LQFP48 LQFP32 UFQFPN32 UFQFPN28 WLCSP25 TSSOP20 Pin type I/O structure Pin functions Notes 18 14 14 14 E3 - PB0 I/O TTa - TIM3_CH3, TIM1_CH2N, EVENTOUT ADC_IN8 19 15 15 15 E2 14 PB1 I/O TTa - TIM3_CH4, TIM14_CH1, TIM1_CH3N ADC_IN9 20 - 16 - - - PB2 I/O FT (3) 21 - - - - - PB10 I/O FTf - TIM2_CH3, I2C1_SCL - 22 - - - - - PB11 I/O FTf - TIM2_CH4, EVENTOUT, I2C1_SDA - 23 16 0 16 E1 15 VSS S - - Ground 24 17 17 17 D1 16 VDD S - - Digital power supply Pin name (function after reset) Alternate functions Additional functions 25 - - - - - PB12 I/O FT - TIM1_BKIN, EVENTOUT, SPI1_NSS 26 - - - - - PB13 I/O FT - TIM1_CH1N, SPI1_SCK - 27 - - - - - PB14 I/O FT - TIM1_CH2N, SPI1_MISO - 28 - - - - - PB15 I/O FT - TIM1_CH3N, SPI1_MOSI RTC_REFIN - - 29 18 18 18 D2 - PA8 I/O FT - USART1_CK, TIM1_CH1, EVENTOUT, MCO 30 19 19 19 C1 17 PA9 I/O FTf - USART1_TX, TIM1_CH2, I2C1_SCL - - USART1_RX, TIM1_CH3, TIM17_BKIN, I2C1_SDA - 31 20 20 20 B1 18 PA10 I/O FTf DocID025743 Rev 3 29/113 33 Pinouts and pin description STM32F031x4 STM32F031x6 Table 11. Pin definitions (continued) Pin number LQFP48 LQFP32 UFQFPN32 UFQFPN28 WLCSP25 TSSOP20 Pin type I/O structure Pin functions Notes 32 21 21 - - - PA11 I/O FT - USART1_CTS, TIM1_CH4, EVENTOUT - 33 22 22 - - - PA12 I/O FT - USART1_RTS, TIM1_ETR, EVENTOUT - 34 23 23 21 A1 19 PA13 (SWDIO) I/O FT (4) IR_OUT, SWDIO - 35 - - - - - PF6 I/O FTf - I2C1_SCL - 36 - - - - - PF7 I/O FTf - I2C1_SDA - 37 24 24 22 A2 20 PA14 (SWCLK) I/O FT (4) USART1_TX, SWCLK - - SPI1_NSS, I2S1_WS, TIM2_CH_ETR, EVENTOUT, USART1_RX - - SPI1_SCK, I2S1_CK, TIM2_CH2, EVENTOUT - - SPI1_MISO, I2S1_MCK, TIM3_CH1, EVENTOUT - - SPI1_MOSI, I2S1_SD, I2C1_SMBA, TIM16_BKIN, TIM3_CH2 - - - 38 39 40 41 25 26 27 28 25 26 27 28 23 24 25 26 - - - C2 - - - - Pin name (function after reset) PA15 PB3 PB4 PB5 I/O I/O I/O I/O FT FT FT FT Alternate functions Additional functions 42 29 29 27 B2 - PB6 I/O FTf - I2C1_SCL, USART1_TX, TIM16_CH1N 43 30 30 28 A3 - PB7 I/O FTf - I2C1_SDA, USART1_RX, TIM17_CH1N 30/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 Pinouts and pin description Table 11. Pin definitions (continued) Pin number LQFP48 LQFP32 UFQFPN32 UFQFPN28 WLCSP25 TSSOP20 Pin type I/O structure Pin functions Notes 44 31 31 1 A4 1 BOOT0 I B - 45 - 32 - - - PB8 I/O FTf (3) I2C1_SCL, TIM16_CH1 - I2C1_SDA, IR_OUT, TIM17_CH1, EVENTOUT - Pin name (function after reset) Alternate functions Additional functions Boot memory selection 46 - - - - - PB9 I/O FTf - 47 32 0 - E1 - VSS S - - Ground 48 1 1 - - - VDD S - - Digital power supply 1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: - The speed should not exceed 2 MHz with a maximum load of 30 pF - These GPIOs must not be used as current sources (e.g. to drive an LED). 2. After the first RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the RTC domain and RTC register descriptions in the reference manual. 3. On the LQFP32 package, PB2 and PB8 should be treated as unconnected pins (even when they are not available on the package, they are not forced to a defined level by hardware). 4. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on the SWDIO pin and the internal pull-down on the SWCLK pin are activated. DocID025743 Rev 3 31/113 33 DocID025743 Rev 3 AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 PA0 - USART1_CTS TIM2_CH1_ ETR - - - - - PA1 EVENTOUT USART1_RTS TIM2_CH2 - - - - - PA2 - USART1_TX TIM2_CH3 - - - - - PA3 - USART1_RX TIM2_CH4 - - - - - PA4 SPI1_NSS, I2S1_WS USART1_CK - - TIM14_CH1 - - - PA5 SPI1_SCK, I2S1_CK - TIM2_CH1_ ETR - - - - - PA6 SPI1_MISO, I2S1_MCK TIM3_CH1 TIM1_BKIN - - TIM16_CH1 EVENTOUT - PA7 SPI1_MOSI, I2S1_SD TIM3_CH2 TIM1_CH1N - TIM14_CH1 TIM17_CH1 EVENTOUT - PA8 MCO USART1_CK TIM1_CH1 EVENTOUT - - - - PA9 - USART1_TX TIM1_CH2 - I2C1_SCL - - - PA10 TIM17_BKIN USART1_RX TIM1_CH3 - I2C1_SDA - - - PA11 EVENTOUT USART1_CTS TIM1_CH4 - - - - - PA12 EVENTOUT USART1_RTS TIM1_ETR - - - - - PA13 SWDIO IR_OUT - - - - - - PA14 SWCLK USART1_TX - - - - - - PA15 SPI1_NSS, I2S1_WS USART1_RX TIM2_CH1_ ETR EVENTOUT - - - - STM32F031x4 STM32F031x6 Pin name Pinouts and pin description 32/113 Table 12. Alternate functions selected through GPIOA_AFR registers for port A DocID025743 Rev 3 Pin name AF0 AF1 AF2 AF3 PB0 EVENTOUT TIM3_CH3 TIM1_CH2N - PB1 TIM14_CH1 TIM3_CH4 TIM1_CH3N - PB2 - - - - PB3 SPI1_SCK, I2S1_CK EVENTOUT TIM2_CH2 - PB4 SPI1_MISO, I2S1_MCK TIM3_CH1 EVENTOUT - PB5 SPI1_MOSI, I2S1_SD TIM3_CH2 TIM16_BKIN I2C1_SMBA PB6 USART1_TX I2C1_SCL TIM16_CH1N - PB7 USART1_RX I2C1_SDA TIM17_CH1N - PB8 - I2C1_SCL TIM16_CH1 - PB9 IR_OUT I2C1_SDA TIM17_CH1 EVENTOUT PB10 - I2C1_SCL TIM2_CH3 - PB11 EVENTOUT I2C1_SDA TIM2_CH4 - PB12 SPI1_NSS EVENTOUT TIM1_BKIN - PB13 SPI1_SCK - TIM1_CH1N - PB14 SPI1_MISO - TIM1_CH2N - PB15 SPI1_MOSI - TIM1_CH3N - STM32F031x4 STM32F031x6 Table 13. Alternate functions selected through GPIOB_AFR registers for port B Pinouts and pin description 33/113 Memory mapping 5 STM32F031x4 STM32F031x6 Memory mapping Figure 9. STM32F031x4/x6 memory map [)))))))) [)) 5HVHUYHG $+% [( [( [ &RUWH[0LQWHUQDO SHULSKHUDOV 5HVHUYHG 5HVHUYHG [& [)) $+% 5HVHUYHG [ 5HVHUYHG [$ [ 5HVHUYHG [))))))) [))))& [)))) [ $3% 5HVHUYHG 2SWLRQ%\WHV [ 5HVHUYHG 6\VWHPPHPRU\ 5HVHUYHG [ [)))(& $3% [ [ [ 5HVHUYHG 5HVHUYHG 3HULSKHUDOV [ 5HVHUYHG )ODVKPHPRU\ [ 65$0 [ 5HVHUYHG &2'( [ )ODVKV\VWHP PHPRU\RU65$0 GHSHQGLQJRQ%227 FRQILJXUDWLRQ [ [ 069 34/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 Memory mapping Table 14. STM32F031x4/x6 peripheral register boundary addresses Bus AHB2 Boundary address Size Peripheral 0x4800 1800 - 0x5FFF FFFF ~384 MB Reserved 0x4800 1400 - 0x4800 17FF 1KB GPIOF 0x4800 0C00 - 0x4800 13FF 2KB Reserved 0x4800 0800 - 0x4800 0BFF 1KB GPIOC 0x4800 0400 - 0x4800 07FF 1KB GPIOB 0x4800 0000 - 0x4800 03FF 1KB GPIOA 0x4002 4400 - 0x47FF FFFF ~128 MB Reserved 0x4002 3400 - 0x4002 3FFF 3 KB Reserved 0x4002 3000 - 0x4002 33FF 1 KB CRC 0x4002 2400 - 0x4002 2FFF 3 KB Reserved 0x4002 2000 - 0x4002 23FF 1 KB FLASH Interface 0x4002 1400 - 0x4002 1FFF 3 KB Reserved 0x4002 1000 - 0x4002 13FF 1 KB RCC 0x4002 0400 - 0x4002 0FFF 3 KB Reserved 0x4002 0000 - 0x4002 03FF 1 KB DMA 0x4001 8000 - 0x4001 FFFF 32 KB Reserved 0x4001 5C00 - 0x4001 7FFF 9KB Reserved 0x4001 5800 - 0x4001 5BFF 1KB DBGMCU 0x4001 4C00 - 0x4001 57FF 3KB Reserved 0x4001 4800 - 0x4001 4BFF 1KB TIM17 0x4001 4400 - 0x4001 47FF 1KB TIM16 0x4001 3C00 - 0x4001 43FF 2KB Reserved 0x4001 3800 - 0x4001 3BFF 1KB USART1 0x4001 3400 - 0x4001 37FF 1KB Reserved 0x4001 3000 - 0x4001 33FF 1KB SPI1/I2S1 0x4001 2C00 - 0x4001 2FFF 1KB TIM1 0x4001 2800 - 0x4001 2BFF 1KB Reserved 0x4001 2400 - 0x4001 27FF 1KB ADC 0x4001 0800 - 0x4001 23FF 7KB Reserved 0x4001 0400 - 0x4001 07FF 1KB EXTI 0x4001 0000 - 0x4001 03FF 1KB SYSCFG 0x4000 8000 - 0x4000 FFFF 32 KB Reserved AHB1 APB DocID025743 Rev 3 35/113 36 Memory mapping STM32F031x4 STM32F031x6 Table 14. STM32F031x4/x6 peripheral register boundary addresses (continued) Bus APB 36/113 Boundary address Size Peripheral 0x4000 7400 - 0x4000 7FFF 3KB Reserved 0x4000 7000 - 0x4000 73FF 1KB PWR 0x4000 5800 - 0x4000 6FFF 6KB Reserved 0x4000 5400 - 0x4000 57FF 1KB I2C1 0x4000 3400 - 0x4000 53FF 8KB Reserved 0x4000 3000 - 0x4000 33FF 1KB IWDG 0x4000 2C00 - 0x4000 2FFF 1KB WWDG 0x4000 2800 - 0x4000 2BFF 1KB RTC 0x4000 2400 - 0x4000 27FF 1KB Reserved 0x4000 2000 - 0x4000 23FF 1KB TIM14 0x4000 0800 - 0x4000 1FFF 6KB Reserved 0x4000 0400 - 0x4000 07FF 1KB TIM3 0x4000 0000 - 0x4000 03FF 1KB TIM2 DocID025743 Rev 3 STM32F031x4 STM32F031x6 Electrical characteristics 6 Electrical characteristics 6.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean ±3). 6.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3.3 V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean ±2). 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 10. 6.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 11. Figure 10. Pin loading conditions Figure 11. Pin input voltage 0&8SLQ 0&8SLQ & S) 9,1 069 DocID025743 Rev 3 069 37/113 86 Electrical characteristics 6.1.6 STM32F031x4 STM32F031x6 Power supply scheme Figure 12. Power supply scheme 9%$7 /6(57& :DNHXSORJLF ±9 3RZHUVZLWFK 9'' 9&25( [9'' 5HJXODWRU 287 [Q) *3,2V ,1 [) /HYHOVKLIWHU 9'',2 ,2 ORJLF .HUQHOORJLF &38'LJLWDO 0HPRULHV [966 9''$ 9''$ Q) ) 95() 95() $'& $QDORJ 5&V3//« 966$ 06Y9 Caution: 38/113 Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device. DocID025743 Rev 3 STM32F031x4 STM32F031x6 6.1.7 Electrical characteristics Current consumption measurement Figure 13. Current consumption measurement scheme , ''B9%$7 9%$7 ,'' 9'' ,''$ 9''$ 069 DocID025743 Rev 3 39/113 86 Electrical characteristics 6.2 STM32F031x4 STM32F031x6 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 15: Voltage characteristics, Table 16: Current characteristics and Table 17: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 15. Voltage characteristics(1) Symbol Ratings Min Max Unit VDD–VSS External main supply voltage -0.3 4.0 V VDDA–VSS External analog supply voltage -0.3 4.0 V VDD–VDDA Allowed voltage difference for VDD > VDDA - 0.4 V VBAT–VSS External backup supply voltage -0.3 4.0 VIN(2) Input voltage on FT and FTf pins VSS 0.3 VDDIOx + Input voltage on TTa pins VSS 0.3 4.0 V 0 9.0 V VSS 0.3 4.0 V Variations between different VDD power pins - 50 mV Variations between all the different ground pins - 50 mV BOOT0 Input voltage on any other pin |VDDx| |VSSx VSS| VESD(HBM) V Electrostatic discharge voltage (human body model) 4.0(3) V see Section 6.3.12: Electrical sensitivity characteristics 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum must always be respected. Refer to Table 16: Current characteristics for the maximum allowed injected current values. 3. Valid only if the internal pull-up/pull-down resistors are disabled. If internal pull-up or pull-down resistor is enabled, the maximum limit is 4 V. 40/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 Electrical characteristics Table 16. Current characteristics Symbol Ratings Max. IVDD Total current into sum of all VDD power lines (source)(1) 120 IVSS (1) -120 Total current out of sum of all VSS ground lines (sink) IVDD(PIN) Maximum current into each VDD power pin (source) (1) 100 IVSS(PIN) Maximum current out of each VSS ground pin (sink)(1) -100 Output current sunk by any I/O and control pin IIO(PIN) IIO(PIN) 25 Output current source by any I/O and control pin Total output current sunk by sum of all I/Os and control pins -25 (2) 80 Total output current sourced by sum of all I/Os and control pins(2) -80 IINJ(PIN) Injected current on TC and RST pin Injected current on TTa pins IINJ(PIN) mA -5/+0(4) Injected current on B, FT and FTf pins (3) Unit ±5 (5) ±5 Total injected current (sum of all I/O and control pins)(6) ± 25 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages. 3. A positive injection is induced by VIN > VDDIOx while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer to Table 15: Voltage characteristics for the maximum allowed input voltage values. 4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 5. On these I/Os, a positive injection is induced by VIN > VDDA. Negative injection disturbs the analog performance of the device. See note (2) below Table 52: ADC accuracy. 6. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). Table 17. Thermal characteristics Symbol TSTG TJ Ratings Storage temperature range Maximum junction temperature DocID025743 Rev 3 Value Unit –65 to +150 °C 150 °C 41/113 86 Electrical characteristics STM32F031x4 STM32F031x6 6.3 Operating conditions 6.3.1 General operating conditions Table 18. General operating conditions Symbol Parameter Conditions Min Max fHCLK Internal AHB clock frequency - 0 48 fPCLK Internal APB clock frequency - 0 48 VDD Standard operating voltage - 2.0 3.6 VDD 3.6 2.4 3.6 1.65 3.6 TC and RST I/O –0.3 VDDIOx+0.3 TTa I/O –0.3 VDDA+0.3(1) FT and FTf I/O –0.3 5.5(1) BOOT0 0 5.5 LQFP48 - 364 UFQFPN32 - 526 LQFP32 - 357 UFQFPN28 - 169 WLCSP25 - 267 TSSOP20 - 182 –40 85 –40 105 MHz Analog operating voltage (ADC not used) VDDA VBAT VIN PD Unit Must have a potential equal to or higher than VDD Analog operating voltage (ADC used) Backup operating voltage - V I/O input voltage Power dissipation at TA = 85 °C for suffix 6 or TA = 105 °C for suffix 7(2) V V V mW Ambient temperature for the suffix 6 version Maximum power dissipation Ambient temperature for the suffix 7 version Maximum power dissipation –40 105 Low power dissipation(3) –40 125 Suffix 6 version –40 105 Suffix 7 version –40 125 Low power dissipation (3) °C TA TJ °C Junction temperature range °C 1. For operation with a voltage higher than VDDIOx + 0.3 V, the internal pull-up resistor must be disabled. 2. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax. See Section 7.8: Thermal characteristics. 3. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.8: Thermal characteristics). 42/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 6.3.2 Electrical characteristics Operating conditions at power-up / power-down The parameters given in Table 19 are derived from tests performed under the ambient temperature condition summarized in Table 18. Table 19. Operating conditions at power-up / power-down Symbol Parameter Min Max 0 VDD fall time rate 20 VDDA rise time rate 0 20 VDD rise time rate tVDD tVDDA 6.3.3 Conditions - - VDDA fall time rate Unit µs/V Embedded reset and power control block characteristics The parameters given in Table 20 are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 18: General operating conditions. Table 20. Embedded reset and power control block characteristics Symbol Parameter VPOR/PDR(1) VPDRhyst tRSTTEMPO (4) Power on/power down reset threshold Conditions Min Typ Max Unit Falling edge(2) 1.80 1.88 1.96(3) V 1.84(3) 1.92 2.00 V - 40 - mV 1.50 2.50 4.50 ms Rising edge PDR hysteresis Reset temporization 1. The PDR detector monitors VDD and also VDDA (if kept enabled in the option bytes). The POR detector monitors only VDD. 2. The product behavior is guaranteed by design down to the minimum VPOR/PDR value. 3. Data based on characterization results, not tested in production. 4. Guaranteed by design, not tested in production. Table 21. Programmable voltage detector characteristics Symbol Parameter VPVD0 PVD threshold 0 VPVD1 PVD threshold 1 VPVD2 PVD threshold 2 VPVD3 PVD threshold 3 Conditions Min Typ Max Unit Rising edge 2.1 2.18 2.26 V Falling edge 2 2.08 2.16 V Rising edge 2.19 2.28 2.37 V Falling edge 2.09 2.18 2.27 V Rising edge 2.28 2.38 2.48 V Falling edge 2.18 2.28 2.38 V Rising edge 2.38 2.48 2.58 V Falling edge 2.28 2.38 2.48 V DocID025743 Rev 3 43/113 86 Electrical characteristics STM32F031x4 STM32F031x6 Table 21. Programmable voltage detector characteristics (continued) Symbol Parameter Conditions Min Typ Max Unit Rising edge 2.47 2.58 2.69 V Falling edge 2.37 2.48 2.59 V Rising edge 2.57 2.68 2.79 V Falling edge 2.47 2.58 2.69 V Rising edge 2.66 2.78 2.9 V Falling edge 2.56 2.68 2.8 V Rising edge 2.76 2.88 3 V Falling edge 2.66 2.78 2.9 V VPVD4 PVD threshold 4 VPVD5 PVD threshold 5 VPVD6 PVD threshold 6 VPVD7 PVD threshold 7 VPVDhyst(1) PVD hysteresis - 100 - mV PVD current consumption - 0.15 0.26(1) µA IDD(PVD) 1. Guaranteed by design, not tested in production. 6.3.4 Embedded reference voltage The parameters given in Table 22 are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 18: General operating conditions. Table 22. Embedded internal reference voltage Symbol Parameter VREFINT Internal reference voltage tSTART Conditions Min Typ Max Unit –40 °C < TA < +105 °C 1.16 1.2 1.25 V V –40 °C < TA < +85 °C 1.16 1.2 1.24(1) ADC_IN17 buffer startup time - - - 10(2) µs tS_vrefint ADC sampling time when reading the internal reference voltage - 4(2) - - µs VREFINT Internal reference voltage spread over the temperature range VDDA = 3 V - - 10(2) mV - - 100(2) - 100(2) ppm/°C TCoeff Temperature coefficient 1. Data based on characterization results, not tested in production. 2. Guaranteed by design, not tested in production. 44/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 6.3.5 Electrical characteristics Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 13: Current consumption measurement scheme. All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code. Typical and maximum current consumption The MCU is placed under the following conditions: All I/O pins are in analog input mode All peripherals are disabled except when explicitly mentioned The Flash memory access time is adjusted to the fHCLK frequency: – 0 wait state and Prefetch OFF from 0 to 24 MHz – 1 wait state and Prefetch ON above 24 MHz When the peripherals are enabled fPCLK = fHCLK The parameters given in Table 23Table 23 to Table 27 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 18: General operating conditions. DocID025743 Rev 3 45/113 86 Electrical characteristics STM32F031x4 STM32F031x6 Table 23. Typical and maximum current consumption from the VDD supply at VDD = 3.6 V All peripherals enabled Symbol Parameter Conditions Max @ TA(1) fHCLK Max @ TA(1) Typ HSE bypass, PLL on Supply current in Run mode, code executing from Flash HSE bypass, PLL off HSI clock, PLL on HSI clock, PLL off IDD HSE bypass, PLL on Supply current in Run mode, code executing from RAM HSE bypass, PLL off HSI clock, PLL on HSI clock, PLL off HSE bypass, PLL on IDD Supply current in Sleep mode, code executing from Flash or RAM HSE bypass, PLL off HSI clock, PLL on HSI clock, PLL off All peripherals disabled Unit Typ 25 °C 85 °C 105 °C 25 °C 85 °C 105 °C 48 MHz 18.4 20.0 20.1 20.4 11.4 12.5 12.5 12.6 32 MHz 12.4 13.2 13.2 13.8 7.9 8.3 8.5 8.6 24 MHz 9.9 10.7 10.7 11.0 6.2 6.8 7.0 7.0 8 MHz 3.3 3.6 3.8 3.9 2.2 2.6 2.6 2.6 1 MHz 0.8 1.1 1.1 1.1 0.7 0.9 0.9 0.9 48 MHz 18.9 20.9 21.1 21.5 11.7 12.3 12.9 13.1 32 MHz 12.8 13.7 14.2 14.8 8.0 8.7 9.1 9.1 24 MHz 9.7 10.4 11.2 11.3 6.1 6.5 6.7 6.9 8 MHz 3.5 4.0 4.0 4.1 2.4 2.6 2.7 2.7 48 MHz 17.3 19.7(2) 19.8 20.0(2) 10.3 11.2(2) 11.3 11.7(2) 32 MHz 11.2 12.5 12.7 12.7 6.7 7.3 7.6 7.6 24 MHz 8.9 10.0 10.1 10.2 5.1 5.5 5.8 5.9 8 MHz 2.8 3.1 3.3 3.4 1.7 2.0 2.1 2.1 1 MHz 0.3 0.6 0.6 1.3 0.2 0.5 0.8 0.9 48 MHz 17.4 19.7 20.0 20.2 10.4 11.2 11.3 11.8 32 MHz 11.8 12.8 13.1 13.3 6.8 7.4 7.7 7.9 24 MHz 9.0 10.0 10.1 10.2 5.2 5.7 6.0 6.0 8 MHz 3.0 3.2 3.5 3.6 1.8 2.0 2.2 2.2 48 MHz 10.7 11.7(2) 11.9 12.5(2) 2.4 2.6(2) 2.7 2.9(2) 32 MHz 7.1 7.8 8.1 8.2 1.6 1.7 1.9 1.9 24 MHz 5.5 6.3 6.4 6.4 1.3 1.4 1.5 1.5 8 MHz 1.8 2.0 2.0 2.1 0.4 0.4 0.5 0.5 1 MHz 0.2 0.5 0.5 0.5 0.1 0.1 0.1 0.1 48 MHz 10.8 11.9 12.1 12.6 2.4 2.7 2.7 2.9 32 MHz 7.3 8.0 8.4 8.5 1.7 1.9 1.9 2.0 24 MHz 5.5 6.2 6.5 6.5 1.3 1.5 1.5 1.6 8 MHz 1.9 2.2 2.3 2.4 0.5 0.5 0.5 0.6 1. Data based on characterization results, not tested in production unless otherwise specified. 2. Data based on characterization results and tested in production (using one common test limit for sum of IDD and IDDA). 46/113 DocID025743 Rev 3 mA mA STM32F031x4 STM32F031x6 Electrical characteristics Table 24. Typical and maximum current consumption from the VDDA supply VDDA = 2.4 V Symbol Parameter Conditions (1) VDDA = 3.6 V Max @ TA(2) fHCLK Max @ TA(2) 25 °C IDDA Supply current in Run or Sleep mode, code executing from Flash or RAM HSE bypass, PLL on HSE bypass, PLL off HSI clock, PLL on HSI clock, PLL off Unit Typ Typ 85 °C 105 °C 25 °C 85 °C 105 °C 48 MHz 150 170(3) 178 182(3) 164 183(3) 195 198(3) 32 MHz 104 121 126 128 113 129 135 138 24 MHz 82 96 100 103 88 102 106 108 8 MHz 2.0 2.7 3.1 3.3 3.5 3.8 4.1 4.4 1 MHz 2.0 2.7 3.1 3.3 3.5 3.8 4.1 4.4 48 MHz 220 240 248 252 244 263 275 278 32 MHz 174 191 196 198 193 209 215 218 24 MHz 152 167 173 174 168 183 190 192 8 MHz 72 79 82 83 83.5 91 94 95 µA 1. Current consumption from the VDDA supply is independent of whether the digital peripherals are enabled or disabled, being in Run or Sleep mode or executing from Flash or RAM. Furthermore, when the PLL is off, IDDA is independent from the frequency. 2. Data based on characterization results, not tested in production unless otherwise specified. 3. Data based on characterization results and tested in production (using one common test limit for sum of IDD and IDDA). DocID025743 Rev 3 47/113 86 Electrical characteristics STM32F031x4 STM32F031x6 Table 25. Typical and maximum current consumption in Stop and Standby modes Max(1) Typ @VDD (VDD = VDDA) Parameter Supply current in Stop mode IDD Supply current in Standby mode Supply current in Stop mode Supply current in Standby mode Conditions 2.0 V 2.4 V Regulator in run mode, all oscillators OFF TA = TA = TA = 25 °C 85 °C 105 °C 15.25 15.45 15.7 16 18(2) 38 55(2) Regulator in lowpower mode, all oscillators OFF 3.15 3.25 3.35 3.45 3.7 4 5.5(2) 22 41(2) LSI ON and IWDG ON 0.8 0.95 1.05 1.2 1.35 1.5 - - - LSI OFF and IWDG OFF 0.65 0.75 0.85 0.95 1.1 1.3 2(2) 2.5 3(2) Regulator in run mode, all oscillators OFF 1.85 2 2.15 2.3 2.45 2.6 3.5(2) 3.5 4.5(2) Regulator in lowpower mode, all 1.85 oscillators OFF 2 2.15 2.3 2.45 2.6 3.5(2) 3.5 4.5(2) VDDA monitoring OFF Supply current in Standby mode 3.0 V 3.3 V 3.6 V 15.1 IDDA Supply current in Stop mode 2.7 V 15 VDDA monitoring ON Symbol µA LSI ON and IWDG ON 2.25 2.5 2.65 2.85 3.05 3.3 - - - LSI OFF and IWDG OFF 1.75 1.9 2 2.15 2.3 2.5 3.5(2) 3.5 4.5(2) Regulator in run mode, all oscillators OFF 1.11 1.15 1.18 1.22 1.27 1.35 - - - Regulator in lowpower mode, all oscillators OFF 1.11 1.15 1.18 1.22 1.27 1.35 - - - LSI ON and IWDG ON 1.5 1.58 1.65 1.78 1.91 2.04 - - - LSI OFF and IWDG OFF 1 1.02 1.05 1.05 1.15 1.22 - - - 1. Data based on characterization results, not tested in production unless otherwise specified. 2. Data based on characterization results and tested in production (using one common test limit for sum of IDD and IDDA). 48/113 Unit DocID025743 Rev 3 STM32F031x4 STM32F031x6 Electrical characteristics Table 26. Typical and maximum current consumption from the VBAT supply Max(1) RTC domain IDD_VBAT supply current LSE & RTC ON; “Xtal mode”: lower driving capability; LSEDRV[1:0] = '00' = 3.6 V = 3.3 V = 2.7 V Conditions = 2.4 V Parameter = 1.8 V Symbol = 1.65 V Typ @ VBAT 0.47 0.49 0.59 0.65 0.80 0.91 TA = 25 °C 1.0 TA = TA = 85 °C 105 °C 1.3 Unit 1.7 µA LSE & RTC ON; “Xtal mode” higher driving capability; LSEDRV[1:0] = '11' 0.76 0.79 0.88 0.98 1.13 1.21 1.3 1.6 2.1 1. Data based on characterization results, not tested in production. DocID025743 Rev 3 49/113 86 Electrical characteristics STM32F031x4 STM32F031x6 Typical current consumption The MCU is placed under the following conditions: VDD = VDDA = 3.3 V All I/O pins are in analog input configuration The Flash access time is adjusted to fHCLK frequency: – 0 wait state and Prefetch OFF from 0 to 24 MHz – 1 wait state and Prefetch ON above 24 MHz When the peripherals are enabled, fPCLK = fHCLK PLL is used for frequencies greater than 8 MHz AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and 500 kHz respectively Table 27. Typical current consumption, code executing from Flash, running from HSE 8 MHz crystal Typical run mode Symbol IDD IDDA 50/113 Parameter Current from VDD supply Current from VDDA supply fHCLK Typical Sleep mode unit Peripheral Peripheral Peripheral Peripheral s enabled s enabled s disabled s disabled 48MHz 20.2 12.3 11.1 2.9 36 MHz 15.3 9.5 8.4 2.4 32 MHz 13.6 8.6 7.5 2.2 24 MHz 10.5 6.7 5.9 1.8 16 MHz 7.2 4.7 4.1 1.4 8 MHz 3.8 2.7 2.3 0.9 4 MHz 2.4 1.8 1.7 0.9 2 MHz 1.6 1.3 1.2 0.8 1 MHz 1.2 1.1 1.0 0.8 500 kHz 1.0 1.0 0.9 0.8 mA 48MHz 155 36 MHz 117 32 MHz 105 24 MHz 83 16 MHz 60 8 MHz 2.2 4 MHz 2.2 2 MHz 2.2 1 MHz 2.2 500 kHz 2.2 uA DocID025743 Rev 3 STM32F031x4 STM32F031x6 Electrical characteristics I/O system current consumption The current consumption of the I/O system has two components: static and dynamic. I/O static current consumption All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 46: I/O static characteristics. For the output pins, any external pull-down or external load must also be considered to estimate the current consumption. Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs. Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode. I/O dynamic current consumption In addition to the internal peripheral current consumption measured previously (see Table 29: Peripheral current consumption), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin: I SW = V DDIOx f SW C where ISW is the current sunk by a switching I/O to charge/discharge the capacitive load VDDIOx is the I/O supply voltage fSW is the I/O switching frequency C is the total capacitance seen by the I/O pin: C = CINT + CEXT + CS CS is the PCB board capacitance including the pad pin. The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency. DocID025743 Rev 3 51/113 86 Electrical characteristics STM32F031x4 STM32F031x6 Table 28. Switching output I/O current consumption Symbol Parameter Conditions(1) VDDIOx = 3.3 V C =CINT VDDIOx = 3.3 V CEXT = 0 pF C = CINT + CEXT+ CS VDDIOx = 3.3 V CEXT = 10 pF C = CINT + CEXT+ CS ISW I/O current consumption VDDIOx = 3.3 V CEXT = 22 pF C = CINT + CEXT+ CS VDDIOx = 3.3 V CEXT = 33 pF C = CINT + CEXT+ CS VDDIOx = 3.3 V CEXT = 47 pF C = CINT + CEXT+ CS C = Cint VDDIOx = 2.4 V CEXT = 47 pF C = CINT + CEXT+ CS C = Cint 1. CS = 7 pF (estimated value). 52/113 DocID025743 Rev 3 I/O toggling frequency (fSW) Typ 4 MHz 0.07 8 MHz 0.15 16 MHz 0.31 24 MHz 0.53 48 MHz 0.92 4 MHz 0.18 8 MHz 0.37 16 MHz 0.76 24 MHz 1.39 48 MHz 2.188 4 MHz 0.32 8 MHz 0.64 16 MHz 1.25 24 MHz 2.23 48 MHz 4.442 4 MHz 0.49 8 MHz 0.94 16 MHz 2.38 24 MHz 3.99 4 MHz 0.64 8 MHz 1.25 16 MHz 3.24 24 MHz 5.02 4 MHz 0.81 8 MHz 1.7 16 MHz 3.67 4 MHz 0.66 8 MHz 1.43 16 MHz 2.45 24 MHz 4.97 Unit mA STM32F031x4 STM32F031x6 Electrical characteristics On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in Table 29. The MCU is placed under the following conditions: All I/O pins are in analog mode All peripherals are disabled unless otherwise mentioned The given value is calculated by measuring the current consumption – with all peripherals clocked off – with only one peripheral clocked on Ambient operating temperature and supply voltage conditions summarized in Table 15: Voltage characteristics The power consumption of the digital part of the on-chip peripherals is given in Table 29. The power consumption of the analog part of the peripherals (where applicable) is indicated in each related section of the datasheet. Table 29. Peripheral current consumption Peripheral Typical consumption at 25 °C BusMatrix(1) 3.8 DMA1 6.3 SRAM 0.7 Flash interface 15.2 CRC 1.61 GPIOA 9.4 GPIOB 11.6 GPIOC 1.9 GPIOF 0.8 All AHB peripherals 47.5 AHB Unit µA/MHz DocID025743 Rev 3 53/113 86 Electrical characteristics STM32F031x4 STM32F031x6 Table 29. Peripheral current consumption (continued) Peripheral APB-Bridge Typical consumption at 25 °C (2) 2.6 SYSCFG ADC 1.7 (3) 4.2 TIM1 17.1 SPI1 9.6 USART1 17.4 TIM16 8.2 TIM17 8.0 DBG (MCU Debug Support) 0.5 TIM2 17.4 TIM3 12.8 TIM14 6.0 WWDG 1.5 I2C1 5.1 PWR 1.2 APB µA/MHz All APB peripherals 1. 54/113 Unit 110.9 The BusMatrix automatically is active when at least one master is ON (CPU or DMA1). 2. The APBx Bridge is automatically active when at least one peripheral is ON on the same Bus. 3. The power consumption of the analog part (IDDA) of peripherals such as ADC is not included. Refer to the tables of characteristics in the subsequent sections. DocID025743 Rev 3 STM32F031x4 STM32F031x6 6.3.6 Electrical characteristics Wakeup time from low-power mode The wakeup times given in Table 30 are the latency between the event and the execution of the first user instruction. The device goes in low-power mode after the WFE (Wait For Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles must be added to the following timings due to the interrupt latency in the Cortex M0 architecture. The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode. During wakeup from Stop or Standby mode, SYSCLK takes the default setting: HSI 8 MHz. The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode. The wakeup source from Standby mode is the WKUP1 pin (PA0). All timings are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 18: General operating conditions.. Table 30. Low-power mode wakeup timings Typ @VDD = VDDA Symbol Parameter Conditions Max Unit = 2.0 V = 2.4 V = 2.7 V tWUSTOP Wakeup from Stop mode =3V = 3.3 V Regulator in run mode 3.2 3.1 2.9 2.9 2.8 5 Regulator in low power mode 7.0 5.8 5.2 4.9 4.6 9 60.4 55.6 53.5 52 51 - µs tWUSTANDBY tWUSLEEP Wakeup from Standby mode - Wakeup from Sleep mode - 4 SYSCLK cycles DocID025743 Rev 3 - 55/113 86 Electrical characteristics 6.3.7 STM32F031x4 STM32F031x6 External clock source characteristics High-speed external user clock generated from an external source In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in Figure 14: High-speed external clock source AC timing diagram. Table 31. High-speed external user clock characteristics Parameter(1) Symbol Min Typ Max Unit - 8 32 MHz fHSE_ext User external clock source frequency VHSEH OSC_IN input pin high level voltage 0.7 VDDIOx - VDDIOx VHSEL OSC_IN input pin low level voltage VSS - 0.3 VDDIOx 15 - - tw(HSEH) tw(HSEL) OSC_IN high or low time tr(HSE) tf(HSE) OSC_IN rise or fall time V ns - - 20 1. Guaranteed by design, not tested in production. Figure 14. High-speed external clock source AC timing diagram WZ+6(+ 9+6(+ 9+6(/ WU+6( WI+6( WZ+6(/ W 7+6( 069 56/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 Electrical characteristics Low-speed external user clock generated from an external source In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in Figure 15. Table 32. Low-speed external user clock characteristics Parameter(1) Symbol fLSE_ext User external clock source frequency Min Typ Max Unit - 32.768 1000 kHz VLSEH OSC32_IN input pin high level voltage 0.7 VDDIOx - VDDIOx VLSEL OSC32_IN input pin low level voltage VSS - 0.3 VDDIOx 450 - - tw(LSEH) OSC32_IN high or low time tw(LSEL) tr(LSE) tf(LSE) V ns OSC32_IN rise or fall time - - 50 1. Guaranteed by design, not tested in production. Figure 15. Low-speed external clock source AC timing diagram WZ/6(+ 9/6(+ 9/6(/ WU/6( WI/6( WZ/6(/ W 7/6( 069 DocID025743 Rev 3 57/113 86 Electrical characteristics STM32F031x4 STM32F031x6 High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 33. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 33. HSE oscillator characteristics Symbol fOSC_IN RF Conditions(1) Min(2) Typ Max(2) Unit Oscillator frequency - 4 8 32 MHz Feedback resistor - - 200 - k Parameter (3) During startup IDD gm tSU(HSE)(4) HSE current consumption Oscillator transconductance Startup time - 8.5 VDD = 3.3 V, Rm = 30 , CL = 10 pF@8 MHz - 0.4 - VDD = 3.3 V, Rm = 45 , CL = 10 pF@8 MHz - 0.5 - VDD = 3.3 V, Rm = 30 , CL = 5 pF@32 MHz - 0.8 - VDD = 3.3 V, Rm = 30 , CL = 10 pF@32 MHz - 1 - VDD = 3.3 V, Rm = 30 , CL = 20 pF@32 MHz - 1.5 - Startup 10 - - mA/V VDD is stabilized - 2 - ms mA 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Guaranteed by design, not tested in production. 3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 16). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Note: 58/113 For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. DocID025743 Rev 3 STM32F031x4 STM32F031x6 Electrical characteristics Figure 16. Typical application with an 8 MHz crystal 5HVRQDWRUZLWKLQWHJUDWHG FDSDFLWRUV &/ 26&B,1 0+] UHVRQDWRU &/ 5(;7 I+6( 5) %LDV FRQWUROOHG JDLQ 26&B287 069 1. REXT value depends on the crystal characteristics. DocID025743 Rev 3 59/113 86 Electrical characteristics STM32F031x4 STM32F031x6 Low-speed external clock generated from a crystal resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 34. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 34. LSE oscillator characteristics (fLSE = 32.768 kHz) Symbol IDD gm Parameter Conditions(1) Min(2) Typ Max(2) Unit LSEDRV[1:0]=00 lower driving capability - 0.5 0.9 LSEDRV[1:0]= 01 medium low driving capability - - 1 LSE current consumption Oscillator transconductance tSU(LSE)(3) Startup time µA LSEDRV[1:0] = 10 medium high driving capability - - 1.3 LSEDRV[1:0]=11 higher driving capability - - 1.6 LSEDRV[1:0]=00 lower driving capability 5 - - LSEDRV[1:0]= 01 medium low driving capability 8 - µA/V LSEDRV[1:0] = 10 medium high driving capability 15 - - LSEDRV[1:0]=11 higher driving capability 25 - - VDDIOx is stabilized - 2 - 1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”. 2. Guaranteed by design, not tested in production. 3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer Note: 60/113 For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. DocID025743 Rev 3 s STM32F031x4 STM32F031x6 Electrical characteristics Figure 17. Typical application with a 32.768 kHz crystal 5HVRQDWRUZLWKLQWHJUDWHG FDSDFLWRUV &/ 26&B,1 I+6( 'ULYH SURJUDPPDEOH DPSOLILHU N+] UHVRQDWRU 26&B287 &/ 069 Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one. DocID025743 Rev 3 61/113 86 Electrical characteristics 6.3.8 STM32F031x4 STM32F031x6 Internal clock source characteristics The parameters given in Table 35 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 18: General operating conditions. The provided curves are characterization results, not tested in production. High-speed internal (HSI) RC oscillator Table 35. HSI oscillator characteristics(1) Symbol Parameter fHSI TRIM DuCy(HSI) Conditions Min Typ Max Unit Frequency - - 8 - MHz HSI user trimming step - - - 1(2) % - 45(2) % - 55(2) TA = -40 to 105°C -2.8(3) - 3.8(3) TA = -10 to 85°C -1.9(3) - 2.3(3) TA = 0 to 85°C -1.9(3) - 2(3) TA = 0 to 70°C -1.3(3) - 2(3) TA = 0 to 55°C -1(3) - 2(3) TA = 25°C -1(4) - 1(4) HSI oscillator startup time - 1(2) - 2(2) µs HSI oscillator power consumption - - 80 100(2) µA Duty cycle Accuracy of the HSI oscillator ACCHSI tsu(HSI) IDDA(HSI) % 1. VDDA = 3.3 V, TA = -40 to 105°C unless otherwise specified. 2. Guaranteed by design, not tested in production. 3. Data based on characterization results, not tested in production. 4. Factory calibrated, parts not soldered. Figure 18. HSI oscillator accuracy characterization results for soldered parts ."9 .*/ 5<$> " 069 62/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 Electrical characteristics High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC) Table 36. HSI14 oscillator characteristics(1) Symbol fHSI14 TRIM Parameter Conditions Min Typ - - 14 Frequency HSI14 user-trimming step DuCy(HSI14) Duty cycle - - - (2) 45 Accuracy of the HSI14 oscillator (factory calibrated) TA = –10 to 85 °C TA = 25 °C tsu(HSI14) IDDA(HSI14) - MHz (2) - % 1 55 (2) % (3) % (3) - 5.1 –3.2(3) - 3.1(3) % –2.5 - 2.3 (3) % –1 (3) TA = 0 to 70 °C Unit - TA = –40 to 105 °C –4.2 ACCHSI14 Max HSI14 oscillator startup time - 1(2) HSI14 oscillator power consumption - - - 1 % - 2(2) µs 100 150(2) µA 1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. 3. Data based on characterization results, not tested in production. Figure 19. HSI14 oscillator accuracy characterization results -!8 -). 4; #= ! -36 DocID025743 Rev 3 63/113 86 Electrical characteristics STM32F031x4 STM32F031x6 Low-speed internal (LSI) RC oscillator Table 37. LSI oscillator characteristics(1) Symbol fLSI tsu(LSI) Parameter Min Typ Max Unit 30 40 50 kHz LSI oscillator startup time - - 85 µs LSI oscillator power consumption - 0.75 1.2 µA Frequency (2) IDDA(LSI)(2) 1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. 6.3.9 PLL characteristics The parameters given in Table 38 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 18: General operating conditions. Table 38. PLL characteristics Value Symbol Parameter Typ Max 1(2) 8.0 24(2) MHz PLL input clock duty cycle (2) 40 - 60(2) % PLL multiplier output clock 16(2) - 48 MHz PLL lock time - - 200(2) µs Cycle-to-cycle jitter - - 300(2) ps PLL input clock(1) fPLL_IN fPLL_OUT tLOCK JitterPLL Unit Min 1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the range defined by fPLL_OUT. 2. Guaranteed by design, not tested in production. 64/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 6.3.10 Electrical characteristics Memory characteristics Flash memory The characteristics are given at TA = –40 to 105 °C unless otherwise specified. Table 39. Flash memory characteristics Min Typ Max(1) Unit 16-bit programming time TA–40 to +105 °C 40 53.5 60 µs Page (1 KB) erase time TA –40 to +105 °C 20 - 40 ms tME Mass erase time TA –40 to +105 °C 20 - 40 ms Write mode - - 10 mA IDD Supply current Erase mode - - 12 mA Symbol tprog tERASE Parameter Conditions 1. Guaranteed by design, not tested in production. Table 40. Flash memory endurance and data retention Symbol NEND Parameter Endurance Conditions TA = –40 to +105 °C 1 kcycle tRET Data retention (2) at TA = 85 °C 1 kcycle(2) at TA = 105 °C (2) 10 kcycle at TA = 55 °C Min(1) Unit 10 kcycle 30 10 Year 20 1. Data based on characterization results, not tested in production. 2. Cycling performed over the whole temperature range. 6.3.11 EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 41. They are based on the EMS levels and classes defined in application note AN1709. DocID025743 Rev 3 65/113 86 Electrical characteristics STM32F031x4 STM32F031x6 Table 41. EMS characteristics Symbol Parameter Level/ Class Conditions VFESD VDD 3.3 V, LQFP48, TA +25 °C, Voltage limits to be applied on any I/O pin fHCLK 48 MHz, to induce a functional disturbance conforming to IEC 61000-4-2 2B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD3.3 V, LQFP48, TA +25°C, fHCLK 48 MHz, conforming to IEC 61000-4-4 4B Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: Corrupted program counter Unexpected reset Critical Data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Table 42. EMI characteristics Symbol Parameter SEMI 66/113 Conditions Monitored frequency band 0.1 to 30 MHz VDD 3.6 V, TA 25 °C, 30 to 130 MHz LQFP48 package Peak level compliant with 130 MHz to 1 GHz IEC 61967-2 EMI Level DocID025743 Rev 3 Max vs. [fHSE/fHCLK] Unit 8/48 MHz -11 21 dBµV 21 4 - STM32F031x4 STM32F031x6 6.3.12 Electrical characteristics Electrical sensitivity characteristics Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. Table 43. ESD absolute maximum ratings Symbol Ratings Conditions Packages Class Maximum value(1) Unit VESD(HBM) Electrostatic discharge voltage TA +25 °C, conforming (human body model) to JESD22-A114 All 2 2000 V VESD(CDM) Electrostatic discharge voltage TA +25 °C, conforming (charge device model) to ANSI/ESD STM5.3.1 All C4 500 V 1. Data based on characterization results, not tested in production. Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: A supply overvoltage is applied to each power supply pin. A current injection is applied to each input, output and configurable I/O pin. These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 44. Electrical sensitivities Symbol LU 6.3.13 Parameter Static latch-up class Conditions TA +105 °C conforming to JESD78A Class II level A I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDDIOx (for standard, 3.3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. DocID025743 Rev 3 67/113 86 Electrical characteristics STM32F031x4 STM32F031x6 Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 µA/+0 µA range) or other functional failure (for example reset occurrence or oscillator frequency deviation). The characterization results are given in Table 45. Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection. Table 45. I/O current injection susceptibility Functional susceptibility Symbol Description Unit Negative Positive injection injection IINJ 6.3.14 Injected current on BOOT0 –0 NA Injected current on all FT and FTf pins –5 NA Injected current on all TTa, TC and RESET pins –5 +5 mA I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 46 are derived from tests performed under the conditions summarized in Table 18: General operating conditions. All I/Os are designed as CMOS- and TTL-compliant (except BOOT0). Table 46. I/O static characteristics Symbol VIL VIH Parameter Low level input voltage High level input voltage Conditions Min Typ Max TC and TTa I/O - - 0.3 VDDIOx+0.07(1) FT and FTf I/O - - 0.475 VDDIOx–0.2(1) BOOT0 - - 0.3 VDDIOx–0.3(1) All I/Os except BOOT0 pin - - 0.3 VDDIOx TC and TTa I/O 0.445 VDDIOx+0.398(1) - - FT and FTf I/O 0.5 VDDIOx+0.2(1) - - +0.95(1) - - - - BOOT0 All I/Os except BOOT0 pin 68/113 0.2 VDDIOx 0.7 VDDIOx DocID025743 Rev 3 Unit V V STM32F031x4 STM32F031x6 Electrical characteristics Table 46. I/O static characteristics (continued) Symbol Vhys Ilkg RPU Parameter Schmitt trigger hysteresis Input leakage current(2) Weak pull-up equivalent resistor (4) RPD Weak pull-down equivalent resistor(4) CIO I/O pin capacitance Conditions Min Typ (1) Max Unit TC and TTa I/O - 200 - FT and FTf I/O - 100(1) - BOOT0 - (1) 300 - TC, FT and FTf I/O TTa in digital mode VSS VIN VDDIOx - - 0.1 TTa in digital mode VDDIOx VIN VDDA - - 1 TTa in analog mode VSS VIN VDDA - - 0.2 FT and FTf I/O (3) VDDIOx VIN 5 V - - 10 VIN VSS 25 40 55 k VIN VDDIOx 25 40 55 k - 5 - pF - mV µA 1. Data based on design simulation only. Not tested in production. 2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 45: I/O current injection susceptibility. 3. To sustain a voltage higher than VDDIOx + 0.3 V, the internal pull-up/pull-down resistors must be disabled. 4. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order). DocID025743 Rev 3 69/113 86 Electrical characteristics STM32F031x4 STM32F031x6 All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in Figure 20 for standard I/Os, and in Figure 21 for 5 V tolerant I/Os. The following curves are design simulation results, not tested in production. Figure 20. TC and TTa I/O input characteristics 3 VIN (V) 2.5 TESTED RANGE TTL standard requirement 2 1.5 UNDEFINED INPUT RANGE 1 TTL standard requirement 0.5 TESTED RANGE 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VDDIOx (V) MS32130V3 70/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 Electrical characteristics Figure 21. Five volt tolerant (FT and FTf) I/O input characteristics 3 VIN (V) 2.5 TESTED RANGE TTL standard requirement 2 1.5 1 TTL standard requirement 0.5 TESTED RANGE 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VDDIOx (V) MS32131V3 DocID025743 Rev 3 71/113 86 Electrical characteristics STM32F031x4 STM32F031x6 Output driving current The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed VOL/VOH). In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2: The sum of the currents sourced by all the I/Os on VDDIOx, plus the maximum consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD (see Table 15: Voltage characteristics). The sum of the currents sunk by all the I/Os on VSS, plus the maximum consumption of the MCU sunk on VSS, cannot exceed the absolute maximum rating IVSS (see Table 15: Voltage characteristics). Output voltage levels Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 18: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT, TTa or TC unless otherwise specified). Table 47. Output voltage characteristics(1) Symbol Parameter VOL Output low level voltage for an I/O pin VOH Output high level voltage for an I/O pin VOL Output low level voltage for an I/O pin VOH Output high level voltage for an I/O pin VOL(3) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin VOL(3) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin VOLFm+(3) Output low level voltage for an FTf I/O pin in Fm+ mode Conditions Min Max CMOS port(2) |IIO| = 8 mA VDDIOx 2.7 V - 0.4 VDDIOx–0.4 - - 0.4 2.4 - - 1.3 VDDIOx–1.3 - - 0.4 VDDIOx–0.4 - |IIO| = 20 mA VDDIOx 2.7 V - 0.4 V |IIO| = 10 mA - 0.4 V TTL port(2) |IIO| = 8 mA VDDIOx 2.7 V |IIO| = 20 mA VDDIOx 2.7 V |IIO| = 6 mA Unit V V V V 1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 15: Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings IIO. 2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52. 3. Data based on characterization results. Not tested in production. 72/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 Electrical characteristics Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 22 and Table 48, respectively. Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 18: General operating conditions. Table 48. I/O AC characteristics(1)(2) OSPEEDRy [1:0] value(1) Symbol Parameter Conditions Min Max Unit - 2 MHz - 125 - 125 - 10 - 25 - 25 CL = 30 pF, VDDIOx 2.7 V - 50 CL = 50 pF, VDDIOx 2.7 V - 30 CL = 50 pF, VDDIOx 2.7 V - 20 CL = 30 pF, VDDIOx 2.7 V - 5 CL = 50 pF, VDDIOx 2.7 V - 8 CL = 50 pF, VDDIOx 2.7 V - 12 CL = 30 pF, VDDIOx 2.7 V - 5 CL = 50 pF, VDDIOx 2.7 V - 8 CL = 50 pF, VDDIOx 2.7 V - 12 - 2 - 12 - 34 10 - fmax(IO)out Maximum frequency(3) x0 tf(IO)out Output fall time tr(IO)out Output rise time CL = 50 pF fmax(IO)out Maximum frequency(3) 01 tf(IO)out Output fall time tr(IO)out Output rise time fmax(IO)out Maximum 11 tf(IO)out tr(IO)out Fm+ configuration (4) frequency(3) Output fall time Output rise time fmax(IO)out Maximum CL = 50 pF frequency(3) tf(IO)out Output fall time tr(IO)out Output rise time tEXTIpw Pulse width of external signals detected by the EXTI controller CL = 50 pF ns MHz ns MHz ns MHz ns ns 1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0091 reference manual for a description of GPIO Port configuration register. 2. Guaranteed by design, not tested in production. 3. The maximum frequency is defined in Figure 22. 4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0091 for a detailed description of Fm+ I/O configuration. DocID025743 Rev 3 73/113 86 Electrical characteristics STM32F031x4 STM32F031x6 Figure 22. I/O AC characteristics definition W I,2RXW W U,2RXW 7 7DQGLIWKHGXW\F\FOHLV 0D[LPXPIUHTXHQF\LVDFKLHYHGLIWW U I ZKHQORDGHGE\&VHHWKHWDEOH,2$&FKDUDFWHULVWLFVGHILQLWLRQ 069 6.3.15 NRST pin characteristics The NRST pin input driver uses the CMOS technology. It is connected to a permanent pullup resistor, RPU. Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 18: General operating conditions. Table 49. NRST pin characteristics Symbol Parameter Conditions Min Typ Max Unit VIL(NRST) NRST input low level voltage - - - 0.3 VDD+0.07(1) VIH(NRST) NRST input high level voltage - 0.445 VDD+0.398(1) - - Vhys(NRST) NRST Schmitt trigger voltage hysteresis - - 200 - mV V RPU Weak pull-up equivalent resistor(2) VIN VSS 25 40 55 k VF(NRST) NRST input filtered pulse - - - 100(1) ns 2.7 < VDD < 3.6 300(3) - - 2.0 < VDD < 3.6 (3) - - VNF(NRST) NRST input not filtered pulse 500 ns 1. Data based on design simulation only. Not tested in production. 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order). 3. Data based on design simulation only. Not tested in production. 74/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 Electrical characteristics Figure 23. Recommended NRST pin protection ([WHUQDO UHVHWFLUFXLW 9 '' 5 38 1567 ,QWHUQDOUHVHW )LOWHU ) 069 1. The external capacitor protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 49: NRST pin characteristics. Otherwise the reset will not be taken into account by the device. 6.3.16 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 50 are preliminary values derived from tests performed under ambient temperature, fPCLK frequency and VDDA supply voltage conditions summarized in Table 18: General operating conditions. Note: It is recommended to perform a calibration after each power-up. Table 50. ADC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA Analog supply voltage for ADC ON - 2.4 - 3.6 V VDD = VDDA = 3.3 V - 0.9 - mA IDDA (ADC) Current consumption of the ADC(1) fADC ADC clock frequency - 0.6 - 14 MHz fS(2) Sampling rate - 0.05 - 1 MHz fADC = 14 MHz - - 823 kHz - - - 17 1/fADC fTRIG(2) External trigger frequency VAIN Conversion voltage range - 0 - VDDA V RAIN(2) External input impedance See Equation 1 and Table 51 for details - - 50 k RADC(2) Sampling switch resistance - - - 1 k CADC(2) Internal sample and hold capacitor - - - 8 pF tCAL(2) Calibration time fADC = 14 MHz 5.9 µs - 83 1/fADC DocID025743 Rev 3 75/113 86 Electrical characteristics STM32F031x4 STM32F031x6 Table 50. ADC characteristics (continued) Symbol Parameter Conditions Min Typ Max 1.5 ADC cycles + 2 fPCLK cycles - 1.5 ADC cycles + 3 fPCLK cycles ADC clock = PCLK/2 - 4.5 - fPCLK cycle ADC clock = PCLK/4 - 8.5 - fPCLK cycle ADC clock = HSI14 WLATENCY(2) tlatr (2) ADC_DR register write latency fADC = fPCLK/2 = 14 MHz 0.196 µs fADC = fPCLK/2 5.5 1/fPCLK 0.219 µs 10.5 1/fPCLK Trigger conversion latency fADC = fPCLK/4 = 12 MHz fADC = fPCLK/4 JitterADC fADC = fHSI14 = 14 MHz 0.188 - 0.259 µs fADC = fHSI14 - 1 - 1/fHSI14 fADC = 14 MHz 0.107 - 17.1 µs - 1.5 - 239.5 1/fADC - - - 1 Conver sion cycle fADC = 14 MHz 1 - 18 µs ADC jitter on trigger conversion tS(2) Sampling time tSTAB(2) Power-up time tCONV(2) Total conversion time (including sampling time) Unit - 14 to 252 (tS for sampling +12.5 for successive approximation) 1/fADC 1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 µA on IDDA and 60 µA on IDD should be taken into account. 2. Guaranteed by design, not tested in production. Equation 1: RAIN max formula TS - – R ADC R AIN ------------------------------------------------------------N+2 f ADC C ADC ln 2 The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). Table 51. RAIN max for fADC = 14 MHz 76/113 Ts (cycles) tS (µs) RAIN max (k)(1) 1.5 0.11 0.4 7.5 0.54 5.9 13.5 0.96 11.4 28.5 2.04 25.2 41.5 2.96 37.2 DocID025743 Rev 3 STM32F031x4 STM32F031x6 Electrical characteristics Table 51. RAIN max for fADC = 14 MHz (continued) Ts (cycles) tS (µs) RAIN max (k)(1) 55.5 3.96 50 71.5 5.11 NA 239.5 17.1 NA 1. Guaranteed by design, not tested in production. Table 52. ADC accuracy(1)(2)(3) Symbol Parameter Test conditions Typ Max(4) ±1.3 ±2 ±1 ±1.5 ±0.5 ±1.5 ±0.7 ±1 ET Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error ±0.8 ±1.5 ET Total unadjusted error ±3.3 ±4 EO Offset error ±1.9 ±2.8 EG Gain error ±2.8 ±3 ED Differential linearity error ±0.7 ±1.3 EL Integral linearity error ±1.2 ±1.7 ET Total unadjusted error ±3.3 ±4 ±1.9 ±2.8 ±2.8 ±3 ±0.7 ±1.3 ±1.2 ±1.7 EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error fPCLK = 48 MHz, fADC = 14 MHz, RAIN < 10 k VDDA = 3 V to 3.6 V TA = 25 °C fPCLK = 48 MHz, fADC = 14 MHz, RAIN < 10 k VDDA = 2.7 V to 3.6 V TA = 40 to 105 °C fPCLK = 48 MHz, fADC = 14 MHz, RAIN < 10 k VDDA = 2.4 V to 3.6 V TA = 25 °C Unit LSB LSB LSB 1. ADC DC accuracy values are measured after internal calibration. 2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 6.3.14 does not affect the ADC accuracy. 3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges. 4. Data based on characterization results, not tested in production. DocID025743 Rev 3 77/113 86 Electrical characteristics STM32F031x4 STM32F031x6 Figure 24. ADC accuracy characteristics 966$ (* ([DPSOHRIDQDFWXDOWUDQVIHUFXUYH 7KHLGHDOWUDQVIHUFXUYH (QGSRLQWFRUUHODWLRQOLQH (7 (2 (/ (' /6%,'($/ (7 7RWDO8QDMXVWHG(UURUPD[LPXPGHYLDWLRQ EHWZHHQWKHDFWXDODQGLGHDOWUDQVIHUFXUYHV (2 2IIVHW(UURUPD[LPXPGHYLDWLRQ EHWZHHQWKHILUVWDFWXDOWUDQVLWLRQDQGWKHILUVW LGHDORQH (* *DLQ(UURUGHYLDWLRQEHWZHHQWKHODVW LGHDOWUDQVLWLRQDQGWKHODVWDFWXDORQH (' 'LIIHUHQWLDO/LQHDULW\(UURUPD[LPXP GHYLDWLRQEHWZHHQDFWXDOVWHSVDQGWKHLGHDORQHV (/ ,QWHJUDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ EHWZHHQDQ\DFWXDOWUDQVLWLRQDQGWKHHQGSRLQW FRUUHODWLRQOLQH 9''$ 069 Figure 25. Typical connection diagram using the ADC 9''$ 6DPSOHDQGKROG$'& FRQYHUWHU 97 5$,1 9$,1 5$'& $,1[ 97 &SDUDVLWLF ,/ $ ELW FRQYHUWHU &$'& 069 1. Refer to Table 50: ADC characteristics for the values of RAIN, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced. General PCB design guidelines Power supply decoupling should be performed as shown in Figure 12: Power supply scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip. 78/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 6.3.17 Electrical characteristics Temperature sensor characteristics Table 53. TS characteristics Symbol Parameter TL(1) Avg_Slope VSENSE linearity with temperature (1) V30 Average slope Voltage at 30 °C (5 °C) (2) Min Typ Max Unit - 1 2 °C 4.0 4.3 4.6 mV/°C 1.34 1.43 1.52 V tSTART(1) ADC_IN16 buffer startup time - - 10 µs tS_temp(1) ADC sampling time when reading the temperature 4 - - µs 1. Guaranteed by design, not tested in production. 2. Measured at VDDA = 3.3 V 10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byteRefer to Table 3: Temperature sensor calibration values. 6.3.18 VBAT monitoring characteristics Table 54. VBAT monitoring characteristics Symbol Parameter Min Typ Max Unit k R Resistor bridge for VBAT - 2 x 50 - Q Ratio on VBAT measurement - 2 - Error on Q –1 - +1 % ADC sampling time when reading the VBAT 4 - - µs Er(1) tS_vbat(1) 1. Guaranteed by design, not tested in production. 6.3.19 Timer characteristics The parameters given in the following tables are guaranteed by design. Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 55. TIMx characteristics Symbol Parameter tres(TIM) Timer resolution time fEXT Timer external clock frequency on CH1 to CH4 ResTIM tCOUNTER Conditions Min Max Unit - 1 - tTIMxCLK fTIMxCLK = 48 MHz 20.8 - ns 0 fTIMxCLK/2 MHz fTIMxCLK = 48 MHz 0 24 MHz TIMx (except TIM2) - 16 TIM2 - 32 - 1 65536 tTIMxCLK fTIMxCLK = 48 MHz 0.0208 1365 µs - Timer resolution bit 16-bit counter clock period DocID025743 Rev 3 79/113 86 Electrical characteristics STM32F031x4 STM32F031x6 Table 55. TIMx characteristics (continued) Symbol Parameter Conditions Min Max Unit tMAX_COUNT Maximum possible count with 32-bit counter - - 65536 × 65536 tTIMxCLK fTIMxCLK = 48 MHz - 89.48 s Table 56. IWDG min/max timeout period at 40 kHz (LSI)(1) Prescaler divider PR[2:0] bits Min timeout RL[11:0]= 0x000 Max timeout RL[11:0]= 0xFFF /4 0 0.1 409.6 /8 1 0.2 819.2 /16 2 0.4 1638.4 /32 3 0.8 3276.8 /64 4 1.6 6553.6 /128 5 3.2 13107.2 /256 6 or 7 6.4 26214.4 Unit ms 1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty. Table 57. WWDG min/max timeout value at 48 MHz (PCLK) Prescaler WDGTB Min timeout value Max timeout value 1 0 0.0853 5.4613 2 1 0.1706 10.9226 4 2 0.3413 21.8453 8 3 0.6826 43.6906 Unit ms 6.3.20 Communication interfaces I2C interface characteristics The I2C interface meets the timings requirements of the I2C-bus specification and user manual rev. 03 for: Standard-mode (Sm): with a bit rate up to 100 kbit/s Fast-mode (Fm): with a bit rate up to 400 kbit/s Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s. The I2C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to Reference manual). The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O port characteristics for the I2C I/Os characteristics. 80/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 Electrical characteristics All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics: Table 58. I2C analog filter characteristics(1) Symbol Parameter Min Max Unit tAF Maximum pulse width of spikes that are suppressed by the analog filter 50(2) 260(3) ns 1. Guaranteed by design, not tested in production. 2. Spikes with widths below tAF(min) are filtered. 3. Spikes with widths above tAF(max) are not filtered DocID025743 Rev 3 81/113 86 Electrical characteristics STM32F031x4 STM32F031x6 SPI/I2S characteristics Unless otherwise specified, the parameters given in Table 59 for SPI or in Table 60 for I2S are derived from tests performed under the ambient temperature, fPCLKx frequency and supply voltage conditions summarized in Table 18: General operating conditions. Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S). Table 59. SPI characteristics(1) Symbol fSCK 1/tc(SCK) Parameter Conditions Min Max Master mode - 18 Slave mode - 18 - 6 SPI clock frequency MHz tr(SCK) tf(SCK) SPI clock rise and fall time Capacitive load: C = 15 pF tsu(NSS) NSS setup time Slave mode 4Tpclk - th(NSS) NSS hold time Slave mode 2Tpclk + 10 - SCK high and low time Master mode, fPCLK = 36 MHz, presc = 4 Tpclk/2 -2 Tpclk/2 + 1 Master mode 4 - Slave mode 5 - Master mode 4 - Slave mode 5 - Data output access time Slave mode, fPCLK = 20 MHz 0 3Tpclk Data output disable time Slave mode 0 18 tv(SO) Data output valid time Slave mode (after enable edge) - 22.5 tv(MO) Data output valid time Master mode (after enable edge) - 6 Slave mode (after enable edge) 11.5 - Master mode (after enable edge) 2 - Slave mode 25 75 tw(SCKH) tw(SCKL) tsu(MI) tsu(SI) th(MI) tdis(SO) (3) th(SO) Data input hold time ns Data output hold time th(MO) DuCy(SCK) ns Data input setup time th(SI) ta(SO)(2) Unit SPI slave input clock duty cycle % 1. Data based on characterization results, not tested in production. 2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. 3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z 82/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 Electrical characteristics Figure 26. SPI timing diagram - slave mode and CPHA = 0 166LQSXW 6&.,QSXW W68166 WK166 WF6&. &3+$ &32/ WZ6&.+ WZ6&./ &3+$ &32/ W962 WD62 0,62 287387 WU6&. WI6&. WK62 06%287 %,7287 06%,1 %,7,1 WGLV62 /6%287 WVX6, 026, ,1387 /6%,1 WK6, DLF Figure 27. SPI timing diagram - slave mode and CPHA = 1 166LQSXW 6&.LQSXW W68166 &3+$ &32/ &3+$ &32/ WZ6&.+ WZ6&./ WK62 WY62 WD62 0,62 287387 06%287 %,7287 WU6&. WI6&. WGLV62 /6%287 WK6, WVX6, 026, ,1387 WK166 WF6&. 06%,1 %,7,1 /6%,1 DLE 1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD. DocID025743 Rev 3 83/113 86 Electrical characteristics STM32F031x4 STM32F031x6 Figure 28. SPI timing diagram - master mode +LJK 166LQSXW 6&.2XWSXW &3+$ &32/ 6&.2XWSXW WF6&. &3+$ &32/ &3+$ &32/ &3+$ &32/ WZ6&.+ WZ6&./ WVX0, 0,62 ,13 87 WU6&. WI6&. %,7,1 06%,1 /6%,1 WK0, 026, 287387 % , 7287 06%287 WY02 /6%287 WK02 DLF 1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD. Table 60. I2S characteristics(1) Symbol fCK 1/tc(CK) Parameter I2S clock frequency tr(CK) I2S clock rise time tf(CK) I2S clock fall time Conditions Min Max 1.597 1.601 Slave mode 0 6.5 Capacitive load CL = 15 pF - 10 - 12 306 - 312 - Master mode (data: 16 bits, Audio frequency = 48 kHz) Master fPCLK= 16 MHz, audio frequency = 48 kHz MHz tw(CKH) I2S clock high time tw(CKL) I2S clock low time tv(WS) WS valid time Master mode 2 - th(WS) WS hold time Master mode 2 - tsu(WS) WS setup time Slave mode 7 - th(WS) WS hold time Slave mode 0 - I2S slave input clock duty cycle Slave mode 25 75 DuCy(SCK) 84/113 DocID025743 Rev 3 Unit ns % STM32F031x4 STM32F031x6 Electrical characteristics Table 60. I2S characteristics(1) (continued) Symbol Parameter Conditions Min Max tsu(SD_MR) Data input setup time Master receiver 6 - tsu(SD_SR) Data input setup time Slave receiver 2 - Master receiver 4 - Slave receiver 0.5 - - 20 13 - - 4 0 - th(SD_MR) th(SD_SR) tv(SD_ST) (2) (2) (2) Unit Data input hold time ns Data output valid time th(SD_ST) Data output hold time tv(SD_MT)(2) Data output valid time th(SD_MT) Data output hold time Slave transmitter (after enable edge) Slave transmitter (after enable edge) Master transmitter (after enable edge) Master transmitter (after enable edge) 1. Data based on design simulation and/or characterization results, not tested in production. 2. Depends on fPCLK. For example, if fPCLK = 8 MHz, then TPCLK = 1/fPLCLK = 125 ns. Figure 29. I2S slave timing diagram (Philips protocol) &.,QSXW WF&. &32/ &32/ WZ&.+ WK:6 WZ&./ :6LQSXW WY6'B67 WVX:6 6'WUDQVPLW /6%WUDQVPLW 06%WUDQVPLW WVX6'B65 6'UHFHLYH /6%UHFHLYH %LWQWUDQVPLW WK6'B67 /6%WUDQVPLW WK6'B65 06%UHFHLYH %LWQUHFHLYH /6%UHFHLYH DLE 1. Measurement points are done at CMOS levels: 0.3 × VDDIOx and 0.7 × VDDIOx. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. DocID025743 Rev 3 85/113 86 Electrical characteristics STM32F031x4 STM32F031x6 Figure 30. I2S master timing diagram (Philips protocol) TF#+ TR#+ #+OUTPUT TC#+ #0/, TW#+( #0/, TV73 TH73 TW#+, 73OUTPUT TV3$?-4 3$TRANSMIT ,3"TRANSMIT -3"TRANSMIT 3$RECEIVE ,3"TRANSMIT TH3$?-2 TSU3$?-2 ,3"RECEIVE "ITNTRANSMIT TH3$?-4 -3"RECEIVE "ITNRECEIVE ,3"RECEIVE AIB 1. Data based on characterization results, not tested in production. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. 86/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 7 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. LQFP48 package information Figure 31. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline 3%!4).' 0,!.% # C ! ! ! MM '!5'%0,!.% CCC # $ + ! $ , , $ 0). )$%.4)&)#!4)/. % % B % 7.1 E "?-%?6 1. Drawing is not to scale. DocID025743 Rev 3 87/113 109 Package information STM32F031x4 STM32F031x6 Table 61. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.500 - - 0.2165 - E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. 88/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 Package information Figure 32. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package recommended footprint AID 1. Dimensions are expressed in millimeters. DocID025743 Rev 3 89/113 109 Package information STM32F031x4 STM32F031x6 Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. Figure 33. LQFP48 marking example (package top view) 3URGXFW LGHQWLILFDWLRQ 45.' $5 'DWHFRGH 6WDQGDUG67ORJR : 88 5HYLVLRQFRGH 3LQLGHQWLILHU 069 1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity. 90/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 LQFP32 package information Figure 34. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline C ! ! ! 3%!4).' 0,!.% # MM CCC '!5'%0,!.% # + $ ! , $ , $ 0). )$%.4)&)#!4)/. % % % B 7.2 Package information E 7@.&@7 1. Drawing is not to scale. DocID025743 Rev 3 91/113 109 Package information STM32F031x4 STM32F031x6 Table 62. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.300 0.370 0.450 0.0118 0.0146 0.0177 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.600 - - 0.2205 - E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.600 - - 0.2205 - e - 0.800 - - 0.0315 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.100 - - 0.0039 1. Values in inches are converted from mm and rounded to 4 decimal digits. 92/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 Package information Figure 35. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package recommended footprint 6?&0?6 1. Dimensions are expressed in millimeters. Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. Figure 36. LQFP32 marking example (package top view) 3URGXFW LGHQWLILFDWLRQ 45.' ,5 'DWHFRGH 6WDQGDUG67ORJR : 88 5HYLVLRQFRGH 3LQLGHQWLILHU 069 1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity. DocID025743 Rev 3 93/113 109 Package information 7.3 STM32F031x4 STM32F031x6 UFQFPN32 package information Figure 37. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package outline ' $ H ' $ $ GGG & & 6($7,1* 3/$1( E H ( E ( ( / 3,1,GHQWLILHU ' / !"?-%?6 1. Drawing is not to scale. 94/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 Package information Table 63. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.500 0.550 0.600 0.0197 0.0217 0.0236 A1 0.000 0.020 0.050 0.0000 0.0008 0.0020 A3 - 0.152 - - 0.0060 - b 0.180 0.230 0.280 0.0071 0.0091 0.0110 D 4.900 5.000 5.100 0.1929 0.1969 0.2008 D1 3.400 3.500 3.600 0.1339 0.1378 0.1417 D2 3.400 3.500 3.600 0.1339 0.1378 0.1417 E 4.900 5.000 5.100 0.1929 0.1969 0.2008 E1 3.400 3.500 3.600 0.1339 0.1378 0.1417 E2 3.400 3.500 3.600 0.1339 0.1378 0.1417 e - 0.500 - - 0.0197 - L 0.300 0.400 0.500 0.0118 0.0157 0.0197 ddd - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 38. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package recommended footprint $%B)3B9 1. Dimensions are expressed in millimeters. DocID025743 Rev 3 95/113 109 Package information STM32F031x4 STM32F031x6 Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. Figure 39. UFQFPN32 marking example (package top view) 3URGXFW LGHQWLILFDWLRQ ', 'DWHFRGH : 88 5HYLVLRQFRGH 6WDQGDUG67ORJR 3LQLGHQWLILHU 069 1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity. 96/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 7.4 Package information UFQFPN28 package information Figure 40. UFQFPN28 - 28-lead, 4x4 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline 'HWDLO< ' ( ' ' ( 'HWDLO= !"?-%?6 1. Drawing is not to scale. Table 64. UFQFPN28 - 28-lead, 4x4 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data(1) millimeters inches Symbol Min Typ Max Min Typ Max A 0.500 0.550 0.600 0.0197 0.0217 0.0236 A1 - 0.000 0.050 - 0.0000 0.0020 D 3.900 4.000 4.100 0.1535 0.1575 0.1614 D1 2.900 3.000 3.100 0.1142 0.1181 0.1220 E 3.900 4.000 4.100 0.1535 0.1575 0.1614 E1 2.900 3.000 3.100 0.1142 0.1181 0.1220 L 0.300 0.400 0.500 0.0118 0.0157 0.0197 L1 0.250 0.350 0.450 0.0098 0.0138 0.0177 T - 0.152 - - 0.0060 - b 0.200 0.250 0.300 0.0079 0.0098 0.0118 e - 0.500 - - 0.0197 - DocID025743 Rev 3 97/113 109 Package information STM32F031x4 STM32F031x6 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 41. UFQFPN28 - 28-lead, 4x4 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package recommended footprint 1. Dimensions are expressed in millimeters. 98/113 DocID025743 Rev 3 !"?&0?6 STM32F031x4 STM32F031x6 Package information Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. Figure 42. UFQFPN28 marking example (package top view) 3URGXFW LGHQWLILFDWLRQ ( 'DWHFRGH : 5HYLVLRQFRGH 88 'RW SLQLGHQWLILHU 069 1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity. DocID025743 Rev 3 99/113 109 Package information STM32F031x4 STM32F031x6 7.5 WLCSP25 package information 7.6 WLCSP25 package information Figure 43. WLCSP25 - 25-ball, 2.423 x 2.325 mm, 0.4 mm pitch wafer level chip scale package outline H EEE = $EDOOORFDWLRQ ) H * $ 'HWDLO$ H H ( $ $ $ %XPSVLGH 6LGHYLHZ %XPS $ RULHQWDWLRQ UHIHUHQFH HHH = DDD $ EEDOOV FFF = ; < GGG = [ :DIHUEDFNVLGH E = 6HDWLQJSODQH 'HWDLO$ URWDWHG :/&63B$1B0(B9 1. Drawing is not to scale. Table 65. WLCSP25 - 25-ball, 2.423 x 2.325 mm, 0.4 mm pitch wafer level chip scale package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.525 0.555 0.585 0.0207 0.0219 0.0230 A1 - 0.175 - - 0.0069 - A2 - 0.380 - - 0.0150 - (2) - 0.025 - - 0.0010 - b(3) (4) 0.220 0.250 0.280 0.0087 0.0098 0.0110 D 2.388 2.423 2.458 0.0940 0.0954 0.0968 E 2.29 2.325 2.36 0.0902 0.0915 0.0929 e - 0.400 - - 0.0157 - e1 - 1.600 - - 0.0630 - A3 100/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 Package information Table 65. WLCSP25 - 25-ball, 2.423 x 2.325 mm, 0.4 mm pitch wafer level chip scale package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max e2 - 1.600 - - 0.0630 - F - 0.4115 - - 0.0162 - G - 0.3625 - - 0.0143 - aaa - 0.100 - - 0.0039 - bbb - 0.100 - - 0.0039 - ccc - 0.100 - - 0.0039 - ddd - 0.050 - - 0.0020 - eee - 0.050 - - 0.0020 - 1. Values in inches are converted from mm and rounded to 4 decimal digits. 2. Back side coating. 3. Dimension is measured at the maximum bump diameter parallel to primary datum Z. 4. Primary datum Z and seating plane are defined by the spherical crowns of the bump. Figure 44. WLCSP25 - 25-ball, 2.133 x 2.070 mm, 0.4 mm pitch wafer level chip scale package recommended footprint 'SDG 'VP :/&63B$1B)3B9 Table 66. WLCSP25 recommended PCB design rules (0.4 mm pitch) Dimension Recommended values Pitch 0.4 mm Dpad 0.225 mm Dsm 0.290 mm typ. (depends on the soldermask registration tolerance) Stencil opening 0.250 mm Stencil thickness 0.100 mm DocID025743 Rev 3 101/113 109 Package information STM32F031x4 STM32F031x6 Device marking ‘The following figure gives an example of topside marking orientation versus ball A1 identifier location. Figure 45. WLCSP25 marking example (package top view) 'RW 3URGXFWLGHQWLILFDWLRQ ' 'DWHFRGH 5HYLVLRQFRGH : 88 3 069 1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity. 102/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 7.7 Package information TSSOP20 package information Figure 46.TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package outline $ C % % 3%!4).' 0,!.% # MM '!'%0,!.% 0). )$%.4)&)#!4)/. K AAA # ! ! ! B , , E 9!?-%?6 1. Drawing is not to scale. Table 67. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package mechanical data inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. A - - 1.200 - - 0.0472 A1 0.050 - 0.150 0.0020 - 0.0059 A2 0.800 1.000 1.050 0.0315 0.0394 0.0413 b 0.190 - 0.300 0.0075 - 0.0118 c 0.090 - 0.200 0.0035 - 0.0079 (2) 6.400 6.500 6.600 0.2520 0.2559 0.2598 E 6.200 6.400 6.600 0.2441 0.2520 0.2598 E1(3) 4.300 4.400 4.500 0.1693 0.1732 0.1772 e - 0.650 - - 0.0256 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - D DocID025743 Rev 3 103/113 109 Package information STM32F031x4 STM32F031x6 Table 67. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package mechanical data (continued) inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. k 0° - 8° 0° - 8° aaa - - 0.100 - - 0.0039 1. Values in inches are converted from mm and rounded to four decimal digits. 2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15mm per side. 3. Dimension “E1” does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25mm per side. Figure 47. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package footprint 1. Dimensions are expressed in millimeters. 104/113 DocID025743 Rev 3 9!?&0?6 STM32F031x4 STM32F031x6 Package information Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. Figure 48. TSSOP20 marking example (package top view) 6WDQGDUG67ORJR 3URGXFW LGHQWLILFDWLRQ ''1 'DWHFRGH 3LQLGHQWLILHU : 5HYLVLRQFRGH 88 069 1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity. DocID025743 Rev 3 105/113 109 Package information 7.8 STM32F031x4 STM32F031x6 Thermal characteristics The maximum chip junction temperature (TJmax) must never exceed the values given in Table 18: General operating conditions. The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max x JA) Where: TA max is the maximum ambient temperature in °C, JA is the package junction-to-ambient thermal resistance, in C/W, PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax), PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = (VOL × IOL) + ((VDDIOx – VOH) × IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Table 68. Package thermal characteristics Symbol JA 7.8.1 Parameter Value Thermal resistance junction-ambient LQFP48 - 7 × 7 mm 55 Thermal resistance junction-ambient UFQFPN32 - 5 × 5 mm 38 Thermal resistance junction-ambient LQFP32 - 7 × 7 mm 56 Unit °C/W Thermal resistance junction-ambient UFQFPN28 - 4 × 4 mm 118 Thermal resistance junction-ambient WLCSP25 - 2.13 x 2.07 mm 74 Thermal resistance junction-ambient TSSOP20 110 Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org 106/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 7.8.2 Package information Selecting the product temperature range When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in Section 8: Part numbering. Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature. As applications do not commonly use the STM32F031x4/x6 at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application. The following examples show how to calculate the temperature range needed for a given application. Example 1: High-performance application Assuming the following application conditions: Maximum ambient temperature TAmax = 80 °C (measured according to JESD51-2), IDDmax = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output at low level with IOL = 20 mA, VOL= 1.3 V PINTmax = 50 mA × 3.5 V= 175 mW PIOmax = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW This gives: PINTmax = 175 mW and PIOmax = 272 mW: PDmax = 175 + 272 = 447 mW Using the values obtained in Table 68 TJmax is calculated as follows: – For LQFP48, 55 °C/W TJmax = 80 °C + (55°C/W × 447 mW) = 80 °C + 24.585 °C = 104.585 °C This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C) see Table 18: General operating conditions. In this case, parts must be ordered at least with the temperature range suffix 6 (see Section 8: Part numbering). Note: With this given PDmax we can find the TAmax allowed for a given device temperature range (order code suffix 6 or 7). Suffix 6: TAmax = TJmax - (55°C/W × 447 mW) = 105-24.585 = 80.415 °C Suffix 7: TAmax = TJmax - (55°C/W × 447 mW) = 125-24.585 = 100.415 °C Example 2: High-temperature application Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature TJ remains within the specified range. DocID025743 Rev 3 107/113 109 Package information STM32F031x4 STM32F031x6 Assuming the following application conditions: Maximum ambient temperature TAmax = 100 °C (measured according to JESD51-2), IDDmax = 20 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V PINTmax = 20 mA × 3.5 V= 70 mW PIOmax = 20 × 8 mA × 0.4 V = 64 mW This gives: PINTmax = 70 mW and PIOmax = 64 mW: PDmax = 70 + 64 = 134 mW Thus: PDmax = 134 mW Using the values obtained in Table 68 TJmax is calculated as follows: – For LQFP48, 55 °C/W TJmax = 100 °C + (55 °C/W × 134 mW) = 100 °C + 7.37 °C = 107.37 °C This is above the range of the suffix 6 version parts (–40 < TJ < 105 °C). In this case, parts must be ordered at least with the temperature range suffix 7 (see Section 8: Part numbering) unless we reduce the power dissipation in order to be able to use suffix 6 parts. 108/113 DocID025743 Rev 3 STM32F031x4 STM32F031x6 8 Part numbering Part numbering For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office. Table 69. Ordering information scheme Example: STM32 F 031 G 6 T 6 x Device family STM32 = ARM-based 32-bit microcontroller Product type F = General-purpose Sub-family 031 = STM32F031xx Pin count F = 20 pins E = 25 pins G = 28 pins K = 32 pins C = 48 pins Code size 4 = 16 Kbytes of Flash memory 6 = 32 Kbytes of Flash memory Package P = TSSOP U = UFQFPN T = LQFP Y = WLCSP Temperature range 6 = –40 °C to +85 °C 7 = –40 °C to +105 °C Options xxx = programmed parts TR = tape and reel DocID025743 Rev 3 109/113 109 Revision history 9 STM32F031x4 STM32F031x6 Revision history Table 70. Document revision history 110/113 Date Revision 13-Jan-2014 1 Changes Initial release. DocID025743 Rev 3 STM32F031x4 STM32F031x6 Revision history Table 70. Document revision history (continued) Date 11-Jul-2014 Revision Changes 2 Changed the document status to Datasheet - production data. Updated the following: – Table: STM32F038x4/6 family device features and peripheral counts, – Figure: Clock tree, – Figure: Power supply scheme, – Table: Peripheral current consumption. Replaced Table Typical current consumption in Run mode, code with data processing running from Flash and Table Typical current consumption in Sleep mode, code running from Flash or RAM with Table: Typical current consumption, code executing from Flash, running from HSE 8 MHz crystal. Added the LQFP32 package: updates in Section: Description, Section: Pinouts and pin description and Section: Package information. DocID025743 Rev 3 111/113 112 Revision history STM32F031x4 STM32F031x6 Table 70. Document revision history (continued) Date 28-Aug-2015 112/113 Revision Changes 3 Updated: – Figure 9: STM32F031x4/x6 memory map, – AF1 alternate functions for PA0, PA1, PA2, PA3 and PA4 in Table 12: Alternate functions selected through GPIOA_AFR registers for port A, – the footnote for VIN max value in Table 15: Voltage characteristics, – the footnote for max VIN in Table 18: General operating conditions – Table 22: Embedded internal reference voltage with the addition of tSTART parameter, – tSTAB characteristics in Table 50: ADC characteristics, – Table 53: TS characteristics: removed the min. value for tSTART parameter, – the typical value for R parameter in Table 54: VBAT monitoring characteristics, – the structure of Section 7: Package information. Added: – Figure 33: LQFP48 marking example (package top view), – Figure 36: LQFP32 marking example (package top view), – Figure 39: UFQFPN32 marking example (package top view), – Figure 42: UFQFPN28 marking example (package top view), – Figure 48: TSSOP20 marking example (package top view). Added WLCSP25 package, updates in the following: – Table 1: Device summary, – Section 2: Description, – Table 2: STM32F031x4/x6 family device features and peripheral counts, – Section 4: Pinouts and pin description: addition of Figure 7: WLCSP25 25-ball package ballout (bump side) and update of Table 11: Pin definitions, – Table 18: General operating conditions, – Section 7: Package information with the addition of Section 7.5: WLCSP25 package information, – Table 68: Package thermal characteristics. DocID025743 Rev 3 STM32F031x4 STM32F031x6 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics – All rights reserved DocID025743 Rev 3 113/113 113