VND5E160J-E Double channel high side driver for automotive applications Features Max supply voltage VCC 41V Operating voltage range VCC 4.5 to 28V Max on-state resistance (per ch.) RON 160 m Current limitation (typ) ILIMH 10A Off state supply current IS 2 µA(1) 1. Typical value with all loads connected. ■ ■ ■ General – Inrush current active management by power limitation – Very low stand-by current – 3.0V CMOS compatible inputs – Optimized electromagnetic emissions – Very low electromagnetic susceptibility – In compliance with the 2002/95/EC european directive PowerSSO-12 Application ■ All types of resistive, inductive and capacitive loads Description The VND5E160J-E is a double channel high-side driver manufactured in the ST proprietary VIPower M0-5 technology and housed in the tiny PowerSSO-12 package. Diagnostic functions – Open Drain status output – On-state open load detection – Off-state open load detection – Output short to VCC detection – Overload and short to ground (power limitation) indication – Thermal shut-down indication The VND5E160J-E is designed to drive automotive grounded loads delivering protection, diagnostics and easy 3V and 5V CMOS-compatible interface with any microcontroller. Protections – Undervoltage shut-down – Overvoltage clamp – Load current limitation – Self limiting of fast thermal transients – Protection against loss of ground and loss of VCC – Over-temperature shut-down with autorestart (thermal shut-down) A dedicated active low digital status pin is associated with every output channel in order to provide Enhanced diagnostic functions including fast detection of overload and short-circuit to ground, over-temperature indication, short-circuit to VCC diagnosis and ON & OFF state open-load detection. – Reverse battery protected (a) – Electrostatic discharge protection September 2013 The device integrates advanced protective functions such as load current limitation, inrush and overload active management by power limitation, over-temperature shut-off with autorestart and over-voltage active clamp. The diagnostic feedback of the whole device can be disabled by pulling the STAT_DIS pin up, thus allowing wired-ORing with other similar devices. a. See Application schematic on page 22. Rev 3 1/34 www.st.com 34 Contents VND5E160J-E Contents 1 Block diagram and pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1 4 3.1.1 Solution 1: resistor in the ground line (RGND only) . . . . . . . . . . . . . . . . 22 3.1.2 Solution 2: diode (DGND) in the ground line . . . . . . . . . . . . . . . . . . . . . 23 3.2 Load dump protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 MCU I/Os protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4 Open load detection in Off state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.5 Maximum demagnetization energy (VCC = 13.5V) . . . . . . . . . . . . . . . . . 25 Package and PC board thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1 5 GND protection network against reverse battery . . . . . . . . . . . . . . . . . . . 22 PowerSSO-12 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.1 ECOPACK® packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.3 Packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2/34 VND5E160J-E List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Pin function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 6 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Switching (VCC=13V; Tj=25°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Status pin (VSD=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Openload detection (8V<VCC<18V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Logic Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Electrical transient requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 PowerSSO-12 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3/34 List of figures VND5E160J-E List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. 4/34 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Status timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Output voltage drop limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Normal operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Undervoltage shut-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Overload or Short to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Intermittent Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Open Load with external pull-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Open Load without external pull-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Short to VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 TJ evolution in Overload or Short to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Off state output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 High level input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Input clamp voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Input high level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Input low level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Low level STAT_DIS current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 On state resistance vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 High level STAT_DIS current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 On state resistance vs VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Low level input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 ILIM vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Turn-On voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Turn-Off voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 STAT_DIS clamp voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 High level STAT_DIS voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Low level STAT_DIS voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Open load detection in Off state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Maximum turn-off current versus inductance (for each channel) . . . . . . . . . . . . . . . . . . . . 25 PowerSSO-12 PC board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Rthj-amb vs. PCB copper area in open box free air condition (one channel ON). . . . . . . . 26 PowerSSO-12 thermal impedance junction ambient single pulse (one channel ON). . . . . 27 Thermal fitting model of a double channel HSD in PowerSSO-12 . . . . . . . . . . . . . . . . . . . 27 PowerSSO-12 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 PowerSSO-12 tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 PowerSSO-12 tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 VND5E160J-E Block diagram and pin configuration Figure 1. Block diagram VCC Signal Clamp Undervoltage IN1 Control & Diagnostic 1 Power Clamp DRIVER IN2 VON Limitation Over temp. CH 1 Current Limitation OFF State Open load ST_ DIS ON State Open load CONTROL & DIAGNOSTIC Channels 2 1 Block diagram and pin configuration CH 2 OUT2 ST1 ST2 OUT1 OVERLOAD PROTECTION (ACTIVE POWER LIMITATION) LOGIC GND Table 1. Pin function Name VCC OUTPUTn GND INPUTn Function Battery connection. Power output. Ground connection. Must be reverse battery protected by an external diode/resistor network. Voltage controlled input pin with hysteresis, CMOS compatible. Controls output switch state. STATUSn Open Drain digital diagnostic pin. STAT_DIS Active high CMOS compatible pin, to disable the STATUS pin. 5/34 Block diagram and pin configuration Figure 2. VND5E160J-E Configuration diagram (top view) TAB = Vcc GND STAT_DIS INPUT 1 STATUS 1 STATUS 2 INPUT 2 Table 2. 6/34 12 11 10 9 8 7 1 2 3 4 5 6 N.C. OUTPUT 1 OUTPUT 1 OUTPUT 2 OUTPUT 2 N.C. Suggested connections for unused and not connected pins Connection / pin Status N.C. Output Input STAT_DIS Floating X X X X X To ground Not allowed X Not allowed Through 10k resistor Through 10k resistor VND5E160J-E 2 Electrical specifications Electrical specifications Figure 3. Current and voltage conventions IS VCC VCC VFn ISD IOUTn STAT_DIS OUTPUTn VSD VOUTn IINn ISTATn INPUTn STATUSn VINn VSTATn GND IGND Note: VFn = VOUTn - VCC during reverse battery condition. 2.1 Absolute maximum ratings Stressing the device above the ratings listed in the “Absolute maximum ratings” tables may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to the conditions in the “Absolute maximum ratings” tables for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Table 3. Absolute maximum ratings Symbol Value Unit DC supply voltage 41 V - VCC Reverse DC supply voltage 0.3 V - IGND DC reverse ground pin current 200 mA Internally limited A 6 A VCC IOUT - IOUT Parameter DC output current Reverse DC output current IIN DC input current +10 / -1 mA ISTAT DC status current +10 / -1 mA +10 / -1 mA 36 mJ ISTAT_DIS DC status disable current EMAX Maximum switching energy (single pulse) (L=8mH; RL=0; Vbat=13.5V; Tjstart=150ºC; IOUT = IlimL(Typ.) ) 7/34 Electrical specifications Table 3. Absolute maximum ratings Symbol Value Unit VESD Electrostatic discharge (Human body model: R=1.5KC=100pF) – INPUT – STATUS – STAT_DIS – OUTPUT – VCC 4000 4000 4000 5000 5000 V V V V V VESD Charge device model (CDM-AEC-Q100-011) 750 V Junction operating temperature - 40 to 150 °C Storage temperature - 55 to 150 °C Tj Tstg 2.2 Parameter Thermal data Table 4. Symbol 8/34 VND5E160J-E Thermal data Parameter Rthj-case Thermal resistance junction-case (with one channel ON) Rthj-amb Thermal resistance junction-ambient Max. value Unit 8 °C/W See Figure 36. °C/W VND5E160J-E 2.3 Electrical specifications Electrical characteristics Values specified in this section are for 8V<VCC<28V; -40°C< Tj <150°C, unless otherwise stated. Table 5. Power section Symbol Parameter VCC Operating supply voltage VUSD VUSDhyst RON Vclamp IS IL(off1) VF Test conditions Min. Typ. Max. Unit 4.5 13 28 V Undervoltage shut-down 3.5 4.5 V Undervoltage shut-down hysteresis 0.5 On state resistance (1) IOUT=1A; Tj=25°C IOUT=1A; Tj=150°C IOUT=1A; VCC=5V; Tj= 25°C Clamp voltage IS=20 mA Supply current Off State; VCC=13V; VIN=VOUT=0V; Tj=25°C On State; VIN=5V; VCC=13V; IOUT=0A 41 Off state output current (1) VIN=VOUT=0V; VCC=13V; Tj=25°C VIN=VOUT=0V; VCC=13V; Tj=125°C Output - VCC diode voltage (1) -IOUT=0.6A; Tj=150°C 0 0 V 160 320 210 m m m 46 52 V 2(2) 5(2) µA 3 6 mA 0.01 3 5 µA µA 0.7 V 1. For each channel. 2. PowerMOS leakage included. Table 6. Symbol Switching (VCC=13V; Tj=25°C) Parameter Test conditions Min. Typ. Max. Unit td(on) Turn-On delay time RL=13 (see Figure 6.) 10 µs td(off) Turn-Off delay time RL=13 (see Figure 6.) 15 µs dVOUT/dt(on) Turn-On voltage slope RL=13 See Figure 26. V/µs dVOUT/dt(off) Turn-Off voltage slope RL=13 See Figure 28. V/µs WON Switching energy losses during twon RL=13 (see Figure 6.) 70 µJ WOFF Switching energy losses during twoff RL=13 (see Figure 6.) 40 µJ 9/34 Electrical specifications Table 7. Symbol VND5E160J-E Status pin (VSD=0) Parameter Test conditions Min. Typ. Max. Unit VSTAT Status low output voltage ISTAT= 1.6 mA, VSD=0V 0.5 V ILSTAT Status leakage current Normal operation or VSD=5V, VSTAT= 5V 10 µA CSTAT Status pin input capacitance Normal operation or VSD=5V, VSTAT= 5V 100 pF VSCL Status clamp voltage ISTAT= 1mA ISTAT= - 1mA 7 V V Table 8. Symbol Parameter DC short circuit current IlimL Short circuit current during thermal cycling TTSD Shutdown temperature TR Reset temperature TRS Thermal reset of STATUS THYST Thermal hysteresis (TTSD - TR) tSDL Status delay in overload conditions VON -0.7 Protection (1) IlimH VDEMAG 5.5 Turn-off output voltage clamp Output voltage drop limitation Test conditions Min. Typ. Max. Unit VCC=13V 5V<VCC<28V 7 10 14 14 A A VCC=13V TR<Tj<TTSD 2.5 150 175 A 200 TRS + 1 TRS + 5 °C 135 °C 7 Tj>TTSD (see Figure 4.) IOUT=1A; VIN=0; L=20mH IOUT= 0.03A (see Figure 5.) Tj=-40°C...+150°C °C 20 VCC-41 VCC-46 VCC-52 25 1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles. 10/34 °C µs V mV VND5E160J-E Electrical specifications Table 9. Symbol Open load detection (8V<VCC<18V) Parameter Test conditions Max. Unit 40 mA 200 µs 1200 µs 2 4 V (See Figure 4.) 180 tPOL µs VIN= 0V; VOUT= 4V (see Section 3.4: Open load detection in Off state) -75 0 µA 20 µs Max. Unit 0.9 V IOL Openload ON state detection threshold VIN = 5V tDOL(on) Openload ON state detection delay IOUT = 0A, VCC=13V (See Figure 4.) Typ. 10 tPOL Delay between INPUT falling edge and = 0A (see Figure 4.) I STATUS rising edge in OUT open load condition VOL Openload OFF state voltage detection threshold Output short circuit to tDSTKON Vcc detection delay at turn off Min. VIN = 0V IL(off2) Off state output current (1) td_vol Delay response from output rising edge to VIN= 0V; VOUT= 4V STATUS falling edge in open load 200 500 1. For each channel. Table 10. Symbol Logic Input Parameter VIL Input low level IIL Low level input current VIH Input high level IIH High level input current VI(hyst) Input hysteresis voltage VICL Input clamp voltage VSDL STAT_DIS low level voltage ISDL Low level STAT_DIS current VSDH STAT_DIS high level voltage ISDH High level STAT_DIS current Test conditions VIN = 0.9V STAT_DIS clamp voltage Typ. 1 µA 2.1 V VIN = 2.1V 10 0.25 IIN = 1mA IIN = -1mA VSD=0.9V 5.5 7 V V 0.9 V -0.7 1 µA 2.1 V 10 0.25 ISD=1mA ISD=-1mA µA V VSD=2.1V VSD(hyst) STAT_DIS hysteresis voltage VSDCL Min. µA V 5.5 7 -0.7 V V 11/34 Electrical specifications Figure 4. VND5E160J-E Status timings OPEN LOAD STATUS TIMING (without external pull-up) IOUT < IOL VIN OPEN LOAD STATUS TIMING (with external pull-up) IOUT < IOL VIN VOUT > VOL VOUT < VOL VSTAT VSTAT tDOL(on) tDOL(on) tPOL OVER TEMP STATUS TIMING OUTPUT STUCK TO Vcc Tj > TTSD IOUT > IOL VIN VOUT > VOL VIN VSTAT VSTAT tDOL(on) Figure 5. tSDL tDSTKON Output voltage drop limitation Vcc-Vout Tj=150oC Tj=25oC Tj=-40oC Von Iout Von/Ron(T) 12/34 tSDL VND5E160J-E Electrical specifications Figure 6. Switching characteristics VOUT tWon tWoff 90% 80% dVOUT/dt(off) dVOUT/dt(on) 10% tr tf t INPUT td(on) td(off) t Table 11. Truth table Conditions INPUTn OUTPUTn STATUSn (VSD=0V)(1) Normal operation L H L H H H Overtemperature L H L L H L Undervoltage L H L L X X H X (no power limitation) Cycling (power limitation) H Overload & Short circuit to GND H L Output voltage > VOL L H H H L(2) H Output current < IOL L H L H H(3) L 1. If the VSD is high, the STATUS pin is in a high impedance. 2. The STATUS pin is low with a delay equal to tDSTKON after INPUT falling edge. 3. The STATUS pin becomes high with a delay equal to tPOL after INPUT falling edge. 13/34 Electrical specifications Table 12. VND5E160J-E Electrical transient requirements ISO 7637-2: 2004(E) Test levels Number of pulses or test times Burst cycle / pulse repetition time Delays and Impedance Test pulse III IV 1 -75 V -100 V 5000 pulses 0.5 s 5s 2 ms, 10 2a +37 V +50 V 5000 pulses 0.2 s 5s 50 s, 2 3a -100 V -150 V 1h 90 ms 100 ms 0.1 s, 50 3b +75 V +100 V 1h 90 ms 100 ms 0.1 s, 50 4 -6 V -7 V 1 pulse 100 ms, 0.01 5b(2) +65 V +87 V 1 pulse 400 ms, 2 Test level results(1) ISO 7637-2: 2004(E) Test pulse III IV 1 C C 2a C C 3a C C 3b C C 4 C C 5b(2) C C 1. The above test levels must be considered referred to VCC = 13.5V except for pulse 5b. 2. Valid in case of external load dump clamp: 40V maximum referred to ground. 14/34 Class Contents C All functions of the device are performed as designed after exposure to disturbance. E One or more functions of the device are not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device. VND5E160J-E 2.4 Electrical specifications Waveforms Figure 7. Normal operation Normal operation INPUT Nominal load Nominal load IOUT VSTATUS VST_DIS Figure 8. Undervoltage shut-down Undervoltage shut-down VCC VUSD VUSDhyst INPUT IOUT UNDEFINED VSTATUS VST_DIS 15/34 Electrical specifications Figure 9. VND5E160J-E Overload or Short to GND Overload or Short to GND INPUT ILimH > Power Limitation Thermal cycling ILimL > IOUT VSTATUS VST_DIS Figure 10. Intermittent Overload Intermittent Overload INPUT ILimH > Overload ILimL > IOUT VSTATUS VST_DIS 16/34 Nominal load VND5E160J-E Electrical specifications Figure 11. Open Load with external pull-up Open Load with external pull-up INPUT VOUT VPU > VOL VOL IOUT tDOL(on) VSTATUS VST_DIS Figure 12. Open Load without external pull-up Open Load without external pull-up INPUT VOUT IOUT < IOL IOUT IOL tDOL(on) VSTATUS tPOL VST_DIS 17/34 Electrical specifications VND5E160J-E Figure 13. Short to VCC Short to VCC INPUT Resistive Short to VCC Hard Short to VCC VOUT > VOL VOUT > VOL VOL VOUT IOUT > IOL IOUT < IOL IOL IOUT tDOL(on) tDSTK(on) VSTATUS VST_DIS Figure 14. TJ evolution in Overload or Short to GND TJ evolution in Overload or Short to GND INPUT Self-limitation of fast thermal transients TTSD THYST TR TJ_START TJ ILimH > Power Limitation < ILimL IOUT 18/34 VND5E160J-E 2.5 Electrical specifications Electrical characteristics curves Figure 15. Off state output current Figure 16. High level input current Iloff (nA) Iih (µA) 300 5 4,5 250 Off State Vcc=13V Vin=Vout=0V 200 Vin=2.1V 4 3,5 150 3 2,5 100 2 50 1,5 0 1 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (°C) 50 75 100 125 150 175 100 125 150 175 Tc (°C) Figure 17. Input clamp voltage Figure 18. Input high level Vicl (V) Vih (V) 7 3 lin=1mA 6,8 2,5 6,6 2 6,4 1,5 6,2 1 6 0,5 5,8 5,6 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (°C) 50 75 Tc (°C) Figure 19. Input low level Figure 20. Low level STAT_DIS current Vil (V) Isdl (µA) 5 2 4,5 1,8 Vsd= 0.9V 4 1,6 3,5 1,4 3 1,2 2,5 2 1 1,5 0,8 1 0,6 0,5 0,4 0 -50 -25 0 25 50 75 Tc (°C) 100 125 150 175 -50 -25 0 25 50 75 100 125 150 175 Tc (°C) 19/34 Electrical specifications VND5E160J-E Figure 21. On state resistance vs Tcase Figure 22. High level STAT_DIS current Isdh (µA) Ron (mOhm) 5 300 4,5 Iout= 1A Vcc=13V 250 Vsd= 2.1V 4 3,5 200 3 150 2,5 2 100 1,5 1 50 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 50 75 100 125 150 175 150 175 150 175 Tc (°C) Tc (°C) Figure 23. On state resistance vs VCC Figure 24. Low level input current Iil (µA) Ron (mOhm) 5 300 Tc=150°C 4,5 Vin=0.9V 250 4 Tc=125°C 3,5 200 3 150 Tc=25°C 2,5 2 100 Tc=-40°C 1,5 1 50 0 5 10 15 20 25 30 35 -50 -25 0 25 50 75 Figure 25. ILIM vs Tcase 125 Figure 26. Turn-On voltage slope Ilimh (A) (dVout/dt )On (V/ms) 20 1000 900 Vcc=13V 15 100 Tc (°C) Vcc (V) Vcc=13V RI=13 Ohm 800 700 600 10 500 400 5 300 0 200 -50 -25 0 25 50 Tc (°C) 20/34 75 100 125 150 -50 -25 0 25 50 75 Tc (°C) 100 125 VND5E160J-E Electrical specifications Figure 27. Undervoltage shutdown Figure 28. Turn-Off voltage slope Vusd (V) (dVout/dt )Off (V/ms) 7 1400 6 1200 5 1000 4 800 3 600 2 400 1 200 Vcc=13V RI= 13 Ohm 0 0 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 50 75 100 125 150 175 Tc (°C) Tc (°C) Figure 29. STAT_DIS clamp voltage Figure 30. High level STAT_DIS voltage VsdH(V) Vsdcl(V) 3 10 9 2,5 Isd = 1 mA 8 2 7 1,5 6 1 5 0,5 4 0 3 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 50 75 100 125 150 175 Tc (°C) Tc (°C) Figure 31. Low level STAT_DIS voltage VsdL(V) 3 2,5 2 1,5 1 0,5 0 -50 -25 0 25 50 75 100 125 150 175 Tc (°C) 21/34 Application information 3 VND5E160J-E Application information Figure 32. Application schematic +5V +5V VCC Rprot STAT_DIS Dld Rprot INPUT MCU OUTPUT Rprot STATUS GND VGND RGND DGND Note: Channels 2 has the same internal circuit as channel 1. 3.1 GND protection network against reverse battery 3.1.1 Solution 1: resistor in the ground line (RGND only) This solution can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1. RGND 600mV / (IS(on)max). 2. RGND VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device datasheet. Power dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSDs. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not shared by the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same RGND. 22/34 VND5E160J-E Application information If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then ST suggests Solution 2 is used (see below). 3.1.2 Solution 2: diode (DGND) in the ground line A resistor (RGND=1kshould be inserted in parallel to DGND if the device drives an inductive load. This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network will produce a shift (~600mV) in the input threshold and in the status output values, if the microprocessor ground is not common to the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. 3.2 Load dump protection Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds to VCC max DC rating. The same applies if the device is subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/2 table. 3.3 MCUI/Os protection If a ground protection network is used and negative transient are present on the VCC line, the control pins will be pulled negative. ST suggests that a resistor (Rprot) be inserted in line to prevent the µC I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of µC and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC I/Os. -VCCpeak/Ilatchup Rprot (VOHC-VIH-VGND) / IIHmax Calculation example: For VCCpeak= - 100V and Ilatchup 20mA; VOHC 4.5V 5k Rprot 180k. Recommended Rprot value is 10k 23/34 Application information 3.4 VND5E160J-E Open load detection in Off state Off-state open-load detection requires an external pull-up resistor (RPU) connected between the OUTPUT pin and a positive supply voltage (VPU) like the +5V line used to supply the microprocessor. The external resistor has to be selected according to the following requirements: 1. No false open load indication when load is connected: in this case we have to avoid VOUT to be higher than VOlmin; this results in the following condition VOUT=(VPU/(RL+RPU))RL<VOlmin. 2. No misdetection when load is disconnected: in this case the VOUT has to be higher than VOLmax; this results in the following condition RPU<(VPU–VOLmax)/IL(off2). Because Is(OFF) may significantly increase if Vout is pulled high (up to several mA), the pullup resistor RPU should be connected to a supply that is switched OFF when the module is in standby. The values of VOLmin, VOLmax and IL(off2) are available in the Electrical characteristics section. Figure 33. Open load detection in Off state V batt. VPU VCC RPU INPUT DRIVER + LOGIC IL(off2) OUT + STATUS R VOL GROUND 24/34 RL VND5E160J-E 3.5 Application information Maximum demagnetization energy (VCC = 13.5V) Figure 34. Maximum turn-off current versus inductance (for each channel) 100 A 10 C B I (A) 1 0,1 0,1 1 L (mH) 10 100 A: Tjstart = 150°C single pulse B: Tjstart = 100°C repetitive pulse C: Tjstart = 125°C repetitive pulse VIN, IL Demagnetization Demagnetization Demagnetization t Note: Values are generated with RL = 0 In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B. 25/34 Package and PC board thermal data VND5E160J-E 4 Package and PC board thermal data 4.1 PowerSSO-12 thermal data Figure 35. PowerSSO-12 PC board Note: Layout condition of Rth and Zth measurements (PCB: Double layer, Thermal Vias, FR4 area= 77mm x 86mm, PCB thickness=1.6mm, Cu thickness=70µm (front and back side), Copper areas: from minimum pad lay-out to 8cm2). Figure 36. Rthj-amb vs. PCB copper area in open box free air condition (one channel ON) RTHj_amb( ° C/ W) 70 65 60 55 50 45 40 0 2 4 6 PCB Cu heat sink area ( cm^ 2) 26/34 8 10 VND5E160J-E Package and PC board thermal data Figure 37. PowerSSO-12 thermal impedance junction ambient single pulse (one channel ON) ZTH ( ° C/ W) 100 Footprint 2 cm2 8 cm2 10 1 0,001 0,01 0,1 1 Time ( s) 10 100 1000 Equation 1: pulse calculation formula Z TH = R TH +Z THtp 1 – where = tP/T Figure 38. Thermal fitting model of a double channel HSD in PowerSSO-12 (b) b. The fitting model is a semplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered. 27/34 Package and PC board thermal data Table 13. 28/34 VND5E160J-E Thermal parameters Area/island (cm2) Footprint R1= R7 (°C/W) 1.2 R2= R8 (°C/W) 6 R3 (°C/W) 3 R4 (°C/W) 2 8 8 8 7 R5 (°C/W) 22 15 10 R6 (°C/W) 26 20 15 C1= C7 (W.s/°C) 0.0008 C2= C8 (W.s/°C) 0.0016 C3 (W.s/°C) 0.0166 C4 (W.s/°C) 0.2 0.1 0.1 C5 (W.s/°C) 0.27 0.8 1 C6 (W.s/°C) 3 6 9 VND5E160J-E Package and packing information 5 Package and packing information 5.1 ECOPACK® packages In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second-level interconnect. The category of Second-Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 5.2 Package mechanical data Figure 39. PowerSSO-12 package dimensions 29/34 Package and packing information Table 14. VND5E160J-E PowerSSO-12 mechanical data Symbol Millimeters Min. Max. A 1.250 1.620 A1 0.000 0.100 A2 1.100 1.650 B 0.230 0.410 C 0.190 0.250 D 4.800 5.000 E 3.800 4.000 e 0.800 H 5.800 6.200 h 0.250 0.500 L 0.400 1.270 k 0° 8° X 2.200 2.800 Y 2.900 3.500 ddd 30/34 Typ. 0.100 VND5E160J-E 5.3 Package and packing information Packing information Figure 40. PowerSSO-12 tube shipment (no suffix) B C A Base Q.ty 100 Bulk Q.ty 2000 Tube length (± 0.5) 532 A 1.85 B 6.75 C (± 0.1) 0.6 All dimensions are in mm. Figure 41. PowerSSO-12 tape and reel shipment (suffix “TR”) REEL DIMENSIONS Base Q.ty Bulk Q.ty A (max) B (min) C (± 0.2) F G (+ 2 / -0) N (min) T (max) 2500 2500 330 1.5 13 20.2 12.4 60 18.4 TAPE DIMENSIONS According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb. 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 (± 0.1) P D (± 0.05) D1 (min) F (± 0.1) K (max) P1 (± 0.1) 12 4 8 1.5 1.5 5.5 4.5 2 End All dimensions are in mm. Start Top cover tape No components Components 500mm min No components 500mm min Empty components pockets saled with cover tape. User direction of feed 31/34 Order codes 6 VND5E160J-E Order codes Table 15. Device summary Package PowerSSO-12 32/34 Order codes Tube Tape and reel VND5E160J-E VND5E160JTR-E VND5E160J-E 7 Revision history Revision history Table 16. Document revision history Date Revision Changes 28-Jun-2007 1 Initial release. 18-Feb-2008 2 Document restructured. Changed Description on cover page. Table 9: Open load detection (8V<VCC<18V): added td_vol parameter. Changed Section 2.4: Waveforms. Added Section 2.5: Electrical characteristics curves. Added Section 3.5: Maximum demagnetization energy (VCC = 13.5V). Added Section 4.1: PowerSSO-12 thermal data. 20-Sep-2013 3 Updated Disclaimer 33/34 VND5E160J-E Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 34/34