To all our customers Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp. The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself. Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices. Renesas Technology Corp. Customer Support Dept. April 1, 2003 <TRIAC <TRIAC > > MITSUBISHI MITSUBISHI SEMICONDUCTOR SEMICONDUCTOR BCR08AM BCR08AM LOW LOW POWER POWER USE USE PLANAR PLANAR PASSIVATION PASSIVATION TYPE TYPE BCR08AM OUTLINE DRAWING Dimensions in mm VOLTAGE CLASS TYPE NAME ➁ 12.5 MIN. ➂ ➀ T1 TERMINAL ➁ T2 TERMINAL ➂ GATE TERMINAL CIRCUMSCRIBE CIRCLE φ0.7 1.3 1.25 1.25 ➀ ➂ ➁ • IT (RMS) ..................................................................... 0.8A • VDRM ....................................................................... 600V • IRGT I, IRGT III ............................................................ 5mA 3.9 MAX. ➀ 5.0 MAX. φ5.0 MAX. JEDEC : TO-92 APPLICATION Electric fan, air cleaner, other general purpose control applications MAXIMUM RATINGS Symbol Voltage class Parameter Unit 12 VDRM Repetitive peak off-state voltage ✽1 600 V VDSM Non-repetitive peak off-state voltage ✽1 720 V Symbol Parameter Conditions IT (RMS) RMS on-state current Commercial frequency, sine full wave 360° conduction, Tc=56°C ITSM Surge on-state current 60Hz sinewave 1 full cycle, peak value, non-repetitive I2t I2t for fusing Value corresponding to 1 cycle of half wave 60Hz, surge on-state current PGM Peak gate power dissipation PG (AV) Average gate power dissipation VGM Ratings Unit 0.8 A 8 A 0.26 A2s 1 W 0.1 W Peak gate voltage 6 V IGM Peak gate current 0.5 A Tj Junction temperature –40 ~ +125 °C –40 ~ +125 °C 0.23 g Tstg Storage temperature — Weight Typical value ✽1. Gate open. Mar. 2002 MITSUBISHI SEMICONDUCTOR <TRIAC> BCR08AM LOW POWER USE PLANAR PASSIVATION TYPE ELECTRICAL CHARACTERISTICS Limits Symbol Parameter Test conditions Min. Typ. Max. Unit IDRM Repetitive peak off-state current Tj=125°C, VDRM applied — — 1.0 mA VTM On-state voltage Tc=25°C, ITM=1.2A, Instantaneous measurement — — 2.0 V — — 2.0 V — — 2.0 — — 5 mA mA VRGT I VRGT III IRGT I II Gate trigger voltage ✽2 Gate trigger Tj=25°C, VD=6V, RL=6Ω, RG=330Ω III II current ✽2 Tj=25°C, VD=6V, RL=6Ω, RG=330Ω V — — 5 VGD Gate non-trigger voltage Tj=125°C, VD=1/2VDRM 0.1 — — V Rth (j-c) Thermal resistance Junction to case ✽3 — — 60 °C/ W (dv/dt)c Critical-rate of rise of off-state commutating voltage Tj=125°C 0.5 — — V/µs IRGT III III ✽4 ✽2. Measurment using the gate trigger characteristics measurement circuit. ✽3. Case temperature is measured at the T2 terminal 1.5mm away from the molded case. ✽4. Test conditions of the critical-rate of rise of off-state commutating voltage is shown in the table below. Commutating voltage and current waveforms (inductive load) Test conditions SUPPLY VOLTAGE 1. Junction temperature Tj=125°C TIME MAIN CURRENT 2. Rate of decay of on-state commutating current (di/dt)c=–0.4A/ms (di/dt)c TIME MAIN VOLTAGE 3. Peak off-state voltage VD=400V TIME (dv/dt)c VD MAXIMUM ON-STATE CHARACTERISTICS 101 7 Tc = 25°C 5 3 2 100 7 5 3 2 10–1 1.0 1.5 2.0 2.5 3.0 3.5 ON-STATE VOLTAGE (V) 4.0 RATED SURGE ON-STATE CURRENT 10 SURGE ON-STATE CURRENT (A) ON-STATE CURRENT (A) PERFORMANCE CURVES 9 8 7 6 5 4 3 2 1 0 100 2 3 5 7 101 2 3 5 7 102 CONDUCTION TIME (CYCLES AT 60Hz) Mar. 2002 MITSUBISHI SEMICONDUCTOR <TRIAC> BCR08AM LOW POWER USE PLANAR PASSIVATION TYPE GATE TRIGGER CURRENT VS. JUNCTION TEMPERATURE GATE VOLTAGE (V) 3 2 VGM = 6V 101 7 5 3 2 PGM = 1W VGT 100 7 5 3 2 10–1 7 5 3 PG(AV) = 0.1W IGM = 0.5A IRGT I IRGT III VGD = 0.1V 3 5 7 101 2 3 5 7 102 2 3 5 7103 GATE TRIGGER CURRENT (Tj = t°C) GATE TRIGGER CURRENT (Tj = 25°C) 100 (%) GATE CHARACTERISTICS 103 7 5 3 2 102 7 5 3 2 101 –60 –40 –20 0 20 40 60 80 100 120 140 GATE CURRENT (mA) JUNCTION TEMPERATURE (°C) MAXIMUM TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS 3 2 102 7 5 3 2 101 –60 –40 –20 0 20 40 60 80 100 120 140 TRANSIENT THERMAL IMPEDANCE (°C/W) TYPICAL EXAMPLE 102 2 3 5 7 103 2 3 5 7 104 2 3 5 7105 3 2 JUNCTION TO AMBIENT 102 7 5 2 101 7 5 3 10–1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 CONDUCTION TIME (CYCLES AT 60Hz) MAXIMUM ON-STATE POWER DISSIPATION ALLOWABLE CASE TEMPERATURE VS. RMS ON-STATE CURRENT 2.0 160 1.8 140 1.6 1.4 1.2 1.0 0.8 360° CONDUCTION RESISTIVE, INDUCTIVE LOADS 0.6 0.4 0.2 0 0 JUNCTION TO CASE 3 JUNCTION TEMPERATURE (°C) 0.2 0.4 0.6 0.8 1.0 1.2 RMS ON-STATE CURRENT (A) 1.4 CASE TEMPERATURE (°C) ON-STATE POWER DISSIPATION (W) GATE TRIGGER VOLTAGE (Tj = t°C) GATE TRIGGER VOLTAGE (Tj = 25°C) 100 (%) GATE TRIGGER VOLTAGE VS. JUNCTION TEMPERATURE 103 7 5 TYPICAL EXAMPLE CURVES APPLY REGARDLESS OF CONDUCTION ANGLE RESISTIVE, INDUCTIVE LOADS 120 100 80 60 40 20 0 360° CONDUCTION RESISTIVE, INDUCTIVE LOADS 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 RMS ON-STATE CURRENT (A) Mar. 2002 MITSUBISHI SEMICONDUCTOR <TRIAC> BCR08AM LOW POWER USE 100 80 60 40 20 HOLDING CURRENT (Tj = t°C) HOLDING CURRENT (Tj = 25°C) 100 (%) 0 103 7 5 360° CONDUCTION RESISTIVE, INDUCTIVE LOADS 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 104 7 5 3 2 103 7 5 3 2 102 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C) HOLDING CURRENT VS. JUNCTION TEMPERATURE LACHING CURRENT VS. JUNCTION TEMPERATURE TYPICAL EXAMPLE 3 2 102 7 5 3 2 102 7 5 3 2 DISTRIBUTION T2+, G– TYPICAL EXAMPLE 101 7 5 3 2 100 7 5 3 2 T2– , G– TYPICAL EXAMPLE 10–1 –40 0 40 80 120 JUNCTION TEMPERATURE (°C) BREAKOVER VOLTAGE VS. JUNCTION TEMPERATURE BREAKOVER VOLTAGE VS. RATE OF RISE OF OFF-STATE VOLTAGE 160 TYPICAL EXAMPLE 100 (%) JUNCTION TEMPERATURE (°C) 140 160 140 120 100 80 60 40 20 0 –60 –40 –20 0 20 40 60 80 100120 140 JUNCTION TEMPERATURE (°C) BREAKOVER VOLTAGE (dv/dt = xV/µs ) BREAKOVER VOLTAGE (dv/dt = 1V/µs ) 100 (%) 105 7 TYPICAL EXAMPLE 5 3 2 RMS ON-STATE CURRENT (A) 101 –60 –40 –20 0 20 40 60 80 100 120 140 BREAKOVER VOLTAGE (Tj = t°C) BREAKOVER VOLTAGE (Tj = 25°C) REPETITIVE PEAK OFF-STATE CURRENT VS. JUNCTION TEMPERATURE 100 (%) REPETITIVE PEAK OFF-STATE CURRENT (Tj = t°C) REPETITIVE PEAK OFF-STATE CURRENT (Tj = 25°C) ALLOWABLE AMBIENT TEMPERATURE VS. RMS ON-STATE CURRENT 160 CURVES APPLY REGARDLESS OF CONDUCTION ANGLE 140 NATURAL CONVECTION NO FINS 120 LACHING CURRENT (mA) AMBIENT TEMPERATURE (°C) PLANAR PASSIVATION TYPE 160 TYPICAL EXAMPLE Tj = 125°C 120 I QUADRANT 100 80 60 40 III QUADRANT 20 0 100 2 3 5 7 101 2 3 5 7 102 2 3 5 7 103 RATE OF RISE OF OFF-STATE VOLTAGE (V/µs) Mar. 2002 MITSUBISHI SEMICONDUCTOR <TRIAC> BCR08AM LOW POWER USE GATE TRIGGER CURRENT VS. GATE CURRENT PULSE WIDTH 101 7 TYPICAL EXAMPLE 5 3 2 100 7 5 100 (%) COMMUTATION CHARACTERISTICS CONDITIONS VD = 200V IT = 1A τ = 500µs Tj = 125°C III QUADRANT MINIMUM CHARACTERISTICS VALUE 3 2 10–1 10–1 2 I QUADRANT 5 7 100 3 2 3 103 7 5 TYPICAL EXAMPLE IRGT I GATE TRIGGER CURRENT (tw) GATE TRIGGER CURRENT (DC) CRITICAL RATE OF RISE OF OFF-STATE COMMUTATING VOLTAGE (V/µs) PLANAR PASSIVATION TYPE 3 IRGT III 2 102 7 5 3 2 101 0 10 5 7 101 2 3 5 7 101 2 3 5 7 102 GATE CURRENT PULSE WIDTH (µs) RATE OF DECAY OF ON-STATE COMMUTATING CURRENT (A/ms) GATE TRIGGER CHARACTERISTICS TEST CIRCUITS 6Ω 6Ω A 6V V RG TEST PROCEDURE II A 6V V RG TEST PROCEDURE III Mar. 2002