EMF33 Transistors Power management, Dual-chip Bipolar Transistor EMF33 zApplications Power management circuit zDimensions (Unit : mm) EMT6 1.6 0.5 1.0 0.5 0.5 zFeatures 1) DTB513Z (digital transistor) and 2SK3019 (MOS FET) are housed independently in the EMT6 package. 2) Power switching circuit in a single package. 3) Mounting cost and area can be cut in half. (6) (5) (4) 1.6 1.2 1pin mark (1) (2) (3) 0.22 0.13 Each lead has same dimensions Abbreviated symbol : F33 zStructure Epitaxial Plannar Silicon Transistor zPackaging specifications Package Type zEquivalent circuit Taping Code T2R Basic ordering unit (pieces) 8000 (6) (5) (4) ∗1 EMF33 Tr2 ∗2 Tr1 zAbsolute maximum ratings (Ta=25°C) <Tr1> R2 Parameter Supply voltage Input voltage Collector current Symbol VCC VIN IC(max) ∗ Limits −12 −10 to +5 −500 Unit V V mA ∗ Characteristics of built-in transistor. R1 (1) (2) ∗1 ESD protection diode ∗2 Body diode (3) (1) Emitter (2) Base (3) Drain (4) Source (5) Gate (6) Collector Tr1 : R1/R2=1kΩ/10kΩ Tr2 : MOS FET <Tr2> Parameter Drain-source voltage Gate-source voltage Continous Pulsed Continous Reverse drain current Pulsed Drain current Symbol VDSS VGSS ID IDP IDR IDRP ∗ ∗ Limits 30 ±20 100 200 100 200 Unit V V mA mA mA mA ∗ PW≤10ms DUTY CYCLE≤50% <Tr1, Tr2 in common> Parameter Symbol PD Power dissipation Junction temperature Range of storage temperature Tj Tstg ∗ Limits 150 120 150 −55 to +150 Unit mW / TOTAL mW / ELEMENT °C °C ∗ Each terminal mounted on a recommended land. Rev.A 1/4 EMF33 Transistors zElectrical characteristics (Ta=25°C) <Tr1> Parameter Input voltage Output voltage Input current Output current DC current gain Transition frequency Input resistance Resistance ratio Symbol VI(off) VI(on) VO(on) II IO(off) GI fT ∗ R1 R2/R1 Min. − −2.5 − − − 140 − 0.7 8 Typ. − − −60 − − Max. −0.3 − −300 −6.4 −0.5 − 260 1 10 − − 1.3 12 Min. − 30 − 0.8 − − 20 − − − − − − − Typ. − − − − Max. ±1 − 1.0 1.5 5 7 − 13 9 4 15 35 80 80 8 13 − − − − − − − − Unit V V mV mA uA − − kΩ − Conditions VCC= −5V, IO= −100µA VO= −0.3V, IO= −20mA VO= −100mA, II= −5mA VI= −5V VCC= −12V, VI= 0V VO= −5V, IO= −100mA VCE= −10V, IE= 5mA, f=100MHz Unit µA − µA V Ω Ω ms pF pF pF ns ns ns ns Conditions VGS= ±20V, VDS=0V ID= 10µA, VGS=0A VDS= 30V, VGS=0V VDS= 3V, ID=100µA ID= 10mA, VGS= 4V ID= 1mA, VGS= 2.5V VDS= 3V, ID= 10mA ∗ Characteristics of built-in transistor. <Tr2> Gate-source leakage Drain-source breakdown voltage Zero gate voltage drain current Gate-threshold voltage Parameter Symbol IGSS V(BR)DSS IDSS VGS(th) Static drain-source on-resistance RDS(on) Forward transfer admittance Input capacitance Output capacitance Reverse transfer capacitance Turn-on delay time Rise time Turn-off delay time Fall time Yfs Ciss Coss Crss td(on) tr td(off) tf VDS= 5V VGS= 0V f=1MHz ID= 10mA VDD= 5V VGS= 5V RL= 500Ω RGS= 10Ω Rev.A 2/4 EMF33 Transistors zElectrical characteristic curves <Tr1> II=5mA II=4.5mA II=2.5mA - 350 II=2mA - 300 II=1.5mA - 250 - 200 II=1mA - 150 II=0.5mA - 100 - 50 -1 Ta=-40℃ Ta=25℃ Ta=125 II=0 0 -1 0 -0.1 - 0.1 -2 - 10 Ta=125℃ Ta=25℃ Ta=-40℃ - 1 - 0.1 - 0.01 -1 OUTPUT VOLTAGE : VO(V) - 10 -100 -1000 0 OUTPUT CURRENT : IO (mA) Fig.1 Output Current vs. Output Voltage - 0.5 -1 -1.5 -2 INTPUT VOLTAGE : VI (off) (V) Fig.2 Input Voltage vs. Output Current Fig.3 Output Current vs. Input Voltage -1 1000 VO=5V pulsed OUTPUT VOLTAGE : VO(on) (V) Ta=25℃ Ta=-40℃ 10 1 - 0.1 IO/II=20/1 pulsed Ta=125℃ 100 -1 - 10 - 100 Ta=125℃ - 0.1 Ta=25℃ Ta=-40℃ - 0.01 -1 -1000 - 10 - 100 -1000 OUTPUT CURRENT : IO (mA) OUTPUT CURRENT : IO (mA) Fig.4 DC Current Gain vs. Output Current Fig.5 Output Voltage vs. Output Current 0.15 200m 4V 3V 100m Ta=25°C Pulsed DRAIN CURRENT : ID (A) 3.5V 0.1 2.5V 0.05 2V 1 2 3 VDS=3V Pulsed 50m 20m 10m 5m 2m Ta=125°C 75°C 25°C −25°C 1m 0.5m 0.2m VGS=1.5V 0 0 GATE THRESHOLD VOLTAGE : VGS(th) (V) <Tr2> DRAIN CURRENT : ID (A) DC CURRENT GAIN : GI VCC=5V pulsed Vo=0.3V pulsed INPUT VOLTAGE : VI (on) (V) OUTPUT CURRENT : IO (mA) - 400 - 100 -10 II=4mA II=3.5mA II=3mA Ta=25℃ pulsed - 450 OUTPUT CURRENT : IO (mA) - 500 4 DRAIN-SOURCE VOLTAGE : VDS (V) Fig.1 Typical output characteristics 5 0.1m 0 1 2 3 4 GATE-SOURCE VOLTAGE : VGS (V) Fig.2 Typical transfer characteristics 2 VDS=3V ID=0.1mA Pulsed 1.5 1 0.5 0 −50 −25 0 25 50 75 100 125 150 CHANNEL TEMPERATURE : Tch (°C) Fig.3 Gate threshold voltage vs. channel temperature Rev.A 3/4 EMF33 Transistors 50 Ta=125°C 75°C 25°C −25°C 10 5 2 1 0.5 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 20 10 5 2 1 0.5 0.001 0.002 0.5 DRAIN CURRENT : ID (A) Fig.4 Static drain-source on-state resistance vs. drain current (Ι) 0.02 0.05 0.1 0.5 6 ID=50mA 4 3 2 VDS=3V Pulsed Ta=−25°C 25°C 75°C 125°C 0.1 0.05 0.02 0.01 0.005 1 0.002 0 −50 −25 0.001 0.0001 0.0002 0 25 50 75 100 125 150 0.0005 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 50 CAPACITANCE : C (pF) 20m VGS=4V 0V 5m 2m 1m 0.5m Ciss Coss Crss 2 15 20 VGS=0V Pulsed 100m 50m 20m Ta=125°C 75°C 25°C −25°C 10m 5m 2m 1m 0.5m 0.2m 0 0.5 1 1.5 SOURCE-DRAIN VOLTAGE : VSD (V) 10 5 10 0.1m 0.5 Fig.9 Reverse drain current vs. source-drain voltage (Ι) 1000 Ta=25°C f=1MHZ VGS=0V 20 50m 5 200m Fig.8 Forward transfer admittance vs. drain current Ta=25°C Pulsed 100m ID=0.05A 0 0 DRAIN CURRENT : ID (A) Fig.7 Static drain-source on-state resistance vs. channel temperature 200m ID=0.1A Fig.6 Static drain-source on-state resistance vs. gate-source voltage 1 Ta=25°C VDD=5V VGS=5V RG=10Ω Pulsed tf 500 SWITHING TIME : t (ns) ID=100mA 5 5 GATE-SOURCE VOLTAGE : VGS (V) 0.2 7 10m 0.2 0.5 VGS=4V Pulsed CHANNEL TEMPERATURE : Tch (°C) REVERSE DRAIN CURRENT : IDR (A) 0.01 10 Fig.5 Static drain-source on-state resistance vs. drain current (ΙΙ) FORWARD TRANSFER ADMITTANCE : |Yfs| (S) STATIC DRAIN-SOURCE ON-STATE RESISTANCE : RDS(on) (Ω) 9 8 0.005 Ta=25°C Pulsed DRAIN CURRENT : ID (A) REVERSE DRAIN CURRENT : IDR (A) 20 15 VGS=2.5V Pulsed Ta=125°C 75°C 25°C −25°C STATIC DRAIN-SOURCE ON-STATE RESISTANCE : RDS(on) (Ω) VGS=4V Pulsed STATIC DRAIN-SOURCE ON-STATE RESISTANCE : RDS(on) (Ω) STATIC DRAIN-SOURCE ON-STATE RESISTANCE : RDS(on) (Ω) 50 td(off) 200 100 50 20 tr td(on) 10 5 0.2m 0.1m 0 0.5 1 1.5 SOURCE-DRAIN VOLTAGE : VSD (V) Fig.10 Reverse drain current vs. source-drain voltage (ΙΙ) 0.5 0.1 0.2 0.5 1 2 5 10 20 DRAIN-SOURCE VOLTAGE : VDS (V) Fig.11 Typical capacitance vs. drain-source voltage 50 2 0.1 0.2 0.5 1 2 5 10 20 50 100 DRAIN CURRENT : ID (mA) Fig.12 Switching characteristics Rev.A 4/4 Appendix Notes No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD. The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered. Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set. Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices. Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer. Products listed in this document are no antiradiation design. The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance. It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact your nearest sales office. ROHM Customer Support System www.rohm.com Copyright © 2008 ROHM CO.,LTD. THE AMERICAS / EUROPE / ASIA / JAPAN Contact us : webmaster@ rohm.co. jp 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan TEL : +81-75-311-2121 FAX : +81-75-315-0172 Appendix1-Rev2.0