ROHM EMF33

EMF33
Transistors
Power management,
Dual-chip Bipolar Transistor
EMF33
zApplications
Power management circuit
zDimensions (Unit : mm)
EMT6
1.6
0.5
1.0
0.5 0.5
zFeatures
1) DTB513Z (digital transistor) and 2SK3019 (MOS FET) are
housed independently in the EMT6 package.
2) Power switching circuit in a single package.
3) Mounting cost and area can be cut in half.
(6) (5) (4)
1.6
1.2
1pin mark
(1) (2) (3)
0.22
0.13
Each lead has same dimensions
Abbreviated symbol : F33
zStructure
Epitaxial Plannar Silicon Transistor
zPackaging specifications
Package
Type
zEquivalent circuit
Taping
Code
T2R
Basic ordering unit (pieces)
8000
(6)
(5)
(4)
∗1
EMF33
Tr2
∗2
Tr1
zAbsolute maximum ratings (Ta=25°C)
<Tr1>
R2
Parameter
Supply voltage
Input voltage
Collector current
Symbol
VCC
VIN
IC(max)
∗
Limits
−12
−10 to +5
−500
Unit
V
V
mA
∗ Characteristics of built-in transistor.
R1
(1)
(2)
∗1 ESD protection diode
∗2 Body diode
(3)
(1) Emitter
(2) Base
(3) Drain
(4) Source
(5) Gate
(6) Collector
Tr1 : R1/R2=1kΩ/10kΩ
Tr2 : MOS FET
<Tr2>
Parameter
Drain-source voltage
Gate-source voltage
Continous
Pulsed
Continous
Reverse drain current
Pulsed
Drain current
Symbol
VDSS
VGSS
ID
IDP
IDR
IDRP
∗
∗
Limits
30
±20
100
200
100
200
Unit
V
V
mA
mA
mA
mA
∗ PW≤10ms DUTY CYCLE≤50%
<Tr1, Tr2 in common>
Parameter
Symbol
PD
Power dissipation
Junction temperature
Range of storage temperature
Tj
Tstg
∗
Limits
150
120
150
−55 to +150
Unit
mW / TOTAL
mW / ELEMENT
°C
°C
∗ Each terminal mounted on a recommended land.
Rev.A
1/4
EMF33
Transistors
zElectrical characteristics (Ta=25°C)
<Tr1>
Parameter
Input voltage
Output voltage
Input current
Output current
DC current gain
Transition frequency
Input resistance
Resistance ratio
Symbol
VI(off)
VI(on)
VO(on)
II
IO(off)
GI
fT ∗
R1
R2/R1
Min.
−
−2.5
−
−
−
140
−
0.7
8
Typ.
−
−
−60
−
−
Max.
−0.3
−
−300
−6.4
−0.5
−
260
1
10
−
−
1.3
12
Min.
−
30
−
0.8
−
−
20
−
−
−
−
−
−
−
Typ.
−
−
−
−
Max.
±1
−
1.0
1.5
5
7
−
13
9
4
15
35
80
80
8
13
−
−
−
−
−
−
−
−
Unit
V
V
mV
mA
uA
−
−
kΩ
−
Conditions
VCC= −5V, IO= −100µA
VO= −0.3V, IO= −20mA
VO= −100mA, II= −5mA
VI= −5V
VCC= −12V, VI= 0V
VO= −5V, IO= −100mA
VCE= −10V, IE= 5mA, f=100MHz
Unit
µA
−
µA
V
Ω
Ω
ms
pF
pF
pF
ns
ns
ns
ns
Conditions
VGS= ±20V, VDS=0V
ID= 10µA, VGS=0A
VDS= 30V, VGS=0V
VDS= 3V, ID=100µA
ID= 10mA, VGS= 4V
ID= 1mA, VGS= 2.5V
VDS= 3V, ID= 10mA
∗ Characteristics of built-in transistor.
<Tr2>
Gate-source leakage
Drain-source breakdown voltage
Zero gate voltage drain current
Gate-threshold voltage
Parameter
Symbol
IGSS
V(BR)DSS
IDSS
VGS(th)
Static drain-source on-resistance
RDS(on)
Forward transfer admittance
Input capacitance
Output capacitance
Reverse transfer capacitance
Turn-on delay time
Rise time
Turn-off delay time
Fall time
Yfs
Ciss
Coss
Crss
td(on)
tr
td(off)
tf
VDS= 5V
VGS= 0V
f=1MHz
ID= 10mA
VDD= 5V
VGS= 5V
RL= 500Ω
RGS= 10Ω
Rev.A
2/4
EMF33
Transistors
zElectrical characteristic curves
<Tr1>
II=5mA II=4.5mA
II=2.5mA
- 350
II=2mA
- 300
II=1.5mA
- 250
- 200
II=1mA
- 150
II=0.5mA
- 100
- 50
-1
Ta=-40℃
Ta=25℃
Ta=125
II=0
0
-1
0
-0.1
- 0.1
-2
- 10
Ta=125℃
Ta=25℃
Ta=-40℃
- 1
- 0.1
- 0.01
-1
OUTPUT VOLTAGE : VO(V)
- 10
-100
-1000
0
OUTPUT CURRENT : IO (mA)
Fig.1 Output Current vs. Output Voltage
- 0.5
-1
-1.5
-2
INTPUT VOLTAGE : VI (off) (V)
Fig.2 Input Voltage vs. Output Current
Fig.3 Output Current vs. Input Voltage
-1
1000
VO=5V
pulsed
OUTPUT VOLTAGE : VO(on) (V)
Ta=25℃
Ta=-40℃
10
1
- 0.1
IO/II=20/1
pulsed
Ta=125℃
100
-1
- 10
- 100
Ta=125℃
- 0.1
Ta=25℃
Ta=-40℃
- 0.01
-1
-1000
- 10
- 100
-1000
OUTPUT CURRENT : IO (mA)
OUTPUT CURRENT : IO (mA)
Fig.4 DC Current Gain vs. Output Current
Fig.5 Output Voltage vs. Output Current
0.15
200m
4V
3V
100m
Ta=25°C
Pulsed
DRAIN CURRENT : ID (A)
3.5V
0.1
2.5V
0.05
2V
1
2
3
VDS=3V
Pulsed
50m
20m
10m
5m
2m
Ta=125°C
75°C
25°C
−25°C
1m
0.5m
0.2m
VGS=1.5V
0
0
GATE THRESHOLD VOLTAGE : VGS(th) (V)
<Tr2>
DRAIN CURRENT : ID (A)
DC CURRENT GAIN : GI
VCC=5V
pulsed
Vo=0.3V
pulsed
INPUT VOLTAGE : VI (on) (V)
OUTPUT CURRENT : IO (mA)
- 400
- 100
-10
II=4mA
II=3.5mA
II=3mA
Ta=25℃
pulsed
- 450
OUTPUT CURRENT : IO (mA)
- 500
4
DRAIN-SOURCE VOLTAGE : VDS (V)
Fig.1 Typical output characteristics
5
0.1m
0
1
2
3
4
GATE-SOURCE VOLTAGE : VGS (V)
Fig.2 Typical transfer characteristics
2
VDS=3V
ID=0.1mA
Pulsed
1.5
1
0.5
0
−50 −25
0
25
50
75
100
125 150
CHANNEL TEMPERATURE : Tch (°C)
Fig.3 Gate threshold voltage vs.
channel temperature
Rev.A
3/4
EMF33
Transistors
50
Ta=125°C
75°C
25°C
−25°C
10
5
2
1
0.5
0.001 0.002
0.005
0.01
0.02
0.05
0.1
0.2
20
10
5
2
1
0.5
0.001 0.002
0.5
DRAIN CURRENT : ID (A)
Fig.4 Static drain-source on-state
resistance vs. drain current (Ι)
0.02
0.05
0.1
0.5
6
ID=50mA
4
3
2
VDS=3V
Pulsed
Ta=−25°C
25°C
75°C
125°C
0.1
0.05
0.02
0.01
0.005
1
0.002
0
−50 −25
0.001
0.0001 0.0002
0
25
50
75
100 125
150
0.0005 0.001 0.002
0.005 0.01 0.02
0.05 0.1 0.2
50
CAPACITANCE : C (pF)
20m
VGS=4V
0V
5m
2m
1m
0.5m
Ciss
Coss
Crss
2
15
20
VGS=0V
Pulsed
100m
50m
20m
Ta=125°C
75°C
25°C
−25°C
10m
5m
2m
1m
0.5m
0.2m
0
0.5
1
1.5
SOURCE-DRAIN VOLTAGE : VSD (V)
10
5
10
0.1m
0.5
Fig.9 Reverse drain current vs.
source-drain voltage (Ι)
1000
Ta=25°C
f=1MHZ
VGS=0V
20
50m
5
200m
Fig.8 Forward transfer
admittance vs. drain current
Ta=25°C
Pulsed
100m
ID=0.05A
0
0
DRAIN CURRENT : ID (A)
Fig.7 Static drain-source on-state
resistance vs. channel
temperature
200m
ID=0.1A
Fig.6 Static drain-source
on-state resistance vs.
gate-source voltage
1
Ta=25°C
VDD=5V
VGS=5V
RG=10Ω
Pulsed
tf
500
SWITHING TIME : t (ns)
ID=100mA
5
5
GATE-SOURCE VOLTAGE : VGS (V)
0.2
7
10m
0.2
0.5
VGS=4V
Pulsed
CHANNEL TEMPERATURE : Tch (°C)
REVERSE DRAIN CURRENT : IDR (A)
0.01
10
Fig.5 Static drain-source on-state
resistance vs. drain current (ΙΙ)
FORWARD TRANSFER
ADMITTANCE : |Yfs| (S)
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : RDS(on) (Ω)
9
8
0.005
Ta=25°C
Pulsed
DRAIN CURRENT : ID (A)
REVERSE DRAIN CURRENT : IDR (A)
20
15
VGS=2.5V
Pulsed
Ta=125°C
75°C
25°C
−25°C
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : RDS(on) (Ω)
VGS=4V
Pulsed
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : RDS(on) (Ω)
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : RDS(on) (Ω)
50
td(off)
200
100
50
20
tr
td(on)
10
5
0.2m
0.1m
0
0.5
1
1.5
SOURCE-DRAIN VOLTAGE : VSD (V)
Fig.10 Reverse drain current vs.
source-drain voltage (ΙΙ)
0.5
0.1
0.2
0.5
1
2
5
10
20
DRAIN-SOURCE VOLTAGE : VDS (V)
Fig.11 Typical capacitance vs.
drain-source voltage
50
2
0.1 0.2
0.5
1
2
5
10
20
50
100
DRAIN CURRENT : ID (mA)
Fig.12 Switching characteristics
Rev.A
4/4
Appendix
Notes
No technical content pages of this document may be reproduced in any form or transmitted by any
means without prior permission of ROHM CO.,LTD.
The contents described herein are subject to change without notice. The specifications for the
product described in this document are for reference only. Upon actual use, therefore, please request
that specifications to be separately delivered.
Application circuit diagrams and circuit constants contained herein are shown as examples of standard
use and operation. Please pay careful attention to the peripheral conditions when designing circuits
and deciding upon circuit constants in the set.
Any data, including, but not limited to application circuit diagrams information, described herein
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of
whatsoever nature in the event of any such infringement, or arising from or connected with or related
to the use of such devices.
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
otherwise dispose of the same, no express or implied right or license to practice or commercially
exploit any intellectual property rights or other proprietary rights owned or controlled by
ROHM CO., LTD. is granted to any such buyer.
Products listed in this document are no antiradiation design.
The products listed in this document are designed to be used with ordinary electronic equipment or devices
(such as audio visual equipment, office-automation equipment, communications devices, electrical
appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level
of reliability and the malfunction of which would directly endanger human life (such as medical
instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers
and other safety devices), please be sure to consult with our sales representative in advance.
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance
of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow
for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in
order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM
cannot be held responsible for any damages arising from the use of the products under conditions out of the
range of the specifications or due to non-compliance with the NOTES specified in this catalog.
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact your nearest sales office.
ROHM Customer Support System
www.rohm.com
Copyright © 2008 ROHM CO.,LTD.
THE AMERICAS / EUROPE / ASIA / JAPAN
Contact us : webmaster@ rohm.co. jp
21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
TEL : +81-75-311-2121
FAX : +81-75-315-0172
Appendix1-Rev2.0