The following document contains information on Cypress products. S6E2C1 Series ® 32-bit ARM Cortex®-M4F based Microcontroller S6E2C18H0A/S6E2C19H0A/S6E2C1AH0A/ S6E2C18J0A/S6E2C19J0A/S6E2C1AJ0A/ S6E2C18L0A/S6E2C19L0A/S6E2C1AL0A Data Sheet (Full Production) Notice to Readers: This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the valid combinations offered may occur. Publication Number S6E2C1_DS709-00014 CONFIDENTIAL Revision 1.0 Issue Date April 22, 2015 D a t a S h e e t Notice On Data Sheet Designations Spansion Inc. issues data sheets with advance information or preliminary designations to advise readers of product information or intended specifications throughout the product life cycle, including development, qualification, initial production, and full production. In all cases, however, readers are encouraged to verify that they have the latest information before finalizing their design. The following descriptions of Spansion data sheet designations are presented here to highlight their presence and definitions. Advance Information The Advance Information designation indicates that Spansion Inc. is developing one or more specific products, but has not committed any design to production. Information presented in a document with this designation is likely to change, and in some cases, development on the product may discontinue. Spansion Inc. therefore places the following conditions upon Advance Information content: “This document contains information on one or more products under development at Spansion Inc. The information is intended to help you evaluate this product. Do not design in this product without contacting the factory. Spansion Inc. reserves the right to change or discontinue work on this proposed product without notice.” Preliminary The Preliminary designation indicates that the product development has progressed such that a commitment to production has taken place. This designation covers several aspects of the product life cycle, including product qualification, initial production, and the subsequent phases in the manufacturing process that occur before full production begins. Changes to the technical specifications presented in a Preliminary document should be expected while keeping these aspects of production under consideration. Spansion places the following conditions upon Preliminary content: “This document states the current technical specifications regarding the Spansion product(s) described herein. The Preliminary status of this document indicates that product qualification has been completed and that initial production has begun. Due to the phases of the manufacturing process that require maintaining efficiency and quality, this document may be revised by subsequent versions or modifications to accommodate changes in technical specifications.” Combination Some data sheets contain a combination of products with different designations (Advance Information, Preliminary, or Full Production). This type of document distinguishes these products and their designations wherever necessary, typically on the first page, the ordering information page, and pages with the DC Characteristics table and the AC Erase and Program table (in the table notes). The disclaimer on the first page refers the reader to the notice on this page. Full Production (No Designation on Document) When a product has been in production for a period of time such that no changes or only nominal changes are expected, the Preliminary designation is removed from the data sheet. Nominal changes may include those affecting the number of ordering part numbers available, such as the addition or deletion of a speed option, temperature range, package type, or VIO range. Changes may also include those needed to clarify a description or to correct a typographical error or incorrect specification. Spansion Inc. applies the following conditions to documents in this category: “This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the valid combinations offered may occur.” Questions regarding these document designations may be directed to your local sales office. 2 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 S6E2C1 Series 32-bit ARM® Cortex®-M4F based Microcontroller S6E2C18H0A/S6E2C19H0A/S6E2C1AH0A/ S6E2C18J0A/S6E2C19J0A/S6E2C1AJ0A/ S6E2C18L0A/S6E2C19L0A/S6E2C1AL0A Data Sheet (Full Production) 1. Description S6E2C1 Series is a family of highly integrated 32-bit microcontrollers dedicated for embedded controllers with high performance and competitive cost. This series is based on the ARM Cortex-M4F processor with on-chip flash memory and SRAM, and has peripherals such as motor control timers, A/D converters, and communications interfaces (USB, CAN, UART, 2 CSIO (SPI), I C, LIN). The products that are described in this data sheet are placed into TYPE3-M4 product categories FM4 Family Peripheral Manual Main Part (MN709-00001). Note: − ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries. Publication Number S6E2C1_DS709-00014 Revision 1.0 Issue Date April 22, 2015 This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the valid combinations offered may occur. CONFIDENTIAL D a t a S h e e t Table of Contents 1. 2. 3. 4. 5. 6. 7. 8. Description ............................................................................................................................................... 3 Features .................................................................................................................................................... 6 Product Lineup ...................................................................................................................................... 13 Packages ................................................................................................................................................ 15 Pin Assignments.................................................................................................................................... 16 Pin Descriptions .................................................................................................................................... 20 I/O Circuit Type ...................................................................................................................................... 71 Handling Precautions ............................................................................................................................ 79 8.1 Precautions for Product Design .................................................................................................... 79 8.2 Precautions for Package Mounting ............................................................................................... 80 8.3 Precautions for Use Environment ................................................................................................. 82 9. Handling Devices ................................................................................................................................... 83 10. Block Diagram........................................................................................................................................ 86 11. Memory Size ........................................................................................................................................... 87 12. Memory Map ........................................................................................................................................... 87 13. Pin Status In Each CPU State ............................................................................................................... 93 14. Electrical Characteristics .................................................................................................................... 101 14.1 Absolute Maximum Ratings ........................................................................................................ 101 14.2 Recommended Operating Conditions......................................................................................... 103 14.3 DC Characteristics...................................................................................................................... 107 14.3.1 Current Rating ................................................................................................................. 107 14.3.2 Pin Characteristics .......................................................................................................... 117 14.4 AC Characteristics ...................................................................................................................... 119 14.4.1 Main Clock Input Characteristics ..................................................................................... 119 14.4.2 Sub Clock Input Characteristics ...................................................................................... 120 14.4.3 Built-In CR Oscillation Characteristics ............................................................................. 120 14.4.4 Operating Conditions of Main PLL (in the case of using main clock for input clock of PLL) ....................................................................................................................... 121 2 14.4.5 Operating Conditions of I S PLL (in the case of using main clock for input clock of PLL) ....................................................................................................................... 121 14.4.6 Operating Conditions of Main PLL (in the case of using built-in High-speed CR clock for input clock of Main PLL) ............................................................................................. 122 14.4.7 Reset Input Characteristics ............................................................................................. 122 14.4.8 Power-On Reset Timing .................................................................................................. 123 14.4.9 GPIO Output Characteristics ........................................................................................... 123 14.4.10 External Bus Timing...................................................................................................... 124 14.4.11 Base Timer Input Timing ............................................................................................... 135 14.4.12 CSIO (SPI) Timing ........................................................................................................ 136 14.4.13 External Input Timing .................................................................................................... 169 14.4.14 Quadrature Position/Revolution Counter Timing........................................................... 170 2 14.4.15 I C Timing ..................................................................................................................... 172 14.4.16 SD Card Interface Timing ............................................................................................. 174 14.4.17 ETM/ HTM Timing......................................................................................................... 176 14.4.18 JTAG Timing ................................................................................................................. 177 2 14.4.19 I S Timing ..................................................................................................................... 178 14.4.20 High-Speed Quad SPI Timing....................................................................................... 183 14.5 12-bit A/D Converter ................................................................................................................... 185 14.6 12-bit D/A Converter ................................................................................................................... 188 14.7 Low-Voltage Detection Characteristics ....................................................................................... 189 14.7.1 Low-Voltage Detection Reset .......................................................................................... 189 14.7.2 Interrupt of Low-Voltage Detection .................................................................................. 189 4 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t 14.8 MainFlash Memory Write/Erase Characteristics ......................................................................... 190 14.9 Dual Flash Memory Write/Erase Characteristics ........................................................................ 190 14.10 Standby Recovery Time............................................................................................................ 191 14.10.1 Recovery cause: Interrupt/WKUP ................................................................................. 191 14.10.2 Recovery Cause: Reset ................................................................................................ 193 15. Ordering Information ........................................................................................................................... 195 16. Package Dimensions ........................................................................................................................... 196 17. Major Changes ..................................................................................................................................... 200 April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 5 D a t a S h e e t 2. Features 32-bit ARM Cortex-M4F Core Processor version: r0p1 Up to 200 MHz frequency operation FPU built-in Support DSP instructions Memory protection unit (MPU): improves the reliability of an embedded system Integrated nested vectored interrupt controller (NVIC): 1 NMI (non-maskable interrupt) and 128 peripheral interrupts and 16 priority levels 24-bit system timer (Sys Tick): system timer for OS task management On-chip Memories Flash memory This series is based on two independent on-chip flash memories. − Up to 2048 Kbytes − Built-in flash accelerator system with 16 Kbytes trace buffer memory − Read access to flash memory that can be achieved without wait-cycle up to an operating frequency of 72 MHz. Even at the operating frequency more than 72 MHz, an equivalent single cycle access to flash memory can be obtained by the flash accelerator system. − Security function for code protection SRAM This is composed of three independent SRAMs (SRAM0, SRAM1 and SRAM2). SRAM0 is connected to the I-code bus or D-code bus of Cortex-M4F core. SRAM1 and SRAM2 are connected to system bus of Cortex-M4F core. − SRAM0: up to 192 Kbytes − SRAM1: 32 Kbytes − SRAM2: 32 Kbytes External Bus Interface Supports SRAM, NOR, NAND flash and SDRAM device Up to 9 chip selects CS0 to CS8 (CS8 is only for SDRAM) 8-/16-/32-bit data width Up to 25-bit address bus Supports address/data multiplexing Supports external RDY function Supports scramble function Possible to set the validity/invalidity of the scramble function for the external areas 0x6000_0000 to 0xDFFF_FFFF in 4 Mbytes units. Possible to set two kinds of the scramble key Note: − 6 CONFIDENTIAL It is necessary to use the Spansion provided software library to use the scramble function. S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Multi-function Serial Interface (Max 16 channels) Separate 64 byte receive and transmit FIFO buffers for channels 0 to 7. Operation mode is selectable for each channel from the following: − UART − CSIO (SPI) − LIN − I2 C UART − Full-duplex double buffer − Selection with or without parity supported − Built-in dedicated baud rate generator − External clock available as a serial clock − Various error detect functions available (parity errors, framing errors, and overrun errors) CSIO (SPI) − Full-duplex double buffer − Built-in dedicated baud rate generator − Overrun error detect function available − Serial chip select function (ch 6 and ch 7 only) − Supports high-speed SPI (ch 4 and ch 6 only) − Data length 5 to 16-bit LIN − LIN protocol Rev.2.1 supported − Full-duplex double buffer − Master/slave mode supported − LIN break field generation (can change to 13- to 16-bit length) − LIN break delimiter generation (can change to 1- to 4-bit length) − Various error detect functions available (parity errors, framing errors, and overrun errors) I2 C − Standard mode (Max 100 kbps)/Fast mode (Max 400 kbps) supported − Fast mode Plus (Fm+) (Max 1000 kbps, only for ch 3 = ch A and ch 7 = ch B) supported DMA Controller (Eight channels) DMA controller has an independent bus, so the CPU and DMA controller can process simultaneously. Eight independently configured and operated channels Transfer can be started by software or request from the built-in peripherals Transfer address area: 32-bit (4 GB) Transfer mode: Block transfer/Burst transfer/Demand transfer Transfer data type: bytes/half-word/word Transfer block count: 1 to 16 Number of transfers: 1 to 65536 DSTC (Descriptor System data Transfer Controller; 256 Channels) The DSTC can transfer data at high-speed without going via the CPU. The DSTC adopts the descriptor system and, following the specified contents of the descriptor that has already been constructed on the memory, can access directly the memory/peripheral device and perform the data-transfer operation. It supports the software activation, the hardware activation, and the chain activation functions. April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 7 D a t a S h e e t A/D Converter (Max 32 channels) 12-bit A/D Converter − Successive approximation type − Built-in three units − Conversion time: 0.5 μs at 5 V − Priority conversion available (priority at two levels) − Scanning conversion mode − Built-in FIFO for conversion data storage (for SCAN conversion: 16 steps, for priority conversion: 4 steps) D/A Converter (Max 2 Channels) R-2R type 12-bit resolution Base Timer (Max 16 Channels) Operation mode is selected from the following for each channel: 16-bit PWM timer 16-bit PPG timer 16-/32-bit reload timer 16-/32-bit PWC timer General Purpose I/O Port This series can use its pins as general purpose I/O ports when they are not used for external bus or peripherals; moreover, the port relocate function is built in. It can set the I/O port to which the peripheral function can be allocated. 8 CONFIDENTIAL Capable of pull-up control per pin Capable of reading pin level directly Built-in port-relocate function Up to 120 high-speed general-purpose I/O ports in 144 pin package Some pins 5V tolerant I/O. See 6. Pin Descriptions and 7. I/O Circuit Type for the corresponding pins. S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Multi-function Timer (Max three Units) The multi-function timer is composed of the following blocks: Minimum resolution: 5.00 ns 16-bit free-run timer × 3 ch/unit Input capture × 4 ch/unit Output compare × 6 ch/unit A/D activation compare × 6 ch/unit Waveform generator × 3 ch/unit 16-bit PPG timer × 3 ch/unit The following functions can be used to achieve the motor control: PWM signal output function DC chopper waveform output function Dead time function Input capture function A/D convertor activate function DTIF (motor emergency stop) interrupt function Real-Time Clock (RTC) The real-time clock can count year, month, day, hour, minute, second, or day of the week from 00 to 99. Interrupt function with specifying date and time (year/month/day/hour/minute/second/day of the week) is available. This function is also available by specifying only year, month, day, hour, or minute. Timer interrupt function after set time or each set time. Capable of rewriting the time with continuing the time count. Leap year automatic count is available. Quadrature Position/Revolution Counter (QPRC; Max four Channels) The Quadrature Position/Revolution Counter (QPRC) is used to measure the position of the position encoder. It is also possible to use up/down counter. The detection edge of the three external event input pins AIN, BIN and ZIN is configurable. 16-bit position counter 16-bit revolution counter Two 16-bit compare registers Dual Timer (32-/16-bit Down Counter) The dual timer consists of two programmable 32/16-bit down counters. Operation mode is selectable from the following for each channel: Free-running Periodic (= Reload) One shot Watch Counter The watch counter is used for wake up from low-power consumption mode. It is possible to select the main clock, sub clock, built-in High-speed CR clock, or built-in low-speed CR clock as the clock source. Interval timer: up to 64 s (max) with a sub clock of 32.768 kHz April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 9 D a t a S h e e t External Interrupt Controller Unit External interrupt input pin: Max 32 pins Include one non-maskable interrupt (NMI) Watchdog Timer (2 Channels) A watchdog timer can generate interrupts or a reset when a time-out value is reached. This series consists of two different watchdogs: a "hardware" watchdog and a "software" watchdog. The hardware watchdog timer is clocked by low-speed internal CR oscillator. The hardware watchdog is thus active in any power saving mode except RTC mode and Stop mode. Cyclic Redundancy Check (CRC) Accelerator The CRC accelerator helps to verify data transmission or storage integrity. CCITT CRC16 and IEEE-802.3 CRC32 are supported. CCITT CRC16 generator polynomial: 0x1021 IEEE-802.3 CRC32 generator polynomial: 0x04C11DB7 Programmable Cyclic Redundancy Check (PRGCRC) Accelerator The CRC accelerator helps a verify data transmission or storage integrity. CCITT CRC16, IEEE-802.3 CRC32 and generating polynomial are supported. CCITT CRC16 generator polynomial: 0x1021 IEEE-802.3 CRC32 generator polynomial: 0x04C11DB7 Generating polynomial SD Card Interface It is possible to use the SD card that conforms to the following standards. Part 1 Physical Layer Specification version 3.01 Part E1 SDIO Specification version 3.00 Part A2 SD Host Controller Standard Specification version 3.00 1-bit or 4-bit data bus 2 I S (Inter-IC Sound Bus) Interface (TX x 1 channel, RX x 1 channel) Supports three transfer protocols − I2 S − Left justified − DSP mode − Separate clock generation block for flexible system integration options 10 CONFIDENTIAL Master/slave mode selectable RX Only, TX Only or TX and RX simultaneous operation selectable Word length is programmable from 7-bits to 32 bits RX/TX FIFO integrated (RX: 66 words x 32-bits, TX: 66 words x 32-bits) DMA, interrupts, or polling based data transfer supported S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t High-Speed Quad SPI Up to 66 MHz clock rates for very fast data transfers to and from SPI compatible devices. Up to 256 Mbytes of memory mapped address space. Single data rate (SDR) Supports single, dual, and quad data modes Built-in direct mode and command sequencer mode − Direct mode: Access by use of transmission FIFO/reception FIFO (up to16 word x 32 bit) − Command sequencer mode: Automatic access assigned to external device area. Clock and Reset Clocks Five clock sources (two external oscillators, two internal CR oscillators, and Main PLL) that are dynamically selectable. − − − − − Main clock: 4 MHz to 48 MHz Sub clock: 32.768 kHz High-speed internal CR clock: 4 MHz Low-speed internal CR clock: 100 kHz Main PLL Clock Resets − Reset requests from INITX pin − Power on reset − Software reset − Watchdog timer reset − Low-voltage detector reset − Clock supervisor reset Clock Supervisor (CSV) Clocks generated by internal CR oscillators are used to supervise abnormality of the external clocks. External OSC clock failure (clock stop) is detected, reset is asserted. External OSC frequency anomaly is detected, interrupt or reset is asserted. Low-Voltage Detector (LVD) This Series include two-stage monitoring of voltage on the VCC pins. when the voltage falls below the voltage that has been set, the low-voltage detector function generates an interrupt or reset. LVD1: error reporting via interrupt LVD2: auto-reset operation Low-power Consumption Mode Six low power consumption modes are supported. Sleep Timer RTC Stop Deep standby RTC (selectable from with/without RAM retention) Deep standby stop (selectable from with/without RAM retention) April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 11 D a t a S h e e t Peripheral Clock Gating The system can reduce the current consumption of the total system with gating the operation clocks of peripheral functions not used. VBAT The consumption power during the RTC operation can be reduced by supplying the power supply independent from the RTC (calendar circuit)/32 kHz oscillation circuit. The following circuits can also be used. RTC 32-kHz oscillation circuit Power-on circuit Back up register: 32 bytes Port circuit Debug Serial wire JTAG debug port (SWJ-DP) Embedded trace macrocells (ETM) provide comprehensive debug and trace facilities. AHB trace macrocells (HTM) Unique ID Unique value of the device (41-bit) is set. Power Supply Five power supplies − Wide range voltage: VCC = 2.7 V to 5.5 V − Power supply for VBAT: VBAT = 1.65 V to 5.5 V 12 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t 3. Product Lineup Memory Size Product Name On-chip flash memory S6E2C18H/J/L S6E2C19H/J/L S6E2C1AH/J/L 1024 Kbytes 1536 Kbytes 2048 Kbytes SRAM 128 Kbytes 192 Kbytes 256 Kbytes SRAM0 64 Kbytes 128 Kbytes 192 Kbytes SRAM1 32 Kbytes 32 Kbytes 32 Kbytes SRAM2 32 Kbytes 32 Kbytes 32 Kbytes S6E2C18H0A S6E2C18J0A S6E2C18L0A S6E2C19H0A S6E2C19J0A S6E2C19L0A S6E2C1AH0A S6E2C1AJ0A S6E2C1AL0A 144 176/192 216 On-chip Function Product Name Pin count Cortex-M4F, MPU, NVIC 128 ch CPU Freq. 200 MHz Power supply voltage range 2.7V to 5.5V DMAC 8ch DSTC 256 ch Addr: 25-bit (Max), Data: 8-/16-bit CS: 9 (Max), SRAM, NOR flash NAND flash External bus interface Multi-function serial interface NAND flash, SDRAM 16ch (Max) ch 0 to ch 7:FIFO, ch 8 to ch 15:No FIFO (UART/CSIO/LIN/I2C) Base timer 16 ch (Max) (PWC/Reload timer/PWM/PPG) MF timer Addr: 25-bit (Max), Data: 8-/16-/32-bit CS: 9 (Max), SRAM, NOR flash , Addr: 25-bit (Max), Data: 8-/16-bit CS: 9 (Max), SRAM, NOR flash , NAND flash SDRAM A/D activation compare 6 ch Input capture 4 ch Free-run timer 3 ch Output compare 6 ch Waveform generator 3 ch PPG 3 ch 3 units (Max) SD card interface 1 unit I2S - 1 unit High-speed quad SPI - 1 unit QPRC 4 ch (Max) Dual timer 1 unit Real-time clock 1 unit Watch counter 1 unit CRC accelerator Yes (fixed, programmable) Watchdog timer 1 ch (SW) + 1 ch (HW) External interrupts 32 pins (Max)+ NMI × 1 I/O ports 120 pins (Max) 12-bit A/D converter 24 ch (3 units) 12-bit D/A converter CSV (clock supervisor) April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 152 pins (Max) 190 pins (Max) 32 ch (3 units) 2 units (Max) Yes 13 D a t a S h e e t Product Name LVD (low-voltage detector) Low-speed Debug function S6E2C18J0A S6E2C18L0A S6E2C19H0A S6E2C19J0A S6E2C19L0A S6E2C1AH0A S6E2C1AJ0A S6E2C1AL0A 2 ch High-speed Built-in CR S6E2C18H0A 4 MHz (±2%) 100 kHz (Typ) SWJ-DP/ETM/HTM Unique ID Yes Notes: − − 14 CONFIDENTIAL All signals of the peripheral function in each product cannot be allocated by limiting the pins of package. It is necessary to use the port relocate function of the I/O port according to your function use. See 14.4.3 Built-In CR Oscillation Characteristics for the accuracy of the built-in CR. S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t 4. Packages Product Name Package S6E2C18H0A S6E2C18J0A S6E2C18L0A S6E2C19H0A S6E2C19J0A S6E2C19L0A S6E2C1AH0A S6E2C1AJ0A S6E2C1AL0A LQFP: FPT-144P-M08 (0.5-mm pitch) LQFP: FPT-176P-M07 (0.5-mm pitch) - BGA : LBE192 - - - - (0.8-mm pitch) LQFP: FPT-216P-M01 (0.4-mm pitch) - - : Supported Note: − See 16. Package Dimensions for detailed information on each package. April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 15 D a t a S h e e t 5. Pin Assignments FPT-144P-M08 VSS P81 P80 VCC P60/SIN4_0/INT31_0/WKUP3 P61/SOT4_0/MALE_0/RTCCO_0/SUBOUT_0 P62/SCK4_0/MWEX_0 P63/ADTG_3/RTS4_0/INT30_0/MOEX_0 P6E/ADTG_5/SCK4_1/IC23_1/INT29_0 PD2/CTS4_1/FRCK2_1 PD1/INT31_1 PD0/INT30_1 PCF/RTS4_1/INT12_0 PCE/SIN4_1/INT15_0 PCD/SOT4_1/INT14_0 PCC PCB/INT28_0 VSS VCC PCA/TIOA15_0 PC9/TIOB15_0 PC8 PC7/INT13_0/CROUT_1 PC6/TIOA14_0 PC5/TIOB14_0 PC4/TIOA7_0 PC3/TIOB7_0 PC2/TIOA6_0 PC1/TIOB6_0 PC0 P04/TDO/SWO P03/TMS/SWDIO P02/TDI P01/TCK/SWCLK P00/TRSTX VCC 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 (Top View) VCC 1 108 VSS PA0/RTO20_0/TIOA8_0/AIN2_0/INT00_0/MADATA00_0 2 107 P83 PA1/RTO21_0/TIOA9_0/BIN2_0/MADATA01_0 3 106 P82 PA2/RTO22_0/TIOA10_0/ZIN2_0/MADATA02_0 4 105 VCC PA3/RTO23_0/TIOA11_0/MADATA03_0 5 104 P20/NMIX/WKUP0 PA4/RTO24_0/TIOA12_0/MADATA04_0 6 103 P21/ADTG_4/SIN0_0/INT27_0/CROUT_0 PA5/SIN1_0/RTO25_0/TIOA13_0/INT01_0/MADATA05_0 7 102 P22/AN31/SOT0_0/INT26_0 PA6/SOT1_0/DTTI2X_0/MADATA06_0 8 101 P23/AN30/SCK0_0/TIOB13_1 PA7/SCK1_0/IC20_0/MADATA07_0 9 100 P24/AN29/TIOA13_1/MAD18_0 PA8/SIN7_0/IC21_0/INT02_0/WKUP1/MADATA08_0 10 99 P25/AN28/INT25_0/MAD17_0 PA9/SOT7_0/IC22_0/MADATA09_0 11 98 P26/MAD16_0 PAA/SCK7_0/IC23_0/MADATA10_0 12 97 P27/AN27/SIN5_0/INT24_0/MAD15_0 PAB/SCS70_0/FRCK2_0/INT03_0/MADATA11_0 13 96 P28/AN26/SOT5_0/MAD14_0 PAC/SCS71_0/TIOB8_0/AIN3_0/MADATA12_0 14 95 P29/AN25/SCK5_0/MAD13_0 PAD/SCK3_0/TIOB9_0/BIN3_0/MADATA13_0 15 94 P2A/AN24/CTS5_0/MAD12_0 PAE/ADTG_0/SOT3_0/TIOB10_0/ZIN3_0/MADATA14_0 16 93 P1F/AN15/RTS5_0/TIOB8_1/INT27_1/MAD11_0 PAF/SIN3_0/TIOB11_0/INT16_0/MADATA15_0 17 92 P1E/AN14/TIOA8_1/INT26_1/MAD10_0 P08/SIN14_0/TIOB12_0/INT17_0/MDQM0_0 18 91 P1D/AN13/SCK12_0/TIOB5_2/TRACED3 P09/SOT14_0/TIOB13_0/INT18_0/MDQM1_0 19 90 P1C/AN12/SOT12_0/TIOA5_2/TRACED2 P0A/ADTG_1/SCK14_0/AIN2_1/MCLKOUT_0 20 89 P1B/AN11/SIN12_0/TIOB4_2/INT11_0/TRACED1 P32/BIN2_1/INT19_0/S_DATA1_0 21 88 P1A/AN10/SCK2_0/TIOA4_2/TRACED0 P33/FRCK0_0/ZIN2_1/S_DATA0_0 22 87 P19/AN09/SOT2_0/TIOB3_2/INT24_1/TRACECLK P34/IC03_0/INT00_1/S_CLK_0 23 86 P18/AN08/SIN2_0/TIOA3_2/INT10_0 VCC 24 85 P17/AN07/SCK11_0/TIOB2_2/ZIN1_2 VSS 25 84 P16/AN06/SOT11_0/TIOA2_2/BIN1_2 P35/IC02_0/INT01_1/S_CMD_0 26 83 P15/AN05/SIN11_0/TIOB1_2/AIN1_2/INT09_0 P36/IC01_0/INT02_1/S_DATA3_0 27 82 P14/AN04/SOT6_1 P37/IC00_0/INT03_1/S_DATA2_0 28 81 P13/AN03/SIN6_1/INT25_1 P38/ADTG_2/DTTI0X_0/S_WP_0 29 80 P12/AN02/SCK10_0/TIOA1_2/ZIN0_2 P39/SIN2_1/RTO00_0/TIOA0_1/AIN3_1/INT16_1/S_CD_0/MAD24_0 30 79 P11/AN01/SOT10_0/TIOB0_2/BIN0_2 P3A/SOT2_1/RTO01_0/TIOA1_1/BIN3_1/INT17_1/MAD23_0 31 78 P10/AN00/SIN10_0/TIOA0_2/AIN0_2/INT08_0 P3B/SCK2_1/RTO02_0/TIOA2_1/ZIN3_1/INT18_1/MAD22_0/MNALE_0 32 77 AVRH P3C/SIN13_0/RTO03_0/TIOA3_1/INT19_1/MAD21_0/MNCLE_0 33 76 AVRL P3D/SOT13_0/RTO04_0/TIOA4_1/MAD20_0/MNWEX_0 34 75 AVSS P3E/SCK13_0/RTO05_0/TIOA5_1/MAD19_0/MNREX_0 35 74 AVCC VSS 36 73 VCC 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 INITX P46/X0A P47/X1A VBAT P48/VREGCTL P49/VWAKEUP P70/ADTG_8/SIN1_1/INT06_0/MRDY_0 P71/SOT1_1/MAD00_0 P72/SIN9_0/TIOB0_0/INT07_0/MAD01_0 P73/SOT9_0/TIOB1_0/MAD02_0 P74/SCK9_0/TIOB2_0/MAD03_0 P75/SIN8_0/TIOB3_0/AIN1_0/INT20_0/MAD04_0 P76/SOT8_0/TIOB4_0/BIN1_0/MAD05_0 P77/SCK8_0/TIOB5_0/ZIN1_0/MAD06_0 P78/SIN6_0/IC10_0/INT21_0/MAD07_0 P79/SOT6_0/IC11_0/MAD08_0 P7A/SCK6_0/IC12_0/MAD09_0 P7B/DA1/SCS60_0/IC13_0/INT22_0 72 48 P7E/ADTG_7/FRCK1_0/MCSX0_0 VSS 47 P7D/SCK1_1/DTTI1X_0/INT05_0/WKUP2/MCSX1_0 71 46 VCC PE3/X1 45 VSS 70 44 C PE2/X0 43 P45/SCK15_0/RTO15_0/TIOA5_0/MCSX2_0 69 42 P44/SOT15_0/RTO14_0/TIOA4_0/MCSX3_0 MD0 41 P43/SIN15_0/RTO13_0/TIOA3_0/INT04_0/MCSX4_0 68 40 PE0/MD1 39 P42/SCK3_1/RTO12_0/TIOA2_0/ZIN0_0/MCSX5_0 67 38 P41/SOT3_1/RTO11_0/TIOA1_0/BIN0_0/MCSX6_0 P7C/DA0/SCS61_0/INT04_1 37 VCC P40/SIN3_1/RTO10_0/TIOA0_0/AIN0_0/INT23_0/MCSX7_0 LQFP - 144 Note: − 16 CONFIDENTIAL The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t FPT-176P-M07 VSS P81 P80 VCC P60/SIN4_0/INT31_0/WKUP3 P61/SOT4_0/MALE_0/RTCCO_0/SUBOUT_0 P62/SCK4_0/MWEX_0 P63/ADTG_3/RTS4_0/INT30_0/MOEX_0 P64/CTS4_0/RTO25_1/INT29_1 P65/RTO24_1/INT28_1 P6E/ADTG_5/SCK4_1/IC23_1/INT29_0 PD2/CTS4_1/FRCK2_1 PD1/INT31_1 PD0/INT30_1 PCF/RTS4_1/INT12_0 PCE/SIN4_1/INT15_0 PCD/SOT4_1/INT14_0 PCC PCB/INT28_0 VSS VCC PCA/TIOA15_0 PC9/TIOB15_0 PC8 PC7/INT13_0/CROUT_1 PC6/TIOA14_0 PC5/TIOB14_0 PC4/TIOA7_0 PC3/TIOB7_0 PC2/TIOA6_0 PC1/TIOB6_0 PC0 P95/RTS5_1/Q_CS0_0 P94/CTS5_1/Q_SCK_0 P93/SCK5_1/INT15_1/Q_IO0_0 P92/SOT5_1/INT14_1/Q_IO1_0 P91/SIN5_1/INT13_1/Q_IO2_0 P90/INT12_1/Q_IO3_0 P04/TDO/SWO P03/TMS/SWDIO P02/TDI P01/TCK/SWCLK P00/TRSTX VCC 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 (Top View) VCC 1 132 VSS PA0/RTO20_0/TIOA8_0/AIN2_0/INT00_0/MADATA00_0 2 131 P83 PA1/RTO21_0/TIOA9_0/BIN2_0/MADATA01_0 3 130 P82 PA2/RTO22_0/TIOA10_0/ZIN2_0/MADATA02_0 4 129 VCC PA3/RTO23_0/TIOA11_0/MADATA03_0 5 128 P20/NMIX/WKUP0 PA4/RTO24_0/TIOA12_0/MADATA04_0 6 127 P21/ADTG_4/SIN0_0/INT27_0/CROUT_0 PA5/SIN1_0/RTO25_0/TIOA13_0/INT01_0/MADATA05_0 7 126 P22/AN31/SOT0_0/INT26_0 PA6/SOT1_0/DTTI2X_0/MADATA06_0 8 125 P23/AN30/SCK0_0/TIOB13_1 PA7/SCK1_0/IC20_0/MADATA07_0 9 124 P24/AN29/TIOA13_1/MAD18_0 P50/SCS72_0/RTO00_1/TIOA8_2 10 123 P25/AN28/INT25_0/MAD17_0 P51/SCS73_0/RTO01_1/TIOB8_2 11 122 P26/MAD16_0 P52/RTO02_1/TIOA9_2 12 121 P27/AN27/SIN5_0/INT24_0/MAD15_0 PA8/SIN7_0/IC21_0/INT02_0/WKUP1/MADATA08_0 13 120 P28/AN26/SOT5_0/MAD14_0 PA9/SOT7_0/IC22_0/MADATA09_0 14 119 P29/AN25/SCK5_0/MAD13_0 PAA/SCK7_0/IC23_0/MADATA10_0 15 118 P2A/AN24/CTS5_0/MAD12_0 PAB/SCS70_0/FRCK2_0/INT03_0/MADATA11_0 16 117 P1F/AN15/RTS5_0/TIOB8_1/INT27_1/MAD11_0 PAC/SCS71_0/TIOB8_0/AIN3_0/MADATA12_0 17 116 P1E/AN14/TIOA8_1/INT26_1/MAD10_0 PAD/SCK3_0/TIOB9_0/BIN3_0/MADATA13_0 18 115 PB7/AN23/TIOB12_1/TRACED7 PAE/ADTG_0/SOT3_0/TIOB10_0/ZIN3_0/MADATA14_0 19 114 PB6/AN22/SCK8_1/TIOA12_1/TRACED6 PAF/SIN3_0/TIOB11_0/INT16_0/MADATA15_0 20 113 PB5/AN21/SOT8_1/TIOB11_1/INT11_1/TRACED5 P08/SIN14_0/TIOB12_0/INT17_0/MDQM0_0 21 112 PB4/AN20/SIN8_1/TIOA11_1/INT10_1/TRACED4 P09/SOT14_0/TIOB13_0/INT18_0/MDQM1_0 22 111 P1D/AN13/SCK12_0/TIOB5_2/TRACED3 P0A/ADTG_1/SCK14_0/AIN2_1/MCLKOUT_0 23 110 P1C/AN12/SOT12_0/TIOA5_2/TRACED2 P30/TIOA13_2/INT03_2/I2SDI0_0 24 109 P1B/AN11/SIN12_0/TIOB4_2/INT11_0/TRACED1 P31/TIOB13_2/I2SCK0_0 25 108 P1A/AN10/SCK2_0/TIOA4_2/TRACED0 P32/BIN2_1/INT19_0/S_DATA1_0 26 107 P19/AN09/SOT2_0/TIOB3_2/INT24_1/TRACECLK P33/FRCK0_0/ZIN2_1/S_DATA0_0 27 106 P18/AN08/SIN2_0/TIOA3_2/INT10_0 P34/IC03_0/INT00_1/S_CLK_0 28 105 PB3/AN19/SCS62_1/TIOB10_1 VCC 29 104 PB2/AN18/SCS61_1/TIOA10_1/INT09_1 VSS 30 103 PB1/AN17/SCS60_1/TIOB9_1/INT08_1 P35/IC02_0/INT01_1/S_CMD_0 31 102 PB0/AN16/SCK6_1/TIOA9_1 P36/IC01_0/INT02_1/S_DATA3_0 32 101 P17/AN07/SCK11_0/TIOB2_2/ZIN1_2 P37/IC00_0/INT03_1/S_DATA2_0 33 100 P16/AN06/SOT11_0/TIOA2_2/BIN1_2 P38/ADTG_2/DTTI0X_0/S_WP_0 34 99 P15/AN05/SIN11_0/TIOB1_2/AIN1_2/INT09_0 P39/SIN2_1/RTO00_0/TIOA0_1/AIN3_1/INT16_1/S_CD_0/MAD24_0 35 98 P14/AN04/SOT6_1 P3A/SOT2_1/RTO01_0/TIOA1_1/BIN3_1/INT17_1/MAD23_0 36 97 P13/AN03/SIN6_1/INT25_1 P3B/SCK2_1/RTO02_0/TIOA2_1/ZIN3_1/INT18_1/MAD22_0/MNALE_0 37 96 P12/AN02/SCK10_0/TIOA1_2/ZIN0_2 P3C/SIN13_0/RTO03_0/TIOA3_1/INT19_1/MAD21_0/MNCLE_0 38 95 P11/AN01/SOT10_0/TIOB0_2/BIN0_2 P3D/SOT13_0/RTO04_0/TIOA4_1/MAD20_0/MNWEX_0 39 94 P10/AN00/SIN10_0/TIOA0_2/AIN0_2/INT08_0 P3E/SCK13_0/RTO05_0/TIOA5_1/MAD19_0/MNREX_0 40 93 AVRH P5D/SIN10_1/TIOB11_2/INT01_2/I2SMCLK0_0 41 92 AVRL P5E/SOT10_1/TIOA12_2/I2SDO0_0 42 91 AVSS P5F/SCK10_1/TIOB12_2/I2SWS0_0 43 90 AVCC VSS 44 89 VCC 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 VCC P40/SIN3_1/RTO10_0/TIOA0_0/AIN0_0/INT23_0/MCSX7_0 P41/SOT3_1/RTO11_0/TIOA1_0/BIN0_0/MCSX6_0 P42/SCK3_1/RTO12_0/TIOA2_0/ZIN0_0/MCSX5_0 P43/SIN15_0/RTO13_0/TIOA3_0/INT04_0/MCSX4_0 P44/SOT15_0/RTO14_0/TIOA4_0/MCSX3_0 P45/SCK15_0/RTO15_0/TIOA5_0/MCSX2_0 C VSS VCC P7D/SCK1_1/DTTI1X_0/INT05_0/WKUP2/MCSX1_0 P7E/ADTG_7/FRCK1_0/MCSX0_0 INITX P46/X0A P47/X1A VBAT P48/VREGCTL P49/VWAKEUP PF0/SCS63_0/FRCK1_1/TIOA15_1/INT22_1 PF1/SCS62_0/TIOB15_1/INT23_1 P70/ADTG_8/SIN1_1/INT06_0/MRDY_0 P71/SOT1_1/MAD00_0 P72/SIN9_0/TIOB0_0/INT07_0/MAD01_0 P73/SOT9_0/TIOB1_0/MAD02_0 P74/SCK9_0/TIOB2_0/MAD03_0 PF2/RTO10_1/TIOA6_1/MRASX_0 PF3/RTO11_1/TIOB6_1/INT05_1/MCASX_0 PF4/RTO12_1/TIOA7_1/INT06_1/MSDWEX_0 PF5/RTO13_1/TIOB7_1/INT07_1/MCSX8_0 PF6/RTO14_1/TIOA14_1/INT20_1/MSDCKE_0 PF7/RTO15_1/TIOB14_1/INT21_1/MSDCLK_0 P75/SIN8_0/TIOB3_0/AIN1_0/INT20_0/MAD04_0 P76/SOT8_0/TIOB4_0/BIN1_0/MAD05_0 P77/SCK8_0/TIOB5_0/ZIN1_0/MAD06_0 P78/SIN6_0/IC10_0/INT21_0/MAD07_0 P79/SOT6_0/IC11_0/MAD08_0 P7A/SCK6_0/IC12_0/MAD09_0 P7B/DA1/SCS60_0/IC13_0/INT22_0 P7C/DA0/SCS61_0/INT04_1 PE0/MD1 MD0 PE2/X0 PE3/X1 VSS LQFP - 176 Note: − The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 17 D a t a S h e e t FPT-216P-M01 VCC 1 PA0/RTO20_0/TIOA8_0/AIN2_0/INT00_0/MADATA00_0 VSS P81 P80 VCC P60/SIN4_0/INT31_0/WKUP3 P61/SOT4_0/MALE_0/RTCCO_0/SUBOUT_0 P62/SCK4_0/MWEX_0 P63/ADTG_3/RTS4_0/INT30_0/MOEX_0 P64/CTS4_0/RTO25_1/INT29_1 P65/RTO24_1/INT28_1 P66/SIN13_1/RTO23_1/TIOA15_2/INT15_2 P67/SOT13_1/RTO22_1/TIOB15_2 P68/SCK13_1/RTO21_1/TIOA14_2 P69/RTO20_1/TIOB14_2 P6A/DTTI2X_1/TIOA7_2 P6B/SIN14_1/IC20_1/TIOB7_2/INT14_2 P6C/SOT14_1/IC21_1/TIOA6_2 P6D/SCK14_1/IC22_1/TIOB6_2 P6E/ADTG_5/SCK4_1/IC23_1/INT29_0 PD2/CTS4_1/FRCK2_1 PD1/INT31_1 PD0/INT30_1 PCF/RTS4_1/INT12_0 PCE/SIN4_1/INT15_0 PCD/SOT4_1/INT14_0 PCC PCB/INT28_0 VSS VCC PCA/TIOA15_0 PC9/TIOB15_0 PC8 PC7/INT13_0/CROUT_1 PC6/TIOA14_0 PC5/TIOB14_0 PC4/TIOA7_0 PC3/TIOB7_0 PC2/TIOA6_0 PC1/TIOB6_0 PC0 P97/TX0_2/INT13_2/Q_CS2_0 P96/RX0_2/INT12_2/Q_CS1_0 P95/RTS5_1/Q_CS0_0 P94/CTS5_1/Q_SCK_0 P93/SCK5_1/INT15_1/Q_IO0_0 P92/SOT5_1/INT14_1/Q_IO1_0 P91/SIN5_1/INT13_1/Q_IO2_0 P90/INT12_1/Q_IO3_0 P04/TDO/SWO P03/TMS/SWDIO P02/TDI P01/TCK/SWCLK P00/TRSTX VCC 216 215 214 213 212 211 210 209 208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 (Top View) 162 VSS 2 161 P83 PA1/RTO21_0/TIOA9_0/BIN2_0/MADATA01_0 3 160 P82 PA2/RTO22_0/TIOA10_0/ZIN2_0/MADATA02_0 4 159 VCC PA3/RTO23_0/TIOA11_0/MADATA03_0 5 158 P20/NMIX/WKUP0 PA4/RTO24_0/TIOA12_0/MADATA04_0 6 157 P21/ADTG_4/SIN0_0/INT27_0/CROUT_0 PA5/SIN1_0/RTO25_0/TIOA13_0/INT01_0/MADATA05_0 7 156 P22/AN31/SOT0_0/INT26_0 PA6/SOT1_0/DTTI2X_0/MADATA06_0 8 155 P23/AN30/SCK0_0/TIOB13_1 PA7/SCK1_0/IC20_0/MADATA07_0 9 154 P24/AN29/TIOA13_1/MAD18_0 P50/SCS72_0/RTO00_1/TIOA8_2/MADATA16_0 10 153 P25/AN28/INT25_0/MAD17_0 P51/SCS73_0/RTO01_1/TIOB8_2/MADATA17_0 11 152 P26/MAD16_0 P52/RTO02_1/TIOA9_2/MADATA18_0 12 151 PBF/SIN0_1/ZIN3_2/INT11_2/TRACED15 P53/RTO03_1/TIOB9_2/MADATA19_0 13 150 PBE/SOT0_1/BIN3_2/TRACED14 PA8/SIN7_0/IC21_0/INT02_0/WKUP1/MADATA08_0 14 149 PBD/SCK0_1/AIN3_2/INT10_2/TRACED13 PA9/SOT7_0/IC22_0/MADATA09_0 15 148 PBC/TRACED12 PAA/SCK7_0/IC23_0/MADATA10_0 16 147 P27/AN27/SIN5_0/INT24_0/MAD15_0 PAB/SCS70_0/FRCK2_0/INT03_0/MADATA11_0 17 146 P28/AN26/SOT5_0/MAD14_0 PAC/SCS71_0/TIOB8_0/AIN3_0/MADATA12_0 18 145 P29/AN25/SCK5_0/MAD13_0 P54/SIN15_1/RTO04_1/TIOA10_2/INT00_2/MADATA20_0 19 144 P2A/AN24/CTS5_0/MAD12_0 P55/SOT15_1/RTO05_1/TIOB10_2/MADATA21_0 20 143 P1F/AN15/RTS5_0/TIOB8_1/INT27_1/MAD11_0 P56/SCK15_1/DTTI0X_1/TIOB0_1/MADATA22_0 21 142 P1E/AN14/TIOA8_1/INT26_1/MAD10_0 P57/IC00_1/TIOB1_1/MADATA23_0 22 141 PB7/AN23/TIOB12_1/TRACED7 PAD/SCK3_0/TIOB9_0/BIN3_0/MADATA13_0 23 140 PB6/AN22/SCK8_1/TIOA12_1/TRACED6 PAE/ADTG_0/SOT3_0/TIOB10_0/ZIN3_0/MADATA14_0 24 139 PB5/AN21/SOT8_1/TIOB11_1/INT11_1/TRACED5 PAF/SIN3_0/TIOB11_0/INT16_0/MADATA15_0 25 138 PB4/AN20/SIN8_1/TIOA11_1/INT10_1/TRACED4 P58/SIN11_1/IC01_1/TIOB2_1/INT02_2/MADATA24_0 26 137 VCC P59/SOT11_1/IC02_1/TIOB3_1/MADATA25_0 27 136 VSS P5A/SCK11_1/IC03_1/TIOB4_1/MADATA26_0 28 135 P1D/AN13/SCK12_0/TIOB5_2/TRACED3 P5B/FRCK0_1/TIOB5_1/MADATA27_0 29 134 P1C/AN12/SOT12_0/TIOA5_2/TRACED2 P08/SIN14_0/TIOB12_0/INT17_0/MDQM0_0 30 133 P1B/AN11/SIN12_0/TIOB4_2/INT11_0/TRACED1 P09/SOT14_0/TIOB13_0/INT18_0/MDQM1_0 31 132 P1A/AN10/SCK2_0/TIOA4_2/TRACED0 P0A/ADTG_1/SCK14_0/AIN2_1/MCLKOUT_0 32 131 P19/AN09/SOT2_0/TIOB3_2/INT24_1/TRACECLK P5C/TIOA11_2/MADATA28_0/RTCCO_1/SUBOUT_1 33 130 P18/AN08/SIN2_0/TIOA3_2/INT10_0 P30/TIOA13_2/INT03_2/MDQM2_0/I2SDI0_0 34 129 PB3/AN19/SCS62_1/TIOB10_1 P31/TIOB13_2/MDQM3_0/I2SCK0_0 35 128 PB2/AN18/SCS61_1/TIOA10_1/INT09_1 P32/BIN2_1/INT19_0/S_DATA1_0 36 127 PB1/AN17/SCS60_1/TIOB9_1/INT08_1 P33/FRCK0_0/ZIN2_1/S_DATA0_0 37 126 PB0/AN16/SCK6_1/TIOA9_1 P34/IC03_0/INT00_1/S_CLK_0 38 125 P17/AN07/SCK11_0/TIOB2_2/ZIN1_2 VCC 39 124 P16/AN06/SOT11_0/TIOA2_2/BIN1_2 VSS 40 123 P15/AN05/SIN11_0/TIOB1_2/AIN1_2/INT09_0 P35/IC02_0/INT01_1/S_CMD_0 41 122 PBB/SCK9_1/ZIN2_2/TRACED11 P36/IC01_0/INT02_1/S_DATA3_0 42 121 PBA/SOT9_1/BIN2_2/TRACED10 P37/IC00_0/INT03_1/S_DATA2_0 43 120 PB9/SIN9_1/AIN2_2/INT09_2/TRACED9 P38/ADTG_2/DTTI0X_0/S_WP_0 44 119 PB8/ADTG_6/SCS63_1/INT08_2/TRACED8 P39/SIN2_1/RTO00_0/TIOA0_1/AIN3_1/INT16_1/S_CD_0/MAD24_0 45 118 P14/AN04/SOT6_1 P3A/SOT2_1/RTO01_0/TIOA1_1/BIN3_1/INT17_1/MAD23_0 46 117 P13/AN03/SIN6_1/INT25_1 P3B/SCK2_1/RTO02_0/TIOA2_1/ZIN3_1/INT18_1/MAD22_0/MNALE_0 47 116 P12/AN02/SCK10_0/TIOA1_2/ZIN0_2 P3C/SIN13_0/RTO03_0/TIOA3_1/INT19_1/MAD21_0/MNCLE_0 48 115 P11/AN01/SOT10_0/TIOB0_2/BIN0_2 P3D/SOT13_0/RTO04_0/TIOA4_1/MAD20_0/MNWEX_0 49 114 P10/AN00/SIN10_0/TIOA0_2/AIN0_2/INT08_0 P3E/SCK13_0/RTO05_0/TIOA5_1/MAD19_0/MNREX_0 50 113 AVRH P5D/SIN10_1/TIOB11_2/INT01_2/MADATA29_0/I2SMCLK0_0 51 112 AVRL P5E/SOT10_1/TIOA12_2/MADATA30_0/I2SDO0_0 52 111 AVSS P5F/SCK10_1/TIOB12_2/MADATA31_0/I2SWS0_0 53 110 AVCC VSS 54 109 VCC 108 97 P79/SOT6_0/IC11_0/MAD08_0 VSS 96 P78/SIN6_0/IC10_0/INT21_0/MAD07_0 107 95 PF9/SCS71_1/IC10_1/BIN1_1 PE3/X1 94 PF8/SCS70_1/DTTI1X_1/AIN1_1 106 93 P77/SCK8_0/TIOB5_0/ZIN1_0/MAD06_0 105 92 P76/SOT8_0/TIOB4_0/BIN1_0/MAD05_0 MD0 91 P75/SIN8_0/TIOB3_0/AIN1_0/INT20_0/MAD04_0 PE2/X0 90 104 89 PF6/RTO14_1/TIOA14_1/INT20_1/MSDCKE_0 PF7/RTO15_1/TIOB14_1/INT21_1/MSDCLK_0 PE0/MD1 88 PF5/RTO13_1/TIOB7_1/INT07_1/MCSX8_0 103 87 PF4/RTO12_1/TIOA7_1/INT06_1/MSDWEX_0 PFC/SIN7_1/IC13_1/INT06_2 86 102 85 PF2/RTO10_1/TIOA6_1/MRASX_0 PF3/RTO11_1/TIOB6_1/INT05_1/MCASX_0 101 84 P74/SCK9_0/TIOB2_0/MAD03_0 PFA/SCK7_1/IC11_1/ZIN1_1 83 P73/SOT9_0/TIOB1_0/MAD02_0 PFB/SOT7_1/IC12_1/INT07_2 82 100 81 P71/SOT1_1/MAD00_0 P72/SIN9_0/TIOB0_0/INT07_0/MAD01_0 P7C/DA0/SCS61_0/INT04_1 80 P70/ADTG_8/SIN1_1/INT06_0/MRDY_0 99 79 PF1/SCS62_0/TIOB15_1/INT23_1 P7B/DA1/SCS60_0/IC13_0/INT22_0 78 PF0/SCS63_0/FRCK1_1/TIOA15_1/INT22_1 98 77 P7A/SCK6_0/IC12_0/MAD09_0 76 75 VBAT P48/VREGCTL 74 P47/X1A P49/VWAKEUP 73 71 P7E/ADTG_7/FRCK1_0/MCSX0_0 72 70 P7D/SCK1_1/DTTI1X_0/INT05_0/WKUP2/MCSX1_0 INITX 69 P4E/SCS73_1 P46/X0A 68 P4D/SCS72_1/INT05_2 63 VSS 67 62 C P4C/SCK12_1/ZIN0_1 61 P45/SCK15_0/RTO15_0/TIOA5_0/MCSX2_0 66 60 P44/SOT15_0/RTO14_0/TIOA4_0/MCSX3_0 P4B/SOT12_1/BIN0_1 59 P43/SIN15_0/RTO13_0/TIOA3_0/INT04_0/MCSX4_0 65 58 P42/SCK3_1/RTO12_0/TIOA2_0/ZIN0_0/MCSX5_0 64 57 VCC 56 P41/SOT3_1/RTO11_0/TIOA1_0/BIN0_0/MCSX6_0 P4A/SIN12_1/AIN0_1/INT04_2 55 VCC P40/SIN3_1/RTO10_0/TIOA0_0/AIN0_0/INT23_0/MCSX7_0 LQFP - 216 Note: − 18 CONFIDENTIAL The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t LBE192 (Top View) 1 A 2 3 4 5 6 7 8 9 10 11 12 13 14 P81 P80 VCC VSS PCD PCB VSS VCC PC8 VSS TCK VCC B VSS PA0 P60 P62 P64 PD1 PCA PC1 P95 P92 TDO TMS C VCC PA1 PA2 P61 P63 PD2 PCC PC5 PC0 P93 P90 D PA5 PA4 PA6 PA7 PA3 P6E PCE PC6 PC2 P94 P91 P22 P21 P84 E VSS P50 P51 P52 PA8 P65 PCF PC7 PC3 P26 P25 P24 P23 VCC F PA9 PAA PAB PAC PAD PAE PD0 PC9 PC4 P2A P29 P28 P27 PB5 G VSS PAF P08 P09 P0A P30 VSS VSS P1F P1E PB7 PB6 PB4 P1B H VCC P32 P34 P31 VSS P35 VSS VSS P18 PB2 P1D P19 P1C P1A J P33 P39 P38 P37 P36 P71 VSS P74 PB1 PB0 P17 P16 P15 PB3 K P3A P3B P3C P3D PF0 PF1 VSS P73 P75 P79 P14 P12 P11 P13 L P3E P5D P5E P43 P7D P70 VSS P72 PF7 P78 P10 AVRH AVRL VSS M VSS P5F P42 P44 P7E P49 VSS PF3 PF6 P7A P7C AVSS AVCC VCC N VCC P40 P41 P45 INITX P48 VSS PF2 PF4 P77 P7B MD0 MD1 VSS P C VSS VCC X0A X1A VSS VBAT PF5 P76 VSS TRSTX VSS TDI P20 P83 X0 X1 PFBGA-192 Note: − The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 19 D a t a S h e e t 6. Pin Descriptions List of Pin Functions The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. I/O Pin No Pin Name LQFP-216 LQFP-176 LQFP-144 LBE192 1 1 1 C1 circuit type VCC Pin state type - - G K G I G I G I G I G K PA0 RTO20_0 (PPG20_0) 2 2 2 B2 TIOA8_0 AIN2_0 INT00_0 MADATA00_0 PA1 RTO21_0 3 3 3 C2 (PPG20_0) TIOA9_0 BIN2_0 MADATA01_0 PA2 RTO22_0 4 4 4 C3 (PPG22_0) TIOA10_0 ZIN2_0 MADATA02_0 PA3 RTO23_0 5 5 5 D5 (PPG22_0) TIOA11_0 MADATA03_0 PA4 RTO24_0 6 6 6 D2 (PPG24_0) TIOA12_0 MADATA04_0 PA5 SIN1_0 RTO25_0 7 7 7 D1 (PPG24_0) TIOA13_0 INT01_0 MADATA05_0 20 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t I/O Pin No Pin Name LQFP-216 LQFP-176 LQFP-144 LBE192 circuit type Pin state type PA6 SOT1_0 8 8 8 D3 (SDA1_0)) E I E I E I E I E I E I I Q N I N I DTTI2X_0 MADATA06_0 PA7 SCK1_0 9 9 9 D4 (SCL1_0) IC20_0 MADATA07_0 P50 SCS72_0 10 10 - E2 RTO00_1 (PPG00_1) TIOA8_2 MADATA16_0 P51 SCS73_0 11 11 - E3 RTO01_1 (PPG00_1) TIOB8_2 MADATA17_0 P52 RTO02_1 12 12 - E4 (PPG02_1) TIOA9_2 MADATA18_0 P53 RTO03_1 13 - - - (PPG02_1) TIOB9_2 MADATA19_0 PA8 SIN7_0 14 13 10 E5 IC21_0 INT02_0 WKUP1 MADATA08_0 PA9 SOT7_0 15 14 11 F1 (SDA7_0) IC22_0 MADATA09_0 PAA SCK7_0 16 15 12 F2 (SCL7_0) IC23_0 MADATA10_0 April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 21 D a t a S h e e t I/O Pin No Pin Name LQFP-216 LQFP-176 LQFP-144 LBE192 circuit type Pin state type PAB SCS70_0 17 16 13 F3 FRCK2_0 E K E I E K E I E I E I N I INT03_0 MADATA11_0 PAC SCS71_0 18 17 14 F4 TIOB8_0 AIN3_0 MADATA12_0 P54 SIN15_1 RTO04_1 19 - - - (PPG04_1) TIOA10_2 INT00_2 MADATA20_0 P55 SOT15_1 (SDA15_1) 20 - - - RTO05_1 (PPG04_1) TIOB10_2 MADATA21_0 P56 SCK15_1 21 - - - (SCL15_1) DTTI0X_1 TIOB0_1 MADATA22_0 P57 22 - - - IC00_1 TIOB1_1 MADATA23_0 PAD SCK3_0 (SCL3_0) 23 18 15 F5 TIOB9_0 BIN3_0 MADATA13_0 22 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t I/O Pin No Pin Name LQFP-216 LQFP-176 LQFP-144 LBE192 circuit type Pin state type PAE ADTG_0 SOT3_0 24 19 16 F6 (SDA3_0) N I I K E K E I E I E I E K E K TIOB10_0 ZIN3_0 MADATA14_0 PAF SIN3_0 25 20 17 G2 TIOB11_0 INT16_0 MADATA15_0 P58 SIN11_1 26 - - - IC01_1 TIOB2_1 INT02_2 MADATA24_0 P59 SOT11_1 27 - - - (SDA11_1) IC02_1 TIOB3_1 MADATA25_0 P5A SCK11_1 28 - - - (SCL11_1) IC03_1 TIOB4_1 MADATA26_0 P5B 29 - - - FRCK0_1 TIOB5_1 MADATA27_0 P08 SIN14_0 30 21 18 G3 TIOB12_0 INT17_0 MDQM0_0 P09 SOT14_0 31 22 19 G4 (SDA14_0) TIOB13_0 INT18_0 MDQM1_0 April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 23 D a t a S h e e t I/O Pin No Pin Name LQFP-216 LQFP-176 LQFP-144 LBE192 circuit type Pin state type P0A ADTG_1 32 23 20 G5 SCK14_0 (SCL14_0) L I E I E K E I L K L I L K AIN2_1 MCLKOUT_0 P5C TIOA11_2 33 - - - MADATA28_0 RTCCO_1 SUBOUT_1 P30 TIOA13_2 34 24 - G6 INT03_2 MDQM2_0 I2SDI0_0 P31 35 25 - H4 TIOB13_2 MDQM3_0 I2SCK0_0 P32 36 26 21 H2 BIN2_1 INT19_0 S_DATA1_0 P33 37 27 22 J1 FRCK0_0 ZIN2_1 S_DATA0_0 P34 38 28 23 H3 IC03_0 INT00_1 S_CLK_0 39 29 24 H1 VCC - - 40 30 25 H5 VSS - - L K L K L K P35 41 31 26 H6 IC02_0 INT01_1 S_CMD_0 P36 42 32 27 J5 IC01_0 INT02_1 S_DATA3_0 P37 43 33 28 J4 IC00_0 INT03_1 S_DATA2_0 24 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t I/O Pin No Pin Name LQFP-216 LQFP-176 LQFP-144 LBE192 circuit type Pin state type P38 44 34 29 J3 ADTG_2 DTTI0X_0 E I G K G K G K G K G I S_WP_0 P39 SIN2_1 RTO00_0 (PPG00_0) 45 35 30 J2 TIOA0_1 AIN3_1 INT16_1 S_CD_0 MAD24_0 P3A SOT2_1 (SDA2_1) RTO01_0 46 36 31 K1 (PPG00_0) TIOA1_1 BIN3_1 INT17_1 MAD23_0 P3B SCK2_1 (SCL2_1) RTO02_0 47 37 32 K2 (PPG02_0) TIOA2_1 ZIN3_1 INT18_1 MAD22_0 MNALE_0 P3C SIN13_0 RTO03_0 48 38 33 K3 (PPG02_0) TIOA3_1 INT19_1 MAD21_0 MNCLE_0 P3D SOT13_0 (SDA13_0) 49 39 34 K4 RTO04_0 (PPG04_0) TIOA4_1 MAD20_0 MNWEX_0 April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 25 D a t a S h e e t I/O Pin No Pin Name LQFP-216 LQFP-176 LQFP-144 LBE192 circuit type Pin state type P3E SCK13_0 (SCL13_0) 50 40 35 L1 RTO05_0 (PPG04_0) G I E K E I E I TIOA5_1 MAD19_0 MNREX_0 P5D SIN10_1 51 41 - L2 TIOB11_2 INT01_2 MADATA29_0 I2SMCLK0_0 P5E SOT10_1 52 42 - L3 (SDA10_1) TIOA12_2 MADATA30_0 I2SDO0_0 P5F SCK10_1 53 43 - M2 (SCL10_1) TIOB12_2 MADATA31_0 I2SWS0_0 54 44 36 M1 VSS - - 55 45 37 N1 VCC - - G K G I P40 SIN3_1 RTO10_0 56 46 38 N2 (PPG10_0) TIOA0_0 AIN0_0 INT23_0 MCSX7_0 P41 SOT3_1 (SDA3_1) 57 47 39 N3 RTO11_0 (PPG10_0) TIOA1_0 BIN0_0 MCSX6_0 26 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t I/O Pin No Pin Name LQFP-216 LQFP-176 LQFP-144 LBE192 circuit type Pin state type P42 SCK3_1 (SCL3_1) 58 48 40 M3 RTO12_0 (PPG12_0) G I G K G I G I TIOA2_0 ZIN0_0 MCSX5_0 P43 SIN15_0 RTO13_0 59 49 41 L4 (PPG12_0) TIOA3_0 INT04_0 MCSX4_0 P44 SOT15_0 (SDA15_0) 60 50 42 M4 RTO14_0 (PPG14_0) TIOA4_0 MCSX3_0 P45 SCK15_0 (SCL15_0) 61 51 43 N4 RTO15_0 (PPG14_0) TIOA5_0 MCSX2_0 62 52 44 P2 C - - 63 53 45 P3 VSS - - 64 54 46 P4 VCC - - E K E I E I E K P4A 65 - - - SIN12_1 AIN0_1 INT04_2 P4B 66 - - - SOT12_1 (SDA12_1) BIN0_1 P4C 67 - - - SCK12_1 (SCL12_1) ZIN0_1 P4D 68 - - - SCS72_1 INT05_2 April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 27 D a t a S h e e t I/O Pin No Pin Name LQFP-216 LQFP-176 LQFP-144 LBE192 69 - - - circuit type P4E SCS73_1 Pin state type E I L Q L I B C P S Q T - - O U O U E K E K I K E I P7D SCK1_1 (SCL1_1) 70 55 47 L5 DTTI1X_0 INT05_0 WKUP2 MCSX1_0 P7E 71 56 48 M5 ADTG_7 FRCK1_0 MCSX0_0 72 57 49 N5 73 58 50 P5 74 59 51 P6 75 60 52 P8 76 61 53 N6 77 62 54 M6 INITX P46 X0A P47 X1A VBAT P48 VREGCTL P49 VWAKEUP PF0 SCS63_0 78 63 - K5 FRCK1_1 TIOA15_1 INT22_1 PF1 79 64 - K6 SCS62_0 TIOB15_1 INT23_1 P70 ADTG_8 80 65 55 L6 SIN1_1 INT06_0 MRDY_0 P71 81 66 56 J6 SOT1_1 (SDA1_1) MAD00_0 28 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t I/O Pin No Pin Name LQFP-216 LQFP-176 LQFP-144 LBE192 circuit type Pin state type P72 SIN9_0 82 67 57 L8 TIOB0_0 E K E I E I L I L K L K L K L K INT07_0 MAD01_0 P73 SOT9_0 83 68 58 K8 (SDA9_0) TIOB1_0 MAD02_0 P74 SCK9_0 84 69 59 J8 (SCL9_0) TIOB2_0 MAD03_0 PF2 RTO10_1 85 70 - N8 (PPG10_1) TIOA6_1 MRASX_0 PF3 RTO11_1 86 71 - M8 (PPG10_1) TIOB6_1 INT05_1 MCASX_0 PF4 RTO12_1 87 72 - N9 (PPG12_1) TIOA7_1 INT06_1 MSDWEX_0 PF5 RTO13_1 88 73 - P9 (PPG12_1) TIOB7_1 INT07_1 MCSX8_0 PF6 RTO14_1 89 74 - M9 (PPG14_1) TIOA14_1 INT20_1 MSDCKE_0 April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 29 D a t a S h e e t I/O Pin No Pin Name LQFP-216 LQFP-176 LQFP-144 LBE192 circuit type Pin state type PF7 RTO15_1 90 75 - L9 (PPG14_1) TIOB14_1 L K E K E I E I E I E I E K L I L I INT21_1 MSDCLK_0 P75 SIN8_0 91 76 60 K9 TIOB3_0 AIN1_0 INT20_0 MAD04_0 P76 SOT8_0 92 77 61 P10 (SDA8_0) TIOB4_0 BIN1_0 MAD05_0 P77 SCK8_0 93 78 62 N10 (SCL8_0) TIOB5_0 ZIN1_0 MAD06_0 PF8 94 - - - SCS70_1 DTTI1X_1 AIN1_1 PF9 95 - - - SCS71_1 IC10_1 BIN1_1 P78 SIN6_0 96 79 63 L10 IC10_0 INT21_0 MAD07_0 P79 SOT6_0 97 80 64 K10 (SDA6_0) IC11_0 MAD08_0 P7A SCK6_0 98 81 65 M10 (SCL6_0) IC12_0 MAD09_0 30 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t I/O Pin No Pin Name LQFP-216 LQFP-176 LQFP-144 LBE192 circuit type Pin state type P7B DA1 99 82 66 N11 SCS60_0 R J R J E I E K E K C E J D A A A B IC13_0 INT22_0 P7C 100 83 67 M11 DA0 SCS61_0 INT04_1 PFA SCK7_1 101 - - - (SCL7_1) IC11_1 ZIN1_1 PFB SOT7_1 102 - - - (SDA7_1) IC12_1 INT07_2 PFC 103 - - - SIN7_1 IC13_1 INT06_2 PE0 104 84 68 N13 105 85 69 N12 106 86 70 P12 107 87 71 P13 108 88 72 N14 VSS - - 109 89 73 M14 VCC - - 110 90 74 M13 AVCC - - 111 91 75 M12 AVSS - - 112 92 76 L13 AVRL - - 113 93 77 L12 AVRH - - F M MD1 MD0 PE2 X0 PE3 X1 P10 AN00 114 94 78 L11 SIN10_0 TIOA0_2 AIN0_2 INT08_0 April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 31 D a t a S h e e t I/O Pin No Pin Name LQFP-216 LQFP-176 LQFP-144 LBE192 circuit type Pin state type P11 AN01 115 95 79 K13 SOT10_0 (SDA10_0) F L F L F M F L E O E O E N E N F M TIOB0_2 BIN0_2 P12 AN02 116 96 80 K12 SCK10_0 (SCL10_0) TIOA1_2 ZIN0_2 P13 117 97 81 K14 AN03 SIN6_1 INT25_1 P14 118 98 82 K11 AN04 SOT6_1 (SDA6_1) PB8 ADTG_6 119 - - - SCS63_1 INT08_2 TRACED8 PB9 SIN9_1 120 - - - AIN2_2 INT09_2 TRACED9 PBA SOT9_1 121 - - - (SDA9_1) BIN2_2 TRACED10 PBB SCK9_1 122 - - - (SCL9_1) ZIN2_2 TRACED11 P15 AN05 123 99 83 J13 SIN11_0 TIOB1_2 AIN1_2 INT09_0 32 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t I/O Pin No Pin Name LQFP-216 LQFP-176 LQFP-144 LBE192 circuit type Pin state type P16 AN06 124 100 84 J12 SOT11_0 (SDA11_0) F L F L F L F M F M F L F M F O TIOA2_2 BIN1_2 P17 AN07 125 101 85 J11 SCK11_0 (SCL11_0) TIOB2_2 ZIN1_2 PB0 AN16 126 102 - J10 SCK6_1 (SCL6_1) TIOA9_1 PB1 AN17 127 103 - J9 SCS60_1 TIOB9_1 INT08_1 PB2 AN18 128 104 - H10 SCS61_1 TIOA10_1 INT09_1 PB3 129 105 - J14 AN19 SCS62_1 TIOB10_1 P18 AN08 130 106 86 H9 SIN2_0 TIOA3_2 INT10_0 P19 AN09 SOT2_0 131 107 87 H12 (SDA2_0) TIOB3_2 INT24_1 TRACECLK April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 33 D a t a S h e e t I/O Pin No Pin Name LQFP-216 LQFP-176 LQFP-144 LBE192 circuit type Pin state type P1A AN10 132 108 88 H14 SCK2_0 (SCL2_0) F N F O F N F N TIOA4_2 TRACED0 P1B AN11 133 109 89 G14 SIN12_0 TIOB4_2 INT11_0 TRACED1 P1C AN12 134 110 90 H13 SOT12_0 (SDA12_0) TIOA5_2 TRACED2 P1D AN13 135 111 91 H11 SCK12_0 (SCL12_0) TIOB5_2 TRACED3 136 - - - VSS - - 137 - - - VCC - - F O F O F N PB4 AN20 138 112 - G13 SIN8_1 TIOA11_1 INT10_1 TRACED4 PB5 AN21 SOT8_1 139 113 - F14 (SDA8_1) TIOB11_1 INT11_1 TRACED5 PB6 AN22 140 114 - G12 SCK8_1 (SCL8_1) TIOA12_1 TRACED6 34 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t I/O Pin No Pin Name LQFP-216 LQFP-176 LQFP-144 LBE192 circuit type Pin state type PB7 141 115 - G11 AN23 TIOB12_1 F N F M F M F L F L F L F M E N E O E N TRACED7 P1E AN14 142 116 92 G10 TIOA8_1 INT26_1 MAD10_0 P1F AN15 143 117 93 G9 RTS5_0 TIOB8_1 INT27_1 MAD11_0 P2A 144 118 94 F10 AN24 CTS5_0 MAD12_0 P29 AN25 145 119 95 F11 SCK5_0 (SCL5_0) MAD13_0 P28 AN26 146 120 96 F12 SOT5_0 (SDA5_0) MAD14_0 P27 AN27 147 121 97 F13 SIN5_0 INT24_0 MAD15_0 148 - - - PBC TRACED12 PBD SCK0_1 (SCL0_1) 149 - - - AIN3_2 INT10_2 TRACED13 PBE SOT0_1 150 - - - (SDA0_1) BIN3_2 TRACED14 April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 35 D a t a S h e e t I/O Pin No Pin Name LQFP-216 LQFP-176 LQFP-144 LBE192 circuit type Pin state type PBF SIN0_1 151 - - - ZIN3_2 E O E I F M F L F L F M I K I F INT11_2 TRACED15 152 122 98 E10 P26 MAD16_0 P25 153 123 99 E11 AN28 INT25_0 MAD17_0 P24 154 124 100 E12 AN29 TIOA13_1 MAD18_0 P23 AN30 155 125 101 E13 SCK0_0 (SCL0_0) TIOB13_1 P22 AN31 156 126 102 D12 SOT0_0 (SDA0_0) INT26_0 P21 ADTG_4 157 127 103 D13 SIN0_0 INT27_0 CROUT_0 P20 158 128 104 C13 NMIX 159 129 105 E14 VCC - - 160 130 106 D14 P82 H R 161 131 107 C14 P83 H R 162 132 108 B14 VSS - - 163 133 109 A13 VCC - - E G E G E G E G WKUP0 164 134 110 B13 P00 TRSTX P01 165 135 111 A12 TCK SWCLK 166 136 112 C12 P02 TDI P03 167 137 113 B12 TMS SWDIO 36 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t I/O Pin No Pin Name LQFP-216 LQFP-176 LQFP-144 LBE192 168 138 114 B11 circuit type Pin state type P04 TDO E G S K S K S K S K S I S I S K S K K I K I K I K I K I K I K I SWO P90 169 139 - C11 INT12_1 Q_IO3_0 P91 170 140 - D11 SIN5_1 INT13_1 Q_IO2_0 P92 SOT5_1 171 141 - B10 (SDA5_1) INT14_1 Q_IO1_0 P93 SCK5_1 172 142 - C10 (SCL5_1) INT15_1 Q_IO0_0 P94 173 143 - D10 CTS5_1 Q_SCK_0 P95 174 144 - B9 RTS5_1 Q_CS0_0 P96 175 - - - INT12_2 Q_CS1_0 P97 176 - - - 177 145 115 C9 INT13_2 Q_CS2_0 PC0 PC1 178 146 116 B8 179 147 117 D9 180 148 118 E9 181 149 119 F9 182 150 120 C8 183 151 121 D8 TIOB6_0 PC2 TIOA6_0 PC3 TIOB7_0 PC4 TIOA7_0 PC5 TIOB14_0 PC6 April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL TIOA14_0 37 D a t a S h e e t I/O Pin No Pin Name LQFP-216 LQFP-176 LQFP-144 LBE192 circuit type Pin state type PC7 184 152 122 E8 INT13_0 E K K I K I K I VCC - - VSS - - L K K I L K L K L K L K L K L I E K E I E I CROUT_1 185 153 123 A10 186 154 124 F8 187 155 125 B7 188 156 126 A9 189 157 127 A8 190 158 128 A7 191 159 129 C7 PC8 PC9 TIOB15_0 PCA TIOA15_0 PCB INT28_0 PCC PCD 192 160 130 A6 SOT4_1 (SDA4_1) INT14_0 PCE 193 161 131 D7 SIN4_1 INT15_0 PCF 194 162 132 E7 RTS4_1 INT12_0 195 163 133 F7 196 164 134 B6 197 165 135 C6 PD0 INT30_1 PD1 INT31_1 PD2 CTS4_1 FRCK2_1 P6E ADTG_5 198 166 136 D6 SCK4_1 (SCL4_1) IC23_1 INT29_0 P6D SCK14_1 199 - - - (SCL14_1) IC22_1 TIOB6_2 P6C SOT14_1 200 - - - (SDA14_1) IC21_1 TIOA6_2 38 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t I/O Pin No Pin Name LQFP-216 LQFP-176 LQFP-144 LBE192 circuit type Pin state type P6B SIN14_1 201 - - - IC20_1 E K E I E I E I E I E K E K I K L K L I TIOB7_2 INT14_2 P6A 202 - - - DTTI2X_1 TIOA7_2 P69 203 - - - RTO20_1 (PPG20_1) TIOB14_2 P68 SCK13_1 204 - - - (SCL13_0) RTO21_1 (PPG20_1) TIOA14_2 P67 SOT13_1 205 - - - (SDA13_1) RTO22_1 (PPG22_1) TIOB15_2 P66 SIN13_1 206 - - - RTO23_1 (PPG22_1) TIOA15_2 INT15_2 P65 207 167 - E6 RTO24_1 (PPG24_1) INT28_1 P64 CTS4_0 208 168 - B5 RTO25_1 (PPG24_1) INT29_1 P63 ADTG_3 209 169 137 C5 RTS4_0 INT30_0 MOEX_0 P62 210 170 138 B4 SCK4_0 (SCL4_0) MWEX_0 April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 39 D a t a S h e e t I/O Pin No Pin Name LQFP-216 LQFP-176 LQFP-144 LBE192 circuit type Pin state type P61 SOT4_0 211 171 139 C4 (SDA4_0) L I I Q MALE_0 RTCCO_0 SUBOUT_0 P60 SIN4_0 212 172 140 B3 213 173 141 A4 VCC - - 214 174 142 A3 P80 H R 215 175 143 A2 P81 H R 216 176 144 B1 - - - - - E1 - - - - - G1 - - - - - P7 - - - - - P11 - - - - - L14 - - - - - A11 - - - - - A5 - - - - - N7 - - - - - M7 - - - - - L7 - - - - - K7 - - - - - J7 - - -- - - G7 - - - - - H7 - - - - - H8 - - - - - G8 - - INT31_0 WKUP3 40 CONFIDENTIAL VSS S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Signal Descriptions The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Pin No Module Pin name LQFP LQFP LBE 192 216 176 144 24 19 16 F6 ADTG_1 32 23 20 G5 ADTG_2 44 34 29 J3 ADTG_3 209 169 137 C5 157 127 103 D13 ADTG_5 A/D converter external trigger input pin 198 166 136 D6 ADTG_6 119 - - - ADTG_7 71 56 48 M5 ADTG_8 80 65 55 L6 AN00 114 94 78 L11 AN01 115 95 79 K13 AN02 116 96 80 K12 AN03 117 97 81 K14 AN04 118 98 82 K11 AN05 123 99 83 J13 AN06 124 100 84 J12 AN07 125 101 85 J11 AN08 130 106 86 H9 AN09 131 107 87 H12 AN10 132 108 88 H14 AN11 133 109 89 G14 AN12 134 110 90 H13 AN13 135 111 91 H11 G10 AN14 142 116 92 AN15 A/D converter analog input pin. 143 117 93 G9 AN16 ANxx describes ADC ch.xx. 126 102 - J10 AN17 127 103 - J9 AN18 128 104 - H10 AN19 129 105 - J14 AN20 138 112 - G13 AN21 139 113 - F14 AN22 140 114 - G12 AN23 141 115 - G11 AN24 144 118 94 F10 AN25 145 119 95 F11 AN26 146 120 96 F12 AN27 147 121 97 F13 AN28 153 123 99 E11 AN29 154 124 100 E12 AN30 155 125 101 E13 AN31 156 126 102 D12 April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL LQFP ADTG_0 ADTG_4 ADC Function 41 D a t a S h e e t Pin No Module Pin name Function TIOA0_0 TIOA0_1 Base Timer ch.0 TIOA Pin LQFP LBE 216 176 144 192 56 46 38 N2 45 35 30 J2 TIOA0_2 114 94 78 L11 0 TIOB0_0 82 67 57 L8 21 - - - TIOB0_2 115 95 79 K13 TIOA1_0 57 47 39 N3 TIOA1_1 Base Timer ch.0 TIOB Pin 46 36 31 K1 Base Timer TIOA1_2 116 96 80 K12 1 TIOB1_0 83 68 58 K8 TIOB1_1 Base Timer ch.1 TIOA Pin Base Timer ch.1 TIOB Pin TIOB1_2 TIOA2_0 TIOA2_1 Base Timer TIOA2_2 2 TIOB2_0 TIOB2_1 Base Timer ch.2 TIOA Pin Base Timer ch.2 TIOB Pin TIOB2_2 TIOA3_0 TIOA3_1 Base Timer ch.3 TIOA Pin 22 - - - 123 99 83 J13 58 48 40 M3 47 37 32 K2 124 100 84 J12 84 69 59 J8 26 - - - 125 101 85 J11 59 49 41 L4 48 38 33 K3 Base Timer TIOA3_2 130 106 86 H9 3 TIOB3_0 91 76 60 K9 27 - - - TIOB3_2 131 107 87 H12 TIOA4_0 60 50 42 M4 49 39 34 K4 TIOB3_1 TIOA4_1 Base Timer ch.3 TIOB Pin Base Timer ch.4 TIOA Pin Base Timer TIOA4_2 132 108 88 H14 4 TIOB4_0 92 77 61 P10 28 - - - 133 109 89 G14 61 51 43 N4 50 40 35 L1 TIOB4_1 Base Timer ch.4 TIOB Pin TIOB4_2 TIOA5_0 TIOA5_1 Base Timer ch.5 TIOA Pin Base Timer TIOA5_2 134 110 90 H13 5 TIOB5_0 93 78 62 N10 29 - - - TIOB5_2 135 111 91 H11 TIOA6_0 179 147 117 D9 85 70 - N8 TIOB5_1 TIOA6_1 Base Timer ch.5 TIOB Pin Base Timer ch.6 TIOA Pin Base Timer TIOA6_2 200 - - - 6 TIOB6_0 178 146 116 B8 86 71 - M8 199 - - - TIOB6_1 TIOB6_2 CONFIDENTIAL LQFP Base Timer TIOB0_1 42 LQFP Base Timer ch.6 TIOB Pin S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Pin No Module Pin name Function TIOA7_0 TIOA7_1 Base Timer ch.7 TIOA Pin LQFP LQFP LBE 216 176 144 192 181 149 119 F9 87 72 - N9 Base Timer TIOA7_2 202 - - - 7 TIOB7_0 180 148 118 E9 88 73 - P9 201 - - - TIOB7_1 Base Timer ch.7 TIOB Pin TIOB7_2 TIOA8_0 TIOA8_1 Base Timer ch.8 TIOA Pin 2 2 2 B2 142 116 92 G10 Base Timer TIOA8_2 10 10 - E2 8 TIOB8_0 18 17 14 F4 143 117 93 G9 TIOB8_2 11 11 - E3 TIOA9_0 3 3 3 C2 126 102 - J10 TIOB8_1 TIOA9_1 Base Timer ch.8 TIOB Pin Base Timer ch.9 TIOA Pin Base Timer TIOA9_2 12 12 - E4 9 TIOB9_0 23 18 15 F5 127 103 - J9 TIOB9_2 13 - - - TIOA10_0 4 4 4 C3 128 104 - H10 TIOB9_1 TIOA10_1 Base Timer ch.9 TIOB Pin Base Timer ch.10 TIOA Pin Base Timer TIOA10_2 19 - - - 10 TIOB10_0 24 19 16 F6 TIOB10_1 129 105 - J14 TIOB10_2 20 - - - TIOA11_0 5 5 5 D5 138 112 - G13 TIOA11_1 Base Timer ch.10 TIOB Pin Base Timer ch.11 の TIOA Pin Base Timer TIOA11_2 33 - - - 11 TIOB11_0 25 20 17 G2 139 113 - F14 51 41 - L2 TIOB11_1 Base Timer ch.11 TIOB Pin TIOB11_2 TIOA12_0 TIOA12_1 Base Timer ch.12 TIOA Pin 6 6 6 D2 140 114 - G12 Base Timer TIOA12_2 52 42 - L3 12 TIOB12_0 30 21 18 G3 141 115 - G11 TIOB12_2 53 43 - M2 TIOA13_0 7 7 7 D1 154 124 100 E12 TIOB12_1 TIOA13_1 Base Timer ch.12 TIOB Pin Base Timer ch.13 TIOA Pin Base Timer TIOA13_2 34 24 - G6 13 TIOB13_0 31 22 19 G4 155 125 101 E13 35 25 - H4 TIOB13_1 TIOB13_2 April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL LQFP Base Timer ch.13 TIOB Pin 43 D a t a S h e e t Pin No Module Pin name Function TIOA14_0 TIOA14_1 Base Timer ch.14 TIOA Pin LQFP LQFP LQFP LBE 216 176 144 192 183 151 121 D8 89 74 - M9 Base Timer TIOA14_2 204 - - - 14 TIOB14_0 182 150 120 C8 90 75 - L9 203 - - - 187 155 125 B7 78 63 - K5 TIOB14_1 Base Timer ch.14 TIOB Pin TIOB14_2 TIOA15_0 TIOA15_1 Base Timer ch.15 TIOA Pin Base Timer TIOA15_2 206 - - - 15 TIOB15_0 186 154 124 F8 79 64 - K6 205 - - - 165 135 111 A12 167 137 113 B12 TIOB15_1 Base Timer ch.15 TIOB Pin TIOB15_2 SWCLK SWDIO Serial wire debug interface clock input pin Serial wire debug interface data input / output pin SWO Serial wire viewer output pin 168 138 114 B11 TCK J-TAG test clock input pin 165 135 111 A12 TDI J-TAG test data input pin 166 136 112 C12 TDO J-TAG debug data output pin 168 138 114 B11 TMS J-TAG test mode state input/output pin 167 137 113 B12 Trace CLK output pin of ETM/HTM 131 107 87 H12 132 108 88 H14 TRACECLK TRACED0 Debugger TRACED1 Trace data output pin of ETM/ 133 109 89 G14 TRACED2 Trace data output pin of HTM 134 110 90 H13 TRACED3 135 111 91 H11 TRACED4 138 112 - G13 TRACED5 139 113 - F14 TRACED6 140 114 - G12 TRACED7 141 115 - G11 TRACED8 119 - - - 120 - - - TRACED10 121 - - - TRACED11 122 - - - TRACED12 148 - - - TRACED13 149 - - - TRACED14 150 - - - TRACED15 151 - - - 164 134 110 B13 TRACED9 Trace data output pin of HTM TRSTX 44 CONFIDENTIAL J-TAG test reset Input pin S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Pin No Module Pin name Function LQFP LQFP LBE 216 176 144 192 MAD00_0 81 66 56 J6 MAD01_0 82 67 57 L8 MAD02_0 83 68 58 K8 MAD03_0 84 69 59 J8 MAD04_0 91 76 60 K9 MAD05_0 92 77 61 P10 MAD06_0 93 78 62 N10 MAD07_0 96 79 63 L10 MAD08_0 97 80 64 K10 MAD09_0 98 81 65 M10 MAD10_0 142 116 92 G10 MAD11_0 143 117 93 G9 144 118 94 F10 MAD13_0 145 119 95 F11 MAD14_0 146 120 96 F12 MAD15_0 147 121 97 F13 External MAD16_0 152 122 98 E10 Bus MAD17_0 153 123 99 E11 MAD18_0 154 124 100 E12 MAD19_0 50 40 35 L1 MAD20_0 49 39 34 K4 MAD21_0 48 38 33 K3 MAD22_0 47 37 32 K2 MAD23_0 46 36 31 K1 MAD24_0 45 35 30 J2 MCSX0_0 71 56 48 M5 MCSX1_0 70 55 47 L5 MCSX2_0 61 51 43 N4 60 50 42 M4 59 49 41 L4 MCSX5_0 58 48 40 M3 MCSX6_0 57 47 39 N3 MCSX7_0 56 46 38 N2 MCSX8_0 88 73 - P9 MAD12_0 External bus interface address bus MCSX3_0 MCSX4_0 April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL LQFP External bus interface chip select output pin 45 D a t a S h e e t Pin No Module External Bus Pin name Function LQFP LBE 216 176 144 192 2 2 2 B2 MADATA01_0 3 3 3 C2 MADATA02_0 4 4 4 C3 MADATA03_0 5 5 5 D5 MADATA04_0 6 6 6 D2 MADATA05_0 7 7 7 D1 MADATA06_0 8 8 8 D3 MADATA07_0 9 9 9 D4 MADATA08_0 14 13 10 E5 MADATA09_0 15 14 11 F1 MADATA10_0 16 15 12 F2 MADATA11_0 17 16 13 F3 MADATA12_0 18 17 14 F4 MADATA13_0 23 18 15 F5 MADATA14_0 24 19 16 F6 MADATA15_0 External bus interface data bus 25 20 17 G2 MADATA16_0 (Address / data multiplex bus) 10 - - - MADATA17_0 11 - - - MADATA18_0 12 - - - MADATA19_0 13 - - - MADATA20_0 19 - - - MADATA21_0 20 - - - MADATA22_0 21 - - - MADATA23_0 22 - - - MADATA24_0 26 - - - MADATA25_0 27 - - - MADATA26_0 28 - - - MADATA27_0 29 - - - MADATA28_0 33 - - - MADATA29_0 51 - - - MADATA30_0 52 - - - MADATA31_0 53 - - - MDQM0_0 30 21 18 G3 MDQM1_0 External bus interface byte mask signal 31 22 19 G4 MDQM2_0 output pin 34 - - - 35 - - - 211 171 139 C4 80 65 55 L6 32 23 20 G5 MALE_0 MRDY_0 MCLKOUT_0 CONFIDENTIAL LQFP MADATA00_0 MDQM3_0 46 LQFP External bus interface Address Latch enable output signal for multiplex External bus interface external RDY input signal External bus clock signal S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Pin No Module Pin name LQFP LQFP LQFP LBE 216 176 144 192 47 37 32 K2 48 38 33 K3 50 40 35 L1 49 39 34 K4 209 169 137 C5 210 170 138 B4 90 75 - L9 89 74 - M9 85 70 - N8 86 71 - M8 87 72 - N9 2 2 2 B2 38 28 23 H3 INT00_2 19 - - - INT01_0 7 7 7 D1 41 31 26 H6 INT01_2 51 41 - L2 INT02_0 14 13 10 E5 42 32 27 J5 MNALE_0 MNCLE_0 MNREX_0 MNWEX_0 MOEX_0 External Bus Function MWEX_0 MSDCLK_0 MSDCKE_0 MRASX_0 MCASX_0 MSDWEX_0 External bus interface ALE signal to control NAND Flash output pin External bus interface CLE signal to control NAND Flash output pin External bus interface read enable signal to control NAND Flash External bus interface write enable signal to control NAND Flash External bus interface read enable signal for SRAM External bus interface write enable signal for SRAM SDRAM interface SDRAM clock output pin SDRAM interface SDRAM clock enable output pin SDRAM interface SDRAM row active output pin SDRAM interface SDRAM column active output pin SDRAM interface SDRAM write enable output pin INT00_0 INT00_1 INT01_1 INT02_1 External interrupt request 01 input pin External interrupt request 02 input pin External INT02_2 26 - - - Interrupt INT03_0 17 16 13 F3 43 33 28 J4 INT03_2 34 24 - G6 INT04_0 59 49 41 L4 INT03_1 INT04_1 External interrupt request 03 input pin 100 83 67 M11 INT04_2 65 - - - INT05_0 70 55 47 L5 86 71 - M8 68 - - - INT05_1 INT05_2 April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL External interrupt request 00 input pin External interrupt request 04 input pin External interrupt request 05 input pin 47 D a t a S h e e t Pin No Module Pin name Function LQFP LQFP LQFP LBE 216 176 144 192 80 65 55 L6 87 72 - N9 INT06_2 103 - - - INT07_0 82 67 57 L8 88 73 - P9 102 - - - INT06_0 INT06_1 INT07_1 External interrupt request 06 input pin External interrupt request 07 input pin INT07_2 INT08_0 114 94 78 L11 127 103 - J9 INT08_2 119 - - - INT09_0 123 99 83 J13 128 104 - H10 INT09_2 120 - - - INT10_0 130 106 86 H9 138 112 - G13 INT08_1 INT09_1 INT10_1 External interrupt request 08 input pin External interrupt request 09 input pin External interrupt request 10 input pin INT10_2 149 - - - INT11_0 133 109 89 G14 139 113 - F14 INT11_2 151 - - - INT12_0 194 162 132 E7 169 139 - C11 INT11_1 External interrupt request 11 input pin External INT12_1 Interrupt INT12_2 175 - - - INT13_0 184 152 122 E8 INT13_1 External interrupt request 12 input pin 170 140 - D11 INT13_2 176 - - - INT14_0 192 160 130 A6 171 141 - B10 INT14_2 201 - - - INT15_0 193 161 131 D7 172 142 - C10 206 - - - 25 20 17 G2 45 35 30 J2 30 21 18 G3 46 36 31 K1 31 22 19 G4 47 37 32 K2 36 26 21 H2 48 38 33 K3 91 76 60 K9 89 74 - M9 INT14_1 INT15_1 External interrupt request 13 input pin External interrupt request 14 input pin External interrupt request 15 input pin INT15_2 INT16_0 External interrupt request 16 input pin INT16_1 INT17_0 External interrupt request 17 input pin INT17_1 INT18_0 External interrupt request 18 input pin INT18_1 INT19_0 External interrupt request 19 input pin INT19_1 INT20_0 External interrupt request 20 input pin INT20_1 48 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Pin No Module Pin name Function INT21_0 LQFP LQFP LQFP LBE 216 176 144 192 96 79 63 L10 90 75 - L9 99 82 66 N11 78 63 - K5 56 46 38 N2 79 64 - K6 147 121 97 F13 131 107 87 H12 153 123 99 E11 117 97 81 K14 156 126 102 D12 142 116 92 G10 157 127 103 D13 143 117 93 G9 190 158 128 A7 207 167 - E6 198 166 136 D6 208 168 - B5 209 169 137 C5 195 163 133 F7 212 172 140 B3 196 164 134 B6 158 128 104 C13 External interrupt request 21 input pin INT21_1 INT22_0 External interrupt request 22 input pin INT22_1 INT23_0 External interrupt request 23 input pin INT23_1 INT24_0 External interrupt request 24 input pin INT24_1 INT25_0 External interrupt request 25 input pin INT25_1 INT26_0 External Interrupt External interrupt request 26 input pin INT26_1 INT27_0 External interrupt request 27 input pin INT27_1 INT28_0 External interrupt request 28 input pin INT28_1 INT29_0 External interrupt request 29 input pin INT29_1 INT30_0 External interrupt request 30 input pin INT30_1 INT31_0 External interrupt request 31 input pin INT31_1 NMIX April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL Non-Maskable Interrupt input pin 49 D a t a S h e e t Pin No Module Pin name Function LQFP LQFP LQFP LBE 216 176 144 192 P00 164 134 110 B13 P01 165 135 111 A12 P02 166 136 112 C12 167 137 113 B12 P04 168 138 114 B11 P08 30 21 18 G3 P03 General-purpose I/O port 0 P09 31 22 19 G4 P0A 32 23 20 G5 P10 114 94 78 L11 P11 115 95 79 K13 P12 116 96 80 K12 P13 117 97 81 K14 P14 118 98 82 K11 P15 123 99 83 J13 P16 124 100 84 J12 P17 125 101 85 J11 P18 130 106 86 H9 P19 131 107 87 H12 P1A 132 108 88 H14 P1B 133 109 89 G14 P1C 134 110 90 H13 P1D 135 111 91 H11 P1E 142 116 92 G10 P1F 143 117 93 G9 P20 158 128 104 C13 P21 157 127 103 D13 P22 156 126 102 D12 P23 155 125 101 E13 P24 154 124 100 E12 153 123 99 E11 P26 152 122 98 E10 P27 147 121 97 F13 P28 146 120 96 F12 P29 145 119 95 F11 P2A 144 118 94 F10 General-purpose I/O port 1 GPIO P25 50 CONFIDENTIAL General-purpose I/O port 2 S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Pin No Module Pin name Function LQFP LQFP LQFP LBE 216 176 144 192 P30 34 24 - G6 P31 35 25 - H4 P32 36 26 21 H2 P33 37 27 22 J1 P34 38 28 23 H3 P35 41 31 26 H6 42 32 27 J5 43 33 28 J4 P38 44 34 29 J3 P39 45 35 30 J2 P3A 46 36 31 K1 P3B 47 37 32 K2 P3C 48 38 33 K3 P3D 49 39 34 K4 P3E 50 40 35 L1 P40 56 46 38 N2 P41 57 47 39 N3 P42 58 48 40 M3 P43 59 49 41 L4 P44 60 50 42 M4 P45 61 51 43 N4 P46 73 58 50 P5 P36 P37 General-purpose I/O port 3 GPIO P47 74 59 51 P6 P48 76 61 53 N6 P49 77 62 54 M6 P4A 65 - - - P4B 66 - - - P4C 67 - - - P4D 68 - - - P4E 69 - - - April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL General-purpose I/O port 4 51 D a t a S h e e t Pin No Module Pin name Function LQFP LQFP LQFP LBE 216 176 144 192 P50 10 10 - E2 P51 11 11 - E3 P52 12 12 - E4 P53 13 - - - P54 19 - - - P55 20 - - - P56 21 - - - P57 22 - - - P58 26 - - - P59 27 - - - P5A 28 - - - P5B 29 - - - P5C 33 - - - P5D 51 41 - L2 P5E 52 42 - L3 P5F 53 43 - M2 P60 212 172 140 B3 P61 211 171 139 C4 P62 210 170 138 B4 P63 209 169 137 C5 P64 208 168 - B5 P65 207 167 - E6 206 - - - 205 - - - P68 204 - - - P69 203 - - - P6A 202 - - - P6B 201 - - - P6C 200 - - - P6D 199 - - - P6E 198 166 136 D6 General-purpose I/O port 5 GPIO P66 P67 52 CONFIDENTIAL General-purpose I/O port 6 S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Pin No Module Pin name Function LQFP LQFP LBE 216 176 144 192 P70 80 65 55 L6 P71 81 66 56 J6 P72 82 67 57 L8 P73 83 68 58 K8 P74 84 69 59 J8 P75 91 76 60 K9 92 77 61 P10 93 78 62 N10 P78 96 79 63 L10 P79 97 80 64 K10 P7A 98 81 65 M10 P7B 99 82 66 N11 P7C 100 83 67 M11 P7D 70 55 47 L5 P76 P77 GPIO LQFP General-purpose I/O port 7 P7E 71 56 48 M5 P80 214 174 142 A3 215 175 143 A2 P82 160 130 106 D14 P83 161 131 107 C14 P90 169 139 - C11 P91 170 140 - D11 P92 171 141 - B10 P81 General-purpose I/O port 8 P93 172 142 - C10 P94 173 143 - D10 P95 174 144 - B9 P96 175 - - - P97 176 - - - General-purpose I/O port 9 April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 53 D a t a S h e e t Pin No Module Pin name Function LQFP LQFP LQFP LBE 216 176 144 192 PA0 2 2 2 B2 PA1 3 3 3 C2 PA2 4 4 4 C3 PA3 5 5 5 D5 PA4 6 6 6 D2 PA5 7 7 7 D1 PA6 8 8 8 D3 PA7 9 9 9 D4 PA8 14 13 10 E5 PA9 15 14 11 F1 PAA 16 15 12 F2 PAB 17 16 13 F3 PAC 18 17 14 F4 PAD 23 18 15 F5 PAE 24 19 16 F6 PAF 25 20 17 G2 PB0 126 102 - J10 PB1 127 103 - J9 PB2 128 104 - H10 PB3 129 105 - J14 PB4 138 112 - G13 PB5 139 113 - F14 PB6 140 114 - G12 PB7 141 115 - G11 PB8 119 - - - PB9 120 - - - PBA 121 - - - PBB 122 - - - PBC 148 - - - PBD 149 - - - PBE 150 - - - PBF 151 - - - General-purpose I/O port A GPIO General-purpose I/O port B 54 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Pin No Module Pin name Function LQFP LQFP LQFP LBE 216 176 144 192 PC0 177 145 115 C9 PC1 178 146 116 B8 PC2 179 147 117 D9 PC3 180 148 118 E9 PC4 181 149 119 F9 PC5 182 150 120 C8 PC6 183 151 121 D8 PC7 184 152 122 E8 PC8 185 153 123 A10 PC9 186 154 124 F8 PCA 187 155 125 B7 PCB 190 158 128 A7 PCC 191 159 129 C7 PCD 192 160 130 A6 PCE 193 161 131 D7 PCF 194 162 132 E7 PD0 195 163 133 F7 196 164 134 B6 PD2 197 165 135 C6 PE0 104 84 68 N13 106 86 70 P12 PE3 107 87 71 P13 PF0 78 63 - K5 PF1 79 64 - K6 PF2 85 70 - N8 PF3 86 71 - M8 PF4 87 72 - N9 PF5 88 73 - P9 89 74 - M9 PF7 90 75 - L9 PF8 94 - - - PF9 95 - - - PFA 101 - - - PFB 102 - - - PFC 103 - - - General-purpose I/O port C GPIO PD1 PE2 PF6 April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL General-purpose I/O port D General-purpose I/O port E General-purpose I/O port F 55 D a t a S h e e t Pin No Module Pin name Function SIN0_0 LQFP LQFP LQFP LBE 216 176 144 192 157 127 103 D13 151 - - - 156 126 102 D12 150 - - - 155 125 101 E13 149 - - - 7 7 7 D1 80 65 55 L6 8 8 8 D3 81 66 56 J6 9 9 9 D4 70 55 47 L5 130 106 86 H9 45 35 30 J2 131 107 87 H12 46 36 31 K1 132 108 88 H14 47 37 32 K2 Multi-function serial interface ch.0 input pin SIN0_1 SOT0_0 (SDA0_0) Multi-function serial interface ch.0 output pin This pin operates as SOT0 when it is used Multi- SOT0_1 function (SDA0_1) serial 0 in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA0 when it is used in an I2C (operation mode 4). SCK0_0 Multi-function serial interface ch.0 clock I/O (SCL0_0) pin. This pin operates as SCK0 when it is used SCK0_1 in a CSIO (operation mode 2) and as SCL0 (SCL0_1) when it is used in an I2C (operation mode 4) SIN1_0 Multi-function serial interface ch.1 input pin SIN1_1 SOT1_0 (SDA1_0) Multi-function serial interface ch.1 output pin This pin operates as SOT1 when it is used Multi- SOT1_1 function (SDA1_1) serial 1 in a UART/CSIO/LIN(operation modes 0 to 3) and as SDA1 when it is used in an I2C (operation mode 4). SCK1_0 Multi-function serial interface ch.1 clock I/O (SCL1_0) pin. This pin operates as SCK1 when it is used SCK1_1 in a CSIO (operation modes 2) and as (SCL1_1) SCL1 when it is used in an I2C (operation mode 4). SIN2_0 Multi-function serial interface ch.2 input pin SIN2_1 SOT2_0 (SDA2_0) Multi-function serial interface ch.2 output pin This pin operates as SOT2 when it is used Multi- SOT2_1 function (SDA2_1) serial 2 in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA2 when it is used in an I2C (operation mode 4). SCK2_0 Multi-function serial interface ch.2 clock I/O (SCL2_0) Pin. This pin operates as SCK2 when it is used SCK2_1 in a CSIO (operation modes 2) and as (SCL2_1) SCL2 when it is used in an I2C (operation mode 4). 56 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Pin No Module Pin name Function SIN3_0 LQFP LQFP LQFP LBE 216 176 144 192 25 20 17 G2 56 46 38 N2 24 19 16 F6 57 47 39 N3 23 18 15 F5 58 48 40 M3 212 172 140 B3 193 161 131 D7 211 171 139 C4 192 160 130 A6 210 170 138 B4 198 166 136 D6 Multi-function serial interface ch.3 input pin SIN3_1 SOT3_0 (SDA3_0) Multi-function serial interface ch.3 output pin. This pin operates as SOT3 when it is used Multi- SOT3_1 function (SDA3_1) serial 3 in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA3 when it is used in an I2C (operation mode 4). SCK3_0 Multi-function serial interface ch.3 clock I/O (SCL3_0) pin. This pin operates as SCK3 when it is used SCK3_1 in a CSIO (operation modes 2) and as (SCL3_1) SCL3 when it is used in an I2C (operation mode 4). SIN4_0 Multi-function serial interface ch.4 input pin SIN4_1 SOT4_0 (SDA4_0) Multi-function serial interface ch.4 output pin. This pin operates as SOT4 when it is used SOT4_1 (SDA4_1) in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA4 when it is used in an I2C (operation mode 4). Multifunction SCK4_0 Multi-function serial interface ch.4 clock I/O serial (SCL4_0) pin. This pin operates as SCK4 when it is used 4 SCK4_1 in a CSIO (operation modes 2) and as (SCL4_1) SCL4 when it is used in an I2C (operation mode 4). CTS4_0 Multi-function serial interface ch.4 CTS 208 168 - B5 CTS4_1 input pin 197 165 135 C6 RTS4_0 Multi-function serial interface ch.4 RTS 209 169 137 C5 RTS4_1 output pin 194 162 132 E7 April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 57 D a t a S h e e t Pin No Module Pin name Function SIN5_0 LQFP LQFP LQFP LBE 216 176 144 192 147 121 97 F13 170 140 - D11 146 120 96 F12 171 141 - B10 145 119 95 F11 172 142 - C10 Multi-function serial interface ch.5 input pin SIN5_1 SOT5_0 (SDA5_0) Multi-function serial interface ch.5 output pin. This pin operates as SOT5 when it is used SOT5_1 (SDA5_1) in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA5 when it is used in an I2C (operation mode 4). Multifunction SCK5_0 Multi-function serial interface ch.5 clock I/O serial (SCL5_0) pin. This pin operates as SCK5 when it is 5 SCK5_1 used in a CSIO (operation modes 2) (SCL5_1) and as SCL5 when it is used in an I2C (operation mode 4). CTS5_0 Multi-function serial interface ch.5 CTS 144 118 94 F10 CTS5_1 input pin 173 143 - D10 RTS5_0 Multi-function serial interface ch.5 RTS 143 117 93 G9 RTS5_1 output pin 174 144 - B9 96 79 63 L10 117 97 81 K14 97 80 64 K10 118 98 82 K11 98 81 65 M10 126 102 - J10 N11 SIN6_0 Multi-function serial interface ch.6 input pin SIN6_1 SOT6_0 (SDA6_0) Multi-function serial interface ch.6 output pin. This pin operates as SOT6 when it is used SOT6_1 (SDA6_1) in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA6 when it is used in an I2C (operation mode 4). Multi- SCK6_0 Multi-function serial interface ch.6 clock I/O (SCL6_0) pin. This pin operates as SCK6 when it is used function serial SCK6_1 in a CSIO (operation modes 2) and as 6 (SCL6_1) SCL6 when it is used in an I2C (operation mode 4). 58 CONFIDENTIAL SCS60_0 Multi-function serial interface ch.6 chip 99 82 66 SCS60_1 select 0 input/output pin 127 103 - J9 SCS61_0 Multi-function serial interface ch.6 chip 100 83 67 M11 SCS61_1 select1 input/output pin 128 104 - H10 SCS62_0 Multi-function serial interface ch.6 chip 79 64 - K6 SCS62_1 select2 input/output pin 129 105 - J14 SCS63_0 Multi-function serial interface ch.6 chip 78 63 - K5 SCS63_1 select3 input/output pin 119 - - - S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Pin No Module Pin name SIN7_0 SIN7_1 SOT7_0 (SDA7_0) Function Multi-function serial interface ch.7 input pin Multi-function serial interface ch.7 output pin. LQFP LQFP LQFP LBE 216 176 144 192 14 13 10 E5 103 - - - 15 14 11 F1 102 - - - 16 15 12 F2 101 - - - This pin operates as SOT7 when it is used SOT7_1 (SDA7_1) in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA7 when it is used in an I2C (operation mode 4). Multi- SCK7_0 Multi-function serial interface ch.7 (SCL7_0) clock I/O pin. This pin operates as SCK7 when it is used function serial SCK7_1 in a CSIO (operation modes 2) and as 7 (SCL7_1) SCL7 when it is used in an I2C (operation mode 4). SCS70_0 Multi-function serial interface ch.7 chip 17 16 13 F3 SCS70_1 select 0 input/output pin 94 - - - SCS71_0 Multi-function serial interface ch.7 chip 18 17 14 F4 SCS71_1 select1 input/output pin 95 - - - SCS72_0 Multi-function serial interface ch.7 chip 10 10 - E2 SCS72_1 select 2 input/output pin 68 - - - SCS73_0 Multi-function serial interface ch.7 chip 11 11 - E3 SCS73_1 select 3 input/output pin 69 - - - 91 76 60 K9 138 112 - G13 92 77 61 P10 139 113 - F14 93 78 62 N10 140 114 - G12 SIN8_0 SIN8_1 SOT8_0 (SDA8_0) Multi-function serial interface ch.8 input pin Multi-function serial interface ch.8 output pin. This pin operates as SOT8 when it is used Multi- SOT8_1 function (SDA8_1) serial 8 in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA8 when it is used in an I2C (operation mode 4). SCK8_0 Multi-function serial interface ch.8 clock I/O (SCL8_0) pin. This pin operates as SCK8 when it is used SCK8_1 in a CSIO (operation modes 2) and as (SCL8_1) SCL8 when it is used in an I2C (operation mode 4). April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 59 D a t a S h e e t Pin No Module Pin name SIN9_0 SIN9_1 SOT9_0 (SDA9_0) Function Multi-function serial interface ch.9 input pin Multi-function serial interface ch.9 output pin. LQFP LQFP LQFP LBE 216 176 144 192 82 67 57 L8 120 - - - 83 68 58 K8 121 - - - 84 69 59 J8 122 - - - This pin operates as SOT9 when it is used Multi- SOT9_1 function (SDA9_1) serial 9 in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA9 when it is used in an I2C (operation mode 4). SCK9_0 Multi-function serial interface ch.9 clock I/O (SCL9_0) pin. This pin operates as SCK9 when it is used SCK9_1 in a CSIO (operation modes 2) and as (SCL9_1) SCL9 when it is used in an I2C (operation mode 4). SIN10_0 Multi-function serial interface ch.10 input 114 94 78 L11 SIN10_1 pin 51 41 - L2 SOT10_0 Multi-function serial interface ch.10 output 115 95 79 K13 52 42 - L3 116 96 80 K12 53 43 - M2 (SDA10_0) pin. This pin operates as SOT10 when it is Multi- SOT10_1 function (SDA10_1) serial 10 used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA10 when it is used in an I2C (operation mode 4). SCK10_0 Multi-function serial interface ch.10 clock (SCL10_0) I/O pin. This pin operates as SCK10 when it is SCK10_1 used in a CSIO (operation modes 2) and (SCL10_1) as SCL10 when it is used in an I2C (operation mode 4). SIN11_0 Multi-function serial interface ch.11 input 123 99 83 J13 SIN11_1 pin 26 - - - SOT11_0 Multi-function serial interface ch.11 output 124 100 84 J12 27 - - - 125 101 85 J11 28 - - - (SDA11_0) pin. This pin operates as SOT11 when it is Multi- SOT11_1 function (SDA11_1) serial 11 used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA11 when it is used in an I2C (operation mode 4). SCK11_0 Multi-function serial interface ch.11 clock (SCL11_0) I/O pin. This pin operates as SCK11 when it is SCK11_1 used in a CSIO (operation modes 2) and (SCL11_1) as SCL11 when it is used in an I2C (operation mode 4). 60 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Pin No Module Pin name Function LQFP LQFP LQFP LBE 216 176 144 192 SIN12_0 Multi-function serial interface ch.12 input 133 109 89 G14 SIN12_1 pin 65 - - - SOT12_0 Multi-function serial interface ch.12 output 134 110 90 H13 66 - - - 135 111 91 H11 67 - - - (SDA12_0) pin. This pin operates as SOT12 when it is Multi- SOT12_1 function (SDA12_1) serial 12 used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA12 when it is used in an I2C (operation mode 4). SCK12_0 Multi-function serial interface ch.12 clock (SCL12_0) I/O pin. This pin operates as SCK12 when it is SCK12_1 used in a CSIO (operation modes 2) and (SCL12_1) as SCL12 when it is used in an I2C (operation mode 4). SIN13_0 Multi-function serial interface ch.13 input 48 38 33 K3 SIN13_1 pin 206 - - - SOT13_0 Multi-function serial interface ch.13 output 49 39 34 K4 205 - - - 50 40 35 L1 204 - - - (SDA13_0) pin. This pin operates as SOT13 when it is Multi- SOT13_1 function (SDA13_1) serial 13 used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA13 when it is used in an I2C (operation mode 4). SCK13_0 Multi-function serial interface ch.13 clock (SCL13_0) I/O pin. This pin operates as SCK13 when it is SCK13_1 used in a CSIO (operation modes 2) and (SCL13_1) as SCL13 when it is used in an I2C (operation mode 4). SIN14_0 Multi-function serial interface ch.14 input 30 21 18 G3 SIN14_1 pin 201 - - - SOT14_0 Multi-function serial interface ch.14 output 31 22 19 G4 200 - - - 32 23 20 G5 199 - - - (SDA14_0) pin. This pin operates as SOT14 when it is Multi- SOT14_1 function (SDA14_1) serial 14 used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA14 when it is used in an I2C (operation mode 4). SCK14_0 Multi-function serial interface ch.14 clock (SCL14_0) I/O pin. This pin operates as SCK14 when it is SCK14_1 used in a CSIO (operation modes 2) and (SCL14_1) as SCL14 when it is used in an I2C (operation mode 4). April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 61 D a t a S h e e t Pin No Module Pin name Function LQFP LQFP LQFP LBE 216 176 144 192 SIN15_0 Multi-function serial interface ch.15 input 59 49 41 L4 SIN15_1 pin 19 - - - SOT15_0 Multi-function serial interface ch.15 output 60 50 42 M4 20 - - - 61 51 43 N4 21 - - - (SDA15_0) pin. This pin operates as SOT15 when it is Multi- SOT15_1 function (SDA15_1) serial 15 used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA15 when it is used in an I2C (operation mode 4). SCK15_0 Multi-function serial interface ch.15 clock (SCL15_0) I/O pin. This pin operates as SCK15 when it is SCK15_1 used in a CSIO (operation modes 2) and (SCL15_1) as SCL15 when it is used in an I2C (operation mode 4). 62 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Pin No Module Pin name DTTI0X_0 Function Input signal controlling wave form LQFP LQFP LQFP LBE 216 176 144 192 44 34 29 J3 21 - - - generator outputs RTO00 to RTO05 of DTTI0X_1 Multi-function timer 0. FRCK0_0 16-bit free-run timer ch.0 external 37 27 22 J1 FRCK0_1 clock input pin 29 - - - IC00_0 43 33 28 J4 IC00_1 22 - - - 42 32 27 J5 IC01_0 IC01_1 16-bit input capture input pin of 26 - - - 41 31 26 H6 IC02_1 27 - - - IC03_0 38 28 23 H3 IC03_1 28 - - - 45 35 30 J2 10 10 - E2 46 36 31 K1 11 11 - E3 47 37 32 K2 12 12 - E4 48 38 33 K3 13 - - - 49 39 34 K4 19 - - - 50 40 35 L1 20 - - - Multi-function timer 0. IC02_0 RTO00_0 (PPG00_0) RTO00_1 Multifunction Timer Timer 0 (PPG00_1) RTO01_0 (PPG00_0) RTO01_1 (PPG00_1) RTO02_0 (PPG02_0) RTO02_1 (PPG02_1) RTO03_0 (PPG02_0) RTO03_1 (PPG02_1) RTO04_0 (PPG04_0) RTO04_1 (PPG04_1) RTO05_0 (PPG04_0) RTO05_1 (PPG04_1) April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL ICxx describes channel number. Wave form generator output pin of Multi-function timer 0. This pin operates as PPG00 when it is used in PPG0 output modes. Wave form generator output pin of Multi-function timer 0. This pin operates as PPG00 when it is used in PPG0 output modes. Wave form generator output pin of Multi-function timer 0. This pin operates as PPG02 when it is used in PPG0 output modes. Wave form generator output pin of Multi-function timer 0. This pin operates as PPG02 when it is used in PPG0 output modes. Wave form generator output pin of Multi-function timer 0. This pin operates as PPG04 when it is used in PPG0 output modes. Wave form generator output pin of Multi-function timer 0. This pin operates as PPG04 when it is used in PPG0 output modes. 63 D a t a S h e e t Pin No Module Pin name DTTI1X_0 Function Input signal controlling wave form LQFP LQFP LQFP LBE 216 176 144 192 70 55 47 L5 94 - - - generator outputs RTO10 to RTO15 of DTTI1X_1 Multi-function timer 1. FRCK1_0 16-bit free-run timer ch.1 external 71 56 48 M5 FRCK1_1 clock input pin 78 63 - K5 IC10_0 96 79 63 L10 IC10_1 95 - - - 97 80 64 K10 IC11_0 IC11_1 16-bit input capture input pin of 101 - - - 98 81 65 M10 IC12_1 102 - - - IC13_0 99 82 66 N11 IC13_1 103 - - - 56 46 38 N2 85 70 - N8 57 47 39 N3 86 71 - M8 58 48 40 M3 87 72 - N9 59 49 41 L4 88 73 - P9 60 50 42 M4 89 74 - M9 61 51 43 N4 90 75 - L9 Multi-function timer 1. IC12_0 RTO10_0 (PPG10_0) RTO10_1 Multifunction Timer 1 (PPG10_1) RTO11_0 (PPG10_0) RTO11_1 (PPG10_1) RTO12_0 (PPG12_0) RTO12_1 (PPG12_1) RTO13_0 (PPG12_0) RTO13_1 (PPG12_1) RTO14_0 (PPG14_0) RTO14_1 (PPG14_1) RTO15_0 (PPG14_0) RTO15_1 (PPG14_1) 64 CONFIDENTIAL ICxx describes channel number. Wave form generator output pin of Multi-function timer 1. This pin operates as PPG10 when it is used in PPG1 output modes. Wave form generator output pin of Multi-function timer 1. This pin operates as PPG10 when it is used in PPG1 output modes. Wave form generator output pin of Multi-function timer 1. This pin operates as PPG12 when it is used in PPG1 output modes. Wave form generator output pin of Multi-function timer 1. This pin operates as PPG12 when it is used in PPG1 output modes. Wave form generator output pin of Multi-function timer 1. This pin operates as PPG14 when it is used in PPG1 output modes. Wave form generator output pin of Multi-function timer 1. This pin operates as PPG14 when it is used in PPG1 output modes. S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Pin No Module Pin name DTTI2X_0 Function Input signal controlling wave form LQFP LQFP LQFP LBE 216 176 144 192 8 8 8 D3 202 - - - generator outputs RTO20 to RTO25 of DTTI2X_1 Multi-function timer 2. FRCK2_0 16-bit free-run timer ch.2 external 17 16 13 F3 FRCK2_1 clock input pin 197 165 135 C6 IC20_0 9 9 9 D4 IC20_1 201 - - - 14 13 10 E5 IC21_0 IC21_1 16-bit input capture input pin of 200 - - - 15 14 11 F1 IC22_1 199 - - - IC23_0 16 15 12 F2 IC23_1 198 166 136 D6 2 2 2 B2 203 - - - 3 3 3 C2 204 - - - 4 4 4 C3 205 - - - 5 5 5 D5 206 - - - 6 6 6 D2 207 167 - E6 7 7 7 D1 208 168 - B5 Multi-function timer 2. IC22_0 RTO20_0 (PPG20_0) RTO20_1 Multifunction Timer 2 (PPG20_1) RTO21_0 (PPG20_0) RTO21_1 (PPG20_1) RTO22_0 (PPG22_0) RTO22_1 (PPG22_1) RTO23_0 (PPG22_0) RTO23_1 (PPG22_1) RTO24_0 (PPG24_0) RTO24_1 (PPG24_1) RTO25_0 (PPG24_0) RTO25_1 (PPG24_1) April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL ICxx describes channel number. Wave form generator output pin of Multi-function timer 2. This pin operates as PPG20 when it is used in PPG2 output modes. Wave form generator output pin of Multi-function timer 2. This pin operates as PPG20 when it is used in PPG2 output modes. Wave form generator output pin of Multi-function timer 2. This pin operates as PPG22 when it is used in PPG2 output modes. Wave form generator output pin of Multi-function timer 2. This pin operates as PPG22 when it is used in PPG2 output modes. Wave form generator output pin of Multi-function timer 2. This pin operates as PPG24 when it is used in PPG2 output modes. Wave form generator output pin of Multi-function timer 2. This pin operates as PPG24 when it is used in PPG2 output modes. 65 D a t a S h e e t Pin No Module Pin name Function LQFP LQFP LQFP LBE 216 176 144 192 56 46 38 N2 65 - - - AIN0_2 114 94 78 L11 Position/ BIN0_0 57 47 39 N3 Revolution BIN0_1 66 - - - Counter BIN0_2 115 95 79 K13 58 48 40 M3 67 - - - ZIN0_2 116 96 80 K12 AIN1_0 91 76 60 K9 94 - - - AIN1_2 123 99 83 J13 Position/ BIN1_0 92 77 61 P10 Revolution BIN1_1 95 - - - Counter BIN1_2 124 100 84 J12 ZIN1_0 93 78 62 N10 101 - - - ZIN1_2 125 101 85 J11 AIN2_0 2 2 2 B2 32 23 20 G5 AIN2_2 120 - - - Position/ BIN2_0 3 3 3 C2 Revolution BIN2_1 36 26 21 H2 Counter BIN2_2 121 - - - ZIN2_0 4 4 4 C3 37 27 22 J1 ZIN2_2 122 - - - AIN3_0 18 17 14 F4 45 35 30 J2 149 - - - 23 18 15 F5 46 36 31 K1 AIN0_0 AIN0_1 Quadrature 0 AIN1_1 1 ZIN1_1 AIN2_1 Quadrature 2 ZIN2_1 AIN3_1 Quadrature QPRC ch.0 BIN input pin ZIN0_0 ZIN0_1 Quadrature QPRC ch.0 AIN input pin QPRC ch.0 ZIN input pin QPRC ch.1 AIN input pin QPRC ch.1 BIN input pin QPRC ch.1 ZIN input pin QPRC ch.2 AIN input pin QPRC ch.2 BIN input pin QPRC ch.2 ZIN input pin QPRC ch.3 AIN input pin AIN3_2 Position/ BIN3_0 Revolution BIN3_1 Counter BIN3_2 150 - - - ZIN3_0 24 19 16 F6 47 37 32 K2 151 - - - 3 ZIN3_1 QPRC ch.3 BIN input pin QPRC ch.3 ZIN input pin ZIN3_2 RTCCO_0 0.5 seconds pulse output pin of 211 171 139 C4 Real-time RTCCO_1 Real-time clock 33 - - - clock SUBOUT_0 211 171 139 C4 33 - - - Sub clock output pin SUBOUT_1 66 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Pin No Module Pin name WKUP0 Low-Power Consump tion Mode WKUP1 WKUP2 WKUP3 Function Deep standby mode return signal input pin 0 Deep standby mode return signal input pin 1 Deep standby mode return signal input pin 2 Deep standby mode return signal input pin 3 LQFP LQFP LQFP LBE 216 176 144 192 158 128 104 C13 14 13 10 E5 70 55 47 L5 212 172 140 B3 DA0 D/A converter ch.0 analog output pin 100 83 67 M11 DA1 D/A converter ch.1 analog output pin 99 82 66 N11 On-board regulator control pin 76 61 53 N6 77 62 54 M6 38 28 23 H3 41 31 26 H6 36 26 21 H2 DAC VREGCTL VBAT VWAKEUP S_CLK_0 S_CMD_0 The return signal input pin from a hibernation state SD memory card interface SD memory card clock output pin SD memory card interface SD memory card command output S_DATA1_0 S_DATA0_0 SD memory card interface 37 27 22 J1 S_DATA3_0 SD memory card data bus 42 32 27 J5 43 33 28 J4 45 35 30 J2 44 34 29 J3 SD I/F S_DATA2_0 S_CD_0 S_WP_0 April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL SD memory card interface SD memory card detection pin SD memory card interface SD memory card write protection 67 D a t a S h e e t Pin No Module Pin name LQFP LQFP LQFP LBE 216 176 144 192 51 41 - L2 I2SDO0_0 2 I S serial transition data output pin 52 42 - L3 I2SWS0_0 I2 53 43 - M2 2 34 24 - G6 2 I2SMCLK0_0 2 IS Function I2SDI0_0 I2S external clock pin S frame synchronization signal pin I S serial received data input pin I2SCK0_0 I S bit clock pin 35 25 - H4 Q_SCK_0 SPI clock output pin 173 143 - D10 Q_IO0_0 172 142 - C10 Q_IO1_0 171 141 - B10 SPI data input/output pin High-Speed Q_IO2_0 170 140 - D11 Quad SPI Q_IO3_0 169 139 - C11 Q_CS0_0 174 144 - B9 175 - - - 176 - - - Q_CS1_0 Q_CS2_0 68 CONFIDENTIAL SPI chip select output pin S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Pin No Module Reset Pin name INITX Function External Reset Input pin. A reset is valid when INITX=L. LQFP LQFP LQFP LBE 216 176 144 192 72 57 49 N5 104 84 68 N13 105 85 69 N12 1 1 1 C1 39 29 24 H1 55 45 37 N1 Mode 1 pin. MD1 During serial programming to Flash memory, MD1=L must be input. Mode Mode 0 pin. MD0 During normal operation, MD0=L must be input. During serial programming to Flash memory, MD0=H must be input. Power GND VCC VSS April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL Power supply Pin GND Pin 64 54 46 P4 109 89 73 M14 137 - - - 159 129 105 E14 163 133 109 A13 188 156 126 A9 213 173 141 A4 40 30 25 H5 54 44 36 M1 63 53 45 P3 108 88 72 N14 136 - - - 162 132 108 B14 189 157 127 A8 216 176 144 B1 - - - E1 - - - G1 - - - P7 - - - P11 - - - L14 - - - A11 - - - A5 - - - N7 - - - M7 - - - K7 - - - J7 - - - G7 - - - H7 - - - H8 - - - G8 69 D a t a S h e e t Pin No Module Clock Pin name Power Power Analog GND C Pin 70 CONFIDENTIAL LQFP LQFP LBE 216 176 144 192 Main clock (oscillation) input pin 106 86 70 P12 X1 Main clock (oscillation) I/O pin 107 87 71 P13 X0A Sub clock (oscillation) input pin 73 58 50 P5 X1A Sub clock (oscillation) I/O pin 74 59 51 P6 CROUT_0 Built-in High-speed CR-osc clock output 157 127 103 D13 CROUT_1 port 184 152 122 E8 110 90 74 M13 112 92 76 L13 113 93 77 L12 75 60 52 P8 111 91 75 M12 62 52 44 P2 AVRL AVRH VBAT LQFP X0 AVCC Analog Function A/D converter and D/A converter analog power supply pin A/D converter analog reference voltage input pin A/D converter analog reference voltage input pin VBAT power supply pin. VBAT Backup power supply (battery etc.) and system power supply. AVSS C A/D converter and D/A converter GND pin Power supply stabilization capacity pin S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t 7. I/O Circuit Type Type Circuit Remarks A P-ch P-ch Digital output X1 N-ch Digital output R It is possible to select the main oscillation/GPIO function. Pull-up resistor control Digital input Standby mode control Clock input Standby mode control Digital input Standby mode control When the main oscillation is selected: ・ Oscillation feedback resistor: approximately 1 MΩ ・ Standby mode control When the GPIO is selected: ・ CMOS level output. ・ CMOS level hysteresis input ・ Pull-up resistor control ・ Standby mode control ・ Pull-up resistor: approximately 50 kΩ ・ IOH = -4 mA, IOL = 4 mA R P-ch P-ch Digital output N-ch Digital output X0 Pull-up resistor control B ・ CMOS level hysteresis input ・ Pull-up resistor: approximately 50 kΩ Pull-up resistor Digital input April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 71 D a t a S h e e t Type Circuit Remarks C Digital input Digital output N-ch ・ Open drain output ・ CMOS level hysteresis input E P-ch P-ch N-ch Digital output Digital output R Pull-up resistor control ・ ・ ・ ・ ・ CMOS level output CMOS level hysteresis input Pull-up resistor control Standby mode control Pull-up resistor: approximately 50 kΩ ・ IOH = -4 mA, IOL = 4 mA ・ When this pin is used as an I2C pin, the digital output P-ch transistor is always off. Digital input Standby mode control F P-ch P-ch N-ch Digital output Digital output Pull-up resistor control R Digital input Standby mode control ・ ・ ・ ・ ・ ・ ・ CMOS level output CMOS level hysteresis input Input control Analog input Pull-up resistor control Standby mode control Pull-up resistor: approximately 50 kΩ ・ IOH = -4 mA, IOL = 4 mA ・ When this pin is used as an I2C pin, the digital output P-ch transistor is always off. Analog input Input control 72 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Type Circuit Remarks G P-ch P-ch N-ch Digital output Digital output R Pull-up resistor control Digital input ・ ・ ・ ・ ・ CMOS level output CMOS level hysteresis input Pull-up resistor control Standby mode control Pull-up resistor: approximately 50 kΩ ・ IOH = -12 mA, IOL = 12 mA ・ When this pin is used as an I2C pin, the digital output P-ch transistor is always off. Standby mode control H P-ch N-ch Digital output Digital output When the GPIO is selected. ・ CMOS level output ・ CMOS level hysteresis input ・ With standby mode control R Digital input Standby mode control April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 73 D a t a S h e e t Type Circuit Remarks I P-ch P-ch N-ch Digital output Digital output R Pull-up resistor control Digital input ・ ・ ・ ・ ・ ・ CMOS level output CMOS level hysteresis input 5V tolerant Pull-up resistor control Standby mode control Pull-up resistor: approximately 50 kΩ ・ IOH = -4 mA, IOL = 4 mA ・ Available to control of PZR registers (pseudo-open drain control) ・ For PZR registers, refer to GPIO in the “FM4 Family Peripheral Manual Main Part (MN709-00001)”. Standby mode control J Mode input CMOS level hysteresis input K P-ch P-ch N-ch Digital output Digital output R ・ CMOS level output ・ TTL level hysteresis input ・ Pull-up resistor control ・Standby mode control ・ Pull-up resistor: approximately 50 kΩ ・ IOH = -4mA, IOL = 4mA Pull-up resistor control Digital input Standby mode control 74 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Type Circuit Remarks L P-ch P-ch N-ch Digital output Digital output Pull-up resistor control R ・ ・ ・ ・ ・ CMOS level output CMOS level hysteresis input Pull-up resistor control Standby mode control Pull-up resistor: approximately 50 kΩ ・ IOH = -8 mA, IOL = 8 mA ・ When this pin is used as an I2C pin, the digital output P-ch transistor is always off. Digital input Standby mode control N Pull-up resistor control P-ch P-ch N-ch R N-ch Digital output Digital output Fast mode control Digital input Standby mode control April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL ・ CMOS level output ・ CMOS level hysteresis input ・ 5V tolerant ・ Pull-up resistor control ・ Standby mode control ・ Pull-up resistor: approximately 50 kΩ ・ IOH = -4 mA, IOL = 4 mA (GPIO) ・ IOL = 20mA (Fast mode Plus) ・ Available to control of PZR register (pseudo-open drain control) ・ For PZR registers, refer to GPIO in the “FM4 Family Peripheral Manual Main Part (MN709-00001)”. ・ When this pin is used as an I2C pin, the digital output P-ch transistor is always off. 75 D a t a S h e e t Type Circuit Remarks O P-ch P-ch N-ch Pull-up resistor control Digital output Digital output R Digital input ・ CMOS level output ・ CMOS level hysteresis input ・ 5V tolerant ・ Pull-up resistor control ・ Pull-up resistor: approximately 50 kΩ ・ IOH = -4 mA, IOL = 4 mA ・ Available to control of PZR register (pseudo-open drain control) ・ For PZR registers, refer to GPIO in the “FM4 Family Peripheral Manual Main Part (MN709-00001)”. ・ For I/O setting, refer to VBAT Domain in the "FM4 Family Peripheral Manual Main Part (MN709-00001).” P P-ch P-ch X0A N-ch Pull-up resistor control Digital output Digital output R ・ CMOS level output ・ CMOS level hysteresis input ・ Pull-up resistor control ・ Pull-up resistor: approximately 50 kΩ ・ IOH = -4 mA, IOL = 4 mA ・ For I/O setting, refer to VBAT Domain in the "FM4 Family Peripheral Manual Main Part (MN709-00001).” Digital input Standby mode control OSC 76 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Type Circuit Remarks Q Pull-up resistor control Digital output P-ch P-ch X1A Digital output N-ch R Digital input Standby mode control OSC RX It is possible to select the sub oscillation/GPIO function. When the sub oscillation is selected: ・ Oscillation feedback resistor: approximately 10 MΩ When the GPIO is selected: ・ CMOS level output. ・ CMOS level hysteresis input ・ Pull-up resistor control ・ Pull-up resistor: approximately 50 kΩ ・ IOH = -4 mA, IOL = 4 mA ・ For I/O setting, refer to VBAT Domain in the "FM4 Family Peripheral Manual Main Part (MN709-00001).” Standby mode control Clock input R P-ch P-ch N-ch Pull-up resistor control Digital output Digital output R Digital input ・ CMOS level output ・ CMOS level hysteresis input ・ Analog output ・ Pull-up resistor control ・ Standby mode control ・ Pull-up resistor: approximately 50 kΩ ・ IOH = -4 mA, IOL = 4 mA (4.5 V to 5.5 V) ・ IOH = -2 mA, IOL = 2 mA (2.7 V to 4.5 V) Standby mode control Analog output April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 77 D a t a S h e e t Type Circuit Remarks S P-ch Pull-up resistor control P-ch Digital output N-ch Port Drive Select R Digital input ・ CMOS level output ・ (It is possible to select by port drive capability. Select register [PDSR]) ・ CMOS level hysteresis input ・ Pull-up resistor control ・ Standby mode control ・ Pull-up resistor: approximately 50 kΩ ・ IOH = -10 mA, IOL = 10 mA (PDSR = 1) ・ IOH = -4 mA, IOL = 4 mA (PDSR = 0) ・ When this pin is used as an I2C pin, the digital output P-ch transistor is always off. Standby mode Control 78 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t 8. Handling Precautions Every semiconductor device has a characteristic, inherent rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Spansion semiconductor devices. 8.1 Precautions for Product Design This section describes precautions when designing electronic equipment using semiconductor devices. Absolute Maximum Ratings Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings. Recommended Operating Conditions Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges. Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand. Processing and Protection of Pins These precautions must be followed when handling the pins that connect semiconductor devices to power supply and I/O functions. 1. Preventing Over-Voltage and Over-Current Conditions Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage. 2. Protection of Output Pins Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions, if present for extended periods of time, can damage the device; therefore, avoid this type of connection. 3. Handling of Unused Input Pins Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power-supply pin or ground pin. Code: DS00-00004-3E April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 79 D a t a S h e e t Latch-Up Semiconductor devices are constructed by the formation of p-type and n-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic pnpn junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred milliamps to flow continuously at the power supply pin. This condition is called latch-up. CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following: 1. 2. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc. Be sure that abnormal current flows do not occur during the power-on sequence. Observance of Safety Regulations and Standards Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products. Fail-Safe Design As previously mentioned, all semiconductor devices have inherent rates of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. Precautions Related to Usage of Devices Spansion semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. 8.2 Precautions for Package Mounting Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Spansion's recommended conditions. For detailed information about mount conditions, contact your sales representative. Lead Insertion Type Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket. Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Spansion recommended mounting conditions. 80 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting. Surface Mount Type Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges. You must use appropriate mounting techniques. Spansion recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Spansion ranking of recommended conditions. Lead-Free Packaging CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use. Storage of Semiconductor Devices Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent this, do the following: 1. 2. 3. 4. 5. Avoid exposure to rapid temperature changes, which can cause moisture to condense inside the product. Store products in locations where temperature changes are slight. Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C. When Dry Packages are opened, it is recommended to have humidity between 40% and 70%. When necessary, Spansion packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in these aluminum laminate bags for storage. Avoid storing packages where they are exposed to corrosive gases or high levels of dust. Baking Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Spansion recommended conditions for baking. Condition: 125°C/24 h Static Electricity Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions: 1. 2. 3. 4. 5. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity. Electrically ground all conveyors, solder vessels, soldering irons, and peripheral equipment. Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MΩ). Wearing of conductive clothing and shoes, and the use of conductive floor mats and other measures to minimize shock loads is recommended. Ground all fixtures and instruments, or protect with anti-static measures. Avoid the use of Styrofoam or other highly static-prone materials for storage of completed board assemblies. April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 81 D a t a S h e e t 8.3 Precautions for Use Environment Reliability of semiconductor devices depends on ambient temperature and other conditions as described above. For reliable performance, do the following: 1. Humidity Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing. 2. Discharge of static electricity When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges. 3. Corrosive gases, dust, or oil Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices. 4. Radiation, including cosmic radiation Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate. 5. Smoke, flame CAUTION: Plastic molded devices are flammable and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases. Customers considering the use of Spansion products in other special environmental conditions should consult with sales representatives. Please check the latest handling precautions at the following URL. http://www.spansion.com/fjdocuments/fj/datasheet/e-ds/DS00-00004.pdf 82 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t 9. Handling Devices Power-Supply Pins In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. All of these pins should be connected externally to the power supply or ground lines, however, in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating. Be sure to connect the current-supply source with the power pins and GND pins of this device at low impedance. It is also advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between VCC and VSS near this device. A malfunction may occur when the power-supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed operating range of the VCC power supply voltage. As a rule of voltage stabilization, suppress voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the standard VCC value, and the transient fluctuation rate does not exceed 0.1V/μs at a momentary fluctuation such as switching the power supply. Crystal Oscillator Circuit Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as close to the device as possible. It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by ground plane, as this is expected to produce stable operation. Evaluate the oscillation introduced by the use of the crystal oscillator by your mount board. Sub Crystal Oscillator The sub-oscillator circuit for devices in this family is low gain to keep current consumption low. To stabilize the oscillation, Spansion recommends a crystal oscillator that meets the following conditions: Surface mount type Size: More than 3.2 mm × 1.5 mm Load capacitance: approximately 6 pF to 7 pF Lead type Load capacitance: approximately 6 pF to 7 pF April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 83 D a t a S h e e t Using an External Clock When using an external clock as an input of the main clock, set X0/X1 to the external clock input, and input the clock to X0. X1(PE3) can be used as a general-purpose I/O port. Similarly, when using an external clock as an input of the sub clock, set X0A/X1A to the external clock input and input the clock to X0A. X1A (P47) can be used as a general-purpose I/O port. Example of Using an External Clock Device X0(X0A) Set as external clock input Can be used as general-purpose I/O ports. X1(PE3), X1A (P47) 2 Handling When Using Multi-Function Serial Pin as I C Pin 2 If the application uses the multi-function serial pin as an I C pin, the P-channel transistor of the digital output 2 must be disabled. I C pins need to conform to electrical limitations like other pins, however, and avoid connecting to live external systems with the MCU power off. C Pin Devices in this series contain a regulator. Be sure to connect a smoothing capacitor (CS) for the regulator between the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor. Some laminated ceramic capacitors have a large capacitance variation due to thermal fluctuation. Please select a capacitor that meets the specifications in the operating conditions to use by evaluating the temperature characteristics of the device. A smoothing capacitor of about 4.7 μF would be recommended for this series. C Device CS VSS GND Mode Pins (MD0) Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance stays low, the distance between the mode pins and VCC pins or VSS pins is as short as possible, and the connection impedance is low when the pins are pulled up/down such as for switching the pin level and rewriting the flash memory data. This is important to prevent the device from erroneously switching to test mode as a result of noise. 84 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Notes on Power-on Turn power on/off in the sequence shown below or at the same time. If not using the A/D converter and D/A converter, connect AVCC = VCC and AVSS = VSS. Turning on: VBAT → VCC VCC → AVCC → AVRH Turning off: VCC → VBAT AVRH → AVCC → VCC Serial Communication There is a possibility of receiving incorrect data as a result of noise or other issues introduced by the serial communication. Take care to design the printed circuit board to minimize noise. Consider the case of introducing error as a result of noise, perform error detection such as by applying a checksum of data at the end. If an error is detected, retransmit the data. Differences in Characteristics within the Product Line The electric characteristics including power consumption, ESD, latch-up, noise, and oscillation differ among members of the product line because chip layout and memory structures are not the same; for example, different sizes, flash versus ROM, etc. If you are switching to a different product of the same series, please make sure to evaluate the electric characteristics. Pull-Up Function of 5 V Tolerant I/O Please do not input the signal more than VCC voltage at the time of Pull-Up function use of 5 V tolerant I/O. Pin Doubled as Debug Function The pin doubled as TDO/TMS/TDI/TCK/TRSTX, SWO/SWDIO/SWCLK should be used as output only. Do not use as input. April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 85 D a t a S h e e t 10. Block Diagram S6E2C1AH/J/L, S6E2C19H/J/L, S6E2C18H/J/L TRSTX,TCK, TDI,TMS TDO SWJ-DP ETM/HTM* TRACEDx, TRACECLK TPIU/ETB* ROM Table SRAM0 96/144/192 Kbytes SRAM1 32 Kbytes Cortex-M4 Core I @200 MHz(Max) D FPU SRAM2 32 Kbytes MPU NVIC Multi-layer AHB (Max 200 MHz) Sys AHB-APB Bridge: APB0(Max 100 MHz) Dual-Timer Watchdog Timer (Software) Clock Reset Generator INITX Watchdog Timer (Hardware) CSV MainFlash I/F MainFlash/DualFlash 2 Mbytes(1M+1M)/ 1.5 Mbytes(1M+0.5M)/ 1 Mbytes(MainOnly) Trace Buffer (16 Kbytes) Security DualFlash I/F DMAC 8ch. CLK DSTC PRG-CRC Accelerator Source Clock X0A X1A Main Osc CR 100 kHz CR 4 MHz PLL VBAT Domain Sub Osc I2S 1unit AHB-AHB Bridge (Slave) X0 X1 GPIO MODE-Ctrl Unit 2 TIOAx Base Timer 16-bit 32ch./ 32-bit 16ch. AINx BINx ZINx FRCK0 QPRC 4ch. 16-bit Input Capture 4ch. 16-bit Free-run Timer 3ch. DTTI0X Waveform Generator 3ch. 16-bit PPG 3ch. Multi-function Timer × 3 VBAT VWAKEUP VREGCTL RTCCO, SUBOUT DAx 86 CONFIDENTIAL S_DATAx S_CD,S_WP Q_IOx 16-bit Output Compare 6ch. RTO0x S_CLK,S_CMD SD-CARD I/F Hi-Speed Quad SPI A/D Activation Compare 6ch. IC0x . . . PFx MD0, MD1 Q_SCK, Q_CSx VBAT Domain Real-Time Clock Port Ctrl. 12-bit D/A Converter 2units MADx External Bus I/F MADATAx MCSXx,MDQMx, MOEX,MWEX, MALE,MRDY, MNALE,MNCLE, MNWEX,MNREX, MCLKOUT,MSDWEX, MSDCLK,MSDCKE, MRASX,MCASX AHB-APB Bridge : APB2 (Max 100 MHz) Unit 1 AHB-APB Bridge : APB1 (Max 200 MHz) ANxx AHB-AHB Bridge (Master) 12-bit A/D Converter Unit 0 ADTGx TIOBx P0x, P1x, PIN-Function-Ctrl CROUT AVCC, AVSS, AVRH, AVRL I2SMCLK, I2SWS, I2SCK I2SDI I2SDO I2S Clock Ctrl PLL Power-On Reset LVD Ctrl LVD IRQ-Monitor Regulator C CRC Accelerator Watch Counter Deep Standby Ctrl WKUPx Peripheral Clock Gating Low-speed CR Prescaler External Interrupt Controller 32-pin + NMI INTx NMIX Multi-function Serial I/F 16ch. (with FIFO ch.0 to ch.7) HW flow control(ch.4,5) SCKx SINx SOTx CTSx RTSx S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t 11. Memory Size See Memory size in 3. Product Lineup to confirm the memory size. 12. Memory Map Memory Map (1) Peripherals Area 0x41FF_FFFF Reserved 0x4008_1000 0x4008_0000 0x4007_0000 0x4006_F000 0x4006_E000 0xFFFF_FFFF 0x4006_D000 Reserved 0x4006_C000 Programmable-CRC Reserved GPIO SD-Card I/F Reserved I2S 0xE010_0000 0xE000_0000 0xD000_0000 Cortex-M4 Private Peripherals Reg. Area External Device Area Reserved 0x4006_2000 0x4006_1000 0x4006_0000 0x6000_0000 0x4004_0000 Reserved 0x4400_0000 0x4200_0000 0x4003_F000 0x4003_E000 32 Mbytes Bit band alias 0x4003_D000 0x4003_C800 DSTC DMAC Reserved EXT-bus I/F Reserved I2S prescaler Reserved Peripheral Clock Gating 0x4003_C000 Low Speed CR Prescaler 0x4003_C100 Peripherals 0x4000_0000 0x4003_B000 0x4003_A000 Reserved 0x2400_0000 0x2200_0000 0x4003_9000 0x4003_8000 32 Mbytes Bit band alias 0x4003_6000 0x4003_5000 DualFlash 0x200F_0000 0x4003_4000 0x4003_3000 0x4003_2000 Reserved See "Memory Map (2) and (3)" for メモリサイズの 詳細は 次項の「●メモリマップ(2)」 memory size を参照してください。 details. 0x2004_8000 0x2004_0000 0x2003_8000 0x2000_0000 0x1FFF_0000 0x0050_0000 0x0040_0000 0x4003_0000 0x4002_F000 SRAM2 SRAM1 Reserved SRAM0 Reserved Security/CR Trim MainFlash 0x0000_0000 0x4003_1000 0x4002_E000 0x4002_6000 0x4002_5000 0x4002_4000 0x4002_3000 0x4002_2000 0x4002_0000 0x4001_6000 0x4001_5000 0x4001_3000 0x4001_2000 0x4001_1000 0x4001_0000 0x4000_1000 0x4000_0000 CONFIDENTIAL Reserved LVD/DS mode Reserved D/AC Reserved Int-Req.Read EXTI Reserved CR Trim Reserved 0x4002_8000 0x4002_7000 0x4002_1000 April 22, 2015, S6E2C1_DS709-00014-1v0-E RTC/Port Ctrl Watch Counter CRC MFS A/DC QPRC Base Timer PPG Reserved MFT Unit2 MFT Unit1 MFT Unit0 Reserved Dual Timer Reserved SW WDT HW WDT Clock/Reset Reserved MainFlash I/F 87 D a t a S h e e t Memory Map (2) S6E2C1AH/J/L S6E2C19H/J/L 0x2020_0000 S6E2C18H/J/L 0x2020_0000 Reserved 0x2020_0000 Reserved 0x2004_8000 Reserved 0x2004_8000 SRAM2 32 Kbytes SRAM1 32 Kbytes 0x2004_0000 0x2003_8000 0x2004_0000 0x2003_8000 Reserved 0x2004_8000 SRAM2 32 Kbytes SRAM1 32 Kbytes 0x2004_0000 0x2003_8000 Reserved 0x2000_0000 Reserved 0x2000_0000 0x2000_0000 SRAM0 128 Kbytes SRAM0 192 Kbytes SRAM2 32 Kbytes SRAM1 32 Kbytes 0x1FFF_0000 SRAM0 64 Kbytes 0x1FFE_0000 0x1FFD_0000 0x0041_0000 0x0041_0000 0x0040_4000 0x0040_2000 0x0040_0000 0x0040_6000 0x0040_4000 0x0040_2000 0x0040_0000 SA0-3(#1) (8KBx4) SA3(#0) (8KB) General purpose CR trimming Security 0x0040_8000 0x0040_6000 0x0040_4000 0x0040_2000 0x0040_0000 SA0-3(#1) (8KBx4) SA3(#0) (8KB) General purpose CR trimming Security MainFlash 40 Kbytes SA3(#0) (8KB) General purpose CR trimming Security 0x0040_6000 0x0040_8000 0x0041_0000 MainFlash 40 Kbytes SA0-3(#1) (8KBx4) MainFlash 40 Kbytes 0x0040_8000 Reserved Reserved Reserved Reserved Reserved 0x0020_0000 Reserved SA9-23(#1) (64KBx15) SA9-15(#1) (64KBx7) SA8(#1) (32KB) SA4-7(#1) (8KBx4) 0x0010_0000 0x0000_0000 SA8(#0) (32KB) SA4-7(#0) (8KBx4) SA9-23(#0) (64KBx15) 0x0000_0000 SA8(#0) (32KB) SA4-7(#0) (8KBx4) 0x0010_0000 SA9-23(#0) (64KBx15) 0x0000_0000 SA8(#0) (32KB) SA4-7(#0) (8KBx4) MainFlash 1 Mbytes SA9-23(#0) (64KBx15) MainFlash 1.5 Mbytes MainFlash 2 Mbytes 0x0010_0000 SA8(#1) (32KB) SA4-7(#1) (8KBx4) 0x0018_0000 * See S6E2CC/S6E2C5/S6E2C4/S6E2C3/S6E2C2/S6E2C1 Series Flash Programming Manual to confirm the detail of flash Memory. 88 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Memory Map (2) During Dual Flash Mode S6E2C1AH/J/L 0x200F_8000 SA8(#1) (32KB) SA4-7(#1) (8KBx4) SA0-3(#1) (8KBx4) 0x2018_0000 0x2010_0000 0x200F_8000 Reserved Reserved SA9-15(#1) (64KBx7) SA8(#1) (32KB) SA4-7(#1) (8KBx4) SA0-3(#1) (8KBx4) 0x2010_0000 0x200F_8000 0x2004_0000 0x2003_8000 Reserved 0x2004_8000 SRAM2 32 Kbytes SRAM1 32 Kbytes 0x2004_0000 0x2003_8000 Reserved 0x2000_0000 SRAM2 32 Kbytes SRAM1 32 Kbytes Reserved 0x2000_0000 0x2000_0000 SRAM0 128 Kbytes SRAM0 192 Kbytes SA0-3(#1) (8KBx4) Reserved 0x2004_8000 SRAM2 32 Kbytes SRAM1 32 Kbytes 0x2003_8000 Reserved Reserved 0x2004_8000 0x2004_0000 0x2020_0000 DualFlash 32 Kbytes 0x2010_0000 0x2020_0000 S6E2C18H/J/L DualFlash 512 Kbytes +32 Kbytes SA9-23(#1) (64KBx15) DualFlash 1 Mbytes +32 Kbytes 0x2020_0000 S6E2C19H/J/L 0x1FFF_0000 SRAM0 64 Kbytes 0x1FFE_0000 0x1FFD_0000 0x0041_0000 0x0041_0000 0x0040_0000 0x0040_6000 0x0040_4000 0x0040_2000 0x0040_0000 Reserved 0x0040_0000 CONFIDENTIAL SA8(#0) (32KB) SA4-7(#0) (8KBx4) SA9-23(#0) (64KBx15) 0x0000_0000 SA8(#0) (32KB) SA4-7(#0) (8KBx4) MainFlash 1 Mbytes April 22, 2015, S6E2C1_DS709-00014-1v0-E SA3(#0) (8KB) General purpose CR trimming / HTM Security 0x0010_0000 SA9-23(#0) (64KBx15) 0x0000_0000 Reserved Reserved MainFlash 1 Mbytes MainFlash 1 Mbytes SA8(#0) (32KB) SA4-7(#0) (8KBx4) 0x0040_4000 0x0040_2000 0x0010_0000 SA9-23(#0) (64KBx15) 0x0040_6000 Reserved 0x0010_0000 0x0000_0000 SA3(#0) (8KB) General purpose CR trimming / HTM Security 0x0040_8000 MainFlash 8 Kbytes 0x0040_2000 SA3(#0) (8KB) General purpose CR trimming / HTM Security 0x0040_8000 0x0041_0000 Reserved MainFlash 8 Kbytes 0x0040_4000 MainFlash 8 Kbytes Reserved 0x0040_8000 0x0040_6000 Reserved Reserved Reserved 89 D a t a S h e e t Memory Map (3) S6E2C1AH 0xD000_0000 S6E2C1AJ 0xD000_0000 S6E2C1AL 0xD000_0000 Hi-Speed Quad SPI 256 Mbytes 0xC000_0000 0xC000_0000 Reserved 0x8000_0000 Hi-Speed Quad SPI 256 Mbytes 0xC000_0000 Reserved 0x8000_0000 Reserved 0x8000_0000 SDRAM 256 Mbytes 0x7000_0000 0x7000_0000 SRAM /NOR Flash Memory /NAND Flash Memory 256 Mbytes 0x6000_0000 90 CONFIDENTIAL SDRAM 256 Mbytes 0x7000_0000 SRAM /NOR Flash Memory /NAND Flash Memory 256 Mbytes 0x6000_0000 SRAM /NOR Flash Memory /NAND Flash Memory 256 Mbytes 0x6000_0000 S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Peripheral Address Map Start Address Bus Peripherals 0x4000_0000 0x4000_0FFF 0x4000_1000 0x4000_FFFF 0x4001_0000 0x4001_0FFF Clock/reset control 0x4001_1000 0x4001_1FFF Hardware watchdog timer 0x4001_2000 0x4001_2FFF 0x4001_3000 0x4001_4FFF 0x4001_5000 0x4001_5FFF Dual-timer 0x4001_6000 0x4001_FFFF Reserved 0x4002_0000 0x4002_0FFF Multi-Function Timer unit 0 0x4002_1000 0x4002_1FFF Multi-Function Timer unit 1 0x4002_2000 0x4002_2FFF Multi-Function Timer unit 2 0x4002_3000 0x4002_3FFF Reserved 0x4002_4000 0x4002_4FFF 0x4002_5000 0x4002_5FFF 0x4002_6000 0x4002_6FFF Quadrature position/revolution counter 0x4002_7000 0x4002_7FFF A/D converter 0x4002_8000 0x4002_DFFF Reserved 0x4002_E000 0x4002_EFFF Internal CR trimming 0x4002_F000 0x4002_FFFF Reserved 0x4003_0000 0x4003_0FFF External interrupt controller 0x4003_1000 0x4003_1FFF Interrupt request batch-read function 0x4003_2000 0x4003_2FFF Reserved 0x4003_3000 0x4003_3FFF D/A converter 0x4003_4000 0x4003_4FFF Reserved 0x4003_5000 0x4003_57FF Low voltage detector 0x4003_5800 0x4003_5FFF Deep standby mode Controller 0x4003_6000 0x4003_7FFF Reserved 0x4003_8000 0x4003_8FFF 0x4003_9000 0x4003_9FFF 0x4003_A000 0x4003_AFFF Watch counter 0x4003_B000 0x4003_BFFF RTC/port control 0x4003_C000 0x4003_C0FF Low-speed CR prescaler 0x4003_C100 0x4003_C7FF Peripheral clock gating 0x4003_C800 0x4003_CFFF Reserved 0x4003_D000 0x4003_DFFF I2S prescaler 0x4003_E000 0x4003_EFFF Reserved 0x4003_F000 0x4003_FFFF External memory interface April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL End Address AHB APB0 MainFlash I/F register Reserved Software watchdog timer Reserved PPG APB1 APB2 Base timer Multi-function serial interface CRC 91 D a t a S h e e t Start Address 92 CONFIDENTIAL End Address Bus Peripherals 0x4004_0000 0x4005_FFFF Reserved 0x4006_0000 0x4006_0FFF DMAC register 0x4006_1000 0x4006_1FFF DSTC register 0x4006_2000 0x4006_BFFF Reserved 0x4006_C000 0x4006_CFFF I2S 0x4006_D000 0x4006_DFFF Reserved 0x4006_E000 0x4006_EFFF 0x4006_F000 0x4006_FFFF GPIO 0x4007_0000 0x4007_FFFF Reserved 0x4008_0000 0x4008_0FFF Programmable-CRC 0x4008_1000 0x41FF_FFFF Reserved 0x200E_0000 0x200E_FFFF Workflash I/F register 0xD000_0000 0xDFFF_FFFF High-speed quad SPI control register AHB SD card I/F S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t 13. Pin Status in Each CPU State The terms used for pin status have the following meanings: INITX = 0 This is the period when the INITX pin is at the L level. INITX = 1 This is the period when the INITX pin is at the H level. SPL = 0 This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 0. SPL = 1 This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 1. Input enabled Indicates that the input function can be used. Internal input fixed at 0 This is the status that the input function cannot be used. Internal input is fixed at L. Hi-Z Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state. Setting disabled Indicates that the setting is disabled. Maintain previous state Maintains the state that was immediately prior to entering the current mode. If a built-in peripheral function is operating, the output follows the peripheral function. If the pin is being used as a port, that output is maintained. Analog input is enabled Indicates that the analog input is enabled. Trace output Indicates that the trace function can be used. GPIO selected In Deep standby mode, pins switch to the general-purpose I/O port. Setting prohibition Prohibition of a setting by specification limitation April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 93 D a t a S h e e t List of Pin Behavior By Mode State Power-On Reset or Pin Status Type LowVoltage Function Group Detection INITX Input State Device Internal Reset State Run mode Timer mode, Deep Standby RTC or Sleep RTC mode, or Mode or Deep Standby mode State Stop mode State Stop mode State Power Supply Power Supply Stable Stable INITX=1 INITX=1 Return From Deep Standby Mode State State Power Supply Power Supply Stable Unstable ‐ ‐ Stable INITX=0 INITX=1 ‐ Power Supply ‐ INITX=1 ‐ SPL=0 SPL=1 SPL=0 Power Supply Stable INITX=1 SPL=1 - GPIO GPIO Setting Setting Setting selected disabled disabled disabled Maintain Maintain Hi-Z/internal selected, Hi-Z/internal previous previous input fixed internal input fixed state state at 0 input fixed at 0 GPIO selected at 0 A Main crystal oscillator input pin/ Input external main enabled Input Input enabled enabled Input Input Input Input Input Input enabled enabled enabled enabled enabled Enabled Maintain Maintain Hi-Z/internal selected, Hi-Z/internal previous previous input fixed internal input fixed state state at 0 input fixed at 0 clock input selected GPIO GPIO Setting Setting Setting selected disabled disabled disabled GPIO selected at 0 External main B clock input selected Setting Setting disabled disabled disabled Hi-Z/ Main crystal oscillator output pin D E INITX input pin Hi-Z/internal Maintain Hi-Z/internal Maintain previous input fixed previous input fixed previous state state at 0 state at 0 State Hi-Z/ internal Maintain previous state while oscillator active/ input input When oscillation stops*1, it will be Hi-Z/ fixed fixed Internal input fixed at 0 at 0 at 0 Pull-up/ Pull-up/ Pull-up/ Pull-up/ Pull-up/ Pull-up/ Pull-up/ Pull-up/ input Input Input Input Input Input Input Input Input enabled enabled enabled enabled enabled enabled input fixed at 0/ or input enabled Mode Input enabled Mode Input input pin enabled enabled enabled Input Input enabled enabled Input Input enabled enabled GPIO Setting Setting selected disabled disabled disabled CONFIDENTIAL Maintain previous Hi-Z/ input pin 94 Maintain internal internal enable C Setting Setting Pull-up/ Input Input Input Input Input Input enabled enabled enabled enabled enabled enabled Input Input Input Input Input Input enabled enabled enabled enabled enabled enabled Maintain Maintain Hi-Z/ previous previous input state state enabled GPIO selected Hi-Z/ input enabled GPIO selected S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Power-On Reset or Pin Status Type LowVoltage Function Group Detection INITX Input State Reset State Run mode Timer mode, Deep Standby RTC or Sleep RTC mode, or Mode or Deep Standby mode State Stop mode State Stop mode State Power Supply Power Supply Stable Stable INITX=1 INITX=1 Supply ‐ ‐ Power Supply Stable INITX=0 INITX=1 ‐ Power Supply Stable ‐ NMIX Setting Setting selected disabled disabled disabled INITX=1 Mode State ‐ SPL=0 Setting SPL=1 SPL=0 SPL=1 previous previous state state Maintain WKUP Hi-Z/ previous Hi-Z/ input WKUP state state internal enabled input enabled Hi-Z/ Hi-Z/ input input fixed enabled enabled GPIO Maintain previous input Supply Maintain Maintain Hi-Z Power Stable Resource selected Deep Standby INITX=1 other than above Return From State Power Unstable F Device Internal GPIO selected at 0 selected JTAG selected Hi-Z Pull-up/ Pull-up/ Maintain Maintain Maintain Maintain input input previous previous previous previous state state state state enabled enabled G GPIO Setting Setting selected disabled disabled disabled Setting Maintain Maintain previous previous state state Hi-Z/ internal input fixed at 0 JTAG selected H Hi-Z selected at 0 Maintain Maintain Maintain input input previous previous previous previous state state state state Hi-Z/Internal selected, Hi-Z/Internal input fixed internal input fixed at 0 input fixed at 0 enabled enabled Maintain other than previous previous above Setting Setting selected disabled disabled disabled Setting state state GPIO GPIO selected at 0 selected Resource GPIO selected Hi-Z Hi-Z/ Hi-Z/ Maintain Maintain Hi-Z/Internal selected, Hi-Z/internal input input previous previous input fixed internal input fixed state state at 0 input fixed at 0 enabled enabled April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL at 0 GPIO fixed Maintain Maintain selected input fixed internal input Pull-up/ Resource GPIO internal Hi-Z/ Pull-up/ GPIO I GPIO selected, GPIO selected at 0 95 D a t a S h e e t Power-On Reset or Pin Status Type LowVoltage Function Group Detection INITX Input State Device Internal Reset State Run mode Timer mode, Deep Standby RTC or Sleep RTC mode, or Mode or Deep Standby mode State Stop mode State Stop mode State Power Supply Power Supply Stable Stable INITX=1 INITX=1 Return From Deep Standby Mode State State Power Supply Power Supply Stable Unstable ‐ ‐ Supply Stable INITX=0 INITX=1 ‐ Power ‐ INITX=1 ‐ SPL=0 SPL=1 *2 *3 SPL=0 Power Supply Stable INITX=1 SPL=1 - Analog output selected External Maintain interrupt enable J selected Resource Hi-Z Hi-Z/ Hi-Z/ input input enabled enabled other than previous Maintain previous state state Maintain previous state above Hi-Z/internal GPIO selected, Hi-Z/internal internal input fixed input fixed at 0 GPIO selected at 0 input fixed selected at 0 GPIO selected External interrupt Setting Setting enable disabled disabled disabled selected K Resource other than above selected Hi-Z Maintain Setting Hi-Z/ Hi-Z/ input input previous state Maintain selected, Hi-Z/internal previous previous internal input fixed state state Hi-Z/internal input fixed at 0 input fixed at 0 enabled enabled GPIO GPIO Maintain GPIO selected at 0 selected Analog input selected Hi-Z L Hi-Z/ Hi-Z/ internal internal Hi-Z/ input input internal input fixed at fixed at fixed 0/ 0/ at 0/ analog analog analog input input input enabled enabled enabled Hi-Z/ internal input fixed at 0/ analog input enabled Hi-Z/ internal input fixed at 0/ analog input enabled Resource above Setting Setting selected disabled disabled disabled selected 96 CONFIDENTIAL input fixed at 0/ analog input enabled Hi-Z/ internal input fixed at 0/ analog input enabled Hi-Z/ internal input fixed at 0/ analog input enabled GPIO other than GPIO Hi-Z/ internal Setting Maintain Maintain Hi-Z/internal selected, Hi-Z/internal previous previous input fixed internal input fixed state state at 0 input fixed at 0 GPIO selected at 0 S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Power-On Reset or Pin Status Type LowVoltage Function Group Detection INITX Input State State Supply Power Supply Stable Unstable ‐ ‐ selected Reset Run mode Timer mode, Deep Standby RTC or Sleep RTC mode, or Mode or Deep Standby mode State Stop mode State Stop mode State Power Supply Power Supply Stable Stable INITX=1 INITX=1 Hi-Z Power Supply Stable INITX=0 INITX=1 INITX=1 ‐ ‐ Hi-Z/ Hi-Z/ ‐ internal internal Hi-Z/ input input internal input fixed fixed fixed at 0/ at 0/ at 0/ analog analog analog input input input enabled enabled enabled M Return From Deep Standby Mode State State Power Analog input Device Internal SPL=0 Hi-Z/ internal input fixed at 0/ analog input enabled External SPL=1 Hi-Z/ internal input fixed at 0/ analog input enabled SPL=0 Hi-Z/ internal input fixed at 0/ analog input enabled Power Supply Stable INITX=1 SPL=1 Hi-Z/ internal input fixed at 0/ analog input enabled Hi-Z/ internal input fixed at 0/ analog input enabled Maintain interrupt previous enable state selected Resource Setting Setting Setting other than disabled disabled disabled above GPIO Maintain Maintain selected, Hi-Z/internal previous previous internal input fixed state state Hi-Z/internal input fixed at 0 input fixed at 0 selected GPIO selected at 0 GPIO selected Analog input selected N Hi-Z Hi-Z/ Hi-Z/ internal internal Hi-Z/ input input internal input fixed fixed fixed at0/ at 0/ at 0/ analog analog analog input input input enabled enabled enabled Hi-Z/ internal input fixed at 0/ analog input enabled Hi-Z/ internal input fixed at 0/ analog input enabled Trace Trace selected output Resource other than Setting Setting Setting above disabled disabled disabled selected GPIO Maintain Maintain previous previous state state Hi-Z/ internal input fixed at 0/ analog input enabled Hi-Z/ internal input fixed at 0/ analog input enabled Hi-Z/ internal input fixed at 0/ analog input enabled GPIO selected, Hi-Z/internal Hi-Z/internal internal input fixed input fixed input fixed at 0 at 0 at 0 GPIO selected selected April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 97 D a t a S h e e t Power-On Reset or Pin Status Type LowVoltage Function Group Detection INITX Input State State Supply Power Supply Stable Unstable ‐ ‐ selected Reset Run mode Timer mode, Deep Standby RTC or Sleep RTC mode, or Mode or Deep Standby mode State Stop mode State Stop mode State Power Supply Power Supply Stable Stable INITX=1 INITX=1 Hi-Z Power Supply Stable INITX=0 INITX=1 INITX=1 ‐ ‐ Hi-Z/ Hi-Z/ ‐ internal internal Hi-Z/ input input internal input fixed fixed fixed at 0/ at 0/ at 0/ analog analog analog input input input enabled enabled enabled O Return From Deep Standby Mode State State Power Analog input Device Internal SPL=0 Hi-Z/ internal input fixed at 0/ analog input enabled SPL=1 Hi-Z/ internal input fixed at 0/ analog input enabled Trace Trace selected output External SPL=0 Hi-Z/ internal input fixed at 0/ analog input enabled Power Supply Stable INITX=1 SPL=1 Hi-Z/ internal input fixed at 0/ analog input enabled Hi-Z/ internal input fixed at 0/ analog input enabled Maintain interrupt enable selected Setting Setting Resource disabled disabled disabled Setting other than previous GPIO state selected, Hi-Z/internal previous internal input fixed state input fixed at 0 Maintain Maintain previous state Hi-Z/internal above GPIO selected at 0 input fixed selected at 0 GPIO selected Analog input selected Hi-Z Hi-Z/ Hi-Z/ internal internal Hi-Z/ input input internal input fixed at fixed at fixed 0/ 0/ at 0/ analog analog analog input input input enabled enabled enabled P Hi-Z/ internal input fixed at 0/ analog input enabled WKUP enabled Resource other than above selected GPIO selected 98 CONFIDENTIAL Setting Setting Setting disabled disabled disabled Maintain Maintain previous previous state state Hi-Z/ internal input fixed at 0/ analog input enabled Hi-Z/ internal input fixed at 0/ analog input enabled Hi-Z/ internal input fixed at 0/ analog input enabled Maintain WKUP Hi-Z/ previous input WKUP input state enabled enabled Hi-Z/internal selected, Hi-Z/internal input fixed internal input fixed at 0 input fixed at 0 Hi-Z/ internal input fixed at 0/ analog input enabled GPIO GPIO selected at 0 S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Power-On Reset or Pin Status Type LowVoltage Function Group Detection INITX Input State Reset State Run mode Timer mode, Deep Standby RTC or Sleep RTC mode, or Mode or Deep Standby mode State Stop mode State Stop mode State Power Supply Power Supply Stable Stable INITX=1 INITX=1 Supply ‐ ‐ Power Supply Stable Supply Stable INITX=0 INITX=1 ‐ Power ‐ INITX=1 ‐ SPL=0 SPL=1 SPL=0 WKUP WKUP input enabled enabled External interrupt Setting Setting disabled disabled disabled Maintain Setting Maintain selected previous previous Resource state state other than GPIO Mode State Hi-Z Supply Stable INITX=1 SPL=1 Hi-Z/ WKUP input enabled WKUP input enabled GPIO selected, Hi-Z/internal internal input fixed at 0 Hi-Z/ Hi-Z/ Hi-Z/internal input fixed input input input fixed at 0 enabled enabled Power state Maintain selected Deep Standby previous enable above Return From State Power Unstable Q Device Internal GPIO selected at 0 selected 1: Oscillation is stopped at Sub Timer mode, Sub CR Timer mode, RTC mode, Stop mode, Deep Standby RTC mode, and Deep Standby Stop mode. 2: Maintain previous state at Timer mode. GPIO selected internal input fixed at 0 at RTC mode, Stop mode. 3: Maintain previous state at Timer mode. Hi-Z/internal input fixed at 0 at RTC mode, Stop mode. 4: It shows the case selected by EPFR14.E_SPLC register. April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 99 D a t a S h e e t List of VBAT Domain Pin Status VBAT Pin Status Type VBAT PowerOn Function Reset INITX Input State Device Internal Reset State Return Run mode or Timer mode, Sleep RTC mode, or mode Stop mode State From VBAT From RTC mode or Deep Deep RTC VBAT Mode RTC State Mode Standby Stop mode Standby State State Mode State Group Power Supply Power Supply Stable Unstable ‐ ‐ GPIO Setting selected disabled Return Deep Standby Power State Power Power Power Supply Power Supply Stable Power Supply Stable Supply Supply Supply Stable INITX=0 INITX=1 INITX=1 ‐ ‐ ‐ INITX=1 INITX=1 Stable Stable Stable INITX=1 - - - - SPL=0 SPL=1 SPL=0 SPL=1 - Maintain Maintain Maintain Maintain Maintain Maintain Maintain Maintain previous previous previous previous previous previous previous previous state state state state state state state state Setting prohibition - Sub crystal S oscillator Maintain Maintain input pin/ Input Input Input Input Input Input Input Input Input external enabled enabled enabled enabled enabled enabled enabled enabled enabled Maintain Maintain Maintain Maintain Maintain Maintain Maintain Maintain previous previous previous previous previous previous previous previous state state state state state Maintain Maintain Maintain Maintain Maintain Maintain Maintain Maintain Maintain Maintain previous previous previous previous previous previous previous previous previous previous state state state state state Maintain Maintain Maintain Maintain previous previous previous previous sub clock previous previous state state input selected GPIO Setting selected disabled External T sub clock Setting input disabled selected state state state state state state Hi-Z/ Sub internal crystal input oscillator fixed at 0/ output pin or input Setting prohibition state - state Maintain Maintain Maintain state/ state/ state/ state/ Maintain Maintain Maintain previous previous previous When When When When previous previous previous state state state oscillation oscillation oscillation oscillation state state state stops, stops, stops, stops, Hi-Z* Hi-Z* Hi-Z* Hi-Z* Maintain Maintain Maintain Maintain Maintain Maintain Maintain Maintain Maintain Maintain previous previous previous previous previous previous previous previous previous previous state state state state state enable Resource selected U Hi-Z GPIO state state state state state selected *: When the SOSCNTL bit in the WTOSCCNT register is 0, the sub crystal oscillator output pin is maintained in the previous state. When the SOSCNTL bit in the WTOSCCNT register is 1, oscillation is stopped at Stop mode and Deep Standby Stop mode 100 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t 14. Electrical Characteristics 14.1 Absolute Maximum Ratings Parameter Power supply voltage *1,*2 Power supply voltage (VBAT) Analog power supply voltage Analog reference voltage Input voltage Symbol Rating Min Max VCC VSS - 0.5 VSS + 6.5 V *1 ,*3 VBAT VSS - 0.5 VSS + 6.5 V *1 ,*4 AVCC VSS - 0.5 VSS + 6.5 V AVRH VSS - 0.5 VSS + 6.5 V *1 ,*4 *1 VI VSS - 0.5 VSS - 0.5 Analog pin input voltage Output voltage *1 *1 5 L level maximum output current * L level average output current *6 VSS - 0.5 VO VSS - 0.5 IOLAV L level total maximum output current H level maximum output current VIA IOL L level total maximum output current H level average output current Unit *7 *5 - (≤ 6.5 V) VSS + 6.5 AVCC + 0.5 (≤ 6.5 V) VCC + 0.5 (≤ 6.5 V) V V V V 10 mA 4 mA type 20 mA 8 mA type 10 mA 10 mA type 20 mA 12 mA type 22.4 mA I2C Fm+ 4 mA 4 mA type 8 mA 8 mA type 10 mA 10 mA type 12 mA 12 mA type 20 mA I2C Fm+ ∑IOL - 100 mA - 50 mA - 10 mA 4 mA type IOHAV - - -20 mA 8 mA type - 20 mA 10 mA type - 20 mA 12 mA type -4 mA 4 mA type -8 mA 8 mA type - 10 mA 10 mA type - 12 mA 12 mA type mA ∑IOH - - 100 ∑IOHAV - - 50 mA Power consumption PD - 200 mW Storage temperature TSTG - 55 + 150 °C H level total maximum output current H level total average output current *7 April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 5V tolerant ∑IOLAV IOH *6 - VCC + 0.5 Remarks 101 D a t a S h e e t 1: These parameters are based on the condition that VSS = AVSS = 0.0 V. 2: VCC must not drop below VSS - 0.5 V. 3: VBAT must not drop below VSS - 0.5 V. 4: Ensure that the voltage does not exceed VCC + 0.5 V, for example, when the power is turned on. 5: The maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins. 6: The average output current is defined as the average current value flowing through any one of the corresponding pins for a 100-ms period. 7: The total average output current is defined as the average current value flowing through all of corresponding pins for a 100-ms period. WARNING: − Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings. 102 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t 14.2 Recommended Operating Conditions Parameter Value Symbol Conditions VCC - 2.7 Power supply voltage (VBAT) VBAT - Analog power supply voltage AVCC - AVRH - *2 AVRL - AVSS Power supply voltage Analog reference voltage Min *3 Max Unit 5.5 V 1.65 5.5 V 2.7 5.5 V AVCC V AVSS V Operating Junction temperature TJ - - 40 + 125 °C temperature Ambient temperature TA - -40 *1 °C Remarks AVCC = VCC 1: The maximum temperature of the ambient temperature (TA) can guarantee a range that does not exceed the junction temperature (TJ). The calculation formula of the ambient temperature (TA) is: TA (Max) = TJ(Max) - Pd(Max) × θJA Pd: Power dissipation (W) θJA: Package thermal resistance (°C/W) Pd (Max) = VCC × ICC (Max) + Σ (IOL×VOL) + Σ ((VCC-VOH) × (- IOH)) IOL: L level output current IOH: H level output current VOL: L level output voltage VOH: H level output voltage 2: The minimum value of analog reference voltage depends on the value of compare clock cycle (tCCK). See 14.5. 12-bit A/D Converter for the details. 3: For the voltage range between Vcc(min) and the low voltage detection reset (VDH), the MCU must be clocked from either the High-speed CR or the low-speed CR.” April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 103 D a t a S h e e t Package thermal resistance and maximum permissible power for each package are shown below. The operation is guaranteed maximum permissible power or less for semiconductor devices. Table 14-1 Table For Package Thermal Resistance and Maximum Permissible Power Package Printed Circuit Board Thermal Maximum Permissible Power Resistance (mW) θJA TA = +85°C TA = +105°C 48 833 417 33 1212 606 45 889 444 31 1290 645 46 870 435 32 1250 625 - - - 35 1143 571 (°C/W) FPT-144P-M08 (0.5-mm pitch) FPT-176P-M07 (0.5-mm pitch) FPT-216P-M01 (0.4-mm pitch) LBE192 (0.8-mm pitch) Single-layered both sides 4 layers Single-layered both sides 4 layers Single-layered both sides 4 layers Single-layered both sides 4 layers WARNING: 1. The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. 2. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. 3. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. 4. Users considering application outside the listed conditions are advised to contact their representatives beforehand. 104 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Calculation Method of Power Dissipation (Pd) The power dissipation is shown in the following formula. Pd = VCC × ICC + Σ (IOL × VOL) + Σ ((VCC-VOH) × (-IOH)) IOL: L level output current IOH: H level output current VOL: L level output voltage VOH: H level output voltage ICC is the current drawn by the device. It can be analyzed as follows. ICC = ICC (INT) + ΣICC (IO) ICC (INT): Current drawn by internal logic and memory, etc. through the regulator ΣICC (IO): Sum of current (I/O switching current) drawn by the output pin For ICC (INT), it can be anticipated by (1) Current Rating in 14.3. DC Characteristics (This rating value does not include ICC (IO) for a value at pin fixed). For ICC (IO), it depends on system used by customers. The calculation formula is shown below. ICC (IO) = (CINT + CEXT) × VCC × fSW CINT: Pin internal load capacitance CEXT: External load capacitance of output pin fSW: Pin switching frequency Parameter Symbol Pin internal load capacitance CINT Conditions Capacitance Value 4 mA type 1.93 pF 8 mA type 3.45 pF 12 mA type 3.42 pF Calculate ICC (Max) as follows when the power dissipation can be evaluated by yourself: Measure current value ICC (Typ) at normal temperature (+25°C). Add maximum leakage current value ICC (leak_max) at operating on a value in (1). ICC(Max) = ICC (Typ) + ICC (leak_max) Parameter Maximum leakage current at operating Symbol ICC (leak_max) April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL Conditions Current Value TJ = +125°C 79.2 mA TJ = +105°C 39.4 mA TJ = +85°C 26.5 mA 105 D a t a S h e e t Current Explanation Diagram Pd=VCC×ICC + Σ(IOL×VOL)+Σ((VCC-VOH)×(-IOH)) ICC=ICC (INT)+ΣICC (IO) VCC A ICC Chip ICC (INT) ΣICC (IO) A Regulator VOL V A ・・・ V IOL Flash VOH ・・・ Logic IOH RAM ICC (IO) CEXT ・・・ 106 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t 14.3 DC Characteristics 14.3.1 Current Rating Table 14-2 Typical and Maximum Current Consumption in Normal Operation (PLL), Code Running from Flash Memory (Flash Accelerator Mode and Trace Buffer Function Enabled) Parameter Symbol Pin Name Frequency* Conditions *6 Power supply current ICC VCC 1 2 Unit Remarks Typ* Max* 117 224 mA 192 MHz 113 219 mA 180 MHz 106 211 mA 160 MHz 95 197 mA 144 MHz 86 186 mA 120 MHz 73 169 mA *3 100 MHz 61 155 mA When all peripheral 80 MHz 50 140 mA clocks are on 60 MHz 39 126 mA 40 MHz 27 112 mA 20 MHz 16 97 mA 200 MHz *5 Value 4 Normal 8 MHz 8.7 88.9 mA operation 4 MHz 6.4 86.1 mA *7,*8 200 MHz 71 168 mA 192 MHz 68 165 mA 180 MHz 64 159 mA 160 MHz 58 151 mA 144 MHz 52 144 mA 120 MHz 44 134 mA *3 100 MHz 38 126 mA When all peripheral 80 MHz 31 117 mA clocks are off 60 MHz 24 109 mA 40 MHz 17 100 mA 20 MHz 10 91 mA 8 MHz 6.3 86.1 mA 4 MHz 5.0 84.5 mA (PLL) *5 *6 1: TA = +25°C, VCC = 3.3 V 2: TJ = +125°C, VCC = 5.5 V 3: When all ports are fixed 4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK 5: When stopping flash accelerator mode and trace buffer function (FRWTR.RWT = 11, FBFCR.BE = 1) 6: When stopping flash accelerator mode and trace buffer function (FRWTR.RWT = 10, FBFCR.BE = 1) 7: Firmware being executed during data collection for this table is not being accessed from the MainFlash memory.” 8: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit) April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 107 D a t a S h e e t Table 14-2 Typical and Maximum Current Consumption in Normal Operation (PLL), Code with Data Accessing Running from Flash Memory (Flash Accelerator Mode and Trace Buffer Function Disabled) Parameter Symbol Pin Name Frequency* Conditions *5 *6 supply current ICC VCC 1 2 Unit Remarks Typ* Max* 200 MHz 128 236 mA 192 MHz 123 230 mA 180 MHz 116 221 mA 160 MHz 102 205 mA 144 MHz 93 193 mA 120 MHz 79 175 mA *3 100 MHz 67 161 mA When all peripheral 80 MHz 54 145 mA clocks are on 60 MHz 42 130 mA 40 MHz 30 115 mA 20 MHz 17 99 mA 8 MHz 9.2 90.0 mA operation 4 MHz 6.7 86.9 mA *7,*8 200 MHz 74 170 mA 192 MHz 71 167 mA 180 MHz 67 162 mA 160 MHz 59 152 mA 144 MHz 53 145 mA 120 MHz 45 135 mA *3 100 MHz 39 127 mA When all peripheral 80 MHz 32 118 mA clocks are off 60 MHz 25 110 mA 40 MHz 18 101 mA Normal Power Value 4 (PLL) *5 *6 20 MHz 11 92 mA 8 MHz 6.5 86.8 mA 4 MHz 5.1 85.0 mA 1: TA = +25°C, VCC = 3.3 V 2: TJ = +125°C, VCC = 5.5 V 3: When all ports are fixed 4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK 5: When stopping flash accelerator mode and trace buffer function (FRWTR.RWT = 11, FBFCR.BE = 0) 6: When stopping flash accelerator mode and trace buffer function (FRWTR.RWT = 10, FBFCR.BE = 0) 7: With data access to a MainFlash memory. 8: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit) 108 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Table 14-3 Typical and Maximum Current Consumption in Normal Operation (PLL), Code with Data Accessing Running from Flash Memory (Flash 0 Wait-cycle Mode and Read Access 0 Wait) Parameter Symbol Pin Name Frequency* Conditions current ICC VCC 2 Unit Max* 72 MHz 71 161 mA 60 MHz 62 150 mA 48 MHz 51 138 mA 36 MHz 40 125 mA 24 MHz 29 112 mA 12 MHz 17 98 mA 8 MHz 13 93 mA operation 4 MHz 8.4 88.5 mA *6,*7 72 MHz 46 132 mA (PLL) 60 MHz 41 125 mA 48 MHz 34 118 mA 36 MHz 27 110 mA 24 MHz 20 102 mA 12 MHz 12 93 mA 8 MHz 9.4 89.7 mA 4 MHz 6.5 86.4 mA Normal supply 1 Typ* *5 Power Value 4 *5 Remarks *3 When all peripheral clocks are on *3 When all peripheral clocks are off 1: TA = +25°C, VCC = 3.3 V 2: TJ = +125°C, VCC = 5.5 V 3: When all ports are fixed 4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK 5: When operating flash 0 wait-cycle mode and read access 0 wait (FRWTR.RWT = 00, FBFCR.SD = 000) 6: With data access to a MainFlash memory. 7: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit) April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 109 D a t a S h e e t Table 14-4 Typical and Maximum Current Consumption in Normal Operation (Other Than PLL), Code with Data Accessing Running from Flash Memory (Flash 0 Wait-cycle Mode and Read Access 0 Wait) Parameter Symbol Pin Name Frequency* Conditions Value 4 1 Typ* 2 Max* Unit Remarks *3 Normal 4.7 84.9 mA operation *6, *7 *5 clocks are on 4 MHz *3 (main 3.9 oscillation) When all peripheral 83.8 mA When all peripheral clocks are off *3 Normal 3.0 operation *6 (built-in *5 ICC When all peripheral clocks are on *3 2.1 82.0 mA CR) Power current mA 4 MHz High-speed supply 83.2 When all peripheral clocks are off VCC *3 Normal 0.78 80.37 mA operation *6, *8 *5 clocks are on 32 kHz *3 (sub 0.77 oscillation) When all peripheral 80.36 mA When all peripheral clocks are off *3 Normal 0.81 80.39 mA operation *6 *5 clocks are on 100 kHz *3 (built-in low-speed CR) When all peripheral 0.78 80.38 mA When all peripheral clocks are off 1: TA = +25°C, VCC = 3.3 V 2: TJ = +125°C, VCC = 5.5 V 3: When all ports are fixed 4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK/2 5: When operating flash 0 wait-cycle mode and read access 0 wait (FRWTR.RWT = 00, FBFCR.SD = 000) 6: With data access to a MainFlash memory. 7: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit) 8: When using the crystal oscillator of 32 kHz (including the current consumption of the oscillation circuit) 110 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Table 14-5 Typical and Maximum Current Consumption in Sleep Operation (PLL), when PCLK0 = PCLK1 = PCLK2 = HCLK/2 Parameter Symbol Pin Name Power supply current Conditions Sleep ICCS VCC *5 operation (PLL) Value 4 Frequency* 1 2 Unit Remarks Typ* Max* 200 MHz 88 188 mA 192 MHz 85 184 mA 180 MHz 80 178 mA 160 MHz 72 164 mA 144 MHz 65 156 mA 120 MHz 55 144 mA *3 100 MHz 47 134 mA When all peripheral clocks 80 MHz 38 124 mA are on 60 MHz 30 114 mA 40 MHz 21 104 mA 20 MHz 12 93 mA 8 MHz 7.4 87.2 mA 4 MHz 5.8 85.2 mA 200 MHz 44 134 mA 192 MHz 42 132 mA 180 MHz 40 129 mA 160 MHz 36 123 mA 144 MHz 33 119 mA 120 MHz 28 113 mA *3 100 MHz 24 108 mA When all peripheral clocks 80 MHz 20 103 mA are off 60 MHz 16 98 mA 40 MHz 12 93 mA 20 MHz 7.6 87.6 mA 8 MHz 5.2 84.7 mA 4 MHz 4.4 83.7 mA 1: TA = +25°C, VCC = 3.3 V 2: TJ = +125°C, VCC = 5.5 V 3: When all ports are fixed 4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK/2 5: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit) April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 111 D a t a S h e e t Table 14-6 Typical and Maximum Current Consumption in Sleep Operation (PLL), when PCLK0 = PCLK1 = PCLK2 = HCLK Parameter Symbol Pin Name Power supply current Conditions Sleep ICCS VCC *5 operation (PLL) Value 4 Frequency* 1 2 Unit Typ* Max* 72 MHz 45 130 mA 60 MHz 38 122 mA 48 MHz 31 114 mA 36 MHz 24 106 mA 24 MHz 18 99 mA 12 MHz 11 91 mA 8 MHz 8.6 88.3 mA 4 MHz 6.3 85.7 mA 72 MHz 20 103 mA 60 MHz 18 99 mA 48 MHz 15 96 mA 36 MHz 12 93 mA 24 MHz 9.1 89.3 mA 12 MHz 6.5 86.1 mA 8 MHz 5.5 84.9 mA 4 MHz 4.6 83.8 mA Remarks *3 When all peripheral clocks are on *3 When all peripheral clocks are off 1: TA = +25°C, VCC = 3.3 V 2: TJ = +125°C, VCC = 5.5 V 3: When all ports are fixed 4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK 5: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit) 112 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Table 14-7 Typical and Maximum Current Consumption in Sleep Operation (Other Than PLL), when PCLK0 = PCLK1 = PCLK2 = HCLK/2 Parameter Symbol Pin Name Conditions Value 4 Frequency* 1 Typ* 2 Max* Unit Remarks *3 3.4 82.6 mA Sleep *5 operation When all peripheral clocks are on 4 MHz *3 (main oscillation) 2.5 81.7 mA When all peripheral clocks are off *3 2.5 Sleep operation (built-in supply ICCS mA When all peripheral clocks are on 4 MHz High-speed CR) Power 81.7 *3 1.7 80.9 mA When all peripheral clocks are off VCC *3 current 0.75 Sleep *6 operation 79.97 mA are on 32 kHz (sub oscillation) When all peripheral clocks *3 0.74 79.96 mA When all peripheral clocks are off *3 0.79 Sleep operation (built-in low-speed CR) 80.01 mA When all peripheral clocks are on 100 kHz *3 0.76 79.98 mA When all peripheral clocks are off 1: TA = +25°C, VCC = 3.3 V 2: TJ = +125°C, VCC = 5.5 V 3: When all ports are fixed. 4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK/2 5: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit) 6: When using the crystal oscillator of 32 kHz (including the current consumption of the oscillation circuit) April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 113 D a t a S h e e t Table 14-8 Typical and Maximum Current Consumption in Stop Mode, Timer Mode and RTC Mode Parameter Symbol Pin Name Conditions Stop mode ICCH Frequency - Value 1 2 Unit Typ* Max* 0.56 3.01 mA - 27.03 mA - 39.92 mA 1.40 3.85 mA - 27.87 mA - 40.76 mA 0.95 3.40 mA - 27.42 mA - 40.31 mA 0.57 3.02 mA - 27.04 mA - 39.93 mA 0.58 3.03 mA - 27.05 mA - 39.94 mA 0.57 3.02 mA - 27.04 mA - 39.93 mA *5 Timer mode (main oscillation) 4 MHz Timer mode (built-in 4 MHz High-speed CR) Power supply ICCT VCC Remarks *3, *4 TA = +25°C *3, *4 TA = +85°C *3, *4 TA = +105°C *3, *4 TA = +25°C *3, *4 TA = +85°C *3, *4 TA = +105°C *3, *4 TA = +25°C *3, *4 TA = +85°C *3, *4 TA = +105°C current *6 Timer mode (sub oscillation) 32 kHz Timer mode (built-in 100 kHz low-speed CR) *6 ICCR RTC mode (sub oscillation) 32 kHz *3, *4 TA = +25°C *3, *4 TA = +85°C *3, *4 TA = +105°C *3, *4 TA = +25°C *3, *4 TA = +85°C *3, *4 TA = +105°C *3, *4 TA = +25°C *3, *4 TA = +85°C *3, *4 TA = +105°C 1: VCC = 3.3V 2: VCC = 5.5V 3: When all ports are fixed 4: When LVD is off 5: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit) 6: When using the crystal oscillator of 32 kHz (including the current consumption of the oscillation circuit) 114 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Table 14-9 Typical and Maximum Current Consumption in Deep Standby Stop Mode, Deep Standby RTC Mode and VBAT Parameter Symbol Pin Name Conditions Frequency Value 1 2 Unit Typ* Max* 96 248 μA - 3009 μA - 3889 μA 106 259 μA - 3020 μA - 3900 μA 96 248 μA - 3009 μA - 3889 μA 106 259 μA - 3020 μA - 3900 μA 0.0058 0.1 μA - 1.4 μA - 3.3 μA 1.0 1.8 μA - 3.2 μA - 5.1 μA Deep standby Stop mode (When RAM - is off) ICCHD Deep standby Stop mode (When RAM - is on) VCC Remarks *3, *4 TA = +25°C *3, *4 TA = +85°C *3, *4 TA = +105°C *3, *4 TA = +25°C *3, *4 TA = +85°C *3, *4 TA = +105°C *3, *4 TA = +25°C Deep standby *6 RTC mode (When RAM TA = +85°C is off) Power supply *3, *4 32 kHz ICCRD *3, *4 TA = +105°C current Deep standby *6 RTC mode (When RAM is on) RTC stop ICCVBAT VBAT - RTC *6 operation *3, *4 TA = +25°C *3, *4 TA = +85°C *3, *4 TA = +105°C *3, *4, *5 TA = +25°C *3, *4, *5 TA = +85°C *3, *4, *5 TA = +105°C *3, *4 TA = +25°C *3, *4 TA = +85°C *3, *4 TA = +105°C 1: VCC = 3.3 V 2: VCC = 5.5 V 3: When all ports are fixed 4: When LVD is off 5: When sub oscillation is off 6: When using the crystal oscillator of 32 MHz (including the current consumption of the oscillation circuit) April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 115 D a t a S h e e t Table 14-10 Typical and Maximum Current Consumption in Low-voltage Detection Circuit, Main Flash Memory Write/erase Parameter Pin Symbol Name Conditions Value Unit Min Typ Max - 4 7 μA - 13.4 15.9 mA Remarks Low-voltage detection circuit (LVD) ICCLVD At operation power supply current For occurrence of interrupt VCC MainFlash memory At ICCFLASH write/erase write/erase *1 current 1: When programming or erase in flash memory, Flash Memory Write/Erase current (I CCFLASH) is added to the Power supply current (ICC). Peripheral Current Dissipation Clock system HCLK Peripheral Unit GPIO 100 200 All ports 0.39 0.81 1.56 DMAC - 0.99 1.97 3.82 DSTC - 0.73 1.49 2.86 External bus I/F - 0.25 0.48 0.97 SD card I/F - 0.74 1.47 2.90 I2S - 0.51 1.02 1.99 High-Speed Quad SPI - 0.48 0.97 1.49 Programmable CRC - 0.05 0.10 0.22 Base timer 4 ch 0.21 0.42 0.83 1 unit/4 ch 0.83 1.65 3.25 Multi-functional timer/PPG PCLK1 Frequency (MHz) 50 Remarks mA mA Quadrature position/revolution Unit 1 unit 0.07 0.13 0.27 A/D converter 1 unit 0.31 0.60 1.17 Multi-function serial 1 ch 0.41 0.81 - counter PCLK2 116 CONFIDENTIAL mA S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t 14.3.2 Pin Characteristics (VCC =AVCC = 2.7V to 5.5V, VSS = AVSS = 0V) Parameter Symbol Pin Name Typ Max - VCC×0.8 - VCC + 0.3 V MADATAxx VCC > 3.0 V, VCC ≤ 3.6 V, 2.4 - VCC + 0.3 V 5 V tolerant input pin - VCC×0.8 - VSS + 5.5 V - VCC×0.7 - VSS + 5.5 V - 2.0 - VCC+0.3 V VSS - 0.3 - VCC×0.2 V VSS - 0.3 - VCC×0.2 V - VSS - 0.3 - VCC×0.2 V - VSS - VCC×0.3 V - VSS - 0.3 - 0.8 V VCC - 0.5 - VCC V VCC - 0.5 - VCC V VCC - 0.5 - VCC V VCC - 0.5 - VCC V VCC - 0.5 - VCC V CMOS hysteresis voltage (hysteresis VIHS Input pin doubled as input) I2C Fm+ TTL Schmitt input pin CMOS hysteresis input pin, MD0, MD1 - L level input voltage (hysteresis VILS input) Unit Min input pin, MD0, MD1 H level input Value Conditions 5 V tolerant input pin Input pin doubled as I2C Fm+ TTL Schmitt input pin Remarks At External Bus VCC ≥ 4.5 V, IOH = - 4 mA 4 mA type VCC < 4.5V, IOH = - 2 mA VCC ≥ 4.5 V, IOH = - 8 mA 8 mA type VCC < 4.5 V, IOH = - 4 mA H level output voltage VOH 10 mA type VCC ≥ 4.5 V, IOH = - 10 mA VCC < 4.5 V, IOH = - 8 mA VCC ≥ 4.5 V, 12 mA type IOH = - 12 mA VCC < 4.5 V, IOH = - 8 mA VCC ≥ 4.5 V, The pin doubled as I2C Fm+ IOH = - 4 mA At GPIO VCC < 4.5 V, IOH = - 3 mA April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 117 D a t a S h e e t Parameter Symbol Pin Name Value Conditions Unit Min Typ Max VSS - 0.4 V VSS - 0.4 V VSS - 0.4 V VSS - 0.4 V VSS - 0.4 V Remarks VCC ≥ 4.5 V, IOL = 4 mA 4 mA type VCC < 4.5 V, IOL = 2 mA VCC ≥ 4.5 V, IOL = 8 mA 8 mA type VCC < 4.5 V, IOL = 4 mA L level output voltage VOL 10 mA type VCC ≥ 4.5 V, IOL = 10 mA VCC < 4.5 V, IOL = 8 mA VCC ≥ 4.5 V, 12 mA type IOL = 12 mA VCC < 4.5 V, IOL = 8 mA VCC ≥ 4.5 V, IOL = 4 mA The pin doubled as I2C Fm+ Input leak current Pull-up resistor value IIL - RPU Pull-up pin VCC < 4.5 V, IOL = 3 mA At GPIO VCC ≤ 4.5 V, At I2C IOL = 20 mA Fm+ - -5 - +5 VCC ≥ 4.5 V 25 50 100 VCC < 4.5 V 30 80 200 - - 5 15 μA kΩ Other than Input capacitance VCC, CIN VBAT, VSS, pF AVCC, AVSS, AVRH 118 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t 14.4 AC Characteristics 14.4.1 Main Clock Input Characteristics (VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = -40C to +105C) Parameter Symbol Input frequency fCH Input clock cycle tCYLH Input clock pulse width tCF, time tCR *1 frequency Internal operating clock cycle time *1 Conditions Value Min Max VCC ≥4.5 V 4 48 VCC < 4.5 V 4 20 VCC ≥4.5 V 4 48 VCC < 4.5 V 4 20 X0, VCC ≥4.5 V 20.83 250 X1 VCC < 4.5 V 50 250 45 - PWH/tCYLH, - Input clock rise time and fall Internal operating clock Pin Name PWL/tCYLH Unit MHz Remarks When crystal oscillator is connected MHz When using external clock ns When using external clock 55 % When using external clock - 5 ns When using external clock fCC - - - 200 MHz Base clock (HCLK/FCLK) fCP0 - - - 100 MHz APB0bus clock fCP1 - - - 200 MHz APB1bus clock fCP2 - - - 100 MHz APB2bus clock tCYCC - - 5 - ns Base clock (HCLK/FCLK) tCYCP0 - - 10 - ns APB0bus clock tCYCP1 - - 5 - ns APB1bus clock tCYCP2 - - 10 - ns APB2bus clock *2 *2 *2 *2 *2 *2 1: For more information about each internal operating clock, see Chapter 2-1: Clock in FM4 Family Peripheral Manual Main Part (MN709-00001). 2: For more about each APB bus to which each peripheral is connected, see 10. Block Diagram in this data sheet. X0 April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 119 D a t a S h e e t 14.4.2 Sub Clock Input Characteristics (VBAT = 1.65V to 5.5V, VSS = 0V) Parameter Symbol Input frequency Pin Name Value Conditions Unit Min Typ Max - - 32.768 - kHz - 32 - 100 kHz - 10 - 31.25 μs 45 - 55 % 1/tCYLL X0A, Input clock cycle tCYLL Input clock pulse width X1A PWH/tCYLL, - PWL/tCYLL Remarks When crystal oscillator is connected * When using external clock When using external clock When using external clock *: For more information about crystal oscillator, see Sub crystal oscillator in 9. Handling Devices. tCYLL 0.8 × VBAT 0.8 × VBAT 0.2 × VBAT X0A PWH 14.4.3 0.8 × VBAT 0.2 × VBAT PWL Built-In CR Oscillation Characteristics Built-In High-speed CR (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Value Conditions TJ = - 20°C to + 105°C Min Typ Max 3.92 4 4.08 Unit Remarks When trimming Clock frequency fCRH TJ = - 40°C to + 125°C 3.88 4 4.12 TJ = - 40°C to + 125°C 3 4 5 - - - 30 *1 MHz When not trimming Frequency stabilization tCRWT μs *2 time 1: In the case of using the values in CR trimming area of flash memory at shipment for frequency/temperature trimming 2: This is the time to stabilize the frequency of the High-speed CR clock after setting trimming value. During this period, it is able to use the High-speed CR clock as a source clock. Built-In Low-speed CR (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Condition Clock frequency fCRL - 120 CONFIDENTIAL Value Min Typ Max 50 100 150 Unit Remarks kHz S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t 14.4.4 Operating Conditions of Main PLL (in the Case of Using Main Clock for Input Clock of PLL) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol PLL oscillation stabilization wait time*1 (lock up time) PLL input clock frequency PLL multiplication rate PLL macro oscillation clock frequency Main PLL clock frequency* 2 Value Unit Min Typ Max tLOCK 100 - - μs fPLLI 4 - 16 MHz - 13 - 100 multiplier fPLLO 200 - 400 MHz fCLKPLL - - 200 MHz Remarks 1: Time from when the PLL starts operating until the oscillation stabilizes 2: For more information about Main PLL clock (CLKPLL), see Chapter 2-1: Clock in FM4 Family Peripheral Manual Main Part (MN709-00001). Operating Conditions of I2S PLL (in the Case of Using Main Clock for Input Clock of PLL) 14.4.5 (VCC = 2.7V to 5.5V, VSS = 0V) Parameter PLL oscillation stabilization wait time Symbol Unit Remarks Typ Max tLOCK 100 - - μs fPLLI 4 - 16 MHz - 13 - 100 multiplier 400 MHz USB 384 MHz I2S 12.288 MHz *1 (lock up time) PLL input clock frequency PLL multiplication rate PLL macro oscillation clock frequency I2S clock frequency Value Min *2 fPLLO 200 - fCLKPLL - - After the M frequency division 1: Time from when the PLL starts operating until the oscillation stabilizes 2 2 2: For more information about I S clock, see Chapter 7-1: I S Clock Generation in FM4 Family Peripheral Manual Communication Macro Part (MN709-00004). April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 121 D a t a S h e e t 14.4.6 Operating Conditions of Main PLL (in the Case of Using Built-in High-speed CR Clock for Input Clock of Main PLL) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol PLL oscillation stabilization wait time Unit Typ Max tLOCK 100 - - fPLLI 3.8 4 4.2 MHz - 50 - 95 multiplier fPLLO 190 - 400 MHz fCLKPLL - - 200 MHz Remarks *1 (lock up time) PLL input clock frequency PLL multiplication rate PLL macro oscillation clock frequency Main PLL clock frequency Value Min *2 μs 1: Time from when the PLL starts operating until the oscillation stabilizes 2: For more information about Main PLL clock (CLKPLL), see Chapter 2-1: Clock in FM4 Family Peripheral Manual Main Part (MN709-00001). Note: − 14.4.7 The High-speed CR clock (CLKHC) should be set with frequency/temperature trimming to act as the source clock of the Main PLL. Reset Input Characteristics (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Reset input time 122 CONFIDENTIAL Symbol tINITX Pin Name INITX Value Conditions - Unit Min Typ 500 - Remarks ns S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t 14.4.8 Power-On Reset Timing (VCC = 2.7V to 5.5V, VSS = 0V) Value Parameter Symbol Power supply rise time tVCCR Power supply shut down time tOFF Time until releasing Power-on reset tPRT Pin Name Unit VCC Min Typ 0 - ms 1 - ms 0.33 0.60 ms Remarks VCC_minimum VCC VDH_minimum 0.2V 0.2V 0.2V tVCCR Tprt Internal RST RST Active Toff Release CPU Operation start Glossary − VCC_minimum: minimum VCC of recommended operating conditions − VDH_minimum: minimum release voltage of low-voltage detection reset See 14.7. Low-Voltage Detection Characteristics. 14.4.9 GPIO Output Characteristics (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Output frequency Symbol tPCYCLE Pin Name Value Conditions Unit Min Typ VCC ≥ 4.5 V - 50 MHz VCC < 4.5 V - 32 MHz Remarks Pxx* *: GPIO is a target. Pxx tPCYCLE April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 123 D a t a S h e e t 14.4.10 External Bus Timing External Bus Clock Output Characteristics Parameter Symbol Pin Name Value Conditions Min Output frequency tCYCLE MCLKOUT *1 - Unit Remarks Typ 50 *2 MHz 1: The external bus clock (MCLKOUT) is a divided clock of HCLK. For more information about setting of clock divider, see Chapter 14: External Bus Interface in FM4 Family Peripheral Manual Main Part (MN709-00001). 2: Generate MCLKOUT at setting more than four divisions when the AHB bus clock exceeds 100 MHz. 0.8 × Vcc 0.8 × Vcc MCLK tCYCLE External Bus Signal I/O Characteristics (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Conditions Value Unit 0.8 × VCC V 0.2 × VCC V VOH 0.8 × VCC V VOL 0.2 × VCC V VIH Remarks Signal input characteristics VIL Signal output characteristics Input signal 124 CONFIDENTIAL VIH VIL VIH VIL VOH VOL VOH VOL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Separate Bus Access Asynchronous SRAM Mode (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol MOEX Minimum pulse width MCSX↓→Address output delay time MOEX↑→Address MCSX↓→ MOEX↑→ MCSX↓→ MCLK×n-3 - ns tCSL – AV MCSX[7: 0], MAD[24: 0] - -9 +9 ns - 0 MCLK×m+9 ns - MCLK×m-9 MCLK×m+9 ns - 0 MCLK×m+9 ns - MCLK×m-9 MCLK×m+9 ns - 20 - ns - 0 - ns - MCLK×n-3 - ns - 0 MCLK×m+9 ns - MCLK×n-9 MCLK×n+9 ns - 0 MCLK×m+9 ns - MCLK×n-9 MCLK×n+9 ns - MCLK-9 MCLK+9 ns - 0 MCLK×m+9 ns tCSL - RDQML MDQM↓delay time Data set up→MOEX↑ tDS - OE time MOEX↑→ tDH - OE Data hold time MWEX tWEW Minimum pulse width MWEX↑→Address tWEH - AX output delay time MCSX↓→ tCSL - WEL MWEX↓delay time MWEX↑→ tWEH - CSH MCSX↑delay time MCSX↓→ tCSL-WDQML MDQM↓delay time MCSX↓→ tCSL-DX Data output time MWEX↑→ tWEH - DX Data hold time Max - tOEH - CSH MCSX↑time Unit Min MOEX tCSL - OEL MOEX↓delay time Value Conditions tOEW tOEH - AX hold time Pin Name MOEX, MAD[24: 0] MOEX, MCSX[7: 0] MCSX, MDQM[3: 0] MOEX, MADATA[31: 0] MOEX, MADATA[31: 0] MWEX MWEX, MAD[24: 0] MWEX, MCSX[7: 0] MCSX, MDQM[3: 0] MCSX, MADATA[31: 0] MWEX, MADATA[31: 0] Remarks Note: − When the external load capacitance CL = 30 pF (m = 0 to 15, n = 1 to 16) April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 125 D a t a S h e e t tCYCLE MCLK tOEH-CSH tWEH-CSH MCSX[7: 0] tCSL-AV MAD[24: 0] tOEH-AX Address tWEH-AX tCSL-AV Address tCSL-OEL MOEX tOEW tCSL-WDQML tCSL-RDQML MDQM[1: 0] tCSL-WEL tWEW MWEX tDS-OE MADATA[15: 0] tDH-OE RD tWEH-DX WD Invalid tCSL-DX 126 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Separate Bus Access Synchronous SRAM Mode (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Address delay time Pin Name MCLK, tAV Value Conditions MAD[24: 0] Unit Min Max - 1 9 ns tCSL MCLK, - 1 9 ns tCSH MCSX[7: 0] - 1 9 ns tREL MCLK, - 1 9 ns tREH MOEX - 1 9 ns - 19 - ns - 0 - ns MCSX delay time MOEX delay time Data set up MCLK, tDS →MCLK↑ time MCLK↑→ MADATA[31: 0] MCLK, tDH Data hold time MADATA[31: 0] tWEL MCLK, - 1 9 ns tWEH MWEX - 1 9 ns MDQM[1: 0] tDQML MCLK, - 1 9 ns delay time tDQMH MDQM[3: 0] - 1 9 ns - MCLK+1 MCLK+18 ns - 1 18 ns MWEX delay time MCLK↑→ MCLK, tODS Data output time MCLK↑→ MADATA[31: 0] MCLK, tOD Data hold time MADATA[31: 0] Remarks Note: − When the external load capacitance CL = 30 pF tCYCLE MCLK tCSL tCSH MCSX[7: 0] tAV tAV Address MAD[24: 0] Address tREL tREH tDQML tDQMH MOEX tDQML tDQMH tWEL tWEH MDQM[3: 0] MWEX MADATA[31: 0] tDS tDH RD tOD WD Invalid tODS April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 127 D a t a S h e e t Multiplexed Bus Access Asynchronous SRAM Mode (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Multiplexed tALE-CHMADV address delay time Multiplexed address hold time tCHMADH Pin Name MALE, MAD[24: 0] Value Conditions Unit Min Max - 0 10 ns - MCLK×n+0 MCLK×n+10 ns Remarks Note: − When the external load capacitance CL = 30 pF (m = 0 to 15, n = 1 to 16) MCLK MCSX[7: 0] MALE MAD [24: 0] MOEX MDQM [3: 0] MWEX MADATA[31: 0] 128 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Multiplexed Bus Access Synchronous SRAM Mode (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol MCLK↑→Multiplexed Max - 1 9 tCHAH MALE - 1 9 - 1 tOD ns - 1 tOD ns tCHMADX data output time Unit Min MCLK, tCHMADV address delay time Value Conditions tCHAL MALE delay time MCLK↑→Multiplexed Pin Name MCLK, MADATA[31: 0] Remarks Note: − When the external load capacitance CL = 30 pF MCLK MCSX[7: 0] MALE MAD [24: 0] MOEX MDQM [3: 0] MWEX MADATA[31: 0] April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 129 D a t a S h e e t NAND Flash Mode (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol MNREX tNREW Min pulse width Data set up tDS – NRE →MNREX↑time MNREX↑→ tDH – NRE Data hold time MNALE↑→ tALEH - NWEL MNWEX delay time MNALE↓→ tALEL - NWEL MNWEX delay time MNCLE↑→ tCLEH - NWEL MNWEX delay time MNWEX↑→ tNWEH - CLEL MNCLE delay time MNWEX tNWEW Min pulse width MNWEX↓→ tNWEL – DV Data output time MNWEX↑→ tNWEH – DX Data hold time Pin Name MNREX MNREX, MADATA[31: 0] MNREX, MADATA[31: 0] MNALE, MNWEX MNALE, MNWEX MNCLE, MNWEX MNCLE, MNWEX MNWEX MNWEX, MADATA[31: 0] MNWEX, MADATA[31: 0] Value Conditions Unit Min Max - MCLK×n-3 - ns - 20 - ns - 0 - ns - MCLK×m-9 MCLK×m+9 ns - MCLK×m-9 MCLK×m+9 ns - MCLK×m-9 MCLK×m+9 ns - 0 MCLK×m+9 ns - MCLK×n-3 - ns - -9 9 ns - 0 MCLK×m+9 ns Remarks Note: − When the external load capacitance CL = 30 pF (m = 0 to 15, n = 1 to 16) NAND Flash Read MCLK MNREX MADATA[31: 0] Read 130 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t NAND Flash Address Write MCLK MNALE MNCLE MNWEX MADATA[31: 0] Write NAND Flash Command Write MCLK MNALE MNCLE MNWEX MADATA[31: 0] April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL Write 131 D a t a S h e e t External Ready Input Timing (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol MCLK↑ MRDY input Pin Name MCLK, tRDYI MRDY setup time Value Conditions - Unit Min Max 19 - Remarks ns When RDY is input ··· MCLK Over 2cycle Original MOEX MWEX tRDYI MRDY When RDY is released MCLK ··· ··· 2 cycles Extended MOEX MWEX tRDYI 0.5×VCC MRDY 132 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t SDRAM Mode (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Symbol Output frequency tCYCSD Address delay time tAOSD MSDCLK↑→ tDOSD Data output delay time MSDCLK↑→ tDOZSD Data output Hi-Z time MDQM[3: 0] delay time tWROSD MCSX delay time tMCSSD MRASX delay time tRASSD MCASX delay time tCASSD MSDWEX delay time tMWESD MSDCKE delay time tCKESD Data set up time tDSSD Data hold time tDHSD Pin Name MSDCLK MSDCLK, MAD[15: 0] MSDCLK, MADATA[31: 0] MSDCLK, MADATA[31: 0] MSDCLK, MDQM[1: 0] MSDCLK, MCSX8 MSDCLK, MRASX MSDCLK, MCASX MSDCLK, MSDWEX MSDCLK, MSDCKE MSDCLK, MADATA[31: 0] MSDCLK, MADATA[31: 0] Unit Value Unit Min Max - - 50 MHz - 2 12 ns - 2 12 ns - 2 19.5 ns - 1 12 ns - 2 12 ns - 2 12 ns - 2 12 ns - 2 12 ns - 2 12 ns - 19 - ns - 0 - ns Remarks Note: − When the external load capacitance CL = 30 pF April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 133 D a t a S h e e t tCYCSD SDRAM Access MSDCLK tAOSD MAD[24:0] MDQM[1:0] MCSX MRASX MCASX MSDWEX MSDCKE Address tWROSD tMCSSD tRASSD tCASSD tMWESD tCKESD tDSSD MADATA[15:0] RD tDOSD MADATA[15:0] 134 CONFIDENTIAL tDHSD tDOZSD WD S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t 14.4.11 Base Timer Input Timing Timer Input Timing (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Input pulse width TIOAn/TIOBn tTIWH, tTIWL Value Condi Pin Name (when using as ECK, TIN) tTIWH tions Min Max - 2tCYCP - Unit Remarks ns tTIWL ECK VIHS TIN VIHS VILS VILS Trigger Input Timing (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Input pulse width tTRGH, tTRGL TIOAn/TIOBn (when using as TGIN) tTRGH TGIN VIHS Value Condi Pin Name tions Min Max - 2tCYCP - Unit Remarks ns tTRGL VIHS VILS VILS Note: − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the base timer is connected, see 10. Block Diagram in this data sheet. April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 135 D a t a S h e e t 14.4.12 CSIO (SPI) Timing Synchronous Serial (SPI = 0, SCINV = 0) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Baud rate Pin Name Conditions VCC ≥ 4.5 V VCC < 4.5 V Min Max Min Max Unit - - - 8 - 8 Mbps Serial clock cycle time tSCYC SCKx 4tCYCP - 4tCYCP - ns SCK↓→SOT delay time tSLOVI - 30 + 30 - 20 + 20 ns 50 - 30 - ns 0 - 0 - ns SIN→SCK↑ tIVSHI setup time SCKx, SOTx SCKx, SINx Internal shift clock operation SCKx, SCK↑→SIN hold time tSHIXI Serial clock L pulse width tSLSH SCKx 2tCYCP - 10 - 2tCYCP - 10 - ns Serial clock H pulse width tSHSL SCKx tCYCP + 10 - tCYCP + 10 - ns - 50 - 30 ns 10 - 10 - ns 20 - 20 - ns SCK↓→SOT delay time tSLOVE SIN→SCK↑ tIVSHE setup time SCK↑→SIN hold time tSHIXE SINx SCKx, SOTx SCKx, SINx SCKx, External shift clock operation SINx SCK fall time tF SCKx - 5 - 5 ns SCK rise time tR SCKx - 5 - 5 ns Notes: − The above characteristics apply to CLK synchronous mode. 136 CONFIDENTIAL − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 10. Block Diagram in this data sheet. − These characteristics only guarantee the same relocate port number; for example, the combination of SCLKx_0 and SOTx_1 is not guaranteed. − When the external load capacitance CL = 30 pF. S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t tSCYC VOH SCK VOL VOL tSLOVI VOH VOL SOT tIVSHI VIH VIL SIN tSHIXI VIH VIL MS bit = 0 tSLSH SCK VIH tF VIL tSHSL VIL SIN VIH tR tSLOVE SOT VIH VOH VOL tIVSHE VIH VIL tSHIXE VIH VIL MS bit = 1 April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 137 D a t a S h e e t Synchronous Serial (SPI = 0, SCINV = 1) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Baud rate - Serial clock cycle time tSCYC SCK↑→SOT delay time tSHOVI Pin Name - Max Min Max - 8 - 8 Mbps 4tCYCP - 4tCYCP - ns - 30 + 30 - 20 + 20 ns 50 - 30 - ns 0 - 0 - ns SCKx, SOTx SCKx, Unit Min - SCKx VCC ≥ 4.5 V VCC < 4.5 V Conditions Internal shift SIN→SCK↓ setup time tIVSLI SCK↓→SIN hold time tSLIXI Serial clock L pulse width tSLSH SCKx 2tCYCP - 10 - 2tCYCP - 10 - ns Serial clock H pulse width tSHSL SCKx tCYCP + 10 - tCYCP + 10 - ns SCK↑→SOT delay time tSHOVE - 50 - 30 ns SIN→SCK↓ setup time tIVSLE 10 - 10 - ns SCK↓→SIN hold time tSLIXE 20 - 20 - ns SINx clock operation SCKx, SINx SCKx, SOTx SCKx, External shift SINx clock operation SCKx, SINx SCK fall time tF SCKx - 5 - 5 ns SCK rise time tR SCKx - 5 - 5 ns Notes: − The above characteristics apply to CLK synchronous mode. 138 CONFIDENTIAL − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 10. Block Diagram in this data sheet. − These characteristics only guarantee the same relocate port number; for example, the combination of SCLKx_0 and SOTx_1 is not guaranteed. − When the external load capacitance CL = 30 pF. S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t tSCYC VOH SCK VOH VOL tSHOVI VOH VOL SOT tIVSLI VIH VIL SIN tSLIXI VIH VIL MS bit = 0 tSHSL SCK tSLSH VIH VIH VIL tR VIL tF tSHOVE SOT SIN VIL VOH VOL tIVSLE VIH VIL tSLIXE VIH VIL MS bit = 1 April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 139 D a t a S h e e t Synchronous Serial (SPI = 1, SCINV = 0) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Baud rate - Serial clock cycle time tSCYC SCK↑→SOT delay time SIN→SCK↓ tSHOVI tIVSLI setup time Pin Name - Max Min Max - 8 - 8 Mbps 4tCYCP - 4tCYCP - ns - 30 + 30 - 20 + 20 ns 50 - 30 - ns 0 - 0 - ns 2tCYCP - 30 - 2tCYCP - 30 - ns SCKx, SOTx SCKx, SINx SCKx, Unit Min - SCKx VCC ≥ 4.5 V VCC < 4.5 V Conditions Internal shift clock operation SCK↓→SIN hold time tSLIXI SOT→SCK↓ delay time tSOVLI Serial clock L pulse width tSLSH SCKx 2tCYCP - 10 - 2tCYCP - 10 - ns Serial clock H pulse width tSHSL SCKx tCYCP + 10 - tCYCP + 10 - ns - 50 - 30 ns 10 - 10 - ns 20 - 20 - ns SCK↑→SOT delay time SIN→SCK↓ tSHOVE tIVSLE setup time SCK↓→SIN hold time tSLIXE SINx SCKx, SOTx SCKx, SOTx SCKx, External shift SINx clock operation SCKx, SINx SCK fall time tF SCKx - 5 - 5 ns SCK rise time tR SCKx - 5 - 5 ns Notes: − The above characteristics apply to CLK synchronous mode. 140 CONFIDENTIAL − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 10. Block Diagram in this data sheet. − These characteristics only guarantee the same relocate port number; for example, the combination of SCLKx_0 and SOTx_1 is not guaranteed. − When the external load capacitance CL = 30 pF. S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t tSCYC VOH VOL SCK SOT VOH VOL VOH VOL tIVSLI tSLIXI VIH VIL SIN VOL tSHOVI tSOVLI VIH VIL MS bit = 0 tSLSH SCK VIH tR VIH tSHOVE VOH VOL VOH VOL tIVSLE SIN VIH VIL tF * SOT VIL tSHSL tSLIXE VIH VIL VIH VIL MS bit = 1 * Changes when writing to TDR register April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 141 D a t a S h e e t Synchronous Serial (SPI = 1, SCINV = 1) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Baud rate - Serial clock cycle time tSCYC Pin Name - Unit Min Max Min Max - 8 - 8 Mbps 4tCYCP - 4tCYCP - ns - 30 + 30 - 20 + 20 ns 50 - 30 - ns 0 - 0 - ns 2tCYCP - 30 - 2tCYCP - 30 - ns - SCKx VCC ≥ 4.5 V VCC < 4.5 V Conditions SCKx, SCK↓→SOT delay time tSLOVI SIN→SCK↑ setup time tIVSHI SCK↑→SIN hold time tSHIXI SOT→SCK↑ delay time tSOVHI Serial clock L pulse width tSLSH SCKx 2tCYCP - 10 - 2tCYCP - 10 - ns Serial clock H pulse width tSHSL SCKx tCYCP + 10 - tCYCP + 10 - ns - 50 - 30 ns 10 - 10 - ns 20 - 20 - ns SCK↓→SOT delay time tSLOVE SIN→SCK↑ setup time tIVSHE SCK↑→SIN hold time tSHIXE SOTx SCKx, SINx SCKx, Internal shift clock operation SINx SCKx, SOTx SCKx, SOTx SCKx, External shift SINx clock operation SCKx, SINx SCK fall time tF SCKx - 5 - 5 ns SCK rise time tR SCKx - 5 - 5 ns Notes: − The above characteristics apply to CLK synchronous mode. 142 CONFIDENTIAL − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 10. Block Diagram in this data sheet. − These characteristics only guarantee the same relocate port number; for example, the combination of SCLKx_0 and SOTx_1 is not guaranteed. − When the external load capacitance CL = 30 pF. S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t tSCYC VOH SCK tSOVHI SOT tSLOVI VOH VOL VOH VOL tSHIXI tIVSHI VIH VIL SIN VOH VOL VIH VIL MS bit = 0 tSHSL tR SCK VIL VIH tSLSH VIH VIL tF VIL VIH tSLOVE SOT VOH VOL VOH VOL tIVSHE SIN tSHIXE VIH VIL VIH VIL MS bit = 1 April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 143 D a t a S h e e t When Using Synchronous Serial Chip Select (SPI = 1, SCINV = 0, MS = 0, CSLVL = 1) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol SCS↓→SCK↓ setup time tCSSI SCK↑→SCS↑ hold time tCSHI SCS deselect time tCSDI SCS↓→SCK↓ setup time tCSSE SCK↑→SCS↑ hold time tCSHE SCS deselect time Internal shift clock VCC ≥ 4.5 V VCC < 4.5 V Conditions Unit Min Max Min Max (*1)-50 (*1)+0 (*1)-50 (*1)+0 ns ( *2)+0 ( *2)+50 ( *2)+0 ( *2)+50 ns (*3)-50 (*3)+50 (*3)-50 (*3)+50 +5tCYCP +5tCYCP +5tCYCP +5tCYCP 3tCYCP+30 - 3tCYCP+30 - ns External shift 0 - 0 - ns tCSDE clock 3tCYCP+30 - 3tCYCP+30 - ns SCS↓→SOT delay time tDSE operation - 40 - 40 ns SCS↑→SOT delay time tDEE 0 - 0 - ns operation ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 10. Block Diagram in this data sheet. 144 CONFIDENTIAL − For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family Peripheral Manual Main Part (MN709-00001). − When the external load capacitance CL = 30 pF. S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t SCS output tCSDI tCSSI tCSHI SCK output SOT (SPI=0) SOT (SPI=1) SCS input tCSDE tCSSE tCSHE SCK input tDEE SOT (SPI=0) tDSE SOT (SPI=1) April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 145 D a t a S h e e t When Using Synchronous Serial Chip Select (SPI = 1, SCINV = 1, MS = 0, CSLVL = 1) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol SCS↓→SCK↓ setup time tCSSI SCK↑→SCS↑ hold time tCSHI SCS deselect time tCSDI SCS↓→SCK↓ setup time tCSSE SCK↑→SCS↑ hold time tCSHE SCS deselect time SCS↓→SOT delay time SCS↑→SOT delay time Internal shift clock VCC ≥ 4.5 V VCC < 4.5 V Conditions Unit Min Max Min Max (*1)-50 (*1)+0 (*1)-50 (*1)+0 ns ( *2)+0 ( *2)+50 ( *2)+0 ( *2)+50 ns (*3)-50 (*3)+50 (*3)-50 (*3)+50 +5tCYCP +5tCYCP +5tCYCP +5tCYCP 3tCYCP+30 - 3tCYCP+30 - ns External shift 0 - 0 - ns tCSDE clock 3tCYCP+30 - 3tCYCP+30 - ns tDSE operation - 40 - 40 ns 0 - 0 - ns tDEE operation ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: 146 CONFIDENTIAL − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 10. Block Diagram in this data sheet. − For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family Peripheral Manual Main Part (MN709-00001). − When the external load capacitance CL = 30 pF. S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t SCS output tCSDI tCSSI tCSHI SCK output SOT (SPI=0) SOT (SPI=1) SCS input tCSDE tCSSE tCSHE SCK input tDEE SOT (SPI=0) tDSE SOT (SPI=1) April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 147 D a t a S h e e t When Using Synchronous Serial Chip Select (SPI = 1, SCINV = 0, MS = 0, CSLVL = 0) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol SCS↑→SCK↓ setup time tCSSI SCK↑→SCS↓ hold time tCSHI Conditions Internal shift clock operation VCC ≥ 4.5 V VCC < 4.5 V Unit Min Max Min Max (*1)-50 (*1)+0 (*1)-50 (*1)+0 ns ns ( *2)+0 ( *2)+50 ( *2)+0 ( *2)+50 (*3)-50 (*3)+50 (*3)-50 (*3)+50 +5tCYCP +5tCYCP +5tCYCP +5tCYCP 3tCYCP+30 - 3tCYCP+30 - ns SCS deselect time tCSDI ns SCS↑→SCK↓ setup time tCSSE SCK↑→SCS↓ hold time tCSHE External shift 0 - 0 - ns SCS deselect time tCSDE clock 3tCYCP+30 - 3tCYCP+30 - ns SCS↑→SOT delay time tDSE operation - 40 - 40 ns SCS↓→SOT delay time tDEE 0 - 0 - ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: 148 CONFIDENTIAL − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 10. Block Diagram in this data sheet. − For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family Peripheral Manual Main Part (MN709-00001). − When the external load capacitance CL = 30 pF. S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t tCSDI SCS output tCSSI tCSHI SCK output SOT (SPI=0) SOT (SPI=1) tCSDE SCS input tCSSE tCSHE SCK input tDEE SOT (SPI=0) SOT tDSE (SPI=1) April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 149 D a t a S h e e t When Using Synchronous Serial Chip Select (SPI = 1, SCINV = 1, MS = 0, CSLVL = 0) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Min SCK↓→SCS↓hold time tCSSI tCSHI Internal shift SCS deselect time tCSDI operation SCS↑→SCK↑setup time tCSSE tCSHE tCSDE tDSE tDEE SCS↑→SCK↑setup time SCK↓→SCS↓hold time SCS deselect time SCS↑→SOT delay time SCS↓→SOT delay time clock VCC ≥ 4.5 V VCC < 4.5 V Conditions Units Max Min Max (*1)-50 (*1)+0 (*1)-50 (*1)+0 ns ( *2)+0 ( *2)+50 ( *2)+0 ( *2)+50 ns (*3)-50 (*3)+50 (*3)-50 (*3)+50 +5tCYCP +5tCYCP +5tCYCP +5tCYCP 3tCYCP+30 - 3tCYCP+30 - ns External 0 - 0 - ns shift clock 3tCYCP+30 - 3tCYCP+30 - ns - 40 - 40 ns 0 - 0 - ns operation ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 10. Block Diagram in this data sheet. 150 CONFIDENTIAL − For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family Peripheral Manual Main Part (MN709-00001). − When the external load capacitance CL = 30 pF. S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t tCSDI SCS output tCSSI tCSHI SCK output SOT (SPI=0) SOT (SPI=1) tCSDE SCS input tCSSE tCSHE SCK input tDEE SOT (SPI=0) SOT tDSE (SPI=1) April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 151 D a t a S h e e t High-Speed Synchronous Serial (SPI = 0, SCINV = 0) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Baud rate - Serial clock cycle time tSCYC SCK↓→SOT delay time SIN→SCK↑ setup time tSLOVI tIVSHI Pin Name - Conditions - SCKx SCKx, SOTx SCKx, SINx Internal shift clock operation VCC ≥ 4.5 V VCC < 4.5 V Unit Min Max Min Max - 25 - 25 Mbps 4tCYCP - 4tCYCP - ns - 10 + 10 - 10 + 10 ns - 12.5 - ns 5 - 5 - ns 14 12.5* SCKx, SCK↑→SIN hold time tSHIXI Serial clock L pulse width tSLSH SCKx 2tCYCP - 5 - 2tCYCP - 5 - ns Serial clock H pulse width tSHSL SCKx tCYCP + 10 - tCYCP + 10 - ns - 15 - 15 ns 5 - 5 - ns 5 - 5 - ns SCK↓→SOT delay time tSLOVE SIN→SCK↑ setup time tIVSHE SCK↑→SIN hold time tSHIXE SINx SCKx, SOTx SCKx, External shift SINx clock operation SCKx, SINx SCK fall time tF SCKx - 5 - 5 ns SCK rise time tR SCKx - 5 - 5 ns Notes: − The above characteristics apply to CLK synchronous mode. − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 10. Block Diagram in this data sheet. − These characteristics only guarantee the following pins: No chip select: SIN4_0, SOT4_0, SCK4_0 Chip select: SIN6_0, SOT6_0, SCK6_0, SCS60_0, SCS61_0, SCS62_0, SCS63_0 − 152 CONFIDENTIAL When the external load capacitance CL = 30 pF. (For *, when CL = 10 pF) S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t tSCYC VOH SCK VOL VOL tSLOVI VOH VOL SOT tIVSHI tSHIXI VIH VIL VIH VIL SIN MS bit = 0 tSLSH SCK VIH tF SOT VIL tSHSL VIL VIH VIH tR tSLOVE VOH VOL SIN tIVSHE VIH VIL tSHIXE VIH VIL MS bit = 1 April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 153 D a t a S h e e t High-Speed Synchronous Serial (SPI = 0, SCINV = 1) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Baud rate - Serial clock cycle time tSCYC SCK↑→SOT delay time SIN→SCK↓ setup time tSHOVI tIVSLI SCK↓→SIN hold time tSLIXI Serial clock L pulse width tSLSH Serial clock H pulse width tSHSL SCK↑→SOT delay time tSHOVE SIN→SCK↓ setup time tIVSLE SCK↓→SIN hold time tSLIXE Pin Name Conditions VCC ≥ 4.5 V VCC < 4.5 V Unit Min Max Min Max - 25 - 25 Mbps 4tCYCP - 4tCYCP - ns - 10 + 10 - 10 + 10 ns - 12.5 - ns 5 - 5 - ns SCKx 2tCYCP - 5 - 2tCYCP - 5 - ns SCKx tCYCP + 10 - tCYCP + 10 - ns - 15 - 15 ns 5 - 5 - ns 5 - 5 - ns - - SCKx SCKx, SOTx SCKx, SINx Internal shift clock operation SCKx, SINx SCKx, SOTx SCKx, External shift SINx clock operation SCKx, SINx 14 12.5* SCK fall time tF SCKx - 5 - 5 ns SCK rise time tR SCKx - 5 - 5 ns Notes: − The above characteristics apply to CLK synchronous mode. − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 10. Block Diagram in this data sheet. − These characteristics only guarantee the following pins: No chip select: SIN4_0, SOT4_0, SCK4_0 Chip select: SIN6_0, SOT6_0, SCK6_0, SCS60_0, SCS61_0, SCS62_0, SCS63_0 − 154 CONFIDENTIAL When the external load capacitance CL = 30 pF. (For *, when CL = 10 pF) S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t tSCYC VOH SCK VOH VOL tSHOVI VOH VOL SOT tIVSLI VIH VIL SIN tSLIXI VIH VIL MS bit = 0 tSHSL SCK VIH VIH VIL tR SOT tSLSH VIL VIL tF tSHOVE VOH VOL SIN tIVSLE VIH VIL tSLIXE VIH VIL MS bit = 1 April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 155 D a t a S h e e t High-Speed Synchronous Serial (SPI = 1, SCINV = 0) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Baud rate - Serial clock cycle time tSCYC SCK↑→SOT delay time tSHOVI SIN→SCK↓ setup time tIVSLI Pin Name - Conditions - SCKx SCKx, SOTx SCKx, SINx Internal shift clock operation SCKx, VCC ≥ 4.5 V VCC < 4.5 V Unit Min Max Min Max - 25 - 25 Mbps 4tCYCP - 4tCYCP - ns - 10 + 10 - 10 + 10 ns - 12.5 - ns 5 - 5 - ns 2tCYCP - 10 - 2tCYCP - 10 - ns 14 12.5* SCK↓→SIN hold time tSLIXI SOT→SCK↓ delay time tSOVLI Serial clock L pulse width tSLSH SCKx 2tCYCP - 5 - 2tCYCP - 5 - ns Serial clock H pulse width tSHSL SCKx tCYCP + 10 - tCYCP + 10 - ns SCK↑→SOT delay time tSHOVE - 15 - 15 ns SIN→SCK↓ setup time tIVSLE 5 - 5 - ns SCK↓→SIN hold time tSLIXE 5 - 5 - ns SINx SCKx, SOTx SCKx, SOTx SCKx, External shift SINx clock operation SCKx, SINx SCK fall time tF SCKx - 5 - 5 ns SCK rise time tR SCKx - 5 - 5 ns Notes: − The above characteristics apply to CLK synchronous mode. − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 10. Block Diagram in this data sheet. − These characteristics only guarantee the following pins: No chip select: SIN4_0, SOT4_0, SCK4_0 Chip select: SIN6_0, SOT6_0, SCK6_0, SCS60_0, SCS61_0, SCS62_0, SCS63_0 − 156 CONFIDENTIAL When the external load capacitance CL = 30 pF. (for *, when CL = 10 pF) S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t tSCYC VOH VOL SCK SOT VOH VOL VOH VOL tIVSLI tSLIXI VIH VIL SIN VOL tSHOVI tSOVLI VIH VIL MS bit = 0 tSLSH SCK VIH tR VIH tSHOVE VOH VOL VOH VOL tIVSLE SIN VIH VIL tF * SOT VIL tSHSL tSLIXE VIH VIL VIH VIL MS bit = 1 * Changes when writing to TDR register April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 157 D a t a S h e e t High-Speed Synchronous Serial (SPI = 1, SCINV = 1) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Baud rate - Serial clock cycle time tSCYC SCK↓→SOT delay time tSLOVI SIN→SCK↑ setup time tIVSHI SCK↑→SIN hold time tSHIXI SOT→SCK↑ delay time tSOVHI Serial clock L pulse width tSLSH Serial clock H pulse width tSHSL SCK↓→SOT delay time tSLOVE SIN→SCK↑ setup time tIVSHE SCK↑→SIN hold time tSHIXE Pin Name Conditions VCC ≥ 4.5 V VCC < 4.5 V Unit Min Max Min Max - 25 - 25 Mbps 4tCYCP - 4tCYCP - ns - 10 + 10 - 10 + 10 ns - 12.5 - ns 5 - 5 - ns 2tCYCP - 10 - 2tCYCP - 10 - ns SCKx 2tCYCP - 5 - 2tCYCP - 5 - ns SCKx tCYCP + 10 - tCYCP + 10 - ns - 15 - 15 ns 5 - 5 - ns 5 - 5 - ns - - SCKx SCKx, SOTx SCKx, SINx Internal shift clock operation SCKx, SINx SCKx, SOTx SCKx, SOTx SCKx, External shift SINx clock operation SCKx, SINx 14 12.5* SCK fall time tF SCKx - 5 - 5 ns SCK rise time tR SCKx - 5 - 5 ns Notes: − The above characteristics apply to CLK synchronous mode. − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 10. Block Diagram in this data sheet. − These characteristics only guarantee the following pins: No chip select: SIN4_0, SOT4_0, SCK4_0 Chip select: SIN6_0, SOT6_0, SCK6_0, SCS60_0, SCS61_0, SCS62_0, SCS63_0 − 158 CONFIDENTIAL When the external load capacitance CL = 30 pF. (for *, when CL = 10 pF) S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t tSCYC SCK VOH tSOVHI SOT tSLOVI VOH VOL VOH VOL tSHIXI tIVSHI VIH VIL SIN VOH VOL VIH VIL MS bit = 0 tSHSL tR tSLSH tF SCK VIL VIH VIH VIL VIL VIH tSLOVE SOT VOH VOL VOH VOL tIVSHE SIN tSHIXE VIH VIL VIH VIL MS bit = 1 April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 159 D a t a S h e e t When Using High-Speed Synchronous Serial Chip Select (SPI = 1, SCINV = 0, MS = 0, CSLVL = 1) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol SCS↓→SCK↓ setup time tCSSI SCK↑→SCS↑ hold time tCSHI SCS deselect time tCSDI SCS↓→SCK↓ setup time tCSSE SCK↑→SCS↑ hold time tCSHE SCS deselect time SCS↓→SOT delay time SCS↑→SOT delay time tDEE Internal shift clock VCC ≥ 4.5 V VCC < 4.5 V Conditions Unit Min Max Min Max (*1)-20 (*1)+0 (*1)-20 (*1)+0 ns ( *2)+0 ( *2)+20 ( *2)+0 ( *2)+20 ns (*3)-20 (*3)+20 (*3)-20 (*3)+20 +5tCYCP +5tCYCP +5tCYCP +5tCYCP 3tCYCP+15 - 3tCYCP+15 - ns External shift 0 - 0 - ns tCSDE clock 3tCYCP+15 - 3tCYCP+15 - ns tDSE operation - 25 - 25 ns 0 - 0 - ns operation ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: 160 CONFIDENTIAL − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 10. Block Diagram in this data sheet. − For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family Peripheral Manual Main Part (MN709-00001). − When the external load capacitance CL = 30 pF. S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t SCS output tCSDI tCSSI tCSHI SCK output SOT (SPI=0) SOT (SPI=1) SCS input tCSDE tCSSE tCSHE SCK input tDEE SOT (SPI=0) tDSE SOT (SPI=1) April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 161 D a t a S h e e t When Using High-Speed Synchronous Serial Chip Select (SPI = 1, SCINV = 1, MS = 0, CSLVL = 1) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol SCS↓→SCK↓ setup time tCSSI SCK↑→SCS↑ hold time tCSHI SCS deselect time tCSDI SCS↓→SCK↑ setup time tCSSE SCK↑→SCS↑ hold time tCSHE SCS deselect time SCS↓→SOT delay time SCS↑→SOT delay time tDEE Internal shift clock VCC ≥ 4.5 V VCC < 4.5 V Conditions Unit Min Min Min Max (*1)-20 (*1)+0 (*1)-20 (*1)+0 ns ( *2)+0 ( *2)+20 ( *2)+0 ( *2)+20 ns (*3)-20 (*3)+20 (*3)-20 (*3)+20 +5tCYCP +5tCYCP +5tCYCP +5tCYCP 3tCYCP+15 - 3tCYCP+15 - ns External shift 0 - 0 - ns tCSDE clock 3tCYCP+15 - 3tCYCP+15 - ns tDSE operation - 25 - 25 ns 0 - 0 - ns operation ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: 162 CONFIDENTIAL − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 10. Block Diagram in this data sheet. − For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family Peripheral Manual Main Part (MN709-00001). − When the external load capacitance CL = 30 pF. S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t SCS output tCSDI tCSSI tCSHI SCK output SOT (SPI=0) SOT (SPI=1) SCS intpu tCSDE tCSSE tCSHE SCK input tDEE SOT (SPI=0) tDSE SOT (SPI=1) April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 163 D a t a S h e e t When Using High-Speed Synchronous Serial Chip Select (SPI = 1, SCINV = 0, MS = 0, CSLVL = 0) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol SCS↑→SCK↓ setup time tCSSI SCK↑→SCS↓ hold time tCSHI Conditions Internal shift clock operation VCC ≥ 4.5 V VCC < 4.5 V Unit Min Max Min Max (*1)-20 (*1)+0 (*1)-20 (*1)+0 ns ns ( *2)+0 ( *2)+20 ( *2)+0 ( *2)+20 (*3)-20 (*3)+20 (*3)-20 (*3)+20 +5tCYCP +5tCYCP +5tCYCP +5tCYCP 3tCYCP+15 - 3tCYCP+15 - ns SCS deselect time tCSDI ns SCS↑→SCK↓ setup time tCSSE SCK↑→SCS↓ hold time tCSHE External shift 0 - 0 - ns SCS deselect time tCSDE clock 3tCYCP+15 - 3tCYCP+15 - ns SCS↑→SOT delay time tDSE operation - 25 - 25 ns SCS↓→SOT delay time tDEE 0 - 0 - ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: 164 CONFIDENTIAL − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 10. Block Diagram in this data sheet. − For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family Peripheral Manual Main Part (MN709-00001). − When the external load capacitance CL = 30 pF. S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t tCSDI SCS output tCSSI tCSHI SCK output SOT (SPI=0) SOT (SPI=1) tCSDE SCS input tCSSE tCSHE SCK input tDEE SOT (SPI=0) SOT tDSE (SPI=1) April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 165 D a t a S h e e t When Using High-Speed Synchronous Serial Chip Select (SPI = 1, SCINV = 1, MS = 0, CSLVL = 0) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol SCS↓→SCK↓ setup time tCSSI SCK↑→SCS↓ hold time tCSHI Conditions Internal shift clock operation VCC ≥ 4.5 V VCC < 4.5 V Unit Min Max Min Max (*1)-20 (*1)+0 (*1)-20 (*1)+0 ns ns ( *2)+0 ( *2)+20 ( *2)+0 ( *2)+20 (*3)-20 (*3)+20 (*3)-20 (*3)+20 +5tCYCP +5tCYCP +5tCYCP +5tCYCP 3tCYCP+15 - 3tCYCP+15 - ns SCS deselect time tCSDI ns SCS↑→SCK↑ setup time tCSSE SCK↓→SCS↓ hold time tCSHE External shift 0 - 0 - ns SCS deselect time tCSDE clock 3tCYCP+15 - 3tCYCP+15 - ns SCS↑→SOT delay time tDSE operation - 40 - 40 ns SCS↓→SOT delay time tDEE 0 - 0 - ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: 166 CONFIDENTIAL − tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 10. Block Diagram in this data sheet. − For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family Peripheral Manual Main Part (MN709-00001). − When the external load capacitance CL = 30 pF. S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t tCSDI SCS output tCSSI tCSHI SCK output SOT (SPI=0) SOT (SPI=1) SCS tCSDE input tCSSE tCSHE SCK input tDEE SOT (SPI=0) SOT tDSE (SPI=1) April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 167 D a t a S h e e t External clock (EXT = 1): When in Asynchronous Mode Only (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Serial clock L pulse width tSLSH Serial clock H pulse width tSHSL SCK fall time tF SCK rise time tR CL = 30 pF tR SCK VIL 168 CONFIDENTIAL Value Condition Max tCYCP + 10 - ns tCYCP + 10 - ns - 5 ns - 5 ns tSHSL VIH Unit Min tF tSLSH VIH VIL Remarks VIL VIH S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t 14.4.13 External Input Timing (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Pin Name Conditions Value Min Max Unit ADTGx FRCKx A/D converter trigger input *1 - 2tCYCP - ns - 2tCYCP - ns - ns *2 - ns *3 - ns ICxx Input pulse width tINH, tINL DTTIxX NMIX WKUPx Free-run timer input clock Input capture *1 *1 INT00 to INT31, Remarks 2tCYCP + 100 500 - 500 Waveform generator External interrupt, NMI Deep standby wake up 1: tCYCP indicates the APB bus clock cycle time except stop when in Stop mode, in Timer mode. For more information about the APB bus number to which the A/D converter, multi-function timer, and external interrupt are connected, see 10. Block Diagram in this data sheet. 2: When in Stop mode, in Timer mode 3: When in Deep Standby RTC mode, in Deep Standby Stop mode April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 169 D a t a S h e e t 14.4.14 Quadrature Position/Revolution Counter Timing (VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = -40°C to +105°C) Parameter Value Symbol Conditions AIN pin H width tAHL - AIN pin L width tALL - BIN pin H width tBHL - BIN pin L width tBLL - tAUBU PC_Mode2 or PC_Mode3 tBUAD PC_Mode2 or PC_Mode3 tADBD PC_Mode2 or PC_Mode3 tBDAU PC_Mode2 or PC_Mode3 tBUAU PC_Mode2 or PC_Mode3 tAUBD PC_Mode2 or PC_Mode3 tBDAD PC_Mode2 or PC_Mode3 tADBU PC_Mode2 or PC_Mode3 ZIN pin H width tZHL QCR: CGSC = 0 ZIN pin L width tZLL QCR: CGSC = 0 tZABE QCR: CGSC = 1 tABEZ QCR: CGSC = 1 BIN rise time from AIN pin H level AIN fall time from BIN pin H level BIN fall time from AIN pin L level AIN rise time from BIN pin L level AIN rise time from BIN pin H level BIN fall time from AIN pin H level AIN fall time from BIN pin L level BIN rise time from AIN pin L level AIN/BIN rise and fall time from determined ZIN level Determined ZIN level from AIN/BIN rise and fall time Min Max 2tCYCP* - Unit ns *: tCYCP indicates the APB bus clock cycle time except when in Stop mode, in Timer mode. For more information about the APB bus number to which the quadrature position/revolution counter is connected, see 10. Block Diagram in this data sheet. tALL tAHL AIN tAUBU tADBD tBUAD tBDAU BIN tBHL 170 CONFIDENTIAL tBLL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t tBLL tBHL BIN tBUAU tBDAD tAUBD tADBU AIN tAHL tALL ZIN ZIN AIN/BIN April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 171 D a t a S h e e t 14.4.15 I2C Timing Standard-mode, Fast-mode (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Conditions Standard-mode Fast-mode Unit Min Max Min Max fSCL 0 100 0 400 kHz tHDSTA 4.0 - 0.6 - μs SCL clock L width tLOW 4.7 - 1.3 - μs SCL clock H width tHIGH 4.0 - 0.6 - μs 4.7 - 0.6 - μs SCL clock frequency Remarks (Repeated) START condition hold time SDA ↓ → SCL ↓ (Repeated) START condition setup time tSUSTA SCL ↑ → SDA ↓ Data hold time SCL ↓ → SDA ↓ ↑ Data setup time SDA ↓ ↑ → SCL ↑ Stop condition setup time SCL ↑ → SDA ↑ CL = 30 pF, *1 tHDDAT R = (Vp/IOL) *2 0 3.45 *3 0 0.9 μs tSUDAT 250 - 100 - ns tSUSTO 4.0 - 0.6 - μs tBUF 4.7 - 1.3 - μs *4 - ns *4 - ns *4 - ns *4 - ns Bus free time between "Stop condition" and "START condition" 2 MHz ≤ tCYCP<40 MHz 40 MHz ≤ Noise filter tSP tCYCP <60 MHz 60 MHz ≤ tCYCP <80 MHz 80 MHz ≤ tCYCP ≤100 MHz *4 - 2 tCYCP *4 - 4 tCYCP *4 - 6 tCYCP *4 - 8 tCYCP 2 tCYCP 4 tCYCP *5 6 tCYCP 8 tCYCP 1: R and CL represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. V p indicates the power supply voltage of the pull-up resistance and IOL indicates VOL guaranteed current. 2: The maximum tHDDT must not extend beyond the low period (tLOW) of the device’s SCL signal. 2 2 3: Fast-mode I C bus device can be used on a Standard-mode I C bus system as long as the device satisfies the requirement of "tSUDAT ≥ 250 ns.” 2 4: tCYCP is the APB bus clock cycle time. For more information about the APB bus number to which the I C is connected, see "10.Block Diagram" in this data sheet. When using Standard-mode, the peripheral bus clock must be set more than 2 MHz. When using Fast-mode, the peripheral bus clock must be set more than 8 MHz. 5: The noise filter time can be changed by register settings. Change the number of the noise filter steps according to the APB bus clock frequency. 172 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Fast Mode Plus (Fm+) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Conditions Fast Mode Plus (Fm+)*6 Unit Min Max fSCL 0 1000 kHz tHDSTA 0.26 - μs tLOW 0.5 - μs SCL clock H width tHIGH 0.26 - μs SCL clock frequency tSUSTA 0.26 - μs SCL clock frequency Remarks (Repeated) START condition hold time SDA ↓ → SCL ↓ SCL clock L width (Repeated) START condition hold time 0.45 *2, *3 μs tSUDAT 50 - ns tSUSTO 0.26 - μs tBUF 0.5 - μs - ns SDA ↓ → SCL ↓ Data setup time SDA ↓ ↑ → SCL ↑ Stop condition setup time SCL ↑ → SDA ↑ CL = 30 pF, 0 tHDDAT *1 R = (Vp/IOL) Bus free time between "Stop condition" and "START condition" 60 MHz ≤ Noise filter tSP tCYCP<80 MHz 80 MHz ≤ tCYCP ≤100 MHz *4 6 tCYCP *5 *4 8 tCYCP - ns 1: R and CL represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. V p indicates the power supply voltage of the pull-up resistance and IOL indicates VOL guaranteed current. 2: The maximum tHDDT must not extend beyond the low period (tLOW) of the device’s SCL signal. 2 2 3: The Fast mode I C bus device can be used on a Standard-mode I C bus system as long as the device satisfies the requirement of "tSUDAT ≥ 250 ns.” 2 4: tCYCP is the APB bus clock cycle time. For more information about the APB bus number to which the I C is connected, see "10.Block Diagram" in this data sheet. To use fast mode plus (Fm+), set the peripheral bus clock at 64 MHz or more. 5: The noise filter time can be changed by register settings. Change the number of the noise filter steps according to the APB bus clock frequency. 2 6: When using fast mode plus (Fm+), set the I/O pin to the mode corresponding to I C Fm+ in the EPFR register. See Chapter12: I/O PORT in FM4 Family Peripheral Manual Main Part (MN709-00001) for the details. April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 173 D a t a S h e e t 14.4.16 SD Card Interface Timing Default-Speed Mode Clock CLK (All values are referenced to VIH and VIL transition points) (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Symbol Pin Name fPP S_CLK fOD S_CLK tWL S_CLK Clock high time tWH S_CLK Clock rise time tTLH S_CLK Clock fall time tTHL S_CLK Clock frequency Data Transfer Mode Clock frequency Identification Mode Clock low time Value Conditions CCARD ≤ 10 pF Remarks Min Max 0 25 MHz 0/100 400 kHz 10 - ns 10 - ns - 10 ns - 10 ns (1card) * 0 Hz means to stop the clock. The given minimum frequency range is for cases where a continuous clock is required. Card Inputs CMD, DAT (referenced to Clock CLK) Parameter Symbol Input set-up time tISU Input hold time tIH Pin Name Value Conditions S_CMD, S_DATA3: 0 CCARD ≤ 10 pF S_CMD, (1card) S_DATA3: 0 Remarks Min Max 5 - ns 5 - ns Card Outputs CMD, DAT (referenced to Clock CLK) Parameter Symbol Output Delay time during tODLY Data Transfer Mode Output Delay time during tODLY Identification Mode Pin Name Value Conditions S_CMD, S_DATA3: 0 CCARD ≤ 40 pF S_CMD, (1card) S_DATA3: 0 ns 0 50 ns VIH tTLH tIH tISU VIH VIH VIL VIL tODLY(Min) tODLY(Max) S_CMD, S_DATA3: 0 (Card Output) 14 VIL VIL S_CMD, S_DATA3: 0 (Card Input) 0 VIH VIH tTHL Max tWH tWL S_CLK (SD Clock) Remarks Min VOH VOH VOL VOL Default-Speed Mode Notes: 174 CONFIDENTIAL − The Card Input corresponds to the Host Output and the Card Output corresponds to the Host Input because this model is the Host. − For more information about clock frequency (fPP), see Chapter 15: SD card Interface in FM4 Family Peripheral Manual Main Part (MN709-00001). S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t High-Speed Mode Clock CLK (All values are referred to VIH and VIL) (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Symbol Pin Name fPP S_CLK Clock low time tWL S_CLK Clock high time tWH S_CLK Clock rise time tTLH S_CLK Clock fall time tTHL S_CLK Clock frequency Data Transfer Mode Value Conditions Remarks Min Max 0 50 MHz 7 - ns 7 - ns - 3 ns - 3 ns CCARD ≤ 10 pF (1 card) Card Inputs CMD, DAT (referenced to Clock CLK) Parameter Symbol Input set-up time tISU Input hold time tIH Pin Name S_CMD, S_DATA3: 0 Value Conditions Remarks Min Max 6 - ns 2 - ns CCARD ≤ 10 pF S_CMD, (1 card) S_DATA3: 0 Card Outputs CMD, DAT (referenced to Clock CLK) Parameter Symbol Output delay time during data transfer mode Output hold time tODLY tOH Total system capacitance for Pin Name Conditions S_CMD, CL ≤ 40 pF S_DATA3: 0 (1 card) S_CMD, CL ≥ 15 pF S_DATA3: 0 (1 card) - 1 card CL each line* Value Remarks Min Max 0 14 ns 2.5 - ns - 40 pF *: In order to satisfy severe timing, host shall drive only one card. tWH tWL S_CLK (SD Clock) 50%VCC VIH VIH tTHL VIL VIL 50%VCC tTLH tIH tISU S_CMD, S_DATA3: 0 (Card Input) tODLY(Max) S_CMD, S_DATA3: 0 (Card Output) VIH VIH VIH VIL VIL tOH(Min) VOH VOH VOL VOL High-Speed Mode Notes: − The Card Input corresponds to the Host Output and the Card Output corresponds to the Host Input because this model is the Host. − For more information about clock frequency (fPP), see Chapter 15: SD card Interface in FM4 Family Peripheral Manual Main Part (MN709-00001). April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 175 D a t a S h e e t 14.4.17 ETM/ HTM Timing (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Data hold tETMH TRACECLK Pin Name Conditions TRACECLK, TRACED[15: 0] 1/tTRACE frequency TRACECLK TRACECLK tTRACE clock cycle Value Min Max VCC ≥ 4.5 V 2 9 VCC <4.5 V 2 15 Unit Remarks ns VCC ≥ 4.5 V 50 MHz VCC <4.5 V 32 MHz VCC ≥ 4.5 V 20 - ns VCC <4.5 V 31.25 - ns Note: − When the external load capacitance CL = 30 pF. HCLK TRACECLK TRACED[15: 0] 176 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t 14.4.18 JTAG Timing (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol TMS, TDI setup time tJTAGS TMS, TDI hold time tJTAGH TDO delay time tJTAGD Pin Name Conditions TCK, VCC ≥ 4.5 V TMS, TDI VCC <4.5 V Value Unit Min Max 15 - ns 15 - ns TCK, VCC ≥ 4.5 V TMS, TDI VCC <4.5 V TCK, VCC ≥ 4.5 V - 25 TDO VCC <4.5 V - 45 Remarks ns Note: − When the external load capacitance CL = 30 pF. TCK TMS/TDI TDO April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 177 D a t a S h e e t 14.4.19 I2S Timing Master Mode Timing (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Output frequency Output clock pulse width I2SCK→I2SWS delay time I2SCK→I2SDO delay time* I2SDI→I2SCK Symbol Pin Name Conditions fMCYC I2SCK - tMHW Min Max Unit - 12.288 MHz 45 55 % 45 55 % I2SCK - tDFS I2SCK, I2SWS - 0 24.0 ns tDDO I2SCK, I2SDO - 0 24.0 ns - 25.0 - ns - 0 - ns - - 5 ns - - 5 ns tMLW tHSDI setup time Value Remarks I2SCK, I2SDI I2SDI→I2SCK tHDI hold time Input signal rise time tFI Input signal fall time tFI I2SDI *: Except for the first bit of transmission frame Notes: − − 178 CONFIDENTIAL When the external load capacitance CL = 20 pF When I2SWS = 48 kHz, I2MCLK = 256 × I2SWS Frame synchronization signal (I2SWS) is settable to 48 kHz, 32 kHz, 16 kHz. 2 See Chapter7-2: I S (Inter-IC Sound bus) Interface in FM4 Family Peripheral Manual Communication Macro Part (MN709-00004) for the details. S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t tmcyc tmhw tmlw I2SCK (CPOL=0) I2SCK (CPOL=1) tdfs I2SWS (FSPH=0, FSLN=0) tdfs tdfs tdfs I2SWS (FSPH=1, FSLN=0) tdfs tdfs I2SWS (FSPH=0, FSLN=1) tdfs tdfs I2SWS (FSPH=1, FSLN=1) tddo I2SDO tsdi thdi tsdi thdi I2SDI (SMPL=0) tsdi thdi I2SDI (SMPL=1) Note: − I2SDI 2 See Chapter7-2: I S (Inter-IC Sound bus) Interface in FM4 Family Peripheral Manual Communication Macro Part (MN709-00004) for the details of CPOL, FSPH, FSLIN, and SMPL. 0.8×VCC 0.8×VCC 0.2×VCC tfi April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 0.8×VCC 0.2×VCC tri 179 D a t a S h e e t Slave Mode Timing (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Input frequency Pin Name Conditions fSCYC I2SCK - I2SCK - tSFI I2SCK, I2SWS thfiHFI I2SCK, I2SWS tSHW Input clock pulse width tSLW I2SWS→I2SCK Setup time I2SWS→I2SCK Hold time I2SCK↑→I2SDO Delay time Symbol tDDO *1 Value Unit Min Max - 12.288 MHz 45 55 % 45 55 % - 8 - ns - 0 - ns - 0 32 ns - 0 32 ns - 8 - ns - 0 - ns Remarks I2SCK, I2SDO I2SCK↑→I2SDO tDFB1 *2 Delay time I2SDI→I2SCK↓ tSDI Setup time I2SCK, I2SDI I2SDI→I2SCK↓ tHDI Hold time Input signal rise time tFI I2SCK, I2SWS, - - 5 ns Input signal fall time tFI I2SDI - - 5 ns 1: Except for the first bit of transmission frame 2: When FSPH bit = 1. Notes: − − 180 CONFIDENTIAL When the external load capacitance CL = 20 pF When I2SWS = 48 kHz, I2MCLK = 256×I2SWS 2 Frame synchronization signal (I2SWS) is settable to 48 kHz, 32 kHz, 16 kHz. See Chapter7-2: I S (Inter-IC Sound bus) Interface in FM4 Family Peripheral Manual Communication Macro Part (MN709-00004) for the details. S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t tscyc tshw tslw I2SCK (CPOL=0) I2SCK (CPOL=1) tsfi thfi I2SWS (FSPH=0, FSLN=0) tsfi thfi I2SWS (FSPH=1, FSLN=0) tsfi I2SWS (FSPH=0, FSLN=1) tsfi I2SWS (FSPH=1, FSLN=1) tddo tdfb1 I2SDO tsdi thdi tsdi thdi I2SDI (SMPL=0) tsdi thdi I2SDI (SMPL=1) Notes: − − I2SCK I2SWS I2SDI 2 See Chapter7-2: I S (Inter-IC Sound bus) Interface in FM4 Family Peripheral Manual Communication Macro Part (MN709-00004) for the details of FSPH, FSLN, SMPL I2SCK input is selectable polarity by CPOL bit of CNTREG register 0.8×VCC 0.8×VCC 0.2×VCC tfi April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 0.8×VCC 0.2×VCC tri 181 D a t a S h e e t I2SMCLK Input Characteristics (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Pin Name Conditions Input frequency fCHS I2SMCK Input clock cycle tCYLHS - - - Input clock pulse width Input clock rise time and fall tCFS time tCRS Unit Max - - 25 MHz - 40 - ns 45 55 % - 5 ns PWHS/tCYLHS PWLS/tCYLHS - Value Min - Remarks When using external clock When using external clock tCYLHS 0.8×VCC I2SMCLK 0.8×VCC 0.8×VCC 0.2×VCC PWHS 0.2×VCC PWLS tCFS tCRS I2SMCLK Output Characteristics (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Output frequency 182 CONFIDENTIAL Symbol Pin Name Conditions fCHS I2SMCK - Value Min Max - 12.288 Unit Remarks MHz S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t 14.4.20 High-Speed Quad SPI Timing (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Symbol Pin Name Conditions CL = 15 pF, Serial clock frequency tSCYCM Q_SCK_0 VCC = 3.0 to 3.6V CL = 30 pF Value Unit Remarks 66 MHz *1 - 50 MHz *2 1.5×tSCYCM - 5 - ns tSCYCM - 5 - ns tSCYCM - ns 1.5×tSCYCM - ns 0 5 ns 0 5 3 - 10 - 0.5×tSCYCM - Min Max - Enabled CS→ CLK Starting Time tOSLSK02 (mode0/mode2) Enabled CS→ CLK Starting Time tOSLSK13 Q_SCK_0, (mode1/mode3) Q_CS0_0, CLK Last→ Q_CS1_0, Disabled CS Time tOSKSL02 CL = 30 pF Q_CS2_0 (mode0/mode2) CLK Last→ Disabled CS Time tOSKSL13 (mode1/mode3) CL = 15 pF, SIO Data output time tOSDAT Q_SCK_0, Q_IO0_0, Q_IO1_0, SIO Setup tDSSET SIO Hold tSDHOLD Q_IO2_0, VCC = 3.0 to 3.6V CL = 30 pF CL = 30 pF Q_IO3_0 CL = 30 pF ns *1 *2 ns 1: When RTM = 1 and mode = 0, 1, 3 2: When RTM = 1 and mode = 2 or RTM = 0 and mode = 0, 1, 2, 3 Notes: − − See Chapter8-3: High-Speed Quad SPI controller in FM4 Family Peripheral Manual Communication Macro Part (MN709-00004) for the detail of RTM mode. When using High-Speed Quad SPI, please set PDSR register to set the pin drive capability for VCC = 3V. See Chapter12: I/O Port in FM4 Family Peripheral Manual Main Part (MN709-00001) for the details. April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 183 D a t a S h e e t Q_CS0, Q_CS1, Q_CS2 tSCYCM mode0 mode2 tOSLSK02 Q_SCK tOSKSL02 mode1 mode3 tOSKSL13 tOSLSK13 input Q_IO0, Q_IO1, Q_IO2, Q_IO3 tDSSET tSDHOLD output tOSDAT 184 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t 14.5 12-bit A/D Converter Electrical Characteristics for the A/D Converter (VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V) Parameter Symbol Pin Name Resolution - Integral nonlinearity Differential nonlinearity Zero transition voltage Full-scale transition Max - - - 12 bit - - - 4.5 - + 4.5 LSB - - - 2.5 - + 2.5 LSB VZT ANxx - 15 - + 15 mV AVRH – 15 - AVRH + 15 mV AVCC - 15 ANxx Conversion time - - Sampling time *2 tS - Compare clock cycle *3 State transition time to operation permission Power supply current (analog + digital) Reference power supply current (AVRH) Analog input capacity Analog input resistance Interchannel disparity Analog port input leak current Analog input voltage Reference voltage Unit Typ VFST voltage Value Min tCCK AVCC + 15 mV 0.5 - - μs 0.15 - 0.3 - 10 μs 25 - - - AVCC 1000 ns 50 - 1000 - - - 1.0 μs - 0.69 0.92 mA - 1.3 22 μA - 1.1 1.97 mA - 0.3 6.3 μA - - 12.05 pF - - - - - 4 LSB - ANxx - - 5 μA - ANxx AVSS - AVRH V AVSS - AVCC V 4.5 - AVCC 2.7 - AVCC AVSS - AVSS - AVRH AVRL - 1.2 RAIN - - V AVCC ≥ 4.5 V AVCC ≥ 4.5 V 1.8 AVCC ≥ 4.5 V AVCC < 4.5 V AVRH CAIN AVRH = 2.7 V to 5.5 AVCC < 4.5 V - tSTT - - *1 Remarks kΩ A/D 1 unit operation When A/D stop A/D 1 unit operation AVRH = 5.5 V When A/D stop AVCC ≥ 4.5 V AVCC < 4.5 V V tCCK < 50 ns tCCK ≥ 50 ns V 1: The conversion time is the value of sampling time (tS) + compare time (tC). The condition of the minimum conversion time is when the value of tS = 150 ns and tC = 350 ns (AVCC ≥ 4.5V). Ensure that it satisfies the value of sampling time (tS) and compare clock cycle (tCCK). For setting of sampling time and compare clock cycle, see Chapter 1-1: A/D Converter in FM4 Family Peripheral Manual Analog Macro Part (MN709-00003). The register setting of the A/D converter is reflected by the APB bus clock timing. For more information about the APB bus number to which the A/D converter is connected, see 10. Block Diagram in this data sheet. The sampling and compare clock are set at base clock (HCLK). 2: A necessary sampling time changes by external impedance. Ensure that it sets the sampling time to satisfy (Equation 1). 3: The compare time (tC) is the value of (Equation 2). April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 185 D a t a S h e e t ANxx Analog input pin Rext Comparator RAIN Rin Analog signal source CAIN Cin (Equation 1) tS ≥ (RAIN + Rext) × CAIN × 9 tS: RAIN: CAIN: Rext: Sampling time Input resistance of A/D = 1.2 kΩ at 4.5 V ≤ AVCC ≤ 5.5 V Input resistance of A/D = 1.8 kΩ at 2.7 V ≤ AVCC < 4.5 V Input capacity of A/D = 12.05 pF at 2.7 V ≤ AVCC ≤ 5.5 V Output impedance of external circuit (Equation 2) tC = Tcck × 14 tC: tCCK: 186 CONFIDENTIAL Compare time Compare clock cycle S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Definition of 12-bit A/D Converter Terms Resolution: Integral Nonlinearity: Analog variation that is recognized by an A/D converter. Deviation of the line between the zero-transition point (0b000000000000 ←→ 0b000000000001) and the full-scale transition point (0b111111111110 ←→ 0b111111111111) from the actual conversion characteristics. Differential Nonlinearity: Deviation from the ideal value of the input voltage that is required to change the output code by 1 LSB. Integral Nonlinearity Differential Nonlinearity 0xFFF Actual conversion characteristics 0xFFE Actual conversion characteristics 0x(N+1) {1 LSB(N-1) + VZT} VFST VNT 0x004 (Actuallymeasured value) (Actually-measured value) 0x003 Digital output Digital output 0xFFD 0xN Ideal characteristics V(N+1)T 0x(N-1) (Actually-measured value) Actual conversion characteristics Ideal characteristics 0x002 VNT (Actually-measured value) 0x(N-2) 0x001 VZT (Actually-measured value) AVss Actual conversion characteristics AVRH AVss Analog input Integral Nonlinearity of digital output N = Differential Nonlinearity of digital output N = 1LSB = N: VZT: VFST: VNT: VNT - {1LSB × (N - 1) + VZT} 1LSB V(N + 1) T - VNT 1LSB [LSB] - 1 [LSB] VFST - VZT 4094 A/D converter digital output value. Voltage at which the digital output changes from 0x000 to 0x001. Voltage at which the digital output changes from 0xFFE to 0xFFF. Voltage at which the digital output changes from 0x(N − 1) to 0xN. April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL AVRH Analog input 187 D a t a S h e e t 14.6 12-bit D/A Converter Electrical Characteristics for the D/A Converter (VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V) Parameter Resolution Conversion time Symbol Remarks Max - - - 12 bit tC20 0.56 0.69 0.81 μs Load 20 pF tC100 2.79 3.42 4.06 μs Load 100 pF INL DNL Power supply current* Unit Typ Differential nonlinearity* Analog output impedance Value Min Integral nonlinearity* Output voltage offset Pin Name DAx VOFF RO IDDA IDSA AVCC - 16 - + 16 LSB - 0.98 - + 1.5 LSB - - + 10 mV When setting 0x000 - 20.0 - + 1.4 mV When setting 0xFFF 3.10 3.80 4.50 kΩ D/A operation 2.0 - - MΩ When D/A stop 260 330 410 μs D/A 1ch operation AVCC = 3.3 V 400 510 620 μs D/A 1ch operation AVCC = 5.0 V - - 14 μs When D/A stop *: During no load 188 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t 14.7 Low-Voltage Detection Characteristics 14.7.1 Low-Voltage Detection Reset Parameter Symbol Conditions Detected voltage VDL Released voltage VDH 14.7.2 Value Unit Remarks 2.64 V When voltage drops 2.69 V When voltage rises Min Typ Max - 2.46 2.55 - 2.51 2.60 Interrupt of Low-Voltage Detection Parameter Symbol Detected voltage VDL Released voltage VDH Detected voltage VDL Released voltage VDH Detected voltage VDL Released voltage VDH Detected voltage VDL Released voltage VDH Detected voltage VDL Released voltage VDH Detected voltage VDL Released voltage VDH Detected voltage VDL Released voltage VDH Detected voltage VDL Released voltage VDH LVD stabilization wait time tLVDW Conditions SVHI = 00111 SVHI = 00100 SVHI = 01100 SVHI = 01111 SVHI = 01110 SVHI = 01001 SVHI = 01000 SVHI = 11000 - Value Unit Remarks 3.00 V When voltage drops 3.11 V When voltage rises 3.10 3.21 V When voltage drops 3.20 3.31 V When voltage rises 3.18 3.30 3.42 V When voltage drops 3.28 3.40 3.52 V When voltage rises 3.67 3.80 3.93 V When voltage drops 3.76 3.90 4.04 V When voltage rises 3.76 3.90 4.04 V When voltage drops 3.86 4.00 4.14 V When voltage rises 4.05 4.20 4.35 V When voltage drops 4.15 4.30 4.45 V When voltage rises 4.15 4.30 4.45 V When voltage drops 4.25 4.40 4.55 V When voltage rises 4.25 4.40 4.55 V When voltage drops 4.34 4.50 4.66 V When voltage rises - - 6000×tCYCP* μs Min Typ Max 2.80 2.90 2.90 3.00 2.99 3.09 *: tCYCP indicates the APB2 bus clock cycle time. April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 189 D a t a S h e e t 14.8 MainFlash Memory Write/Erase Characteristics (VCC = 2.7V to 5.5V) Parameter Value Unit Min Typ Max Large Sector - 0.7 3.7 s Small Sector - 0.3 1.1 s - 12 Remarks Sector erase time Includes write time prior to internal erase Half word (16-bit) Write cycles < 100 times write time Write cycles > 100 times Chip erase time* 100 μs Not including system-level overhead time s Includes write time prior to internal erase 200 - 13.6 68 *: It indicates the chip erase time of 1MB MainFlash memory For devices with 1.5 MB or 2 MB of MainFlash memory, two erase cycles are required. See 3.2.2 Command Operating Explanations and 3.3.3 Flash Erase Operation in this product's Flash Programming Manual for the detail. Write Cycles and Data Retention Time Erase/Write Cycles (Cycle) Data Retention Time (Year) 1,000 20* 10,000 10* 100,000 5* *: This value comes from the technology qualification (using Arrhenius equation to translate high temperature acceleration test result into average temperature value at + 85°C). 14.9 Dual Flash Memory Write/Erase Characteristics It is the same write/erase characteristics as the MainFlash memory. See 3.6 Dual flash mode in this product's Flash Programming Manual for the detail of dual flash mode. 190 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t 14.10 Standby Recovery Time 14.10.1 Recovery Cause: Interrupt/WKUP The time from the interrupt occurring to the time of program operation start is shown. Recovery Count Time (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Value Symbol Sleep mode Unit Max* Typ Remarks μs HCLK×1 High-speed CR Timer mode 40 80 μs Low-speed CR Timer mode 450 900 μs Sub Timer mode 896 1136 μs 316 581 μs 270 540 μs 365 667 μs 365 667 μs Main Timer mode PLL Timer mode RTC mode tICNT Stop mode (High-speed CR/Main/PLL Run mode return) RTC mode Stop mode (Low-speed CR/sub Run mode return) Deep Standby RTC mode with RAM retention Deep Standby Stop mode with RAM retention without RAM retention with RAM retention *: The maximum value depends on the built-in CR accuracy. Example of Standby Recovery Operation (when in External Interrupt Recovery*) Ext.INT Interrupt factor accept Active tICNT CPU Operation Interrupt factor clear by CPU Start *: External interrupt is set to detecting fall edge. April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 191 D a t a S h e e t Example of Standby Recovery Operation (when in Internal Resource Interrupt Recovery*) Internal Resource INT Interrupt factor accept Active tICNT CPU Operation Interrupt factor clear by CPU Start *: Depending on the standby mode, interrupt from the internal resource is not included in the recovery cause. Notes: 192 CONFIDENTIAL − The return factor is different in each low-power consumption mode. See Chapter 6: Low Power Consumption Mode and Operations of Standby Modes in FM4 Family Peripheral Manual Main Part (MN709-00001). − The recovery process is unique for each operating mode. See Chapter 6: Low Power Consumption Mode in FM4 Family Peripheral Manual Main Part (MN709-00001). S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t 14.10.2 Recovery Cause: Reset The time from reset release to the program operation start is shown. Recovery Count Time (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol Sleep mode Value Unit Typ Max* 155 266 μs 155 266 μs 315 567 μs 315 567 μs 315 567 μs 336 667 μs 336 667 μs Remarks High-speed CR Timer mode Main Timer mode PLL Timer mode Low-speed CR Timer mode tRCNT Sub Timer mode RTC mode Stop mode Deep Standby RTC mode with RAM retention Deep Standby Stop mode with RAM retention without RAM retention with RAM retention *: The maximum value depends on the built-in CR accuracy. Example of Standby Recovery Operation (when in INITX Recovery) INITX Internal RST RST Active Release tRCNT CPU Operation April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL Start 193 D a t a S h e e t Example of Standby Recovery Operation (when in Internal Resource Reset Recovery*) Internal Resource RST Internal RST RST Active Release tRCNT CPU Operation Start *: Depending on the low-power consumption mode, the reset issue from the internal resource is not included in the recovery cause. Notes: 194 CONFIDENTIAL − The return factor is different in each low power consumption mode. See Chapter 6: Low Power Consumption Mode and Operations of Standby Modes in FM4 Family Peripheral Manual Main Part (MN709-00001). − The recovery process is unique for each operating mode. See Chapter 6: Low Power Consumption Mode in FM4 Family Peripheral Manual Main Part (MN709-00001). − When the power-on reset/low-voltage detection reset, they are not included in the return factor. See 14.4.8 Power-On Reset Timing. − In recovering from reset, CPU changes to High-speed Run mode. In the case of using the main clock and PLL clock, they need further main clock oscillation stabilization wait time and oscillation stabilization wait time of Main PLL clock. − Internal resource reset indicates Watchdog reset and CSV reset. S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t 15. Ordering Information Part number Flash RAM Crypto Voice S6E2C18H0AGV20000 1 MB 128 KB N/A N/A S6E2C19H0AGV20000 1.5 MB 192 KB N/A N/A S6E2C1AH0AGV20000 2 MB 256 KB N/A N/A S6E2C18J0AGV20000 1 MB 128 KB N/A N/A S6E2C19J0AGV20000 1.5 MB 192 KB N/A N/A S6E2C1AJ0AGV20000 2 MB 256 KB N/A N/A S6E2C18J0AGB10000 1 MB 128 KB N/A N/A S6E2C19J0AGB10000 1.5 MB 192 KB N/A N/A S6E2C1AJ0AGB10000 2 MB 256 KB N/A N/A S6E2C18L0AGL20000 1 MB 128 KB N/A N/A S6E2C19L0AGL20000 1.5 MB 192 KB N/A N/A S6E2C1AL0AGL20000 2 MB 256 KB N/A N/A April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL Package Plastic・LQFP (0.5-mm pitch), 144 pin (FPT-144P-M08) Plastic・LQFP (0.65-mm pitch), 176 pin (FPT-176P-M07) Plastic・LQFP (0.8-mm pitch), 192 pin (LBE192) Plastic・LQFP (0.4-mm pitch), 216 pin (FPT-216P-M01) 195 D a t a S h e e t 16. Package Dimensions 144-pin plastic LQFP (FPT-144P-M08) 144-pin plastic LQFP (FPT-144P-M08) 0.50 mm Package width × package length 20.0 × 20.0 mm Lead shape Gullwing Sealing method Plastic mold Mounting height 1.70 mm MAX Weight 1.20 g Code (Reference) P-LFQFP144-20×20-0.50 Note 1) *:Values do not include resin protrusion. Resin protrusion is +0.25(.010)Max(each side). Note 2) Pins width and pins thickness include plating thickness. Note 3) Pins width do not include tie bar cutting remainder. 22.00±0.20(.866±.008)SQ * 20.00±0.10(.787±.004)SQ 108 Lead pitch 0.145±0.055 (.006±.002) 73 109 72 0.08(.003) Details of "A" part +0.20 1.50 –0.10 +.008 .059 –.004 0°~8° INDEX 144 37 "A" LEAD No. 1 36 0.50(.020) C 0.22±0.05 (.009±.002) 2003-2010 FUJITSU SEMICONDUCTOR LIMITED F144019S-c-4-8 196 CONFIDENTIAL 0.08(.003) 0.50±0.20 (.020±.008) 0.60±0.15 (.024±.006) (Mounting height) 0.10±0.10 (.004±.004) (Stand off) 0.25(.010) M Dimensions in mm (inches). Note: The values in parentheses are reference values. S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t 176-pin plastic LQFP Lead pitch 0.50 mm Package width × package length 24.0 × 24.0 mm Lead shape Gullwing Sealing method Plastic mold Mounting height 1.70 mm MAX Code (Reference) P-LQFP-0176-2424-0.50 (FPT-176P-M07) 176-pin plastic LQFP (FPT-176P-M07) Note 1) * : Values do not include resin protrusion. Resin protrusion is +0.25(.010)Max(each side). Note 2) Pins width and pins thickness include plating thickness Note 3) Pins width do not include tie bar cutting remainder. 26.00±0.20(1.024±.008)SQ *24.00±0.10(.945±.004)SQ 0.145±0.055 (.006±.002) 132 89 88 133 0.08(.003) Details of "A" part +0.20 1.50 –0.10 +.008 (Mounting height) .059 –.004 0°~8° 0.10±0.10 (.004±.004) (Stand off) INDEX 176 45 "A" LEAD No. 1 44 0.50(.020) C 0.22±0.05 (.009±.002) 2004-2010 FUJITSU SEMICONDUCTOR LIMITED F176013S-c-1-3 April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 0.08(.003) 0.50±0.20 (.020±.008) 0.60±0.15 (.024±.006) 0.25(.010) M Dimensions in mm (inches). Note: The values in parentheses are reference values. 197 D a t a S h e e t 216-pin plastic LQFP Lead pitch 0.40 mm Package width × package length 24.0 × 24.0 mm Lead shape Gullwing Sealing method Plastic mold Mounting height 1.70 mm MAX Code (Reference) P-LFQFP216-24×24-0.40 (FPT-216P-M01) 216-pin plastic LQFP (FPT-216P-M01) Note 1) * : These dimensions do not include resin protrusion. Note 2) Pins width and pins thickness include plating thickness. Note 3) Pins width do not include tie bar cutting remainder. 26.00±0.20(1.024±.008)SQ * 24.00±0.10(.945±.004)SQ 162 109 163 108 Details of "A" part +0.20 1.50 –0.10 0.08(.003) +.008 .059 –.004 (Mounting height) 0.25(.010) 0~8° INDEX 216 0.60±0.15 (.024±.006) 55 "A" LEAD No. 1 54 0.40(.016) C 0.18±0.05 (.007±.002) 2003-2010 FUJITSU SEMICONDUCTOR LIMITED F216001S-c-2-4 198 CONFIDENTIAL 0.10±0.05 (.004±.002) (Stand off) 0.07(.003) M 0.145±0.055 (.006±.002) Dimensions in mm (inches). Note: The values in parentheses are reference values. S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t Package Type Package Code PFBGA 192 LBE 192 NOTES: LBE 192 PACKAGE JEDEC N/A DXE 12.00mm X 12.00mm PACKAGE SYMBOL MIN. NOM. MAX. A --- --- 1.45 A1 0.25 --- --- PROFILE BALL HEIGHT D 12.00 BSC BODY SIZE E 12.00 BSC BODY SIZE D1 10.40 BSC MATRIX FOOTPRINT E1 10.40 BSC MATRIX FOOTPRINT MD 14 MATRIX SIZE D DIRECTION ME 14 MATRIX SIZE E DIRECTION n 0.35 --- 0.55 0.80 BSC BALL PITCH eD 0.80 BSC BALL PITCH 0.00 BSC SOLDER BALL PLACEMENT A1, A14, P1, P14 3. BALL POSITION DESIGNATION PER JEP 95, SECTION 3, SPP-010. 4. DEPOPULATED SOLDER BALLS LOCATIONS e REPRESENTS THE SOLDER BALL GRID PITCH. 5. SYMBOL “MD” IS THE BALL MATRIX SIZE IN THE “D” DIRECTION. SYMBOL “ME” IS THE BALL MATRIX SIZE IN THE “E” DIRECTION. n IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME. 6 DIMENSION “b” IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C. 7 SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW. WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW SD OR SE = 0 WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW SD OR SE = e/2 8 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK, METALLIZED MARK INDENTATION OR OTHER MEANS. 9. “+” INDICATES THE THEORETICAL CENTER OF DEPOPULATED BALLS. BALL DIAMETER eE SE 2. DIMENSIONING AND TOLERANCING METHODS PER ASME Y14.5-2009. THIS OUTLINE CONFORMS TO JEP 95, SECTION 4.5. ALL DIMENSIONS ARE IN MILLIMETERS. BALL COUNT 192 Ob SD NOTE 1. 10 INDEX MARK IS OPTIONAL. gs5036-1-lbe192 / 6.16.14 April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 199 D a t a S h e e t 17. Major Changes Page Section Change Results Revision 0.1 - - Initial release Revision 1.0 11 2. Features 13 3. Product Lineup 87 10. Block Diagram 88 12. Memory Map Deleted HDM-CEC/Remote Control Receiver. Deleted the pins of HDM-CEC/Remote Control Receiver.(CEC0,CEC1) 16-18 5. Pin Assignments Revised the pin name of I2S. (MI2S*_0→MI2S*0_0) Deleted the pin of IGTRG0_0. Deleted the pins of HDM-CEC/Remote Control Receiver.(CEC0,CEC1) Revised the pin name of I2S. (MI2S*_0→MI2S*0_0) 20-71 6. Pin Descriptions Revised the pin number of PF7 in LQFP216.(91→90) Revised the pin number of X1. (73, 58, 50, P5→107, 87, 71, P13) Revised the pin number of X0A. (107, 87, 71, P13→73, 58, 50, P5) Revised IOH/IOL of Type S.(IOH=-12mA→-10mA, IOL=12mA→10mA) 72-79 7. I/O Circuit Type 94-101 13. Pin Status In Each CPU State Deleted X and Y in Pin Status Type. 102-103 14.1. Absolute Maximum Ratings Added 10 mA type. 104-107 14.2. Recommended Operating Conditions 108-117 14.3.1. Current Rating 118-119 14.3.2. Pin Characteristics Added the case of using I2C in Type E, F, G, L, N, S. Added AVRL in Analog reference voltage. Revised the leakage current in Maximum leakage current at operating Revised the maximum current of each category. Added the characteristic of external bus in H level input voltage (hysteresis input). Added the characteristic of 10 mA type. 122 14.4.5. Operating Conditions of I2S PLL (in the Revised the maximum of I2S PLL macro oscillation clock frequency. case of using main clock for input clock of PLL) (307.2 MHz→384 MHz) Revised the minimum of Sampling time. 186 14.5.12-bit A/D Converter 190 14.8.2. Interrupt of Low-Voltage Detection Revised the characteristic of State transition time to operation permission Added AVRL in Analog reference voltage. 200 CONFIDENTIAL Revised the SVHI values in Conditions S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 201 D a t a S h e e t 202 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015 D a t a S h e e t April 22, 2015, S6E2C1_DS709-00014-1v0-E CONFIDENTIAL 203 D a t a S h e e t Colophon The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapons systems), or (2) for any use in which chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable to you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior authorization by the respective government entity will be required for export of those products. Trademarks and Notice The contents of this document are subject to change without notice. This document may contain information on a Spansion product under development by Spansion. Spansion reserves the right to change or discontinue work on any product without notice. The information in this document is provided as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement of third-party rights, or any other warranty, express, implied, or statutory. Spansion assumes no liability for any damages of any kind arising out of the use of the information in this document. ® ® ® TM Copyright © 2014-2015 Cypress All rights reserved. Spansion , the Spansion logo, MirrorBit , MirrorBit Eclipse , TM TM TM ORNAND , Easy DesignSim , Traveo and combinations thereof, are trademarks and registered trademarks of Spansion LLC in the United States and other countries. Other names used are for informational purposes only and may be trademarks of their respective owners. 204 CONFIDENTIAL S6E2C1_DS709-00014-1v0-E, April 22, 2015