ROHM EMF9

EMF9
Transistors
Power management (dual transistors)
EMF9
2SC5585 and 2SK3019 are housed independently in a EMT6 package.
zApplication
Power management circuit
zStructure
Silicon epitaxial planar transistor
ROHM : EMT6
(5)
(2)
0.5 0.5
1.0
1.6
(3)
(4)
(1)
1.2
1.6
0.5
(6)
0.13
zFeatures
1) Power switching circuit in a single package.
2) Mounting cost and area can be cut in half.
0.22
zDimensions (Units : mm)
Each lead has
same dimensions
Abbreviated symbol : F9
zEquivalent circuits
(3)
(2)
(1)
Tr1
Tr2
(4)
(5)
(6)
zPackaging specifications
Type
Package
Marking
Code
Basic ordering unit (pieces)
EMF9
EMT6
F9
T2R
8000
Rev.A
1/5
EMF9
Transistors
zAbsolute maximum ratings (Ta=25°C)
Tr1
Parameter
Collector-base voltage
Collector-emitter voltage
Emitter-base voltage
Symbol
VCBO
VCEO
VEBO
IC
Collector current
ICP
Tj
Junction temperature
Tstg
Range of storage temperature
Limits
15
12
6
500
1.0
150
−55~+150
Unit
V
V
V
mA
A
°C
°C
Limits
30
±20
100
200
100
200
150
−55~+150
Unit
V
V
mA
mA
mA
mA
°C
°C
Symbol
Limits
Unit
PD
150(TOTAL)
∗
∗ Single pulse PW=1ms
Tr2
Symbol
Parameter
VDSS
Drain-source voltage
VGSS
Gate-source voltage
ID
Continuous
Drain current
IDP
Pulsed
IDR
Continuous
Reverse drain
current
IDRP
Pulsed
Tch
Channel temperature
Tstg
Range of storage temperature
∗
∗
∗ PW≤10ms Duty cycle≤50%
Tr1, Tr2
Parameter
Total power dissipation
mW ∗
∗ 120mW per element must not be exceeded. Each terminal mounted on a recommended land.
zElectrical characteristics (Ta=25°C)
Tr1
Parameter
Collector-emitter breakdown voltage
Collector-base breakdown voltage
Emitter-base breakdown voltage
Collector cut-off current
Emitter cut-off current
Collector-emitter saturation voltage
DC current gain
Transition frequency
Collector output capacitance
Symbol
BVCEO
BVCBO
BVEBO
ICBO
IEBO
VCE(sat)
hFE
fT
Cob
Min.
12
15
6
−
−
−
270
−
−
Typ.
−
−
−
−
−
100
−
320
7.5
Max.
−
−
−
100
100
250
680
−
−
Unit
V
V
V
nA
nA
mV
−
MHz
pF
Conditions
IC=1mA
IC=10µA
IE=10µA
VCB=15V
VEB=6V
IC=200mA, IB=10mA
VCE=2V, IC=10mA
VCE=2V, IE=−10mA, f=100MHz
VCB=10V, IE=0mA, f=1MHz
Symbol
IGSS
V(BR)DSS
IDSS
VGS(th)
Min.
−
30
−
0.8
−
−
20
−
−
−
−
−
−
−
Typ.
−
−
−
−
5
7
−
13
9
4
15
35
80
80
Max.
±1
−
1.0
1.5
8
13
−
−
−
−
−
−
−
−
Unit
µA
V
µA
V
Ω
Ω
mS
pF
pF
pF
ns
ns
ns
ns
Conditions
VGS=±20V, VDS=0V
ID=10µA, VGS=0V
VDS=30V, VGS=0V
VDS=3V, ID=100µA
ID=10mA, VGS=4V
ID=1mA, VGS=2.5V
VDS=3V, ID=10mA
Tr2
Parameter
Gate-source leakage
Drain-source breakdown voltage
Zero gate voltage drain current
Gate-threshold voltage
Static drain-source
on-state resistance
Forward transfer admittance
Input capacitance
Output capacitance
Reverce transfer capacitance
Turn-on delay time
Rise time
Turn-off delay time
Fall time
RDS(on)
|Yfs|
Ciss
Coss
Crss
td(on)
tr
td(off)
tf
VDS=5V, VGS=0V, f=1MHz
ID=10mA, VDD 5V,
VGS=5V, RL=500Ω,
RGS=10Ω
Rev.A
2/5
EMF9
Transistors
0.2
DC CURRENT GAIN : hFE
Ta=25°
C
Ta= −40°
C
10
0.4
0.6
0.8
1.0
1.2
1.4
1
10
BASE TO EMITTER VOLTAGE : VBE (V)
100
Ta=125°C
25°C
−40°C
10
1
1
10
100
1000
COLLECTOR CURRENT : IC (mA)
1000
1000
IC/IB=20
Pulsed
Ta=25°C
1000
Ta=−40°C
Ta=125°C
100
10
1
10
100
1000
COLLECTOR CURRENT : IC (mA)
Fig.4 Collector-emitter saturation voltage
vs. collector current ( ΙΙ )
EMITTER INPUT CAPACITANCE : Cib (pF)
COLLECTOR OUTPUT CAPACITANCE : Cob (pF)
100
10000
IC/IB=20
Pulsed
BASER SATURATION VOLTAGE : VBE (sat) (mV)
COLLECTOR SATURATION VOLTAGE : VCE (sat) (mV)
Fig.1 Grounded emitter propagation
characteristics
1000
Fig.3 Collector-emitter saturation voltage
vs. collector current ( Ι )
Ta=−40°C
100
1
0
Fig.2 DC current gain vs.
collector current
Ta=25°C
Fig.5 Base-emitter saturation voltage
vs. collector current
1000
Ta=25°C
Pulsed
100
IC/IB=50
10
IC/IB=20
IC/IB=10
1
1
10
100
1000
COLLECTOR CURRENT : IC (mA)
1000
TRANSITION FREQUENCY : fT (MHz)
1
VCE=2V
Pulsed
Ta=125°C
100
10
COLLECTOR CURRENT : IC (mA)
1000
VCE=2V
Pulsed
Ta=12
5°C
COLLECTOR CURRENT : IC (mA)
1000
COLLECTOR SATURATION VOLTAGE : VCE(sat) (mV)
zElectrical characteristic curves
Tr1
VCE=2V
Ta=25°C
Pulsed
100
10
1
1
10
100
1000
EMITTER CURRENT : IE (mA)
Fig.6 Gain bandwidth product
vs. emitter current
IE=0A
f=1MHz
Ta=25°C
100
Cib
10
1
0.1
Cob
1
10
100
EMITTER TO BASE VOLTAGE : VEB(V)
Fig.7 Collector output capacitance
vs. collector-base voltage
Emitter input capacitance
vs. emitter-base voltage
Rev.A
3/5
EMF9
Transistors
20m
10m
5m
2m
Ta=125°C
75°C
25°C
−25°C
1m
0.5m
0.2m
0.1m
0
1
3
2
1.5
1
0.5
0
−50 −25
4
VGS=2.5V
Pulsed
10
5
2
1
0.5
0.001 0.002
0.005 0.01 0.02
0.05
0.1
0.2
FORWARD TRANSFER
ADMITTANCE : |Yfs| (S)
Ta=−25°C
25°C
75°C
125°C
0.01
0.005
0.002
0.0005 0.001 0.002
0.005 0.01 0.02
10
5
2
1
0.5
0.001 0.002
5
ID=0.05A
10
15
0.05 0.1 0.2
0.5
DRAIN CURRENT : ID (A)
Fig.15 Forward transfer admittance vs.
drain current
200m
9
50m
Ta=125°C
75°C
25°C
−25°C
5m
2m
1m
0.5m
0.2m
0.1m
0
0.5
1
0.5
7
ID=100mA
6
ID=50mA
5
4
3
2
1
0
25
50
75
100 125
150
CHANNEL TEMPERATURE : Tch (°C)
20m
10m
0.2
VGS=4V
Pulsed
8
0
−50 −25
20
VGS=0V
Pulsed
100m
0.05 0.1
Fig.11 Static drain-source on-state
resistance vs. drain current ( Ι )
ID=0.1A
5
0.005 0.01 0.02
DRAIN CURRENT : ID (A)
Fig.13 Static drain-source on-state
resistance vs. gate-source
voltage
REVERSE DRAIN CURRENT : IDR (A)
VDS=3V
Pulsed
0.02
0.001
0.0001 0.0002
Ta=125°C
75°C
25°C
−25°C
20
GATE-SOURCE VOLTAGE : VGS (V)
0.2
0.05
125 150
10
0
0
0.5
Fig.12 Static drain-source on-state
resistance vs. drain current ( ΙΙ )
0.1
100
Ta=25°C
Pulsed
DRAIN CURRENT : ID (A)
0.5
75
15
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : RDS(on) (Ω)
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : RDS(on) (Ω)
20
50
Fig.10 Gate threshold voltage vs.
channel temperature
Fig.9 Typical transfer characteristics
Ta=125°C
75°C
25°C
−25°C
25
0
VGS=4V
Pulsed
CHANNEL TEMPERATURE : Tch (°C)
GATE-SOURCE VOLTAGE : VGS (V)
50
50
VDS=3V
ID=0.1mA
Pulsed
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : RDS(on) (Ω)
DRAIN CURRENT : ID (A)
50m
2
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : RDS(on) (Ω)
VDS=3V
Pulsed
100m
1.5
SOURCE-DRAIN VOLTAGE : VSD (V)
Fig.16 Reverse drain current vs.
source-drain voltage ( Ι )
Fig.14 Static drain-source on-state
resistance vs. channel
temperature
REVERSE DRAIN CURRENT : IDR (A)
200m
GATE THRESHOLD VOLTAGE : VGS(th) (V)
Tr2
200m
Ta=25°C
Pulsed
100m
50m
20m
VGS=4V
10m
0V
5m
2m
1m
0.5m
0.2m
0.1m
0
0.5
1
1.5
SOURCE-DRAIN VOLTAGE : VSD (V)
Fig.17 Reverse drain current vs.
source-drain voltage ( ΙΙ )
Rev.A
4/5
EMF9
Transistors
20
Ta=25°C
f=1MHZ
VGS=0V
10
Ciss
5
Coss
Crss
2
1000
1
Ta=25°C
VDD=5V
VGS=5V
RG=10Ω
Pulsed
tf
500
SWITHING TIME : t (ns)
CAPACITANCE : C (pF)
50
td(off)
200
100
50
20
tr
td(on)
10
5
0.5
0.1
0.2
0.5
1
2
5
10
20
50
2
0.1 0.2
0.5
1
2
5
10
20
50
100
DRAIN-SOURCE VOLTAGE : VDS (V)
DRAIN CURRENT : ID (mA)
Fig.18 Typical capacitance vs.
drain-source voltage
Fig.19 Switching characteristics
Rev.A
5/5
Appendix
Notes
No technical content pages of this document may be reproduced in any form or transmitted by any
means without prior permission of ROHM CO.,LTD.
The contents described herein are subject to change without notice. The specifications for the
product described in this document are for reference only. Upon actual use, therefore, please request
that specifications to be separately delivered.
Application circuit diagrams and circuit constants contained herein are shown as examples of standard
use and operation. Please pay careful attention to the peripheral conditions when designing circuits
and deciding upon circuit constants in the set.
Any data, including, but not limited to application circuit diagrams information, described herein
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of
whatsoever nature in the event of any such infringement, or arising from or connected with or related
to the use of such devices.
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
otherwise dispose of the same, no express or implied right or license to practice or commercially
exploit any intellectual property rights or other proprietary rights owned or controlled by
ROHM CO., LTD. is granted to any such buyer.
Products listed in this document are no antiradiation design.
The products listed in this document are designed to be used with ordinary electronic equipment or devices
(such as audio visual equipment, office-automation equipment, communications devices, electrical
appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level
of reliability and the malfunction of which would directly endanger human life (such as medical
instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers
and other safety devices), please be sure to consult with our sales representative in advance.
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance
of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow
for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in
order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM
cannot be held responsible for any damages arising from the use of the products under conditions out of the
range of the specifications or due to non-compliance with the NOTES specified in this catalog.
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact your nearest sales office.
ROHM Customer Support System
www.rohm.com
Copyright © 2008 ROHM CO.,LTD.
THE AMERICAS / EUROPE / ASIA / JAPAN
Contact us : webmaster@ rohm.co. jp
21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
TEL : +81-75-311-2121
FAX : +81-75-315-0172
Appendix1-Rev2.0