EMF9 Transistors Power management (dual transistors) EMF9 2SC5585 and 2SK3019 are housed independently in a EMT6 package. zApplication Power management circuit zStructure Silicon epitaxial planar transistor ROHM : EMT6 (5) (2) 0.5 0.5 1.0 1.6 (3) (4) (1) 1.2 1.6 0.5 (6) 0.13 zFeatures 1) Power switching circuit in a single package. 2) Mounting cost and area can be cut in half. 0.22 zDimensions (Units : mm) Each lead has same dimensions Abbreviated symbol : F9 zEquivalent circuits (3) (2) (1) Tr1 Tr2 (4) (5) (6) zPackaging specifications Type Package Marking Code Basic ordering unit (pieces) EMF9 EMT6 F9 T2R 8000 Rev.A 1/5 EMF9 Transistors zAbsolute maximum ratings (Ta=25°C) Tr1 Parameter Collector-base voltage Collector-emitter voltage Emitter-base voltage Symbol VCBO VCEO VEBO IC Collector current ICP Tj Junction temperature Tstg Range of storage temperature Limits 15 12 6 500 1.0 150 −55~+150 Unit V V V mA A °C °C Limits 30 ±20 100 200 100 200 150 −55~+150 Unit V V mA mA mA mA °C °C Symbol Limits Unit PD 150(TOTAL) ∗ ∗ Single pulse PW=1ms Tr2 Symbol Parameter VDSS Drain-source voltage VGSS Gate-source voltage ID Continuous Drain current IDP Pulsed IDR Continuous Reverse drain current IDRP Pulsed Tch Channel temperature Tstg Range of storage temperature ∗ ∗ ∗ PW≤10ms Duty cycle≤50% Tr1, Tr2 Parameter Total power dissipation mW ∗ ∗ 120mW per element must not be exceeded. Each terminal mounted on a recommended land. zElectrical characteristics (Ta=25°C) Tr1 Parameter Collector-emitter breakdown voltage Collector-base breakdown voltage Emitter-base breakdown voltage Collector cut-off current Emitter cut-off current Collector-emitter saturation voltage DC current gain Transition frequency Collector output capacitance Symbol BVCEO BVCBO BVEBO ICBO IEBO VCE(sat) hFE fT Cob Min. 12 15 6 − − − 270 − − Typ. − − − − − 100 − 320 7.5 Max. − − − 100 100 250 680 − − Unit V V V nA nA mV − MHz pF Conditions IC=1mA IC=10µA IE=10µA VCB=15V VEB=6V IC=200mA, IB=10mA VCE=2V, IC=10mA VCE=2V, IE=−10mA, f=100MHz VCB=10V, IE=0mA, f=1MHz Symbol IGSS V(BR)DSS IDSS VGS(th) Min. − 30 − 0.8 − − 20 − − − − − − − Typ. − − − − 5 7 − 13 9 4 15 35 80 80 Max. ±1 − 1.0 1.5 8 13 − − − − − − − − Unit µA V µA V Ω Ω mS pF pF pF ns ns ns ns Conditions VGS=±20V, VDS=0V ID=10µA, VGS=0V VDS=30V, VGS=0V VDS=3V, ID=100µA ID=10mA, VGS=4V ID=1mA, VGS=2.5V VDS=3V, ID=10mA Tr2 Parameter Gate-source leakage Drain-source breakdown voltage Zero gate voltage drain current Gate-threshold voltage Static drain-source on-state resistance Forward transfer admittance Input capacitance Output capacitance Reverce transfer capacitance Turn-on delay time Rise time Turn-off delay time Fall time RDS(on) |Yfs| Ciss Coss Crss td(on) tr td(off) tf VDS=5V, VGS=0V, f=1MHz ID=10mA, VDD 5V, VGS=5V, RL=500Ω, RGS=10Ω Rev.A 2/5 EMF9 Transistors 0.2 DC CURRENT GAIN : hFE Ta=25° C Ta= −40° C 10 0.4 0.6 0.8 1.0 1.2 1.4 1 10 BASE TO EMITTER VOLTAGE : VBE (V) 100 Ta=125°C 25°C −40°C 10 1 1 10 100 1000 COLLECTOR CURRENT : IC (mA) 1000 1000 IC/IB=20 Pulsed Ta=25°C 1000 Ta=−40°C Ta=125°C 100 10 1 10 100 1000 COLLECTOR CURRENT : IC (mA) Fig.4 Collector-emitter saturation voltage vs. collector current ( ΙΙ ) EMITTER INPUT CAPACITANCE : Cib (pF) COLLECTOR OUTPUT CAPACITANCE : Cob (pF) 100 10000 IC/IB=20 Pulsed BASER SATURATION VOLTAGE : VBE (sat) (mV) COLLECTOR SATURATION VOLTAGE : VCE (sat) (mV) Fig.1 Grounded emitter propagation characteristics 1000 Fig.3 Collector-emitter saturation voltage vs. collector current ( Ι ) Ta=−40°C 100 1 0 Fig.2 DC current gain vs. collector current Ta=25°C Fig.5 Base-emitter saturation voltage vs. collector current 1000 Ta=25°C Pulsed 100 IC/IB=50 10 IC/IB=20 IC/IB=10 1 1 10 100 1000 COLLECTOR CURRENT : IC (mA) 1000 TRANSITION FREQUENCY : fT (MHz) 1 VCE=2V Pulsed Ta=125°C 100 10 COLLECTOR CURRENT : IC (mA) 1000 VCE=2V Pulsed Ta=12 5°C COLLECTOR CURRENT : IC (mA) 1000 COLLECTOR SATURATION VOLTAGE : VCE(sat) (mV) zElectrical characteristic curves Tr1 VCE=2V Ta=25°C Pulsed 100 10 1 1 10 100 1000 EMITTER CURRENT : IE (mA) Fig.6 Gain bandwidth product vs. emitter current IE=0A f=1MHz Ta=25°C 100 Cib 10 1 0.1 Cob 1 10 100 EMITTER TO BASE VOLTAGE : VEB(V) Fig.7 Collector output capacitance vs. collector-base voltage Emitter input capacitance vs. emitter-base voltage Rev.A 3/5 EMF9 Transistors 20m 10m 5m 2m Ta=125°C 75°C 25°C −25°C 1m 0.5m 0.2m 0.1m 0 1 3 2 1.5 1 0.5 0 −50 −25 4 VGS=2.5V Pulsed 10 5 2 1 0.5 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 FORWARD TRANSFER ADMITTANCE : |Yfs| (S) Ta=−25°C 25°C 75°C 125°C 0.01 0.005 0.002 0.0005 0.001 0.002 0.005 0.01 0.02 10 5 2 1 0.5 0.001 0.002 5 ID=0.05A 10 15 0.05 0.1 0.2 0.5 DRAIN CURRENT : ID (A) Fig.15 Forward transfer admittance vs. drain current 200m 9 50m Ta=125°C 75°C 25°C −25°C 5m 2m 1m 0.5m 0.2m 0.1m 0 0.5 1 0.5 7 ID=100mA 6 ID=50mA 5 4 3 2 1 0 25 50 75 100 125 150 CHANNEL TEMPERATURE : Tch (°C) 20m 10m 0.2 VGS=4V Pulsed 8 0 −50 −25 20 VGS=0V Pulsed 100m 0.05 0.1 Fig.11 Static drain-source on-state resistance vs. drain current ( Ι ) ID=0.1A 5 0.005 0.01 0.02 DRAIN CURRENT : ID (A) Fig.13 Static drain-source on-state resistance vs. gate-source voltage REVERSE DRAIN CURRENT : IDR (A) VDS=3V Pulsed 0.02 0.001 0.0001 0.0002 Ta=125°C 75°C 25°C −25°C 20 GATE-SOURCE VOLTAGE : VGS (V) 0.2 0.05 125 150 10 0 0 0.5 Fig.12 Static drain-source on-state resistance vs. drain current ( ΙΙ ) 0.1 100 Ta=25°C Pulsed DRAIN CURRENT : ID (A) 0.5 75 15 STATIC DRAIN-SOURCE ON-STATE RESISTANCE : RDS(on) (Ω) STATIC DRAIN-SOURCE ON-STATE RESISTANCE : RDS(on) (Ω) 20 50 Fig.10 Gate threshold voltage vs. channel temperature Fig.9 Typical transfer characteristics Ta=125°C 75°C 25°C −25°C 25 0 VGS=4V Pulsed CHANNEL TEMPERATURE : Tch (°C) GATE-SOURCE VOLTAGE : VGS (V) 50 50 VDS=3V ID=0.1mA Pulsed STATIC DRAIN-SOURCE ON-STATE RESISTANCE : RDS(on) (Ω) DRAIN CURRENT : ID (A) 50m 2 STATIC DRAIN-SOURCE ON-STATE RESISTANCE : RDS(on) (Ω) VDS=3V Pulsed 100m 1.5 SOURCE-DRAIN VOLTAGE : VSD (V) Fig.16 Reverse drain current vs. source-drain voltage ( Ι ) Fig.14 Static drain-source on-state resistance vs. channel temperature REVERSE DRAIN CURRENT : IDR (A) 200m GATE THRESHOLD VOLTAGE : VGS(th) (V) Tr2 200m Ta=25°C Pulsed 100m 50m 20m VGS=4V 10m 0V 5m 2m 1m 0.5m 0.2m 0.1m 0 0.5 1 1.5 SOURCE-DRAIN VOLTAGE : VSD (V) Fig.17 Reverse drain current vs. source-drain voltage ( ΙΙ ) Rev.A 4/5 EMF9 Transistors 20 Ta=25°C f=1MHZ VGS=0V 10 Ciss 5 Coss Crss 2 1000 1 Ta=25°C VDD=5V VGS=5V RG=10Ω Pulsed tf 500 SWITHING TIME : t (ns) CAPACITANCE : C (pF) 50 td(off) 200 100 50 20 tr td(on) 10 5 0.5 0.1 0.2 0.5 1 2 5 10 20 50 2 0.1 0.2 0.5 1 2 5 10 20 50 100 DRAIN-SOURCE VOLTAGE : VDS (V) DRAIN CURRENT : ID (mA) Fig.18 Typical capacitance vs. drain-source voltage Fig.19 Switching characteristics Rev.A 5/5 Appendix Notes No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD. The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered. Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set. Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices. Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer. Products listed in this document are no antiradiation design. The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance. It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact your nearest sales office. ROHM Customer Support System www.rohm.com Copyright © 2008 ROHM CO.,LTD. THE AMERICAS / EUROPE / ASIA / JAPAN Contact us : webmaster@ rohm.co. jp 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan TEL : +81-75-311-2121 FAX : +81-75-315-0172 Appendix1-Rev2.0