REVISIONS LTR DESCRIPTION DATE (YR-MO-DA) APPROVED A Add device types 03 and 04. Add case outline M. Add vendor CAGE 01295 as source of supply for device types 03 and 04. Update boilerplate. Editorial changes throughout. 94-11-01 M. A. Frye B Corrected number of leads for case outline package T in section 1.2.4 from 32 to 28. Updated boilerplate as part of 5 year review. ksr 06-02-27 Raymond Monnin C Updated drawing in accordance with current MIL-PRF-38535 requirements. - glg 14-01-27 Charles Saffle REV C C C C C C C C C C C C C C C C SHEET 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 REV C C C C C C C C C C C C C C C C C C C C SHEET 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 REV STATUS REV C C C C C C C C C C C C C C OF SHEETS SHEET 1 2 3 4 5 6 7 8 9 10 11 12 13 14 PMIC N/A PREPARED BY Rajesh Pithadia STANDARD MICROCIRCUIT DRAWING COLUMBUS, OHIO 43218-3990 http://www.landandmaritime.dla.mil CHECKED BY Kenneth Rice APPROVED BY THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE AMSC N/A DLA LAND AND MARITIME Michael Frye DRAWING APPROVAL DATE MICROCIRCUIT, MEMORY, DIGITAL, CMOS, 256K X 4 VIDEO RAM, MONOLITHIC SILICON 92-12-16 REVISION LEVEL C SIZE CAGE CODE A 67268 SHEET DSCC FORM 2233 APR 97 5962-89497 1 OF 50 5962-E147-14 1. SCOPE 1.1 Scope. This drawing documents two product assurance class levels consisting of high reliability (device classes Q and M) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN. 1.2 PIN. The PIN is as shown in the following example: 5962 | | | Federal stock class designator \ | | | RHA designator (see 1.2.1) 89497 01 | | | Device type (see 1.2.2) / M | | | Device class designator (see 1.2.3) X | | | Case outline (see 1.2.4) A | | | Lead finish (see 1.2.5) \/ Drawing number 1.2.1 RHA designator. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. Device class M RHA marked devices meet the MIL-PRF-38535, appendix A specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device. 1.2.2 Device type(s). The device type(s) identify the circuit function as follows: Device type Generic number 1/ 01 02 03 04 Circuit function Access time Access time 120 ns 100 ns 120 ns 100 ns 35 ns 30 ns 35 ns 30 ns 256K x 4, multiport video RAM 256K x 4, multiport video RAM 256K x 4, multiport video RAM 256K x 4, multiport video RAM 1.2.3 Device class designator. The device class designator is a single letter identifying the product assurance level as follows: Device class Device requirements documentation M Vendor self-certification to the requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A Q or V Certification and qualification to MIL-PRF-38535 1.2.4 Case outline(s). The case outline(s) are as designated in MIL-STD-1835 and as follows: Outline letter T U X Y Z M Descriptive designator See figure 1 CDFP4-F28 See figure 1 See figure 1 See figure 1 See figure 1 Terminals 28 28 28 28 28 28 Package style "J" lead chip carrier Flat pack Dual-in-line "J" lead chip carrier Rectangular leadless chip carrier Zig-zag in-line 1.2.5 Lead finish. The lead finish is as specified in MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M. 1/ Generic numbers are listed on the Standard Microcircuit Drawing Source Approval Bulletin at the end of this document and will also be listed in MIL-HDBK-103. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 2 1.3 Absolute maximum ratings. 2/ Voltage range on any pin except DQ and SDQ ---Voltage range on DQ and SDQ -----------------------Voltage range on VCC ------------------------------------Short circuit output current (per output) -------------Power dissipation (PD) ----------------------------------Storage temperature range ----------------------------Lead temperature (soldering, 10 seconds) --------Thermal resistance, junction-to-case (θJC): Case U -----------------------------------------------------Cases X, Y, Z, and T -----------------------------------Case M -----------------------------------------------------Junction temperature (TJ) 4/ ---------------------------- -1 V dc to 7 V dc -1 V dc to VCC 0 V dc to 7 V dc 50 mA 1W -65°C to 150°C +300°C See MIL-STD-1835 10°C/W 3/ 5°C/W 3/ +175°C 1.4 Recommended operating conditions. Supply voltage range (VCC) 5/ -------------------------Supply voltage (VSS) --------------------------------------High level input voltage range (VIH)-------------------Low level input voltage range (VIL) 6/ --------------System transition times, rise and fall (tt) ------------Case operating temperature range (TC) -------------- +4.5 V dc to +5.5 V dc 0.0 V dc 2.9 V dc to VCC -1.0 V dc to 0.6 V dc 3 ns to 50 ns -55°C to +125°C 2. APPLICABLE DOCUMENTS 2.1 Government specification, standards, and handbooks. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract. DEPARTMENT OF DEFENSE SPECIFICATION MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for. DEPARTMENT OF DEFENSE STANDARDS MIL-STD-883 MIL-STD-1835 - Test Method Standard Microcircuits. Interface Standard For Microcircuit Case Outlines. DEPARTMENT OF DEFENSE HANDBOOKS MIL-HDBK-103 MIL-HDBK-780 - List of Standard Microcircuit Drawings. Standard Microcircuit Drawings. (Copies of these documents are available online at http://quicksearch.dla.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.) 2/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability. 3/ When the thermal resistance for this case is specified in MIL-STD-1835, that value shall supersede the value indicated herein. 4/ Maximum junction temperature shall not be exceeded except for allowable short duration burn-in screening conditions in accordance with method 5004 of MIL-STD-883. 5/ All voltage values in this drawing are with respect to VSS. 6/ The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used in this drawing for voltage levels only. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 3 JEDEC INTERNATIONAL (JEDEC) JESD 78 - IC Latch-Up Test. (Applications for copies should be addressed to the Electronics Industries Association, 2500 Wilson Boulevard, Arlington, VA 22201; http://www.jedec.org.) (Non-Government standards and other publications are normally available from the organizations that prepare or distribute the documents. These documents also may be available in or through libraries or other informational services.) 2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained. 3. REQUIREMENTS 3.1 Item requirements. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device class M shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. 3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V or MIL-PRF-38535, appendix A and herein for device class M. 3.2.1 Case outline(s). The case outline(s) shall be in accordance with 1.2.4 herein and figure 1. 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 2. 3.2.3 Truth table(s). The truth table shall be as specified on figure 3. 3.3 Electrical performance characteristics and postirradiation parameter limits. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table IA and shall apply over the full case operating temperature range. 3.4 Electrical test requirements. The electrical test requirements shall be the subgroups specified in table IIA. The electrical tests for each subgroup are defined in Table I. 3.5 Marking. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. Marking for device class M shall be in accordance with MIL-PRF-38535, appendix A. 3.5.1 Certification/compliance mark. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 4 3.6 Certificate of compliance. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.2 herein). The certificate of compliance submitted to DLA Land and Maritime-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MILPRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein. 3.7 Certificate of conformance. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing. 3.8 Notification of change for device class M. For device class M, notification to DLA Land and Maritime-VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change that affects this drawing. 3.9 Verification and review for device class M. For device class M, DLA Land and Maritime, DLA Land and Maritime's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer. 3.10 Microcircuit group assignment for device class M. Device class M devices covered by this drawing shall be in microcircuit group number 41 (see MIL-PRF-38535, appendix A). STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 5 Table I. Electrical performance characteristics. Test High level output voltage Low level output voltage 1/ Input leakage current Output leakage current 2/ Operation current (standby) 3/ Operation current (active) 3/ Standby current (standby) 3/ Standby current (active) 3/ RAS-only refresh current (standby) 3/ RAS-only refresh current (active) 3/ Page mode current (standby) 3/ Page mode current (active) 3/ CAS-before-RAS current (standby) 3/ CAS-before-RAS current (active) 3/ │ │Symbol/ │alten. │symbol │ │ │VOH │ │ │VOL │ │ │IL │ │ │ │IO │ │ │ICC1 │ │ │ │ │ICC1A │ │ │ │ICC2 │ │ │ │ICC2A │ │ │ │ICC3 │ │ │ │ICC3A │ │ │ │ICC4 │ │ │ │ICC4A │ │ │ │ICC5 │ │ │ │ICC5A │ │ │ │ Conditions │ -55°C ≤ TC ≤ +125°C │ 4.5 V ≤ VCC ≤ 5.5 V │ unless otherwise specified │ │ IOH = -5 mA │ │ │ IOL = 4.2 mA │ │ │ VI = 0 to 5.8 V, VCC = 5 V │ All other pins open │ │ │ VO = 0 to VCC, VCC = 5.5 V │ │ │ tc(RW) = minimum │ tc(SC) = minimum │ │ │ │ │ │ │ │ All clocks = VCC │ tc(SC) = minimum │ │ │ │ │ │ │ tc(RW) = minimum │ tc(SC) = minimum │ │ │ │ │ │ │ tc(P) = minimum │ tc(SC) = minimum │ │ │ tC(P) = minimum │ tC(SC) = minimum │ │ │ tc(RW) = minimum │ tc(SC) = minimum │ │ │ │ │ │ │Group A │subgroups │ │ │ │ 1,2,3 │ │ │ 1,2,3 │ │ │ 1,2,3 │ │ │ │ 1,2,3 │ │ │ 1,2,3 │ │ │ │ │ 1,2,3 │ │ │ │ 1,2,3 │ │ │ │ 1,2,3 │ │ │ │ 1,2,3 │ │ │ │ 1,2,3 │ │ │ │ 1,2,3 │ │ │ │ 1,2,3 │ │ │ │ 1,2,3 │ │ │ │ 1,2,3 │ │ │ │Device │ type │ │ │ │ All │ │ │ All │ │ │ 01,02 │ │ 03,04 │ │ All │ │ │ 01,03 │ │ 02,04 │ │ │ 01,03 │ │ 02,04 │ │ All │ │ │ │ 01,03 │ │ 02,04 │ │ 01,03 │ │ 02,04 │ │ 01,03 │ │ 02,04 │ │ 01,03 │ │ 02,04 │ │ 01,03 │ │ 02,04 │ │ 01,03 │ │ 02,04 │ │ 01,03 │ │ 02,04 │ │ Limits │ │ │ Min │ Max │ │ │ │ │ 2.4 │ │ │ │ │ │ │ 0.4 │ │ │ │ │ │ ±1.0 │ │ │ │ ±10 │ │ │ │ ±10 │ │ │ │ │ │ 90 │ │ │ │ 100 │ │ │ │ │ │ 110 │ │ │ │ 120 │ │ │ │ 15 │ │ │ │ │ │ │ │ 50 │ │ │ │ 55 │ │ │ │ 90 │ │ │ │ 100 │ │ │ │ 120 │ │ │ │ 125 │ │ │ │ 60 │ │ │ │ 65 │ │ │ │ 90 │ │ │ │ 100 │ │ │ │ 80 │ │ │ │ 90 │ │ │ │ 110 │ │ │ │ 115 │ │ Unit │ │ │ │ │V │ │ │V │ │ │ μA │ │ │ │ μA │ │ │ mA │ │ │ │ │ mA │ │ │ │ mA │ │ │ │ mA │ │ │ │ mA │ │ │ │ mA │ │ │ │ mA │ │ │ │ mA │ │ │ │ mA │ │ │ │ mA │ │ See footnotes at end of table. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 6 Table I. Electrical performance characteristics - continued. Test Data transfer current (standby) 3/ Data transfer current (active) 3/ Input capacitance, address inputs Input capacitance, strobe inputs Input capacitance, write enable input Input capacitance, serial clock input Input capacitance, special function Input capacitance, serial enable Input capacitance, transfer register input Output capacitance, SDQ and DQ Output capacitance, QSF Functional tests Access time from CAS Access time from column address Access time from CAS high │ │Symbol/ │alten. │symbol │ │ │ICC6 │ │ │ │ICC6A │ │ │ │CI(A) │ │ │CI(RC) │ │ │CI(W) │ │ │CI(SC) │ │ │CI(DSF) │ │ │CI(SE) │ │ │CI(TRG) │ │ │CO(O) │ │ │CO(QSF) │ │ │ │ │ │ta(C) │ │tCAL │ │ │ta(CA) │ │tAA │ │ │ta(CP) │ │ tCPA │ │ │ Conditions │ -55°C ≤ TC ≤ +125°C │ 4.5 V ≤ VCC ≤ 5.5 V │ unless otherwise specified │ │ tc(RW) = minimum │ tc(SC) = minimum │ │ │ │ │ │ │ See 4.4.1e │ f = 1 MHz, VIN = 0 V │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ See 4.4.1e │ f = 1 MHz, VIN = 0 V │ │ │ │ │ See 4.4.1c │ │ │ (See figures 4 and 5) │ td(RLCL) = max, CL = 80 pF │ │ │ │ (See figures 4 and 5) │ td(RLCL) = max, CL = 80 pF │ │ │ │ (See figures 4 and 5) │ td(RLCL) = min, CL = 80 pF │ │ │ │Group A │subgroups │ │ │ │ 1,2,3 │ │ │ │ 1,2,3 │ │ │ │ 4 │ │ │ 4 │ │ │ 4 │ │ │ 4 │ │ │ 4 │ │ │ 4 │ │ │ 4 │ │ │ 4 │ │ │ 4 │ │ │ 7,8A,8B │ │ │ 9,10,11 │ │ │ │ │ 9,10,11 │ │ │ │ │ 9,10,11 │ │ │ │ │Device │ type │ │ │ │ 01,03 │ │ 02,04 │ │ 01,03 │ │ 02,04 │ │ All │ │ │ All │ │ │ All │ │ │ All │ │ │ All │ │ │ All │ │ │ All │ │ │ All │ │ │ All │ │ │ All │ │ │ 01,03 │ │ 02,04 │ │ │ 01,03 │ │ 02,04 │ │ │ 01,03 │ │ 02,04 │ │ │ Limits │ │ │ Min │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ L │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Max 90 100 125 130 9 10 10 10 10 10 10 11 17 H 30 25 60 50 65 55 │ │ Unit │ │ │ │ │ mA │ │ │ │ mA │ │ │ │ pF │ │ │ pF │ │ │ pF │ │ │ pF │ │ │ pF │ │ │ pF │ │ │ pF │ │ │ pF │ │ │ pF │ │ │V │ │ │ ns │ │ │ │ │ ns │ │ │ │ │ ns │ │ │ See footnotes at end of table. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 7 Table I. Electrical performance characteristics - continued. Test Access time from RAS high Access time of Q from TRG low Access time of SQ from SC high 4/ Access time of SQ from SE low 4/ Access time of QSF from SC low Disable time, random output from CAS high Disable time, random output from TRG high 5/ Disable time, serial output from SE high 5/ Cycle time, read 6/ Cycle time, write Cycle time, readmodify write Cycle time, pagemode read, write │ │Symbol/ │alten. │symbol │ │ │ta(R) │tRAC │ │ │ta(G) │tOE │ │ │ta(SQ) │tSAC │ │ │ta(SE) │ │tSEA │ │ │ │ta(QSF) │ │ │ │tdis(CH) │tOFF │ │ │tdis(G) │tOD │ │ │tdis(SE) │tSEZ │ │ │tc(rd) │tRC │ │ │tc(W) │tRC │ │ │tc(rdW) │tRWC │ │ │ │ │tc(P) │tPC │ │ │ Conditions │ -55°C ≤ TC ≤ +125°C │ 4.5 V ≤ VCC ≤ 5.5 V │ unless otherwise specified │ │(See figures 4 and 5) │ td(RLCL) = min, CL = 80 pF │ │ │ (See figures 4 and 5) │ CL = 80 pF │ │ │ (See figures 4 and 5) │ CL = 30 pF │ │ │ (See figures 4 and 5) │ CL = 30 pF │ │ │ │ │ (See figures 4 and 5) │ CL = 30 pF │ │ │ (See figures 4 and 5) │ CL = 80 pF │ │ │ (See figures 4 and 5) │ CL = 80 pF │ │ │ (See figures 4 and 5) │ CL = 30 pF │ │ │ (See figures 4 and 5) │ CL = 80 pF │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │Group A │subgroups │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ │ │ 9,10,11 │ │ │ │Device │ type │ │ │ │ 01,03 │ │ 02,04 │ │ 01,03 │ │ 02,04 │ │ 01,03 │ │ 02,04 │ │ 01 │ │ 03 │ │ 02,04 │ │ 01,02 │ │ │ │ 01 │ │ 02-04 │ │ 01 │ │ 02-04 │ │ All │ │ │ │ 01,03 │ │ 02,04 │ │ 01,03 │ │ 02,04 │ │ 01 │ │ 03 │ │ 02,04 │ │ 01 │ │ 02 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Limits │ Unit │ │ Min │ Max │ │ │ │ │ │ 120 │ ns │ │ │ 100 │ │ │ │ 30 │ ns │ │ │ 25 │ │ │ │ 35 │ ns │ │ │ 30 │ │ │ │ 30 │ ns │ │ │ 25 │ │ │ │ 20 │ │ │ │ 60 │ ns │ │ │ │ │ │ 0 │ 30 │ ns │ │ 0 │ 20 │ │ │ 0 │ 30 │ ns │ │ 0 │ 20 │ │ │ 0 │ 20 │ ns │ │ │ │ │ │ 220 │ │ ns │ │ 190 │ │ │ │ 220 │ │ ns │ │ 190 │ │ │ │ 295 │ │ ns │ │ 290 │ │ │ │ 250 │ │ │ │ 70 │ │ ns │ │ 60 │ │ See footnotes at end of table. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 8 Table I. Electrical performance characteristics - continued. Test Cycle time, page-mode read-modify-write Cycle time, transfer read Cycle time, transfer write Cycle time, serial clock 7/ Pulse duration, CAS high Pulse duration, CAS low 8/ 9/ Pulse duration, RAS high Pulse duration, RAS low 9/ 10/ Pulse duration, W low Pulse duration, TRG low Pulse duration, SC high Pulse duration, SC low │ │Symbol/ │alten. │symbol │ │ │tc(RDWP) │tPRWC │ │ │ │ │ │ │tc(TRD) │tRC │ │ │tc(TW) │tRC │ │ │tc(SC) │ │ │ │tw(CH) │tCP │ │ │tw(CL) │tCAS │ │ │tw(RH) │tRP │ │ │tw(RL) │tRAS │ │ │tw(WL) │tWP │ │ │tw(TRG) │ │ │ │tw(SCH) │tSAS │ │ │tw(SCL) │tSP │ │ │ Conditions │ -55°C ≤ TC ≤ +125°C │ 4.5 V ≤ VCC ≤ 5.5 V │ unless otherwise specified │ │ (See figures 4 and 5) │ CL = 80 pF │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │Group A │subgroups │ │ │ │ 9,10,11 │ │ │ │ │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │Device │ type │ │ │ │ 01 │ │ 02 │ │ 03 │ │ 04 │ │ 01,03 │ │ 02,04 │ │ 01,03 │ │ 02,04 │ │ 01,03 │ │ 02,04 │ │ 01,03 │ │ 02,04 │ │ 01,03 │ │ 02,04 │ │ 01,03 │ │ 02,04 │ │ 01,03 │ │ 02,04 │ │ All │ │ │ │ 01,03 │ │ 02,04 │ │ 01,03 │ │ 02,04 │ │ 01,03 │ │ 02,04 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Limits │ Min │ Max │ │ 130 │ │ 110 │ │ 125 │ │ 105 │ │ 220 │ │ 190 │ │ 220 │ │ 190 │ │ 35 │ │ 30 │ │ 30 │ │ 20 │ │ 30 │75,000 │ 25 │75,000 │ 90 │ │ 80 │ │ 120 │75,000 │ 100 │75,000 │ 25 │ │ │ │ 30 │ │ 25 │ │ 12 │ │ 10 │ │ 12 │ │ 10 │ │ │ Unit │ │ │ │ │ ns │ │ │ │ │ │ │ │ ns │ │ │ │ ns │ │ │ │ ns │ │ │ │ ns │ │ │ │ ns │ │ │ │ ns │ │ │ │ ns │ │ │ │ ns │ │ │ │ ns │ │ │ │ ns │ │ │ │ ns │ │ See footnotes at end of table. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 9 Table I. Electrical performance characteristics - continued. │ │Symbol/ │alten. │symbol │ │ Setup time, │tsu(CA) column address │tASC │ │ Setup time, DSF before CAS │tsu(SFC) low │ │ Setup time, row │tsu(RA) address │tASR │ │ Setup time, W │tsu(WMR) before RAS low │tWSR │ │ Setup time, DQ │tsu(DQR) before RAS low │tTMS │ │ Setup time, TRG │tsu(TRG) before RAS low │tTLS │ │ Setup time, SE before RAS │tsu(SE) low 9/ 11/ │tESR │ │ Setup time, DSF before RAS │tsu(SFR) low │ │ Setup time, data before │tsu(DCL) CAS low 12/ │tDS │ │ Setup time, data │tsu(DWL) before W low 12/ │tDS │ │ Setup time, read │tsu(rd) command │tRCS │ │ Setup time, early write │tsu(WCL) command before CAS low │tWCS │ │ Setup time, write │tsu(WCH) before CAS high │tCWL │ │ Setup time, write │tsu(WRH) before RAS high │tRWL │ Test │ │ Conditions │ -55°C ≤ TC ≤ +125°C │ 4.5 V ≤ VCC ≤ 5.5 V │ unless otherwise specified │ │ (See figures 4 and 5) │ CL = 80 pF │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │Group A │subgroups │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │Device │ type │ │ │ │ All │ │ │ │ All │ │ │ All │ │ │ │ All │ │ │ │ All │ │ │ │ All │ │ │ │ All │ │ │ │ All │ │ │ All │ │ │ │ All │ │ │ │ All │ │ │ │ All │ │ │ │ 01,03 │ │ 02,04 │ │ 01,03 │ │ 02,04 │ │ │ Limits │ Unit │ │ │ │ Min │ Max │ │ │ │ │ │ │ │ 0 │ │ ns │ │ │ │ │ │ │ │ │ │ 0 │ │ ns │ │ │ │ │ │ │ 0 │ │ ns │ │ │ │ │ │ │ │ │ │ 0 │ │ ns │ │ │ │ │ │ │ │ │ │ 0 │ │ ns │ │ │ │ │ │ │ │ │ │ 0 │ │ ns │ │ │ │ │ │ │ │ │ │ 0 │ │ ns │ │ │ │ │ │ │ │ │ │ 0 │ │ ns │ │ │ │ │ │ │ 0 │ │ ns │ │ │ │ │ │ │ │ │ │ 0 │ │ ns │ │ │ │ │ │ │ │ │ │ 5 │ │ ns │ │ │ │ │ │ │ │ │ │ 0 │ │ ns │ │ │ │ │ │ │ │ │ │ 30 │ │ ns │ │ │ │ 25 │ │ │ │ │ │ 30 │ │ ns │ │ │ │ 25 │ │ See footnotes at end of table. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 10 Table I. Electrical performance characteristics - continued. Test Setup time, SD before SC high Hold time, column address after CAS low Hold time, DSF after CAS low Hold time, row address address after RAS low Hold time, TRG after RAS low Hold time, SE after RAS low 9/ 11/ Hold time, write mask transfer enable after RAS low Hold time, DQ after RAS low (write mask operation) Hold time, DSF after RAS low Hold time, column address after RAS low 13/ Hold time, data after CAS low Hold time, data after RAS low 13/ Hold time, data after W low │ │Symbol/ │alten. │symbol │ │ │tsu(SDS) │tSDS │ │ │th(CLCA) │tCAH │ │ │th(SFC) │ │ │th(RA) │tRAH │ │ │th(TRG) │tTLH │ │ │th(SE) │tREH │ │ │th(RWM) │tRWH │ │ │th(RDQ) │tMH │ │ │th(SFR) │ │ │th(RLCA) │tAR │ │ │th(CLD) │tDH │ │ │th(RLD) │tDHR │ │ │th(WLD) │tDH │ │ │ Conditions │ -55°C ≤ TC ≤ +125°C │ 4.5 V ≤ VCC ≤ 5.5 V │ unless otherwise specified │ │ (See figures 4 and 5) │ CL = 80 pF │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │Group A │subgroups │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │Device │ type │ │ │ │ 01,02 │ │ 03,04 │ │ 01 │ │ 02-04 │ │ All │ │ │ All │ │ │ │ All │ │ │ │ All │ │ │ │ All │ │ │ │ All │ │ │ │ All │ │ │ 01-03 │ │ 04 │ │ 01,03 │ │ 02,04 │ │ 01-03 │ │ 04 │ │ 01,03 │ │ 02,04 │ │ │ Limits │ Unit │ │ │ │ Min │ Max │ │ │ │ │ │ │ │ 3 │ │ ns │ │ │ │ 0 │ │ │ │ │ │ 25 │ │ ns │ │ │ │ 20 │ │ │ │ │ │ 20 │ │ ns │ │ │ │ │ │ │ 15 │ │ ns │ │ │ │ │ │ │ │ │ │ 15 │ │ ns │ │ │ │ │ │ │ │ │ │ 15 │ │ ns │ │ │ │ │ │ │ │ │ │ 15 │ │ ns │ │ │ │ │ │ │ │ │ │ 15 │ │ ns │ │ │ │ │ │ │ │ │ │ 15 │ │ ns │ │ │ │ │ │ │ 50 │ │ ns │ │ │ │ 45 │ │ │ │ │ │ 25 │ │ ns │ │ │ │ 20 │ │ │ │ │ │ 50 │ │ ns │ │ │ │ 45 │ │ │ │ │ │ 25 │ │ ns │ │ │ │ 20 │ │ See footnotes at end of table. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 11 Table I. Electrical performance characteristics - continued. Test Hold time, TRG after W low (output enable 9/ controlled write) Hold time, read after CAS 14/ Hold time, read after RAS 14/ Hold time, write after CAS low Hold time, write after RAS low 13/ Hold time, SD after SC high Hold time, SQ after SC high 9/ Delay time, RAS low to CAS high Delay time, CAS high to RAS low Delay time, CAS low to RAS high Delay time, CAS low to W low 15/ 16/ │ │Symbol/ │alten. │symbol │ │ │th(WLG) │tOEH │ │ │th(CHrd) │tRCH │ │ │th(RHrd) │tRRH │ │ │th(CLW) │tWCH │ │ │th(RLW) │tWCR │ │ │th(SDS) │tSDH │ │ │th(SHSQ) │tSOH │ │ │td(RLCH) │tCSH │ │ │td(CHRL) │tCRP │ │ │ │ │td(CLRH) │tRSH │ │ │ │ │td(CLWL) │ │tCWD │ │ │ │ │ │ Conditions │ -55°C ≤ TC ≤ +125°C │ 4.5 V ≤ VCC ≤ 5.5 V │ unless otherwise specified │ │ (See figures 4 and 5) │ CL = 80 pF │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │Group A │subgroups │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ │ │ 9,10,11 │ │ │ │ │ │ 9,10,11 │ │ │ │ │ │ │ │Device │ type │ │ │ │ 01,03 │ │ 02,04 │ │ All │ │ │ │ All │ │ │ │ 01,03 │ │ 02,04 │ │ 01,03 │ │ 02,04 │ │ 01,02 │ │ 03,04 │ │ All │ │ │ │ 01,03 │ │ 02,04 │ │ 01 │ │ 02 │ │ 03,04 │ │ 01 │ │ 02,03 │ │ 04 │ │ 01 │ │ 02 │ │ 03 │ │ 04 │ │ │ Limits │ Unit │ │ │ │ Min │ Max │ │ │ │ │ │ │ │ 30 │ │ ns │ │ │ │ 25 │ │ │ │ │ │ 0 │ │ ns │ │ │ │ │ │ │ │ │ │ 10 │ │ ns │ │ │ │ │ │ │ │ │ │ 35 │ │ ns │ │ │ │ 30 │ │ │ │ │ │ 55 │ │ ns │ │ │ │ 50 │ │ │ │ │ │ 20 │ │ ns │ │ │ │ 5 │ │ │ │ │ │ 5 │ │ ns │ │ │ │ │ │ │ │ │ │ 120 │ │ ns │ │ │ │ 100 │ │ │ │ │ │ 10 │ │ ns │ │ │ │ 5 │ │ │ │ │ │ 0 │ │ │ │ │ │ 35 │ │ ns │ │ │ │ 30 │ │ │ │ │ │ 25 │ │ │ │ │ │ 75 │ │ ns │ │ │ │ 60 │ │ │ │ │ │ 65 │ │ │ │ │ │ 55 │ │ See footnotes at end of table. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 12 Table I. Electrical performance characteristics - continued. │ │Symbol/ │alten. │symbol │ │ Delay time, RAS low to │td(RLCL) CAS low 17/ │tRCD │ │ Delay time, column │td(CARH) address to RAS high │tRAL │ │ Delay time, RAS low to W │td(RLWL) low 15/ │tRWD │ │ │ │ Delay time, column address │td(CAWL) to W low 9/ 15/ │tAWD │ │ Delay time, RAS low to CAS │td(RLCH)R high 9/ 18/ │tCHR │ │ Delay time, CAS low │td(CLRL)R to RAS low 18/ │tCSR │ │ Delay time, RAS high to │td(RHCL)R CAS low 9/ 18/ │tRPC │ │ Delay time, CAS │td(CLGH) low to TRG high │tCTH │ │ Delay time, TRG high │td(GHD) before data applied at │ DQ 15/ │tOD │ │ Delay time, RAS low to │td(RLTH) TRG high 9/ │tRTH │ │ Delay time, RAS low to │td(RLSH) first SC high after │ TRG high 9/ 19/ │tRSD │ │ Delay time, CAS low to │td(CLSH) first SC high after │ TRG high 9/ 19/ │tCSD │ Test │ │ Conditions │ -55°C ≤ TC ≤ +125°C │ 4.5 V ≤ VCC ≤ 5.5 V │ unless otherwise specified │ │ (See figures 4 and 5) │ CL = 80 pF │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │Group A │subgroups │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ │ 9,10,11 │ │ │ │ │Device │ type │ │ │ │ 01,03 │ │ 02,04 │ │ 01,03 │ │ 02,04 │ │ 01 │ │ 03 │ │ 02,04 │ │ 01,03 │ │ 02,04 │ │ 01,02 │ │ 03,04 │ │ All │ │ │ │ All │ │ │ │ 01,03 │ │ 02,04 │ │ 01,03 │ │ │ 02,04 │ │ 01,03 │ │ 02,04 │ │ 01,03 │ │ 02,04 │ │ │ 01,03 │ │ 02,04 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Limits │ Unit │ │ Min │ Max │ │ │ │ │ 25 │ 90 │ ns │ │ 25 │ 75 │ │ │ 60 │ │ ns │ │ 50 │ │ │ │ 160 │ │ ns │ │ 155 │ │ │ │ 130 │ │ │ │ 100 │ │ ns │ │ 85 │ │ │ │ 30 │ │ ns │ │ 25 │ │ │ │ 10 │ │ ns │ │ │ │ │ │ 10 │ │ ns │ │ │ │ │ │ 30 │ │ ns │ │ 25 │ │ │ │ 30 │ │ ns │ │ │ │ 25 │ │ │ │ 95 │ │ ns │ │ 90 │ │ │ │ 140 │ │ ns │ │ 130 │ │ │ │ │ │ 45 │ │ ns │ │ 40 │ │ │ │ See footnotes at end of table. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 13 Table I. Electrical performance characteristics - continued. │ │Symbol/ │alten. │symbol │ │ Delay time, SC high to TRG │td(SCTR) high 9/ 19/ 20/ │tTTSC │ │ Delay time, TRG high to │td(THRH) RAS high 19/ │tTRL │ │ Delay time, SC high to RAS │td(SCRL) low 9/ 11/ 21/ │tSRS │ │ │ │ Delay time, SC high to SE │td(SCSE) high in serial 9/ 22/ │tSWH input mode │ │ Delay time, RAS high to SC │td(RHSC) high 9/ 11/ │tSRD │ │ Delay time, TRG │td(THRL) high to RAS low 23/ │ │ │ Delay time, TRG high to SC │td(THSC) high 23/ │tTSO │ │ Delay time, SE low to SC │td(SESC) high 9/ 22/ │tSWS │ │ Delay time, RAS high to │td(RHMS) last (most significant) │ rising edge of SC before │ boundary switch (split │ read transfer cycles) │ │ │ │ Delay time, first (TAP) │td(TPRL) rising edge of SC after │ boundary switch to RAS │ low (split read transfer │ cycles) │ │ Refresh time │trf(MA) interval, memory │tREF │ Test │ │ Conditions │ -55°C ≤ TC ≤ +125°C │ 4.5 V ≤ VCC ≤ 5.5 V │ unless otherwise specified │ │ (See figures 4 and 5) │ CL = 80 pF │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │Group A │subgroups │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ 9,10,11 │ │ │ │ │ │ │ │ 9,10,11 │ │ │ │ │ │ 9,10,11 │ │ │ │Device │ type │ │ │ │ 01,03 │ │ 02,04 │ │ All │ │ │ │ 01,03 │ │ 02 │ │ 04 │ │ All │ │ │ │ 01,03 │ │ 02,04 │ │ All │ │ │ │ 01,03 │ │ 02,04 │ │ 01,03 │ │ 02,04 │ │ 01 │ │ 02 │ │ 03 │ │ 04 │ │ 01 │ │ │ 02 │ │ │ All │ │ │ │ │ Limits │ Unit │ │ │ │ Min │ Max │ │ │ │ │ │ │ │ 20 │ │ ns │ │ │ │ 15 │ │ │ │ │ │ -10 │ │ ns │ │ │ │ │ │ │ │ │ │ 20 │ │ ns │ │ │ │ 15 │ │ │ │ │ │ 10 │ │ │ │ │ │ 20 │ │ ns │ │ │ │ │ │ │ │ │ │ 30 │ │ ns │ │ │ │ 25 │ │ │ │ │ │tw(RH) │ │ ns │ │ │ │ │ │ │ │ │ │ 40 │ │ ns │ │ │ │ 35 │ │ │ │ │ │ 15 │ │ ns │ │ │ │ 10 │ │ │ │ │ │ 30 │ │ ns │ │ │ │ 25 │ │ │ │ │ │ 20 │ │ │ │ │ │ 15 │ │ │ │ │ │ 25 │ │ ns │ │ │ │ │ │ │ 20 │ │ │ │ │ │ │ │ │ │ 8 │ ms │ │ │ │ │ │ See footnotes at end of table. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 14 Table I. Electrical performance characteristics - continued. 1/ These devices exhibit simultaneous switching noise. This phenomenon exhibits itself upon the DQ pins when the SDQ pins are switched and upon the SDQ pins when DQ pins are switched. This may cause the VOL and VOH to exceed the limit for a short period of time, depending upon output loading and temperature. Care should be taken to provide proper termination, decoupling, and layout of the device to minimize simultaneous switching effects. 2/ 3/ 8/ SE is disabled for SDQ output leakage tests. ICC (standby) versus ICCA (active) denotes the following: ICC (standby): SAM port is inactive (standby) and the DRAM port is active (except for ICC2). ICCA (active): SAM port is active and the DRAM port is active (except for ICC2A). ICC is measured with no load on DQ or SDQ pins. SAM output timing may be measured with a load equivalent to 2 TTL gates plus 30 pF. Output reference levels: VOH = 2.0 V, VOL = 0.8 V. Disable times are specified when the output is no longer driven. All cycle times assume tt = 5 ns. When the odd tap is used (tap address can be 0-511, and odd taps are 1,3,5, etc.), the cycle time for SC in serial data out cycle needs to be 70 ns minimum. In a read-modify-write cycle, td(CLWL) and tsu(WCH) must be observed. Depending on the user's transition times, 9/ 10/ this may require additional CAS low time, tw(CL). If not tested, shall be guaranteed to the limits in table IA. In a read-modify-write cycle, td(RLWL) and tsu(WRH) must be observed. Depending on the user's transition times, 11/ this may require additional RAS low time, tw(RL). Register to memory (write) transfer cycles only. 4/ 5/ 6/ 7/ 12/ 13/ 14/ 15/ These parameters are referenced to CAS leading edge in early-write cycles and ME / NE leading edge in late write or read-write cycles. The minimum value is measured when td(RLCL) is set to td(RLCL) minimum as a reference. Either th(RHrd) or th(CHrd) must be satisfied for a read cycle. Read-modify-write operation only. 16/ TRG must disable the output buffers prior to applying data to the DQ pins. 17/ Maximum value specified only to guarantee RAS access time. 18/ 19/ 20/ CAS -before- RAS refresh operation only. Memory to register (read) transfer cycles only. In a transfer read cycle, the state of SC when TRG rises is a don't care condition. However, to guarantee proper sequencing of the internal clock circuitry, there can be no positive transitions of SC for at least 10 ns prior to when TRG goes high. 21/ In a transfer write cycle, the state of SC when RAS falls is a don't care condition. However, to guarantee proper 22/ 23/ sequencing of the internal clock circuitry, there can be no positive transitions of SC for at least 10 ns prior to when RAS goes low. Serial data-in cycles only. Memory to register (read) and register to memory (write) transfer cycles only. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 15 TABLE IIA. Electrical test requirements. 1/ 2/ 3/ 4/ 5/ 6/ 7/ Line no. Test requirements Subgroups (in accordance with MIL-STD-883, TM 5005, table I) Device class M Subgroups (in accordance with MIL-PRF-38535, table III) Device class Q Device class V 1, 7, 9 1, 7, 9 Not required Required 1 Interim electrical parameters (see 4.2) 2 Static burn-in I and II (method 1015) 3 Same as line 1 4 Dynamic burn-in (method 1015) 5 Same as line 1 6 Final electrical parameters 1*, 2, 3, 7*, 8A, 8B, 9, 10, 11 1*, 2, 3, 7*, 8A, 8B, 9, 10, 11 1*, 2, 3, 7*, 8A, 8B, 9, 10, 11 7 Group A test requirements 1, 2, 3, 4**, 7, 8A, 8B, 9, 10, 11 1, 2, 3, 4**, 7, 8A, 8B, 9, 10, 11 1, 2, 3, 4**, 7, 8A, 8B, 9, 10, 11 8 Group C end-point electrical parameters 2, 3, 7, 8A, 8B 2, 3, 7, 8A, 8B ∆ 1, 2, 3, 7, 8A, 8B, 9, 10, 11 ∆ 9 Group D end-point electrical parameters 2, 3, 8A, 8B 2, 3, 8A, 8B 2, 3, 8A, 8B 10 Group E end-point electrical parameters (see 4.4) 1, 7, 9 1, 7, 9 1, 7, 9 Not required 1*, 7* ∆ Required Required Required 1*, 7* ∆ 1/ Blank spaces indicate tests are not applicable. 2/ Any or all subgroups may be combined when using high-speed testers. 3/ Subgroups 7 and 8 functional tests shall verify the functionality for unprogrammed devices or that the altered item drawing pattern exists for programmed devices. 4/ * indicates PDA applies to subgroup 1 and 7. 5/ ** see 4.4.1e. 6/ ∆ indicates delta limit (see table IIB) shall be required where specified, and the delta values shall be computed with reference to the previous interim electrical parameters (see line 1). 7/ See 4.4.1d. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 16 Case T - "J" lead chip carrier Ltr Inches Millimeters A .128 .148 3.25 3.76 A1 .055 .075 1.40 1.91 b .015 .022 0.38 0.56 b1 .015 .019 0.38 0.48 c .004 .009 0.10 0.23 c1 .004 .006 0.10 0.15 D .710 .730 18.03 18.54 1.27 1.27 E e .435 .050 BSC .445 11.05 11.30 E1 .405 .415 10.29 10.54 E2 .370 BSC m .0002 .0015 .030 .040 N 9.40 9.40 0.005 0.038 0.76 1.01 28 R Inches .004 .007 .010 .020 .025 .150 .200 mm 0.10 0.18 0.25 0.51 0.64 3.81 5.08 FIGURE 1. Case outlines. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 17 Case X Inches Symbol Min Millimeters Max A Min Max .175 4.45 b .015 .021 0.38 0.53 b2 .045 .065 1.14 1.65 c .008 .015 0.20 0.38 D 1.380 1.430 35.05 36.32 E .380 .410 9.65 10.41 eA .385 .420 9.79 10.67 e .100 Nom. 2.54 L .125 .175 3.18 4.45 Q .015 .070 0.38 1.78 S .035 .065 0.89 1.65 NOTE: Configurations A and C as specified in MIL-STD-1835 may be used. FIGURE 1. Case outlines – Continued. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 18 Case Y Inches Symbol Min Millimeters Max Min Max A .080 .101 2.032 2.565 A1 .120 .170 3.048 4.318 b .016 .023 0.406 0.584 c .006 .013 0.152 0.330 D .720 .740 18.288 18.796 D1 .640 .660 16.256 16.764 e .045 .055 1.143 1.397 eA .370 Ref. 9.398 E .408 .422 10.636 10.719 L .059 .077 1.498 1.778 S .030 .050 0.762 1.270 R .025 .035 0.635 0.889 FIGURE 1. Case outlines - Continued. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 19 Case Z 28 lead rectangular leadless chip carrier Inches Symbol Millimeters Inches Symbol Millimeters Min Max Min Max A .080 .100 2.03 2.54 e .050 BSC 1.27 b .022 .028 0.56 0.71 h .012 REF 0.30 b1 .006 .022 0.15 0.56 L .070 .080 1.78 2.03 b2 .040 L1 .090 .110 2.29 2.79 D .700 .740 17.78 18.80 L2 .003 .015 0.08 0.38 E .392 .408 9.96 10.36 N 1.02 Min Max Min Max 28 TERMINALS NOTES: 1. All dimensions are in inches. All dimensioning and tolerance conform to ANSI Y14.5M-1982. 2. Unless otherwise specified, a minimum clearance of .015 inch (0.38 mm) shall be maintained between all metallized features. 3. Index area: Details of pin 1 identifier are optional, but must be located within the zone indicated. 4. The cover shall not extend beyond the edges of the body. 5. Dimensions b1 and c1 apply to the base metal only. Dimension m applies to the plating/coating thickness. 6. N indicates the number of terminals. 7. A gauge makers tolerance is applied. FIGURE 1. Case outlines - continued. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 20 Case M │ │ │Symbol │ │ │ │ A1 │ │ A2 │ │ b │ │ c │ │ D │ │ D1 │ │ e │ │ eA │ │ E │ │ L │ │ S │ Millimeters Min │ Max │ 0.38 │ 1.27 11.18 │ 11.81 0.41 │ 0.58 0.20 │ 0.39 36.45 │ 37.21 32.77 │ 33.27 2.54 BSC 2.16 │ 2.92 2.54 │ 3.30 3.18 │ 5.08 0.88 │ 1.65 │ Inches │ Min │ Max │ │ │ .015 │ .050 │ .440 │ .465 │ .016 │ .023 │ .008 │ .015 │ 1.435 │ 1.465 │ 1.290 │ 1.310 │ .100 BSC │ .085 │ .115 │ .100 │ .130 │ .125 │ .200 │ .035 │ .065 │ │ │ │ │ │ │ │ │ │ │ │ │ │ Note: The U.S. Government preferred system of measurement is the metric SI system. However, since this item was originally designed using inch-pound units of measurement, in the event of conflict between the metric and inch-pound units, the inch-pound units shall take precedence. FIGURE 1. Case outlines - continued. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 21 Device types 01, 02, 03, 04 Case outlines Terminal number M T, U, X, Y, Z Terminal symbol 1 SC DSF 2 SDQ0 DQ2 3 SDQ1 DQ3 4 TRG SE 5 DQ0 SDQ2 6 DQ1 SDQ3 7 W VSS 8 GND SC 9 RAS SDQ0 10 A8 SDQ1 11 A6 TRG 12 A5 DQ0 13 A4 DQ1 14 VCC W 15 A7 NC/GND 16 A3 RAS 17 A2 A8 18 A1 A6 19 A0 A5 20 QSF A4 21 CAS VCC 22 DSF A7 23 DQ2 A3 24 DQ3 A2 25 SE A1 26 SDQ2 A0 27 SDQ3 QSF 28 VSS CAS FIGURE 2. Terminal connections. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 22 T y p e RAS fall CAS TRG * Address CAS fall DSF W SE DSF DQ0 - DQ3 Function RAS CAS RAS ** CAS W R L X X X X X X X X X C _A _S _ - before - R _A _S _ refresh T H L L X L X Row Addr Tap Point X X Register to memory transfer (Transfer write) T H L L H X X Row Addr Tap Point X X Alternate transfer write (Independent of S _E _) T H L L L H X Refresh Addr Tap Point X X Serial write-mode enable (Pseudo-transfer write) T H L H L X X Row Addr Tap Point X X Memory to register transfer (Transfer read) T H L H H X X Row Addr Tap Point X X Split register transfer Read (must reload tap) R H H L L X L Row Addr Col Addr Write Mask Valid Data Load and use write mask Write data to dram R H H L L X H Row Addr Col A2-A8 Write Mask Addr Mask Load and use write mask Block write to dram R H H L H X L Row Addr Col Addr X Valid Data Persistent write - per - bit Write data to dram R H H L H X H Row Addr Col A2-A8 X Addr Mask Persistent write - per - bit Block write to dram R H H H L X L Row Addr Col Addr X Valid Data Normal dram read/write (Nonmasked) R H H H L X H Row Addr Col A2-A8 X Addr Mask Block write to dram (Nonmasked) R H H H H X L Refresh Addr X X Write Mask Load write mask R H H H H X H Refresh Addr X X Color Mask Load color register R = Random access operation T = Transfer operation X = Don't care NOTES: * Addr mask = 1 write to address location enabled. Write mask = 1 write to I/O enabled. In persistent write-per-bit function, W must be high during the refresh cycles. ** DQ0-3 are latched on the later of W or CAS falling edge. FIGURE 3. Truth tables STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 23 Transfer operation logic *** TRG W SE DSF Mode L L L L L L L L H H L X H X X X H L L H Register to memory (write) transfer (serial write mode enable) Alternate register to memory transfer Serial write mode enable (pseudo write transfer) Memory to register (read) transfer Split register read transfer H = High voltage level L = Low voltage level X = Don't care R = Random access operation T = Transfer operation Serial operation logic Last transfer cycle Alternate register to memory Serial write mode enable **** Serial write mode enable **** Memory to register Memory to register SE H L H L H SDQ Input disabled Input enable Input disabled Output enabled HI - Z H = High voltage level L = Low voltage level X = Don't care R = Random access operation T = Transfer operation NOTES: *** Above logic states are assumed valid on the falling edge of RAS . **** Pseudo transfer write. FIGURE 3. Truth tables - continued. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 24 FIGURE 4. Timing waveform diagrams. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 25 NOTE: See "write cycle state" table (of figure 4) for the logic state of "1", "2", "3", "4", and "5". FIGURE 4. Timing waveform diagrams - Continued. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 26 NOTE: See "write cycle state" table (of figure 4) for the logic state of "1", "2", "3", "4", and "5". FIGURE 4. Timing waveform diagrams - Continued. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 27 Write cycle state table │ │ │ Cycle │ │ │ Write mask load/use write DQs to I/Os │ │ │ Write mask load/use block write │ │ │ Use previous write mask, write DQs to I/Os │ │ │ Use previous write mask, block write │ │ │ Load write mask on later of W fall and CAS fall │ │ │ Load color register on later of W fall and CAS fall │ │ │ Write mask disabled, block write to all I/Os │ │ │ Normal early or late write operation │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ State │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ 1 L L H H │ │ │ H │ │ │ │ │ │ │ │ H L L 2 L H L H L H H L │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ 3 L L L L 4 Write mask Write mask Don't care Don't care Don't │ care │ │ Don't H │ │ │ │ │ │ │ │ H H H care Don't care Don't care │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ 5 Valid date ADDR mask Valid data ADDR mask Write │ mask │ │ Color │ │ │ │ │ │ │ │ data ADDR mask Valid data │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ FIGURE 4. Timing waveform diagrams - Continued. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 28 NOTES: 1. See "write cycle state" table (of figure 4) for the logic state of "1", "2", "3", "4", and "5". 2. Same logic as delayed write cycle. FIGURE 4. Timing waveform diagrams - Continued. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 29 NOTES: 1. Access time is ta(CP) or ta(CA) dependent. 2. Output may go from high impedance state to an invalid state prior to the specified access time. 3. A write cycle or a read-modify-write cycle can be mixed with read cycles as long as the write and read-modify-write timing specifications are not violated and the proper polarity of DSF is selected on the falling edges of RAS and CAS to select the desired write mode (normal, block write, etc.). FIGURE 4. Timing waveform diagrams - Continued. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 30 NOTES: 1. Referenced to CAS or W , whichever occurs last. 2. See "write cycle state" table (of figure 4) for the logic state of "1", "2", "3", "4", and "5". 3. A read cycle or a read-modify-write cycle can be intermixed with write cycles, observing read and read-modify-write timing specifications. TRG must remain high throughout the entire page-mode operation if the late write feature is used, to guarantee page-mode cycle time. If the early write cycle timing is used, the state of TRG is don't care after the minimum period th(TRG) from the falling edge of RAS . FIGURE 4. Timing waveform diagrams - Continued. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 31 NOTES: 1. Output may go from the high impedance state to an invalid data state prior to the specified access time. 2. See "write cycle state" table (of figure 4) for the logic state of "1", "2", "3", "4", and "5". 3. A read or a write cycle can be intermixed with read-modify-write cycles as long as the read and write timing specifications are not violated. FIGURE 4. Timing waveform diagrams - Continued. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 32 FIGURE 4. Timing waveform diagrams - Continued. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 33 FIGURE 4. Timing waveform diagrams - Continued. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 34 FIGURE 4. Timing waveform diagrams - Continued. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 35 FIGURE 4. Timing waveform diagrams - Continued. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 36 NOTES: 1. Random-mode Q outputs remain in the high-impedance state for the entire write-mode control. 2. SE must be high as RAS falls in order to perform a write-mode control cycle. FIGURE 4. Timing waveform diagrams - Continued. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 37 NOTES: 1. Random mode Q outputs remain in the high impedance state for the entire data register to memory transfer cycle. This cycle is used to transfer data from the data register to the memory array. Every one of the 512 locations in each data register is written into the corresponding 512 columns of the selected row. Data in the data register may proceed from a serial shift-in or from a parallel load from one of the memory array rows. The above diagram assumes that the device is in the serial write mode (i.e., SD is enabled by a previous write mode control cycle, thus allowing data to be shifted-in). 2. Successive transfer writes can be performed without serial clocks for applications requiring fast memory array clears. FIGURE 4. Timing waveform diagrams - Continued. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 38 Register transfer function table │ │ Function │ │ │ │ Register to memory transfer │ │ │ Register to memory transfer, alternate │ transfer write │ │ │ Pseudo-transfer SDQ control, serial │ input enabled │ │ │ Memory to register transfer │ │ │ Split register transfer │ │ │ │ │ TRG │ │ L │ │ │ L │ │ │ │ L │ │ │ │ L │ │ │ L │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ RAS fall │ W │ DSF (1) │ L │ H │ │ L │ H │ │ │ L │ L │ │ │ H │ L │ │ H │ H │ │ │ SE (3) │ │ L │ │ │ X │ │ │ │ H │ │ │ │ X │ │ │ X │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ FIGURE 4. Timing waveform diagrams - Continued. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 39 FIGURE 4. Timing waveform diagrams - Continued. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 40 NOTE: Random mode (Q outputs) remains in the high-impedance state for the entire memory to data register transfer cycle. The memory to data register transfer cycle is used to load the data registers in parallel from the memory array. The 512 locations in each data register are written into from the 512 corresponding columns of the selected row. The data that is transferred into the data registers may be either shifted out or transferred back into another row. Once data is transferred into the data registers, the SAM is in the serial read mode (i.e., the SQ is enabled), thus allowing data to be shifted out of the registers. Also, the first bit to be read from the data register after TRG has gone high must be activated by a positive transition of SC. FIGURE 4. Timing waveform diagrams - Continued. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 41 NOTE: When the odd tap is used (tap addresses can be 0-511, and odd taps are 1, 3, 5... etc.), the cycle time for SC in the first serial data out cycle needs to be 70 ns minimum. FIGURE 4. Timing waveform diagrams - Continued. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 42 NOTE: For part numbers 01 and 02, QSF pin is open collector which requires 5 V with an 820 Ω pull-up resistor FIGURE 5. Load circuit. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 43 TABLE IIB. Delta limits at +25°C. Parameter 1/ Device types All ICC2 standby ±1.5 mA of specified value in Table I IIL ±1.5 mA of specified value in Table I IO ±1.5 mA of specified value in Table I 1/ The above parameter shall be recorded before and after the required burn-in and life tests to determine the delta. 4. VERIFICATION 4.1 Sampling and inspection. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. For device class M, sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A. 4.2 Screening. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. 4.2.1 Additional criteria for device class M. a. Delete the sequence specified as initial (preburn-in) electrical parameters through interim (postburn-in) electrical parameters of method 5004 and substitute lines 1 through 6 of table IIA herein. b. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015. (1) Dynamic burn-in for device class M (method 1015 of MIL-STD-883, test condition D; for circuit, see 4.2.1b herein). c. Interim and final electrical test parameters shall be as specified in table IIA herein. 4.2.2 Additional criteria for device classes Q and V. a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MILPRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883. b. Interim and final electrical test parameters shall be as specified in table IIA herein. c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in appendix B of MIL-PRF-38535. 4.3 Qualification inspection for device classes Q and V. Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4). STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 44 4.4 Conformance inspection. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF38535 including groups A, B, C, D, and E inspections and as specified herein except where option 2 of MIL-PRF-38535 permits alternate in-line control testing. Quality conformance inspection for device class M shall be in accordance with MIL-STD-883 (see 3.1 herein) and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4). 4.4.1 Group A inspection. a. Tests shall be as specified in table IIA herein. b. Subgroups 5 and 6 of Table I of method 5005 of MIL-STD-883 shall be omitted. c. For device class M, subgroups 7 and 8 tests shall be sufficient to verify the truth table. For device classes Q and V, subgroups 7 and 8 shall include verifying the functionality of the device. d. O/V (latch-up) tests shall be measured only for initial qualification and after any design or process changes which may affect the performance of the device. For device class M, procedures and circuits shall be maintained under document revision level control by the manufacturer and shall be made available to the preparing activity or acquiring activity upon request. For device classes Q and V, the procedures and circuits shall be under the control of the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the preparing activity or acquiring activity upon request. Testing shall be on all pins, on five devices with zero failures. Latch-up test shall be considered destructive. Information contained in JESD78 may be used for reference. e. Subgroup 4 (CIN and COUT measurements) shall be measured only for initial qualification and after any process or design changes which may affect input or output capacitance. Capacitance shall be measured between the designated terminal and GND at a frequency of 1 MHz. Sample size is 15 devices with no failures, and all input and output terminals tested. 4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table IIA herein. 4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883: a. Test condition D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005. b. TA = +125°C, minimum. c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883. 4.4.2.2 Additional criteria for device classes Q and V. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB, in accordance with MILPRF-38535, and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MILSTD-883. 4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table IIA herein. 4.4.4 Group E inspection. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein). RHA levels for device classes Q and V shall be M, D, R, and H and for device class M shall be M and D. a. End-point electrical parameters shall be as specified in table IIA herein. b. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. For device class M, the devices shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535, appendix A for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table IA at TA = +25°C ±5°C, after exposure, to the subgroups specified in table IIA herein. 4.5 Delta measurements for device classes Q and V. Delta measurements, as specified in table IIA, shall be made and recorded before and after the required burn-in screens and steady-state life tests to determine delta compliance. The electrical parameters to be measured, with associated delta limits are listed in table IIB. The device manufacturer may, at his option, either perform delta measurements or within 24 hours after burn-in perform final electrical parameter tests, subgroups 1, 7, and 9. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 45 5. PACKAGING 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M. 6. NOTES 6.1 Intended use. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes. 6.1.1 Replaceability. Microcircuits covered by this drawing will replace the same generic device covered by a contractor prepared specification or drawing. 6.1.2 Substitutability. Device class Q devices will replace device class M devices. 6.2 Configuration control of SMD's. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal. 6.3 Record of users. Military and industrial users should inform DLA Land and Maritime when a system application requires configuration control and which SMD's are applicable to that system. DLA Land and Maritime will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DLA Land and Maritime-VA, telephone (614) 692-8108. 6.4 Comments. Comments on this drawing should be directed to DLA Land and Maritime-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0540. 6.5 Abbreviations, symbols, and definitions. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF38535 and MIL-HDBK-1331, and as follows: CI CO -------------------------------------------GND --------------------------------------------ICC ----------------------------------------------IIL -----------------------------------------------IIH -----------------------------------------------TC ----------------------------------------------TA -----------------------------------------------VCC ----------------------------------------------VIC ---------------------------------------------------------------------O/V ---------------------------------------------O/I------------------------------------------------ Input and bidirectional output, terminal-to-GND capacitance. Ground zero voltage potential. Supply current. Input current low Input current high Case temperature. Ambient temperature Positive supply voltage. Positive input clamp voltage Latch-up over-voltage Latch-up over-current 6.5.1 Timing limits. The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 46 6.5.2 Waveforms. Waveform symbol Input Output MUST BE VALID WILL BE VALID CHANGE FROM H TO L WILL CHANGE FROM H TO L CHANGE FROM L TO H WILL CHANGE FROM L TO H DON'T CARE ANY CHANGE PERMITTED CHANGING STATE UNKNOWN HIGH IMPEDANCE 6.6 Sources of supply. 6.6.1 Sources of supply for device classes Q and V. Sources of supply for device classes Q and V are listed in QML-38535 and MIL-HDBK-103. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DLA Land and Maritime-VA and have agreed to this drawing. 6.6.2 Approved sources of supply for device class M. Approved sources of supply for class M are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DLA Land and Maritime-VA. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 47 APPENDIX A Appendix A forms a part of SMD 5962-89497 FUNCTIONAL ALGORITHMS A10. SCOPE A10.1 Scope. Functional algorithms are test patterns which define the exact sequence of events used to verify proper operation of a Random Access Memory (RAM). Each algorithm serves a specific purpose for the testing of the device. It is understood that all manufacturers do not have the same test equipment; therefore, it becomes the responsibility of each manufacturer to guarantee that the test patterns described herein are followed as closely as possible, or equivalent patterns be used that serve the same purpose. Each manufacturer should demonstrate that this condition will be met. Algorithms shall be applied to the device in a topologically pure fashion. This appendix is a mandatory part of the specification. The information contained herein is intended for compliance. A20. APPLICABLE DOCUMENTS. This section is not applicable to this appendix. A30. ALGORITHMS A30.1 Algorithm A (pattern 1). A30.1.1 Output high impedance (toff). This pattern verifies the output buffer switches to high impedance (three-state) within the specified tOFF after the rise of CAS . It is performed in the following manner. Step 1: Perform 8 pump cycles. Step 2: Load address location with data. Step 3: Raise CAS and read address location and guarantee VOL < VOUT < VOH after TOFF delay. A30.2 Algorithm B (pattern 2). A30.2.1 VCC slew. This pattern indicates sense amplifier margin by slewing the supply voltage between memory writing and reading. It is performed in the following manner: Step 1: Step 2: Step 3: Step 4: Step 5: Step 6: Step 7: Perform 8 pump cycles, 1 memory to register transfer and 2 SC cycles. Load memory with background data with VCC at 5.0 V. Change VCC to 5.5 V. Read memory with background data. Load memory with background data complement. Change VCC to 4.5 V. Read memory with background data complement. A30.3 Algorithm C (pattern 3). A30.3.1 manner: March data. This pattern tests for address uniqueness and multiple selection. It is performed in the following Step 1: Perform 8 pump cycles, 1 memory to register transfer and 2 SC cycles. Step 2: Load memory with background data. Step 3: Read location 0. Step 4: Write data complement in location 0. Step 5: Repeat steps 3 and 4 for all other locations in the memory (sequentially). Step 6: Read data complement in maximum address location. Step 7: Write data in maximum address location. Step 8: Repeat steps 6 and 7 for all other locations in the memory from maximum to minimum address. Step 9: Read data in maximum address location. Step 10: Write data complement in maximum address location. Step 11: Repeat steps 6 and 7 for all other locations in the memory from maximum to minimum address. Step 12: Read memory with data complement. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 48 APPENDIX A – continued. A30.4 Algorithm D (pattern 4). A30.4.1 Refresh test (cell retention) +125°C only. This test is used to check the retention time of the memory cells. It is performed in the following manner: Step 1: Step 2: Step 3: Step 4: Step 5: Perform 8 pump cycles. Load memory with background data. Pause TREF (stop all clocks). Read memory with background data. Repeat steps 2, 3, and 4 with data complement. A30.5 Algorithm E (pattern 5). A30.5.1 Read-modify-write (RMW). This pattern verifies the read-modify-write mode for the memory. It is performed in the following manner: Step 1: Step 2: Step 3: Step 4: Step 5: Step 6: Perform 8 pump cycles, 1 memory to register transfer and 2 SC cycles. Load memory with background data. Read minimum address location with data and load with data complement using RMW cycle. Repeat step 3 for all address locations (sequentially). Read maximum address location with data complement and load with data using RMW cycle. Repeat step 5 for all address locations from maximum to minimum. A30.6 Algorithm F (pattern 6). A30.6.1 Page mode. This pattern verifies the Page mode for the memory. It is performed in the following manner: Step 1: Step 2: Step 3: Step 4: Step 5: Step 6: Perform 8 pump cycles, 1 memory to register transfer and 2 SC cycles. Load first page of memory with background data using page mode cycle. Repeat step 2 for remaining rows. Read first page of memory with data and load with data complement using page mode cycle. Repeat step 4 for remaining rows. Read first page of memory with data complement and write data starting at maximum Y address and decrementing Y address. Step 7: Repeat step 6 for remaining rows. A30.7 Algorithm G (pattern 7). A30.7.1 CAS-before-RAS counter test. This test is used to verify the functionality of the CAS before RAS internal address counter. Step 1: Step 2: Step 3: Step 4: Step 5: Step 6: Perform 8 pump cycles, 1 memory to register transfer and 2 SC cycles. Write data to one column of memory. Perform 512 CBR cycles presenting data complement, but not changing the address presented. Read data complement from the column written to in step 2. Perform 512 CBR cycles presenting data, but not changing the address presented. Read data from the column written to in step 2. A30.8 Algorithm H (pattern 8). A30.8.1 Memory to register test. This test is used to verify the functionality of the memory to register transfer circuitry. Step 1: Step 2: Step 3: Step 4: Step 5: Step 6: Perform 8 pump cycles, 1 memory to register transfer and 2 SC cycles. Write one row of data to the memory. Transfer this row to the serial register. Read data out of the serial register. Repeat steps 2 through 4 with data complement. Repeat steps 2 through 5 for the remaining rows. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 49 APPENDIX A – continued. A30.9 Algorithm I (pattern 9). A30.9.1 circuitry. Register to memory transfer test. This test is used to verify the functionality of the register to memory transfer Step 1: Step 2: Step 3: Step 4: Step 5: Step 6: Step 7: Perform 8 pump cycles, 1 memory to register transfer and 2 SC cycles. Write one row of data complement to memory. Transfer this row to the serial register. Write entire memory array with data. Transfer serial register to first row of memory. Repeat step 5 for remaining rows of memory. Read data complement for entire memory array. A30.10 Algorithm J (pattern 10). A30.10.1 Serial input test. This test is used to verify the functionality of the serial input circuitry. Step 1: Step 2: Step 3: Step 4: Step 5: Step 6: Step 7: Step 8: Perform 8 pump cycles, 1 memory to register transfer and 2 SC cycles. Write entire memory array with data. Transfer the first row of memory to the serial register. Perform a pseudo transfer write cycle. Shift one row of data complement into serial register. Transfer serial register to first memory row. Repeat steps 5 through 6 until entire memory array is written to. Read data complement from entire array. A30.11 Algorithm K (pattern 11). A30.11.1 Serial output test. This test is used to verify the functionality of the serial output and tap circuitry. Step 1: Step 2: Step 3: Step 4: Step 5: Step 6: Step 7: Step 8: Perform 8 pump cycles, 1 memory to register transfer and 2 SC cycles. Write one row of data into memory array. Write data complement into tap point. Perform memory to register transfer on row written to. Read data complement from tap point. Read data for all bits beyond tap point. Increment tap point. Repeat steps 2 through 7 511 times. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97 SIZE 5962-89497 A REVISION LEVEL C SHEET 50 STANDARD MICROCIRCUIT DRAWING BULLETIN DATE: 14-01-27 Approved sources of supply for SMD 5962-89497 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DLA Land and Maritime-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DLA Land and Maritime maintains an online database of all current sources of supply at http://www.landandmaritime.dla.mil/Programs/Smcr/. Standard microcircuit drawing PIN 1/ Vendor CAGE number 5962-8949701MTA 3/ 5962-8949701MUA 3/ 5962-8949701MXA 3/ 5962-8949701MYA 3/ 5962-8949701MZA 3/ 5962-8949702MTA 3/ 5962-8949702MUA 3/ 5962-8949702MXA 3/ 5962-8949702MYA 3/ 5962-8949702MZA 3/ 5962-8949703MMA 57300 MT42C4256CZ-12/883C 5962-8949703MMA 57300 SMJ44C251B-12SVM 5962-8949703MTA 57300 MT42C4256DCJ-12/883C 5962-8949703MUA 57300 MT42C4256F-12/883C 5962-8949703MXA 57300 SMJ44C251B-12JDM 5962-8949703MXA 57300 MT42C4256C-12/883C 5962-8949703MYA 57300 SMJ44C251B-12HJM 5962-8949703MZA 57300 SMJ44C251B-12HMM 5962-8949703MZA 57300 MT42C4256EC-12/883C 5962-8949704MMA 57300 MT42C4256CZ-10/883C 5962-8949704MMA 57300 SMJ44C251B-10SVM See notes at end of table. Page 1 of 2 Vendor similar PIN 2/ STANDARD MICROCIRCUIT DRAWING BULLETIN – Continued. Standard microcircuit drawing PIN 1/ Vendor CAGE number Vendor similar PIN 3/ 5962-8949704MTA 57300 MT42C4256DCJ-10/883C 5962-8949704MUA 57300 MT42C4256F-10/883C 5962-8949704MXA 57300 SMJ44C251B-10JDM 5962-8949704MXA 57300 MT42C4256C-10/883C 5962-8949704MYA 57300 SMJ44C251B-10HJM 5962-8949704MZA 57300 SMJ44C251B-10HMM 5962-8949704MZA 57300 MT42C4256EC-10/883C 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability. 2/ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing. 3/ Not available from an approved source. Vendor CAGE number Vendor name and address 57300 Micross Components 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin. Page 2 of 2