SEMiX405TMLI12E4B Absolute Maximum Ratings Symbol Conditions Values Unit IGBT1 VCES IC Tj = 25 °C Tj = 175 °C 1200 V Tc = 25 °C 636 A Tc = 80 °C 490 A 400 A ICnom ICRM SEMiX® 5 3-Level TNPC IGBT-Module VGES tpsc Tj VCC = 800 V, VGE ≤ 15 V, Tj = 150 °C, VCES ≤1200 V IC Tj = 25 °C ICRM • Solderless assembling solution with PressFIT signal pins and screw power terminals • IGBT 4 Trench Gate Technology • VCE(sat) with positive temperature coefficient • Low inductance case • Reliable mechanical design with injection moulded terminals and reliable internal connections • UL recognized file no. E63532 • NTC temperature sensor inside Remarks* • Case temperature limited to TC=125°C max. • Product reliability results are valid for Tjop=150°C • IGBT1: outer IGBTs T1 & T4 • IGBT2: inner IGBTs T2 & T3 • Diode1: outer diodes D1 & D4 • Diode2: inner diodes D2 & D3 A V 10 µs -40 ... 175 °C Tj = 175 °C 650 V Tc = 25 °C 453 A Tc = 80 °C 340 A ICnom Features 1200 -20 ... +20 IGBT2 VCES SEMiX405TMLI12E4B ICRM = 3 x ICnom VGES tpsc Tj ICRM = 3 x ICnom VCC = 360 V, VGE ≤ 15 V, Tj = 150 °C, VCES ≤ 650 V 400 A 1200 A -20 ... 20 V 10 µs -40 ... 175 °C Diode1 VRRM IF Tj = 25 °C Tj = 175 °C 1200 V Tc = 25 °C 461 A Tc = 80 °C 345 A IFnom IFRM IFRM = 3 x IFnom IFSM 10 ms, sin 180°, Tj = 25 °C Tj 400 A 1200 A 1980 A -40 ... 175 °C Diode2 VRRM IF Tj = 25 °C Tj = 175 °C 650 V Tc = 25 °C 466 A Tc = 80 °C 338 A 400 A IFnom IFRM IFRM = 2 x IFnom 800 A IFSM 10 ms, sin 180°, Tj = 25 °C 2646 A -40 ... 175 °C Tj Module It(RMS) Tstg Visol AC sinus 50Hz, t = 1 min 450 A -40 ... 125 °C 4000 V TMLI © by SEMIKRON Rev. 3.0 – 02.03.2016 1 SEMiX405TMLI12E4B Characteristics Symbol IGBT1 VCE(sat) VCE0 SEMiX® 5 3-Level TNPC IGBT-Module SEMiX405TMLI12E4B • Solderless assembling solution with PressFIT signal pins and screw power terminals • IGBT 4 Trench Gate Technology • VCE(sat) with positive temperature coefficient • Low inductance case • Reliable mechanical design with injection moulded terminals and reliable internal connections • UL recognized file no. E63532 • NTC temperature sensor inside Remarks* • Case temperature limited to TC=125°C max. • Product reliability results are valid for Tjop=150°C • IGBT1: outer IGBTs T1 & T4 • IGBT2: inner IGBTs T2 & T3 • Diode1: outer diodes D1 & D4 • Diode2: inner diodes D2 & D3 IC = 400 A VGE = 15 V chiplevel chiplevel min. typ. max. Unit Tj = 25 °C 1.80 2.05 V Tj = 150 °C 2.20 2.40 V Tj = 25 °C 0.80 0.90 V Tj = 150 °C 0.70 0.80 V Tj = 25 °C 2.5 2.9 mΩ 3.8 4.0 mΩ 5.8 6.5 V 5 mA rCE VGE = 15 V chiplevel VGE(th) VGE = VCE, IC = 15.2 mA ICES VGE = 0 V, VCE = 1200 V, Tj = 25 °C Cies Coes Cres VCE = 25 V VGE = 0 V QG -15V...+15V RGint Tj = 25 °C VCC = 300 V IC = 400 A VGE = +15/-15 V RG on = 1.5 Ω RG off = 1.5 Ω di/dton = 4400 A/µs di/dtoff = 3000 A/µs td(on) Features Conditions tr Eon td(off) tf Eoff Tj = 150 °C 5 f = 1 MHz 24.6 nF f = 1 MHz 1.62 nF f = 1 MHz 1.38 nF 3026 nC 1.9 Tj = 150 °C Ω 232 ns Tj = 150 °C 128 ns Tj = 150 °C 6 mJ Tj = 150 °C 422 ns Tj = 150 °C 121 ns Tj = 150 °C 28 mJ Rth(j-c) per IGBT Rth(c-s) per IGBT (λgrease=0.81 W/(m*K)) 0.027 K/W Rth(c-s) per IGBT, pre-applied phase change material 0.015 K/W IGBT2 VCE(sat) VCE0 rCE IC = 400 A VGE = 15 V chiplevel chiplevel VGE = 15 V chiplevel 0.068 Tj = 25 °C 1.55 1.95 V Tj = 150 °C 1.75 2.15 V Tj = 25 °C 0.90 1.00 V Tj = 150 °C 0.82 0.90 V Tj = 25 °C 1.63 2.4 mΩ Tj = 150 °C 2.3 3.1 mΩ 5.8 6.4 V 0.7 mA VGE(th) VGE = VCE, IC = 8 mA ICES VGE = 0 V, VCE = 650 V, Tj = 25 °C Cies Coes Cres VCE = 25 V VGE = 0 V QG -15V...+15V RGint Tj = 25 °C VCC = 300 V IC = 400 A VGE = +15/-15 V RG on = 1.5 Ω RG off = 1.5 Ω di/dton = 3100 A/µs di/dtoff = 2800 A/µs td(on) tr Eon td(off) tf Eoff K/W 5.1 f = 1 MHz 24.7 nF f = 1 MHz 1.54 nF f = 1 MHz 0.73 nF 4420 nC 1.0 Tj = 150 °C Ω 170 ns Tj = 150 °C 118 ns Tj = 150 °C 3 mJ Tj = 150 °C 380 ns Tj = 150 °C 127 ns Tj = 150 °C 23 mJ Rth(j-c) per IGBT Rth(c-s) per IGBT (λgrease=0.81 W/(m*K)) 0.058 K/W Rth(c-s) per IGBT, pre-applied phase change material 0.046 K/W 0.14 K/W TMLI 2 Rev. 3.0 – 02.03.2016 © by SEMIKRON SEMiX405TMLI12E4B Characteristics Symbol Diode1 VF = VEC VF0 rF SEMiX® 5 3-Level TNPC IGBT-Module SEMiX405TMLI12E4B Features • Solderless assembling solution with PressFIT signal pins and screw power terminals • IGBT 4 Trench Gate Technology • VCE(sat) with positive temperature coefficient • Low inductance case • Reliable mechanical design with injection moulded terminals and reliable internal connections • UL recognized file no. E63532 • NTC temperature sensor inside Remarks* • Case temperature limited to TC=125°C max. • Product reliability results are valid for Tjop=150°C • IGBT1: outer IGBTs T1 & T4 • IGBT2: inner IGBTs T2 & T3 • Diode1: outer diodes D1 & D4 • Diode2: inner diodes D2 & D3 Conditions IF = 400 A VGE = 0 V chiplevel chiplevel chiplevel min. typ. max. Unit Tj = 25 °C 2.20 2.52 V Tj = 150 °C 2.15 2.47 V Tj = 25 °C 1.30 1.50 V Tj = 150 °C 0.90 1.10 V Tj = 25 °C 2.3 2.6 mΩ 3.1 3.4 mΩ Err Tj = 150 °C IF = 400 A Tj = 150 °C di/dtoff = 3100 A/µs T = 150 °C j VCC = 300 V VGE = +15/-15 V Tj = 150 °C Rth(j-c) per diode Rth(c-s) per Diode (λgrease=0.81 W/(m*K)) 0.036 K/W Rth(c-s) per Diode, pre-applied phase change material 0.028 K/W IRRM Qrr Diode2 VF = VEC VF0 rF IF = 400 A VGE = 0 V chiplevel chiplevel chiplevel 213 A 55.5 µC 11.8 mJ 0.13 K/W Tj = 25 °C 1.39 1.75 V Tj = 150 °C 1.38 1.76 V Tj = 25 °C 1.04 1.24 V Tj = 150 °C 0.85 0.99 V Tj = 25 °C 0.88 1.30 mΩ 1.32 1.93 mΩ Err Tj = 150 °C IF = 400 A Tj = 150 °C di/dtoff = 4400 A/µs T = 150 °C j VR = 300 V VGE = +15/-15 V Tj = 150 °C Rth(j-c) per diode Rth(c-s) per Diode (λgrease=0.81 W/(m*K)) 0.053 K/W Rth(c-s) per Diode, pre-applied phase change material 0.046 K/W LsCE1 31 nH LCE 42 nH 0.8 mΩ 1.1 mΩ 0.005 K/W 0.0081 K/W 0.0055 K/W IRRM Qrr 242 A 46 µC 11 mJ 0.18 K/W Module RCC'+EE' Rth(c-s)1 Rth(c-s)2 Rth(c-s)2 Ms measured TC = 25 °C between terminal 5 TC = 125 °C and 1 calculated without thermal coupling including thermal coupling, Ts underneath module (λgrease=0.81 W/ (m*K)) including thermal coupling, Ts underneath module, pre-applied phase change material to heat sink (M5) to terminals (M6) Mt 3 6 Nm 3 6 Nm Nm w 398 g 493 ± 5% Ω 3550 ±2% K Temperature Sensor R100 B100/125 Tc=100°C (R25=5 kΩ) R(T)=R100exp[B100/125(1/T-1/T100)]; T[K]; TMLI © by SEMIKRON Rev. 3.0 – 02.03.2016 3 SEMiX405TMLI12E4B Fig. 1: Typ. IGBT1 output characteristic, incl. RCC'+ EE' Fig. 2: IGBT1 rated current vs. Temperature Ic=f(Tc) Fig. 3: Typ. IGBT1 & Diode2 turn-on /-off energy = f (IC) Fig. 4: Typ. IGBT1 & Diode2 turn-on /-off energy = f(RG) Fig. 5: Typ. IGBT1 transfer characteristic Fig. 6: Typ. IGBT1 gate charge characteristic 4 Rev. 3.0 – 02.03.2016 © by SEMIKRON SEMiX405TMLI12E4B Fig. 7: Typ. IGBT1 switching times vs. IC Fig. 8: Typ. IGBT1 switching times vs. gate resistor RG Fig. 9: Transient thermal impedance of IGBT1 & Diode2 Fig. 10: Typ. Diode2 forward characteristic, incl. RCC'+ EE' Fig. 11: Typ. Diode2 peak reverse recovery current Fig. 13: Typ. IGBT2 output characteristic, incl. RCC'+ EE' © by SEMIKRON Rev. 3.0 – 02.03.2016 5 SEMiX405TMLI12E4B Fig. 14: IGBT2 Rated current vs. Temperature Ic= f (Tc) Fig. 15: Typ. IGBT2 & Diode1 turn-on /-off energy = f (IC) Fig. 16: Typ. IGBT2 & Diode1 turn-on / -off energy = f(RG) Fig. 17: Typ. IGBT2 transfer characteristic Fig. 18: Typ. IGBT2 gate charge characteristic Fig. 19: Typ. IGBT2 switching times vs. IC 6 Rev. 3.0 – 02.03.2016 © by SEMIKRON SEMiX405TMLI12E4B Fig. 20: Typ. IGBT2 switching times vs. gate resistor RG Fig. 21: Transient thermal impedance of IGBT2 & Diode1 Fig. 22: Typ. Diode1 forward characteristic, incl. RCC'+ EE' Fig. 23: Typ. Diode1 peak reverse recovery current © by SEMIKRON Rev. 3.0 – 02.03.2016 7 SEMiX405TMLI12E4B SEMiX5p TMLI 8 Rev. 3.0 – 02.03.2016 © by SEMIKRON SEMiX405TMLI12E4B This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, chapter IX. *IMPORTANT INFORMATION AND WARNINGS The specifications of SEMIKRON products may not be considered as guarantee or assurance of product characteristics ("Beschaffenheitsgarantie"). The specifications of SEMIKRON products describe only the usual characteristics of products to be expected in typical applications, which may still vary depending on the specific application. Therefore, products must be tested for the respective application in advance. Application adjustments may be necessary. The user of SEMIKRON products is responsible for the safety of their applications embedding SEMIKRON products and must take adequate safety measures to prevent the applications from causing a physical injury, fire or other problem if any of SEMIKRON products become faulty. The user is responsible to make sure that the application design is compliant with all applicable laws, regulations, norms and standards. Except as otherwise explicitly approved by SEMIKRON in a written document signed by authorized representatives of SEMIKRON, SEMIKRON products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. No representation or warranty is given and no liability is assumed with respect to the accuracy, completeness and/or use of any information herein, including without limitation, warranties of non-infringement of intellectual property rights of any third party. SEMIKRON does not assume any liability arising out of the applications or use of any product; neither does it convey any license under its patent rights, copyrights, trade secrets or other intellectual property rights, nor the rights of others. SEMIKRON makes no representation or warranty of non-infringement or alleged non-infringement of intellectual property rights of any third party which may arise from applications. Due to technical requirements our products may contain dangerous substances. For information on the types in question please contact the nearest SEMIKRON sales office. This document supersedes and replaces all information previously supplied and may be superseded by updates. SEMIKRON reserves the right to make changes. © by SEMIKRON Rev. 3.0 – 02.03.2016 9