datasheet

SKiM601TMLI12E4B
Absolute Maximum Ratings
Symbol
Conditions
Values
Unit
IGBT1
VCES
Tj = 25 °C
1200
V
IC
λpaste=0.8 W/(mK) Ts = 25 °C
Tj = 175 °C
Ts = 70 °C
529
A
425
A
IC
λpaste=2.5 W/(mK) Ts = 25 °C
Tj = 175 °C
Ts = 70 °C
t.b.d.
A
ICnom
SKiM® 4
ICRM
VGES
Trench IGBT Modules
SKiM601TMLI12E4B
Features
• IGBT 4 Trench Gate Technology
• Solder technology
• VCE(sat) with positive temperature
coefficient
• Low inductance case
• Insulated by Al2O3 DCB (Direct Copper
Bonded) ceramic substrate
• Pressure contact technology for
thermal contacts
• Spring contact system to attach driver
PCB to the control terminals
• High short circuit capability, self limiting
to 6 x IC
• Integrated temperature sensor
Remarks*
• Case temperature limited to Ts = 125°C
max; Tc = Ts (for baseplateless
modules)
• Recommended Top = -40 ...+150°C
• IGBT1: outer IGBTs T1 & T4
• IGBT2: inner IGBTs T2 & T3
• Diode1: outer diodes D1 & D4
• Diode2: inner diodes D2 & D3
tpsc
Tj
ICRM = 3 x ICnom
VCC = 800 V, VGE ≤ 15 V, Tj = 150 °C,
VCES ≤ 1200 V
t.b.d.
A
600
A
1800
A
-20 ... 20
V
10
µs
-40 ... 175
°C
IGBT2
VCES
Tj = 25 °C
650
V
IC
λpaste=0.8 W/(mK) Ts = 25 °C
Tj = 175 °C
Ts = 70 °C
433
A
340
A
IC
λpaste=2.5 W/(mK) Ts = 25 °C
Tj = 175 °C
Ts = 70 °C
t.b.d.
A
ICnom
ICRM
VGES
tpsc
Tj
ICRM = 3 x ICnom
VCC = 360 V, VGE ≤ 15 V, Tj = 150 °C,
VCES ≤ 650 V
t.b.d.
A
600
A
1800
A
-20 ... 20
V
10
µs
-40 ... 175
°C
Diode1
VRRM
Tj = 25 °C
1200
V
IF
λpaste=0.8 W/(mK) Ts = 25 °C
Tj = 175 °C
Ts = 70 °C
495
A
389
A
λpaste=2.5 W/(mK) Ts = 25 °C
Tj = 175 °C
Ts = 70 °C
t.b.d.
A
IF
IFnom
IFRM
IFRM = 3 x IFnom
IFSM
10 ms, sin 180°, Tj = 25 °C
Tj
t.b.d.
A
600
A
1800
A
3240
A
-40 ... 175
°C
Diode2
VRRM
Tj = 25 °C
650
V
IF
λpaste=0.8 W/(mK) Ts = 25 °C
Tj = 175 °C
Ts = 70 °C
527
A
406
A
IF
λpaste=2.5 W/(mK) Ts = 25 °C
Tj = 175 °C
Ts = 70 °C
t.b.d.
A
IFnom
t.b.d.
A
600
A
IFRM
IFRM = 2 x IFnom
1200
A
IFSM
10 ms, sin 180°, Tj = 25 °C
3969
A
-40 ... 175
°C
Tj
Module
It(RMS)
Tstg
Visol
AC sinus 50 Hz, t = 1 min
400
A
-40 ... 125
°C
2500
V
TMLI
© by SEMIKRON
Rev. 5.0 – 01.04.2016
1
SKiM601TMLI12E4B
Characteristics
Symbol
IGBT1
VCE(sat)
VCE0
SKiM® 4
Trench IGBT Modules
SKiM601TMLI12E4B
• IGBT 4 Trench Gate Technology
• Solder technology
• VCE(sat) with positive temperature
coefficient
• Low inductance case
• Insulated by Al2O3 DCB (Direct Copper
Bonded) ceramic substrate
• Pressure contact technology for
thermal contacts
• Spring contact system to attach driver
PCB to the control terminals
• High short circuit capability, self limiting
to 6 x IC
• Integrated temperature sensor
Remarks*
• Case temperature limited to Ts = 125°C
max; Tc = Ts (for baseplateless
modules)
• Recommended Top = -40 ...+150°C
• IGBT1: outer IGBTs T1 & T4
• IGBT2: inner IGBTs T2 & T3
• Diode1: outer diodes D1 & D4
• Diode2: inner diodes D2 & D3
IC = 600 A
VGE = 15 V
chiplevel
chiplevel
min.
typ.
max.
Unit
Tj = 25 °C
1.80
2.05
V
Tj = 150 °C
2.20
2.40
V
Tj = 25 °C
0.80
0.90
V
Tj = 150 °C
0.70
0.80
V
Tj = 25 °C
1.67
1.92
mΩ
2.5
2.7
mΩ
5.8
6.5
V
5
mA
rCE
VGE = 15 V
chiplevel
VGE(th)
VGE = VCE, IC = 24 mA
ICES
VGE = 0 V, VCE = 1200 V, Tj = 25 °C
Cies
Coes
Cres
VCE = 25 V
VGE = 0 V
QG
- 15 V...+ 15 V
RGint
Tj = 25 °C
VCE = 300 V
IC = 600 A
VGE = +15/-15 V
RG on = 2 Ω
RG off = 2 Ω
di/dton = 2584 A/µs
di/dtoff = 2673 A/µs
td(on)
Features
Conditions
tr
Eon
td(off)
tf
Eoff
Tj = 150 °C
5
f = 1 MHz
37.2
nF
f = 1 MHz
2.32
nF
f = 1 MHz
2.04
nF
3750
nC
1.3
Tj = 150 °C
Ω
261
ns
Tj = 150 °C
231
ns
Tj = 150 °C
11.44
mJ
Tj = 150 °C
585
ns
Tj = 150 °C
182
ns
Tj = 150 °C
44.88
mJ
Rth(j-s)
per IGBT, λpaste=0.8 W/(mK)
0.125
K/W
Rth(j-s)
per IGBT, λpaste=2.5 W/(mK)
t.b.d.
K/W
IC = 600 A
VGE = 15 V
chiplevel
Tj = 25 °C
1.55
1.95
V
Tj = 150 °C
1.75
2.15
V
Tj = 25 °C
0.90
1.00
V
Tj = 150 °C
0.82
0.90
V
Tj = 25 °C
1.08
1.58
mΩ
1.55
2.1
mΩ
5.8
6.4
V
1.4
mA
IGBT2
VCE(sat)
VCE0
chiplevel
rCE
VGE = 15 V
chiplevel
VGE(th)
VGE = VCE, IC = 12 mA
ICES
VGE = 0 V, VCE = 650 V, Tj = 25 °C
Cies
Coes
Cres
VCE = 25 V
VGE = 0 V
QG
- 15 V...+ 15 V
RGint
Tj = 25 °C
VCE = 300 V
IC = 600 A
VGE = +15/-15 V
RG on = 2 Ω
RG off = 2 Ω
di/dton = 2648 A/µs
di/dtoff = 3097 A/µs
td(on)
tr
Eon
td(off)
tf
Eoff
Tj = 150 °C
5.1
f = 1 MHz
37.005
nF
f = 1 MHz
2.307
nF
f = 1 MHz
1.098
nF
5002.2
nC
0.7
Ω
ns
Tj = 150 °C
121
Tj = 150 °C
232
ns
Tj = 150 °C
6.05
mJ
Tj = 150 °C
599
ns
Tj = 150 °C
156
ns
Tj = 150 °C
44
mJ
Rth(j-s)
per IGBT, λpaste=0.8 W/(mK)
0.19
K/W
Rth(j-s)
per IGBT, λpaste=2.5 W/(mK)
t.b.d.
K/W
TMLI
2
Rev. 5.0 – 01.04.2016
© by SEMIKRON
SKiM601TMLI12E4B
Characteristics
Symbol
Diode1
VF = VEC
VF0
rF
SKiM® 4
IRRM
Trench IGBT Modules
SKiM601TMLI12E4B
Qrr
Remarks*
• Case temperature limited to Ts = 125°C
max; Tc = Ts (for baseplateless
modules)
• Recommended Top = -40 ...+150°C
• IGBT1: outer IGBTs T1 & T4
• IGBT2: inner IGBTs T2 & T3
• Diode1: outer diodes D1 & D4
• Diode2: inner diodes D2 & D3
typ.
max.
Unit
IF = 600 A
Tj = 25 °C
2.14
2.46
V
chiplevel
Tj = 150 °C
2.07
2.38
V
Tj = 25 °C
1.30
1.50
V
chiplevel
chiplevel
IF = 600 A
Tj = 150 °C
0.90
1.10
V
Tj = 25 °C
1.40
1.60
mΩ
2.1
mΩ
Tj = 150 °C
1.95
Tj = 150 °C
251
A
Tj = 150 °C
21.9
µC
Tj = 150 °C
4.37
mJ
Err
Rth(j-s)
per Diode, λpaste=0.8 W/(mK)
0.15
K/W
Rth(j-s)
per Diode, λpaste=2.5 W/(mK)
t.b.d.
K/W
IF = 600 A
Tj = 25 °C
1.39
1.75
V
chiplevel
Tj = 150 °C
1.38
1.76
V
Tj = 25 °C
1.04
1.24
V
Tj = 150 °C
0.85
0.99
V
Tj = 25 °C
0.59
0.86
mΩ
Tj = 150 °C
0.88
1.28
mΩ
VF = VEC
• IGBT 4 Trench Gate Technology
• Solder technology
• VCE(sat) with positive temperature
coefficient
• Low inductance case
• Insulated by Al2O3 DCB (Direct Copper
Bonded) ceramic substrate
• Pressure contact technology for
thermal contacts
• Spring contact system to attach driver
PCB to the control terminals
• High short circuit capability, self limiting
to 6 x IC
• Integrated temperature sensor
min.
VR = 300 V
VGE = +15/-15 V
Diode2
Features
Conditions
VF0
rF
IRRM
Qrr
chiplevel
chiplevel
IF = 600 A
Tj = 150 °C
247
A
Tj = 150 °C
25.2
µC
Tj = 150 °C
2.64
mJ
Err
VR = 300 V
VGE = +15/-15 V
Rth(j-s)
per Diode, λpaste=0.8 W/(mK)
0.18
K/W
Rth(j-s)
per Diode, λpaste=2.5 W/(mK)
t.b.d.
K/W
LsCE1
29
nH
LCE
40
nH
0.4
mΩ
Module
RCC'+EE'
measured betw.
terminal 4 and 24
Ms
to heat sink (M5)
Ts = 25 °C
Ts = 125 °C
to terminals M6
Mt
0.6
mΩ
2
3
Nm
4
5
Nm
Nm
w
317
g
493 ± 5%
Ω
3550
±2%
K
Temperature Sensor
R100
Tc=100°C (R25=5 kΩ)
B100/125
R(T)=R100exp[B100/125(1/T-1/T100)]; T[K];
TMLI
© by SEMIKRON
Rev. 5.0 – 01.04.2016
3
SKiM601TMLI12E4B
Fig. 1: Typ. IGBT1 output characteristic, incl. RCC'+ EE'
Fig. 2: IGBT1 rated current vs. Temperature Ic=f(Ts)
Fig. 3: Typ. IGBT1 & Diode2 turn-on /-off energy = f (IC)
Fig. 4: Typ. IGBT1 & Diode2 turn-on /-off energy = f(RG)
Fig. 5: Typ. IGBT1 transfer characteristic
Fig. 6: Typ. IGBT1 gate charge characteristic
4
Rev. 5.0 – 01.04.2016
© by SEMIKRON
SKiM601TMLI12E4B
Fig. 7: Typ. IGBT1 switching times vs. IC
Fig. 8: Typ. IGBT1 switching times vs. gate resistor RG
Fig. 9: Transient thermal impedance of IGBT1 & Diode2
Fig. 10: Typ. Diode2 forward characteristic, incl. RCC'+ EE'
Fig. 13: Typ. IGBT2 output characteristic, incl. RCC'+ EE'
Fig. 14: IGBT2 Rated current vs. Temperature Ic= f (Ts)
© by SEMIKRON
Rev. 5.0 – 01.04.2016
5
SKiM601TMLI12E4B
Fig. 15: Typ. IGBT2 & Diode1 turn-on /-off energy = f (IC)
Fig. 16: Typ. IGBT2 & Diode1 turn-on / -off energy = f(RG)
Fig. 17: Typ. IGBT2 transfer characteristic
Fig. 18: Typ. IGBT2 gate charge characteristic
Fig. 19: Typ. IGBT2 switching times vs. IC
Fig. 20: Typ. IGBT2 switching times vs. gate resistor RG
6
Rev. 5.0 – 01.04.2016
© by SEMIKRON
SKiM601TMLI12E4B
Fig. 21: Transient thermal impedance of IGBT2 & Diode1
© by SEMIKRON
Fig. 22: Typ. Diode1 forward characteristic, incl. RCC'+ EE'
Rev. 5.0 – 01.04.2016
7
SKiM601TMLI12E4B
SKiM 4
TMLI
8
Rev. 5.0 – 01.04.2016
© by SEMIKRON
SKiM601TMLI12E4B
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, chapter IX.
*IMPORTANT INFORMATION AND WARNINGS
The specifications of SEMIKRON products may not be considered as guarantee or assurance of product characteristics
("Beschaffenheitsgarantie"). The specifications of SEMIKRON products describe only the usual characteristics of products to be expected in
typical applications, which may still vary depending on the specific application. Therefore, products must be tested for the respective
application in advance. Application adjustments may be necessary. The user of SEMIKRON products is responsible for the safety of their
applications embedding SEMIKRON products and must take adequate safety measures to prevent the applications from causing a physical
injury, fire or other problem if any of SEMIKRON products become faulty. The user is responsible to make sure that the application design is
compliant with all applicable laws, regulations, norms and standards. Except as otherwise explicitly approved by SEMIKRON in a written
document signed by authorized representatives of SEMIKRON, SEMIKRON products may not be used in any applications where a failure of
the product or any consequences of the use thereof can reasonably be expected to result in personal injury. No representation or warranty is
given and no liability is assumed with respect to the accuracy, completeness and/or use of any information herein, including without limitation,
warranties of non-infringement of intellectual property rights of any third party. SEMIKRON does not assume any liability arising out of the
applications or use of any product; neither does it convey any license under its patent rights, copyrights, trade secrets or other intellectual
property rights, nor the rights of others. SEMIKRON makes no representation or warranty of non-infringement or alleged non-infringement of
intellectual property rights of any third party which may arise from applications. Due to technical requirements our products may contain
dangerous substances. For information on the types in question please contact the nearest SEMIKRON sales office. This document
supersedes and replaces all information previously supplied and may be superseded by updates. SEMIKRON reserves the right to make
changes.
© by SEMIKRON
Rev. 5.0 – 01.04.2016
9