SKiM601TMLI12E4B Absolute Maximum Ratings Symbol Conditions Values Unit IGBT1 VCES Tj = 25 °C 1200 V IC λpaste=0.8 W/(mK) Ts = 25 °C Tj = 175 °C Ts = 70 °C 529 A 425 A IC λpaste=2.5 W/(mK) Ts = 25 °C Tj = 175 °C Ts = 70 °C t.b.d. A ICnom SKiM® 4 ICRM VGES Trench IGBT Modules SKiM601TMLI12E4B Features • IGBT 4 Trench Gate Technology • Solder technology • VCE(sat) with positive temperature coefficient • Low inductance case • Insulated by Al2O3 DCB (Direct Copper Bonded) ceramic substrate • Pressure contact technology for thermal contacts • Spring contact system to attach driver PCB to the control terminals • High short circuit capability, self limiting to 6 x IC • Integrated temperature sensor Remarks* • Case temperature limited to Ts = 125°C max; Tc = Ts (for baseplateless modules) • Recommended Top = -40 ...+150°C • IGBT1: outer IGBTs T1 & T4 • IGBT2: inner IGBTs T2 & T3 • Diode1: outer diodes D1 & D4 • Diode2: inner diodes D2 & D3 tpsc Tj ICRM = 3 x ICnom VCC = 800 V, VGE ≤ 15 V, Tj = 150 °C, VCES ≤ 1200 V t.b.d. A 600 A 1800 A -20 ... 20 V 10 µs -40 ... 175 °C IGBT2 VCES Tj = 25 °C 650 V IC λpaste=0.8 W/(mK) Ts = 25 °C Tj = 175 °C Ts = 70 °C 433 A 340 A IC λpaste=2.5 W/(mK) Ts = 25 °C Tj = 175 °C Ts = 70 °C t.b.d. A ICnom ICRM VGES tpsc Tj ICRM = 3 x ICnom VCC = 360 V, VGE ≤ 15 V, Tj = 150 °C, VCES ≤ 650 V t.b.d. A 600 A 1800 A -20 ... 20 V 10 µs -40 ... 175 °C Diode1 VRRM Tj = 25 °C 1200 V IF λpaste=0.8 W/(mK) Ts = 25 °C Tj = 175 °C Ts = 70 °C 495 A 389 A λpaste=2.5 W/(mK) Ts = 25 °C Tj = 175 °C Ts = 70 °C t.b.d. A IF IFnom IFRM IFRM = 3 x IFnom IFSM 10 ms, sin 180°, Tj = 25 °C Tj t.b.d. A 600 A 1800 A 3240 A -40 ... 175 °C Diode2 VRRM Tj = 25 °C 650 V IF λpaste=0.8 W/(mK) Ts = 25 °C Tj = 175 °C Ts = 70 °C 527 A 406 A IF λpaste=2.5 W/(mK) Ts = 25 °C Tj = 175 °C Ts = 70 °C t.b.d. A IFnom t.b.d. A 600 A IFRM IFRM = 2 x IFnom 1200 A IFSM 10 ms, sin 180°, Tj = 25 °C 3969 A -40 ... 175 °C Tj Module It(RMS) Tstg Visol AC sinus 50 Hz, t = 1 min 400 A -40 ... 125 °C 2500 V TMLI © by SEMIKRON Rev. 5.0 – 01.04.2016 1 SKiM601TMLI12E4B Characteristics Symbol IGBT1 VCE(sat) VCE0 SKiM® 4 Trench IGBT Modules SKiM601TMLI12E4B • IGBT 4 Trench Gate Technology • Solder technology • VCE(sat) with positive temperature coefficient • Low inductance case • Insulated by Al2O3 DCB (Direct Copper Bonded) ceramic substrate • Pressure contact technology for thermal contacts • Spring contact system to attach driver PCB to the control terminals • High short circuit capability, self limiting to 6 x IC • Integrated temperature sensor Remarks* • Case temperature limited to Ts = 125°C max; Tc = Ts (for baseplateless modules) • Recommended Top = -40 ...+150°C • IGBT1: outer IGBTs T1 & T4 • IGBT2: inner IGBTs T2 & T3 • Diode1: outer diodes D1 & D4 • Diode2: inner diodes D2 & D3 IC = 600 A VGE = 15 V chiplevel chiplevel min. typ. max. Unit Tj = 25 °C 1.80 2.05 V Tj = 150 °C 2.20 2.40 V Tj = 25 °C 0.80 0.90 V Tj = 150 °C 0.70 0.80 V Tj = 25 °C 1.67 1.92 mΩ 2.5 2.7 mΩ 5.8 6.5 V 5 mA rCE VGE = 15 V chiplevel VGE(th) VGE = VCE, IC = 24 mA ICES VGE = 0 V, VCE = 1200 V, Tj = 25 °C Cies Coes Cres VCE = 25 V VGE = 0 V QG - 15 V...+ 15 V RGint Tj = 25 °C VCE = 300 V IC = 600 A VGE = +15/-15 V RG on = 2 Ω RG off = 2 Ω di/dton = 2584 A/µs di/dtoff = 2673 A/µs td(on) Features Conditions tr Eon td(off) tf Eoff Tj = 150 °C 5 f = 1 MHz 37.2 nF f = 1 MHz 2.32 nF f = 1 MHz 2.04 nF 3750 nC 1.3 Tj = 150 °C Ω 261 ns Tj = 150 °C 231 ns Tj = 150 °C 11.44 mJ Tj = 150 °C 585 ns Tj = 150 °C 182 ns Tj = 150 °C 44.88 mJ Rth(j-s) per IGBT, λpaste=0.8 W/(mK) 0.125 K/W Rth(j-s) per IGBT, λpaste=2.5 W/(mK) t.b.d. K/W IC = 600 A VGE = 15 V chiplevel Tj = 25 °C 1.55 1.95 V Tj = 150 °C 1.75 2.15 V Tj = 25 °C 0.90 1.00 V Tj = 150 °C 0.82 0.90 V Tj = 25 °C 1.08 1.58 mΩ 1.55 2.1 mΩ 5.8 6.4 V 1.4 mA IGBT2 VCE(sat) VCE0 chiplevel rCE VGE = 15 V chiplevel VGE(th) VGE = VCE, IC = 12 mA ICES VGE = 0 V, VCE = 650 V, Tj = 25 °C Cies Coes Cres VCE = 25 V VGE = 0 V QG - 15 V...+ 15 V RGint Tj = 25 °C VCE = 300 V IC = 600 A VGE = +15/-15 V RG on = 2 Ω RG off = 2 Ω di/dton = 2648 A/µs di/dtoff = 3097 A/µs td(on) tr Eon td(off) tf Eoff Tj = 150 °C 5.1 f = 1 MHz 37.005 nF f = 1 MHz 2.307 nF f = 1 MHz 1.098 nF 5002.2 nC 0.7 Ω ns Tj = 150 °C 121 Tj = 150 °C 232 ns Tj = 150 °C 6.05 mJ Tj = 150 °C 599 ns Tj = 150 °C 156 ns Tj = 150 °C 44 mJ Rth(j-s) per IGBT, λpaste=0.8 W/(mK) 0.19 K/W Rth(j-s) per IGBT, λpaste=2.5 W/(mK) t.b.d. K/W TMLI 2 Rev. 5.0 – 01.04.2016 © by SEMIKRON SKiM601TMLI12E4B Characteristics Symbol Diode1 VF = VEC VF0 rF SKiM® 4 IRRM Trench IGBT Modules SKiM601TMLI12E4B Qrr Remarks* • Case temperature limited to Ts = 125°C max; Tc = Ts (for baseplateless modules) • Recommended Top = -40 ...+150°C • IGBT1: outer IGBTs T1 & T4 • IGBT2: inner IGBTs T2 & T3 • Diode1: outer diodes D1 & D4 • Diode2: inner diodes D2 & D3 typ. max. Unit IF = 600 A Tj = 25 °C 2.14 2.46 V chiplevel Tj = 150 °C 2.07 2.38 V Tj = 25 °C 1.30 1.50 V chiplevel chiplevel IF = 600 A Tj = 150 °C 0.90 1.10 V Tj = 25 °C 1.40 1.60 mΩ 2.1 mΩ Tj = 150 °C 1.95 Tj = 150 °C 251 A Tj = 150 °C 21.9 µC Tj = 150 °C 4.37 mJ Err Rth(j-s) per Diode, λpaste=0.8 W/(mK) 0.15 K/W Rth(j-s) per Diode, λpaste=2.5 W/(mK) t.b.d. K/W IF = 600 A Tj = 25 °C 1.39 1.75 V chiplevel Tj = 150 °C 1.38 1.76 V Tj = 25 °C 1.04 1.24 V Tj = 150 °C 0.85 0.99 V Tj = 25 °C 0.59 0.86 mΩ Tj = 150 °C 0.88 1.28 mΩ VF = VEC • IGBT 4 Trench Gate Technology • Solder technology • VCE(sat) with positive temperature coefficient • Low inductance case • Insulated by Al2O3 DCB (Direct Copper Bonded) ceramic substrate • Pressure contact technology for thermal contacts • Spring contact system to attach driver PCB to the control terminals • High short circuit capability, self limiting to 6 x IC • Integrated temperature sensor min. VR = 300 V VGE = +15/-15 V Diode2 Features Conditions VF0 rF IRRM Qrr chiplevel chiplevel IF = 600 A Tj = 150 °C 247 A Tj = 150 °C 25.2 µC Tj = 150 °C 2.64 mJ Err VR = 300 V VGE = +15/-15 V Rth(j-s) per Diode, λpaste=0.8 W/(mK) 0.18 K/W Rth(j-s) per Diode, λpaste=2.5 W/(mK) t.b.d. K/W LsCE1 29 nH LCE 40 nH 0.4 mΩ Module RCC'+EE' measured betw. terminal 4 and 24 Ms to heat sink (M5) Ts = 25 °C Ts = 125 °C to terminals M6 Mt 0.6 mΩ 2 3 Nm 4 5 Nm Nm w 317 g 493 ± 5% Ω 3550 ±2% K Temperature Sensor R100 Tc=100°C (R25=5 kΩ) B100/125 R(T)=R100exp[B100/125(1/T-1/T100)]; T[K]; TMLI © by SEMIKRON Rev. 5.0 – 01.04.2016 3 SKiM601TMLI12E4B Fig. 1: Typ. IGBT1 output characteristic, incl. RCC'+ EE' Fig. 2: IGBT1 rated current vs. Temperature Ic=f(Ts) Fig. 3: Typ. IGBT1 & Diode2 turn-on /-off energy = f (IC) Fig. 4: Typ. IGBT1 & Diode2 turn-on /-off energy = f(RG) Fig. 5: Typ. IGBT1 transfer characteristic Fig. 6: Typ. IGBT1 gate charge characteristic 4 Rev. 5.0 – 01.04.2016 © by SEMIKRON SKiM601TMLI12E4B Fig. 7: Typ. IGBT1 switching times vs. IC Fig. 8: Typ. IGBT1 switching times vs. gate resistor RG Fig. 9: Transient thermal impedance of IGBT1 & Diode2 Fig. 10: Typ. Diode2 forward characteristic, incl. RCC'+ EE' Fig. 13: Typ. IGBT2 output characteristic, incl. RCC'+ EE' Fig. 14: IGBT2 Rated current vs. Temperature Ic= f (Ts) © by SEMIKRON Rev. 5.0 – 01.04.2016 5 SKiM601TMLI12E4B Fig. 15: Typ. IGBT2 & Diode1 turn-on /-off energy = f (IC) Fig. 16: Typ. IGBT2 & Diode1 turn-on / -off energy = f(RG) Fig. 17: Typ. IGBT2 transfer characteristic Fig. 18: Typ. IGBT2 gate charge characteristic Fig. 19: Typ. IGBT2 switching times vs. IC Fig. 20: Typ. IGBT2 switching times vs. gate resistor RG 6 Rev. 5.0 – 01.04.2016 © by SEMIKRON SKiM601TMLI12E4B Fig. 21: Transient thermal impedance of IGBT2 & Diode1 © by SEMIKRON Fig. 22: Typ. Diode1 forward characteristic, incl. RCC'+ EE' Rev. 5.0 – 01.04.2016 7 SKiM601TMLI12E4B SKiM 4 TMLI 8 Rev. 5.0 – 01.04.2016 © by SEMIKRON SKiM601TMLI12E4B This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, chapter IX. *IMPORTANT INFORMATION AND WARNINGS The specifications of SEMIKRON products may not be considered as guarantee or assurance of product characteristics ("Beschaffenheitsgarantie"). The specifications of SEMIKRON products describe only the usual characteristics of products to be expected in typical applications, which may still vary depending on the specific application. Therefore, products must be tested for the respective application in advance. Application adjustments may be necessary. The user of SEMIKRON products is responsible for the safety of their applications embedding SEMIKRON products and must take adequate safety measures to prevent the applications from causing a physical injury, fire or other problem if any of SEMIKRON products become faulty. The user is responsible to make sure that the application design is compliant with all applicable laws, regulations, norms and standards. Except as otherwise explicitly approved by SEMIKRON in a written document signed by authorized representatives of SEMIKRON, SEMIKRON products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. No representation or warranty is given and no liability is assumed with respect to the accuracy, completeness and/or use of any information herein, including without limitation, warranties of non-infringement of intellectual property rights of any third party. SEMIKRON does not assume any liability arising out of the applications or use of any product; neither does it convey any license under its patent rights, copyrights, trade secrets or other intellectual property rights, nor the rights of others. SEMIKRON makes no representation or warranty of non-infringement or alleged non-infringement of intellectual property rights of any third party which may arise from applications. Due to technical requirements our products may contain dangerous substances. For information on the types in question please contact the nearest SEMIKRON sales office. This document supersedes and replaces all information previously supplied and may be superseded by updates. SEMIKRON reserves the right to make changes. © by SEMIKRON Rev. 5.0 – 01.04.2016 9