2SB1386 / 2SB1412 Transistors Low frequency transistor (−20V, −5A) 2SB1386 / 2SB1412 zDimensions (Unit : mm) zFeatures 1) Low VCE(sat). VCE(sat) = −0.35V (Typ.) (IC/IB = −4A / −0.1A) 2) Excellent DC current gain characteristics. 3) Complements the 2SD2098 / 2SD2118. 2SB1386 zStructure Epitaxial planar type PNP silicon transistor 2SB1412 (1) Base (2) Collector (3) Emitter ROHM : MPT3 EIAJ : SC-62 ∗ ROHM : CPT3 EIAJ : SC-63 (1) Base (2) Collector (3) Emitter Abbreviated symbol: BH ∗ Denotes h FE zAbsolute maximum ratings (Ta=25°C) Symbol Limits Collector-base voltage VCBO −30 V Collector-emitter voltage VCEO −20 V Emitter-base voltage VEBO −6 V −5 A(DC) Parameter IC Collector current Collector power dissipation 2SB1386 PC 2SB1412 −10 0.5 2 1 10 Unit A(Pulse) ∗1 W W ∗2 W W(Tc=25°C) Junction temperature Tj 150 °C Storage temperature Tstg −55 to 150 °C ∗ ∗ 1 Single pulse, Pw=10ms 2 When mounted on a 40×40×0.7 mm ceramic board. Rev.B 1/4 2SB1386 / 2SB1412 Transistors zElectrical characteristics (Ta=25°C) Parameter Symbol Min. Typ. Max. Unit Conditions BVCBO −30 − − V IC= −50µA Collector-emitter breakdown voltage BVCEO −20 − − V IC= −1mA BVEBO −6 − − V IE= −50µA ICBO − − −0.5 µA VCB= −20V Collector-base breakdown voltage Emitter-base breakdown voltage Collector cutoff current Emitter cutoff current Collector-emitter saturation voltage DC current transfer ratio Transition frequency Output capacitance ∗ IEBO − − −0.5 µA VEB= −5V VCE(sat) − 0.35 −1.0 V IC/IB= −4A/ −0.1A hFE 82 − 390 − VCE= −2V, IC= −0.5A fT − 120 − MHz Cob − 60 − pF ∗ ∗ VCE= −6V, IE=50mA, f=100MHz VCB= −20V, IE=0A, f=1MHz Measured using pulse current. zPackaging specifications and hFE Taping Package Type hFE 2SB1386 PQR 2SB1412 PQR Code T100 TL Basic ordering unit (pieces) 1000 2500 − − hFE values are classified as follows : Item P Q R hFE 82 to 180 120 to 270 180 to 390 Rev.B 2/4 2SB1386 / 2SB1412 Transistors zElectrical characteristic curves −200m −100m −50m −20m −10m −5m −2m −1m 0 −0.2 Fig.1 Ta=100°C 25°C −25°C 20 −1.2 −1.6 200 Ta=100°C 25°C −25°C 50 20 5 −5 −10 −1m −2m −5m −0.01 −0.02 −0.05 −0.1 −0.2 −0.5 −1 −2 −5 −10 Fig.4 DC current gain vs. collector current ( ) Fig.5 DC current gain vs. collector current ( ) −2 −1 −0.5 −0.2 Ta=100°C 25°C −25°C −0.01 −2m −5m −0.01 −0.02 −0.05 −0.1 −0.2 −0.5 −1 −2 −5 −10 COLLECTOR SATURATION VOLTAGE : VCE(sat) (V) COLLECTOR CURRENT : IC (A) lC/lB=10 −5 5 −1m −2m −5m −0.01 −0.02 −0.05 −0.1 −0.2 −0.5 −1 −2 −1 Ta=100°C 25°C −0.2 −0.1 −0.05 −25°C −0.02 −0.01 −2m −5m −0.01 −0.02 −0.05 −0.1 −0.2 −0.5 −1 −2 −5 −10 Ta=25°C −2 −1 −0.5 −0.2 −0.1 IC/IB=50/1 40/1 /1 30/1 10/1 −0.05 −0.02 −0.01 −2m −5m −0.0− -0.02 −0.05 −0.1 −0.2 −0.5 −1 −2 −5 −10 Collector-emitter saturation voltage vs. collector current ( Collector-emitter saturation voltage vs. collector current ( ) −5 lC/lB=40 −2 −25°C −1 25°C −0.5 −0.2 −0.1 −0.05 Ta=100°C −0.02 −0.01 −2m −5m −0.01 −0.02 −0.05 −0.1 −0.2 −0.5 −1 −2 −5 −10 COLLECTOR CURRENT : IC (A) COLLECTOR CURRENT : IC (A) Fig.8 DC current gain vs. collector current ( ) −5 Fig.6 lC/lB=30 −0.5 −5 −10 COLLECTOR CURRENT : IC (A) COLLECTOR CURRENT : IC (A) −2 COLLECTOR CURRENT : IC (A) Collector-emitter saturation voltage vs. collector current ( ) 20 Fig.3 1k COLLECTOR CURRENT : IC (A) −5 50 Grounded emitter output characteristics VCE= −2V 100 −2V −1V 100 −2.0 10 5 −1m −2m −5m −0.01 −0.02 −0.05 −0.1 −0.2 −0.5 −1 −2 COLLECTOR SATURATION VOLTAGE : VCE(sat) (V) −0.8 500 10 Fig.7 −0.4 VCE= −5V 200 10 IB=0A 0 5k DC CURRENT GAIN : hFE DC CURRENT GAIN : hFE 200 −0.02 −1 2k 1k −0.05 −5mA Fig.2 VCE= −1V 500 −0.1 −2 1k 500 COLLECTOR TO EMITTER VOLTAGE : VCE (V) 2k 50 −10mA Grounded emitter propagation characteristics 5k 100 −3 0 Ta=25°C 2k −15mA −0.4 −0.6 −0.8 −1.0 −1.2 −1.4 BASE TO EMITTER VOLTAGE : VBE (V) 5k Ta=25°C mA −30 A −25m −20mA DC CURRENT GAIN : hFE Ta=100°C 25°C −25°C −5 −50mA −45mA −40mA −4 −35mA COLLECTOR SATURATION VOLTAGE : VCE(sat) (V) COLLECTOR CURRENT : IC (A) −2 −1 −500m COLLECTOR CURRENT : IC (A) VCE= −2V −5 COLLECTOR SATURATION VOLTAGE : VCE(sat) (V) −10 ) Fig.9 Collector-emitter saturation voltage vs. collector current ( Rev.B ) 3/4 2SB1386 / 2SB1412 1 000 lC/lB=50 −25°C 25°C Ta=100°C −2 −1 −0.5 −0.2 −0.1 −0.05 −0.02 −0.01 −2m −5m −0.01−0.02 −0.05 −0.1 −0.2 −0.5 −1 −2 Ta=25°C VCE= −6V 500 200 100 50 20 10 5 2 1 −5 −10 1 COLLECTOR CURRENT : IC (A) EMITTER TO BASE VOLTAGE : VEB (V) Fig.13 Emitter input capacitance vs. emitter-base voltage COLLECTOR CURRENT : IC (A) 20 10 −0.1 −0.2 −0.5 −1 −2 −5 −10 −20 −50 COLLECTOR TO BASE VOLTAGE : VCB (V) Fig.12 Collector output capacitance vs. collector-base voltage ∗ 20 10 5 2 1 500m s −10 50 s −5 100 Ta=25°C Single nonrepetitive pulse 50 0m −2 200 0m −1 Ta=25°C f=1MHz IE=0A 500 =1 20 100 DC 50 −0.5 500 1000 Fig.11 Gain bandwidth product vs. emitter current 0 =1 100 −0.2 50 100 200 1000 Pw 200 10 −0.1 20 10 Pw EMITTER INTPUT CAPACITANCE : Cib (pF) Ta=25°C f=1MHz IC=0A 500 5 EMITTER CURRENT : IE (mA) Fig.10 Collector-emitter saturation voltage vs. collector current ( ) 1000 2 COLLECTOR OUTPUT CAPACITANCE : Cob (pF) −5 TRANSEITION FREQUENCY : fT (MHz) COLLECTOR SATURATION VOLTAGE : VCE(sat) (V) Transistors 200m 100m 50m 20m 10m 0.2 0.5 1 2 5 10 20 50 100 200 500 COLLECTOR TO EMITTER VOLTAGE : −VCE (V) Fig.14 Safe operation area F(2SB1412) Rev.B 4/4 Appendix Notes No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD. The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered. Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set. Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices. Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer. Products listed in this document are no antiradiation design. The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance. It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact your nearest sales office. ROHM Customer Support System www.rohm.com Copyright © 2007 ROHM CO.,LTD. THE AMERICAS / EUPOPE / ASIA / JAPAN Contact us : webmaster@ rohm.co. jp 21, Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan TEL : +81-75-311-2121 FAX : +81-75-315-0172 Appendix1-Rev2.0