® RT8884B Multi-Phase PWM Controller for CPU Core Power Supply General Description Features The RT8884B is a 4/3/2/1 multi-phase synchronous Buck controller designed to meet Intel VR12.5 compatible CPU specification with a serial VID control interface. The RT8884B adopts G-NAVPTM (Green Native AVP) which is Richtek's proprietary topology derived from finite DC gain of EA amplifier with current mode control, making it easy to set the droop to meet all Intel CPU requirements of AVP (Adaptive Voltage Positioning). Based on the GNAVPTM topology, the RT8884B also features a quick response mechanism for optimized AVP performance during load transient. The RT8884B supports mode transition function with various operating states. A Serial VID (SVID) interface is built in the RT8884B to communicate with Intel VR12.5 compliant CPU. The RT8884B supports VID on-the-fly function with three different slew rates : Fast, Slow and Decay. By utilizing the G-NAVPTM topology, the operating frequency of the RT8884B varies with VID, load current and input voltage to further enhance the efficiency even in CCM. Besides G-NAVP TM, the CCRCOT (Constant Current Ripple Constant On Time) technology provides superior output voltage ripple over the entire input/output range. Intel VR12.5 Serial VID Interface Compatible 4/3/2/1 Phase PWM Controller G-NAVPTM Topology 0.5% DAC Accuracy Differential Remote Voltage Sensing Built-in ADC for Platform Programming Accurate Current Balance System Thermal Compensated AVP Diode Emulation Mode at Light Load Condition for Single Phase Operation Fast Transient Response VR Ready Indicator Thermal Throttling Current Monitor Output OVP, UVP, OCP, NVP, UVLO External No-Load Offset Setting DVID Enhancement Small 32-Lead WQFN Package RoHS Compliant and Halogen Free Applications VR12.5 Intel Core Power Supply Notebook/Desktop Computer/Servers Multi-phase CPU Core Power Supply AVP Step-Down Converter Simplified Application Circuit RT8884B To PCH To CPU VR_RDY PWM1 RT9624A VR_HOT PWM2 RT9624A PWM3 RT9624A PWM4 RT9624A VCLK VDIO ALERT Copyright © 2013 Richtek Technology Corporation. All rights reserved. DS8884B-01 September 2013 VCORE is a registered trademark of Richtek Technology Corporation. www.richtek.com 1 RT8884B Ordering Information Marking Information 0F= : Product Code RT8884B Package Type QW : WQFN-32L 4x4 (W-Type) 0F=YM DNN YMDNN : Date Code Lead Plating System G : Green (Halogen Free and Pb Free) Note : Richtek products are : ` RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020. ` Suitable for use in SnPb or Pb-free soldering processes. Pin Configurations ISEN1N ISEN2N ISEN2P EN PWM2 PWM1 PWM3 PWM4 (TOP VIEW) 32 31 30 29 28 27 26 25 ISEN1P ISEN3P ISEN3N ISEN4N ISEN4P IMON VREF COMP 1 24 2 23 3 4 5 6 7 22 21 GND 20 33 8 19 18 17 DVD VR_RDY TONSET VCLK ALERT VDIO VR_HOT TSEN FB VSEN RGND VCC SET1 SET2 SET3 IBIAS 9 10 11 12 13 14 15 16 WQFN-32L 4x4 Copyright © 2013 Richtek Technology Corporation. All rights reserved. www.richtek.com 2 is a registered trademark of Richtek Technology Corporation. DS8884B-01 September 2013 RT8884B Functional Pin Description Pin No. Pin Name Pin Function 1, 30, 2, 5 ISEN [1:4] P Positive Current Sense Inputs of Channel 1, 2, 3 and 4. 32, 31, 3, 4 ISEN [1:4] N Negative Current Sense Inputs of Channel 1, 2, 3 and 4. 6 IMON CPU CORE Current Monitor Output. This pin outputs a voltage proportional to the output current. 7 VREF Fixed 0.6V Output Reference Voltage. This voltage is only used to offset the output voltage of IMON pin. Connect a 0.47μF decoupling capacitor between this pin and GND. 8 COMP CORE VR Compensation. This pin is an error amplifier output pin. 9 FB 10 VSEN 11 RGND 12 VCC 13 SET1 1 Platform Setting. Platform can use this pin to set DVID time, RSET, DVID width and OCS. 14 SET2 2 Platform Setting. Platform can use this pin to set ICCMAX, QRTH and QRSET. 15 SET3 3 Platform Setting. Platform can use this to set output offset voltage. 16 IBIAS Internal Bias Current Setting. Connect a 100kΩ resistor from this pin to GND for setting the internal current. Don’t connect a bypass capacitor from this pin to GND. 17 TSEN Thermal Sense Input for CORE VR. 18 VR_HOT Thermal Monitor Output. (Active low). 19 VDIO VR and CPU Data Transmission Interface. 20 ALERT SVID Alert. (Active low) 21 VCLK Synchronous Clock from the CPU. 22 TONSET On-time Setting. An on-time setting resistor is connected from this pin to input voltage. 23 VR_RDY VR Ready Indicator. 24 DVD Divided Input Voltage Detection of CORE VR. Connect this pin to a voltage divider from input voltage of power stage to detect input voltage. PWM [1:4] PWM Outputs for Channel 1, 2, 3 and 4. EN VR Enable. GND Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation. Negative Input of the Error Amplifier. This pin is for output voltage feedback to controller. VR Voltage Sense Input. This pin is connected to the terminal of VR output voltage. Return Ground for VR. This pin is the negative node of the differential remote voltage sensing. Controller Power Supply. Connect this pin to 5V and place a minimum 2.2μF decoupling capacitor. The decoupling capacitor should be placed to this pin as close as possible. st nd 27, 28, 26, 25 29 33 (Exposed Pad) rd Copyright © 2013 Richtek Technology Corporation. All rights reserved. DS8884B-01 September 2013 is a registered trademark of Richtek Technology Corporation. www.richtek.com 3 RT8884B VR_RDY VCC DVD VSEN EN VR_HOT ALERT VDIO IMONI VCLK TSEN SET3 SET2 SET1 Function Block Diagram UVLO MUX GND IBIAS ADC SVID Interface Configuration Registers Control Logic From Control Logic RGND DAC TON, QR_TH QRWIDTH DVID_TH, DVID_WTH DVID_TH, DVID_WTH Soft-Start & Slew Rate Control VSET FB Loop Control Protection Logic ERROR AMP + - TONSET OCS RSET PWM1 Offset Cancellation + + COMP + - QR_TH + ISEN2N - ISEN3P + ISEN3N - ISEN4P + ISEN4N - PWM2 PWM3 PWM4 QRWIDTH 1/2 IB1 Ai Current mirror ISEN2P TON GEN - Current mirror ISEN1P ISEN1N PWM CMP RSET IB2 IMON Filter Current Balance IMONI Current mirror IB1 IB3 IB2 IB3 IB4 OCP To Protection Logic Current mirror + IB4 OCS OC - VSEN To Protection Logic OVP/UVP/NVP IMON VREF Copyright © 2013 Richtek Technology Corporation. All rights reserved. www.richtek.com 4 is a registered trademark of Richtek Technology Corporation. DS8884B-01 September 2013 RT8884B Operation The RT8884B adopts G-NAVPTM (Green Native AVP) which is Richtek's proprietary topology derived from finite DC gain of EA amplifier with current mode control, making it easy to set the droop to meet all Intel CPU requirements of AVP (Adaptive Voltage Positioning). The RT8884B adopts the G-NAVPTM controller, which is one type of current mode constant on-time control with DC offset cancellation. The approach can not only improve DC offset problem for increasing system accuracy but also provide fast transient response. For the RT8884B, when current feedback signal reaches COMP signal to generate an on-time width to achieve PWM modulation. Loop Control Protection Logic It controls the power on sequence, the protection behavior, and the operational phase number. Current Balance Each phase current sense signal is sent to the current balance circuit which adjusts the on-time of each phase to optimize current sharing. Offset Cancellation Cancel the current/voltage ripple issue to get the accurate VSEN. UVLO TON GEN Generate the PWM1 to PWM4 sequentially according to the phase control signal from the Loop Control Protection Logic. SVID Interface/Configuration Registers/Control Logic The interface that receives the SVID signal from CPU and sends the relative signals to Loop Control Protection Logic to execute the action by CPU. Detect the DVD and VCC voltage and issue POR signal as they are high enough. DAC Generate an analog signal according to the digital code generated by Control Logic. Soft-Start & Slew Rate Control Control the Dynamic VID slew rate of VSET according to the SetVID fast or SetVID slow. The registers save the pin setting data from ADC output. The Control Logic controls the ADC timing and generates the digital code of the VID that is relative to VSEN. Copyright © 2013 Richtek Technology Corporation. All rights reserved. DS8884B-01 September 2013 is a registered trademark of Richtek Technology Corporation. www.richtek.com 5 RT8884B Table 1. VR12.5 VID Code Table VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 HEX Voltage (V) 0 0 0 0 0 0 0 0 00 0.000 0 0 0 0 0 0 0 1 01 0.500 0 0 0 0 0 0 1 0 02 0.510 0 0 0 0 0 0 1 1 03 0.520 0 0 0 0 0 1 0 0 04 0.530 0 0 0 0 0 1 0 1 05 0.540 0 0 0 0 0 1 1 0 06 0.550 0 0 0 0 0 1 1 1 07 0.560 0 0 0 0 1 0 0 0 08 0.570 0 0 0 0 1 0 0 1 09 0.580 0 0 0 0 1 0 1 0 0A 0.590 0 0 0 0 1 0 1 1 0B 0.600 0 0 0 0 1 1 0 0 0C 0.610 0 0 0 0 1 1 0 1 0D 0.620 0 0 0 0 1 1 1 0 0E 0.630 0 0 0 0 1 1 1 1 0F 0.640 0 0 0 1 0 0 0 0 10 0.650 0 0 0 1 0 0 0 1 11 0.660 0 0 0 1 0 0 1 0 12 0.670 0 0 0 1 0 0 1 1 13 0.680 0 0 0 1 0 1 0 0 14 0.690 0 0 0 1 0 1 0 1 15 0.700 0 0 0 1 0 1 1 0 16 0.710 0 0 0 1 0 1 1 1 17 0.720 0 0 0 1 1 0 0 0 18 0.730 0 0 0 1 1 0 0 1 19 0.740 0 0 0 1 1 0 1 0 1A 0.750 0 0 0 1 1 0 1 1 1B 0.760 0 0 0 1 1 1 0 0 1C 0.770 0 0 0 1 1 1 0 1 1D 0.780 0 0 0 1 1 1 1 0 1E 0.790 0 0 0 1 1 1 1 1 1F 0.800 0 0 1 0 0 0 0 0 20 0.810 0 0 1 0 0 0 0 1 21 0.820 0 0 1 0 0 0 1 0 22 0.830 0 0 1 0 0 0 1 1 23 0.840 0 0 1 0 0 1 0 0 24 0.850 0 0 1 0 0 1 0 1 25 0.860 0 0 1 0 0 1 1 0 26 0.870 0 0 1 0 0 1 1 1 27 0.880 Copyright © 2013 Richtek Technology Corporation. All rights reserved. www.richtek.com 6 is a registered trademark of Richtek Technology Corporation. DS8884B-01 September 2013 RT8884B VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 HEX Voltage (V) 0 0 1 0 1 0 0 0 28 0.890 0 0 1 0 1 0 0 1 29 0.900 0 0 1 0 1 0 1 0 2A 0.910 0 0 1 0 1 0 1 1 2B 0.920 0 0 1 0 1 1 0 0 2C 0.930 0 0 1 0 1 1 0 1 2D 0.940 0 0 1 0 1 1 1 0 2E 0.950 0 0 1 0 1 1 1 1 2F 0.960 0 0 1 1 0 0 0 0 30 0.970 0 0 1 1 0 0 0 1 31 0.980 0 0 1 1 0 0 1 0 32 0.990 0 0 1 1 0 0 1 1 33 1.000 0 0 1 1 0 1 0 0 34 1.010 0 0 1 1 0 1 0 1 35 1.020 0 0 1 1 0 1 1 0 36 1.030 0 0 1 1 0 1 1 1 37 1.040 0 0 1 1 1 0 0 0 38 1.050 0 0 1 1 1 0 0 1 39 1.060 0 0 1 1 1 0 1 0 3A 1.070 0 0 1 1 1 0 1 1 3B 1.080 0 0 1 1 1 1 0 0 3C 1.090 0 0 1 1 1 1 0 1 3D 1.100 0 0 1 1 1 1 1 0 3E 1.110 0 0 1 1 1 1 1 1 3F 1.120 0 1 0 0 0 0 0 0 40 1.130 0 1 0 0 0 0 0 1 41 1.140 0 1 0 0 0 0 1 0 42 1.150 0 1 0 0 0 0 1 1 43 1.160 0 1 0 0 0 1 0 0 44 1.170 0 1 0 0 0 1 0 1 45 1.180 0 1 0 0 0 1 1 0 46 1.190 0 1 0 0 0 1 1 1 47 1.200 0 1 0 0 1 0 0 0 48 1.210 0 1 0 0 1 0 0 1 49 1.220 0 1 0 0 1 0 1 0 4A 1.230 0 1 0 0 1 0 1 1 4B 1.240 0 1 0 0 1 1 0 0 4C 1.250 0 1 0 0 1 1 0 1 4D 1.260 0 1 0 0 1 1 1 0 4E 1.270 0 1 0 0 1 1 1 1 4F 1.280 Copyright © 2013 Richtek Technology Corporation. All rights reserved. DS8884B-01 September 2013 is a registered trademark of Richtek Technology Corporation. www.richtek.com 7 RT8884B VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 HEX Voltage (V) 0 1 0 1 0 0 0 0 50 1.290 0 1 0 1 0 0 0 1 51 1.300 0 1 0 1 0 0 1 0 52 1.310 0 1 0 1 0 0 1 1 53 1.320 0 1 0 1 0 1 0 0 54 1.330 0 1 0 1 0 1 0 1 55 1.340 0 1 0 1 0 1 1 0 56 1.350 0 1 0 1 0 1 1 1 57 1.360 0 1 0 1 1 0 0 0 58 1.370 0 1 0 1 1 0 0 1 59 1.380 0 1 0 1 1 0 1 0 5A 1.390 0 1 0 1 1 0 1 1 5B 1.400 0 1 0 1 1 1 0 0 5C 1.410 0 1 0 1 1 1 0 1 5D 1.420 0 1 0 1 1 1 1 0 5E 1.430 0 1 0 1 1 1 1 1 5F 1.440 0 1 1 0 0 0 0 0 60 1.450 0 1 1 0 0 0 0 1 61 1.460 0 1 1 0 0 0 1 0 62 1.470 0 1 1 0 0 0 1 1 63 1.480 0 1 1 0 0 1 0 0 64 1.490 0 1 1 0 0 1 0 1 65 1.500 0 1 1 0 0 1 1 0 66 1.510 0 1 1 0 0 1 1 1 67 1.520 0 1 1 0 1 0 0 0 68 1.530 0 1 1 0 1 0 0 1 69 1.540 0 1 1 0 1 0 1 0 6A 1.550 0 1 1 0 1 0 1 1 6B 1.560 0 1 1 0 1 1 0 0 6C 1.570 0 1 1 0 1 1 0 1 6D 1.580 0 1 1 0 1 1 1 0 6E 1.590 0 1 1 0 1 1 1 1 6F 1.600 0 1 1 1 0 0 0 0 70 1.610 0 1 1 1 0 0 0 1 71 1.620 0 1 1 1 0 0 1 0 72 1.630 0 1 1 1 0 0 1 1 73 1.640 0 1 1 1 0 1 0 0 74 1.650 0 1 1 1 0 1 0 1 75 1.660 0 1 1 1 0 1 1 0 76 1.670 0 1 1 1 0 1 1 1 77 1.680 Copyright © 2013 Richtek Technology Corporation. All rights reserved. www.richtek.com 8 is a registered trademark of Richtek Technology Corporation. DS8884B-01 September 2013 RT8884B VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 HEX Voltage (V) 0 1 1 1 1 0 0 0 78 1.690 0 1 1 1 1 0 0 1 79 1.700 0 1 1 1 1 0 1 0 7A 1.710 0 1 1 1 1 0 1 1 7B 1.720 0 1 1 1 1 1 0 0 7C 1.730 0 1 1 1 1 1 0 1 7D 1.740 0 1 1 1 1 1 1 0 7E 1.750 0 1 1 1 1 1 1 1 7F 1.760 1 0 0 0 0 0 0 0 80 1.770 1 0 0 0 0 0 0 1 81 1.780 1 0 0 0 0 0 1 0 82 1.790 1 0 0 0 0 0 1 1 83 1.800 1 0 0 0 0 1 0 0 84 1.810 1 0 0 0 0 1 0 1 85 1.820 1 0 0 0 0 1 1 0 86 1.830 1 0 0 0 0 1 1 1 87 1.840 1 0 0 0 1 0 0 0 88 1.850 1 0 0 0 1 0 0 1 89 1.860 1 0 0 0 1 0 1 0 8A 1.870 1 0 0 0 1 0 1 1 8B 1.880 1 0 0 0 1 1 0 0 8C 1.890 1 0 0 0 1 1 0 1 8D 1.900 1 0 0 0 1 1 1 0 8E 1.910 1 0 0 0 1 1 1 1 8F 1.920 1 0 0 1 0 0 0 0 90 1.930 1 0 0 1 0 0 0 1 91 1.940 1 0 0 1 0 0 1 0 92 1.950 1 0 0 1 0 0 1 1 93 1.960 1 0 0 1 0 1 0 0 94 1.970 1 0 0 1 0 1 0 1 95 1.980 1 0 0 1 0 1 1 0 96 1.990 1 0 0 1 0 1 1 1 97 2.000 1 0 0 1 1 0 0 0 98 2.010 1 0 0 1 1 0 0 1 99 2.020 1 0 0 1 1 0 1 0 9A 2.030 1 0 0 1 1 0 1 1 9B 2.040 1 0 0 1 1 1 0 0 9C 2.050 1 0 0 1 1 1 0 1 9D 2.060 1 0 0 1 1 1 1 0 9E 2.070 1 0 0 1 1 1 1 1 9F 2.080 Copyright © 2013 Richtek Technology Corporation. All rights reserved. DS8884B-01 September 2013 is a registered trademark of Richtek Technology Corporation. www.richtek.com 9 RT8884B VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 HEX Voltage (V) 1 0 1 0 0 0 0 0 A0 2.090 1 0 1 0 0 0 0 1 A1 2.100 1 0 1 0 0 0 1 0 A2 2.110 1 0 1 0 0 0 1 1 A3 2.120 1 0 1 0 0 1 0 0 A4 2.130 1 0 1 0 0 1 0 1 A5 2.140 1 0 1 0 0 1 1 0 A6 2.150 1 0 1 0 0 1 1 1 A7 2.160 1 0 1 0 1 0 0 0 A8 2.170 1 0 1 0 1 0 0 1 A9 2.180 1 0 1 0 1 0 1 0 AA 2.190 1 0 1 0 1 0 1 1 AB 2.200 1 0 1 0 1 1 0 0 AC 2.210 1 0 1 0 1 1 0 1 AD 2.220 1 0 1 0 1 1 1 0 AE 2.230 1 0 1 0 1 1 1 1 AF 2.240 1 0 1 1 0 0 0 0 B0 2.250 1 0 1 1 0 0 0 1 B1 2.260 1 0 1 1 0 0 1 0 B2 2.270 1 0 1 1 0 0 1 1 B3 2.280 1 0 1 1 0 1 0 0 B4 2.290 1 0 1 1 0 1 0 1 B5 2.300 1 0 1 1 0 1 1 0 B6 2.310 1 0 1 1 0 1 1 1 B7 2.320 1 0 1 1 1 0 0 0 B8 2.330 1 0 1 1 1 0 0 1 B9 2.340 1 0 1 1 1 0 1 0 BA 2.350 1 0 1 1 1 0 1 1 BB 2.360 1 0 1 1 1 1 0 0 BC 2.370 1 0 1 1 1 1 0 1 BD 2.380 1 0 1 1 1 1 1 0 BE 2.390 1 0 1 1 1 1 1 1 BF 2.400 1 1 0 0 0 0 0 0 C0 2.410 1 1 0 0 0 0 0 1 C1 2.420 1 1 0 0 0 0 1 0 C2 2.430 1 1 0 0 0 0 1 1 C3 2.440 1 1 0 0 0 1 0 0 C4 2.450 1 1 0 0 0 1 0 1 C5 2.460 1 1 0 0 0 1 1 0 C6 2.470 1 1 0 0 0 1 1 1 C7 2.480 Copyright © 2013 Richtek Technology Corporation. All rights reserved. www.richtek.com 10 is a registered trademark of Richtek Technology Corporation. DS8884B-01 September 2013 RT8884B VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 HEX Voltage (V) 1 1 0 0 1 0 0 0 C8 2.490 1 1 0 0 1 0 0 1 C9 2.500 1 1 0 0 1 0 1 0 CA 2.510 1 1 0 0 1 0 1 1 CB 2.520 1 1 0 0 1 1 0 0 CC 2.530 1 1 0 0 1 1 0 1 CD 2.540 1 1 0 0 1 1 1 0 CE 2.550 1 1 0 0 1 1 1 1 CF 2.560 1 1 0 1 0 0 0 0 D0 2.570 1 1 0 1 0 0 0 1 D1 2.580 1 1 0 1 0 0 1 0 D2 2.590 1 1 0 1 0 0 1 1 D3 2.600 1 1 0 1 0 1 0 0 D4 2.610 1 1 0 1 0 1 0 1 D5 2.620 1 1 0 1 0 1 1 0 D6 2.630 1 1 0 1 0 1 1 1 D7 2.640 1 1 0 1 1 0 0 0 D8 2.650 1 1 0 1 1 0 0 1 D9 2.660 1 1 0 1 1 0 1 0 DA 2.670 1 1 0 1 1 0 1 1 DB 2.680 1 1 0 1 1 1 0 0 DC 2.690 1 1 0 1 1 1 0 1 DD 2.700 1 1 0 1 1 1 1 0 DE 2.710 1 1 0 1 1 1 1 1 DF 2.720 1 1 1 0 0 0 0 0 E0 2.730 1 1 1 0 0 0 0 1 E1 2.740 1 1 1 0 0 0 1 0 E2 2.750 1 1 1 0 0 0 1 1 E3 2.760 1 1 1 0 0 1 0 0 E4 2.770 1 1 1 0 0 1 0 1 E5 2.780 1 1 1 0 0 1 1 0 E6 2.790 1 1 1 0 0 1 1 1 E7 2.800 1 1 1 0 1 0 0 0 E8 2.810 1 1 1 0 1 0 0 1 E9 2.820 1 1 1 0 1 0 1 0 EA 2.830 1 1 1 0 1 0 1 1 EB 2.840 1 1 1 0 1 1 0 0 EC 2.850 1 1 1 0 1 1 0 1 ED 2.860 1 1 1 0 1 1 1 0 EE 2.870 1 1 1 0 1 1 1 1 EF 2.880 Copyright © 2013 Richtek Technology Corporation. All rights reserved. DS8884B-01 September 2013 is a registered trademark of Richtek Technology Corporation. www.richtek.com 11 RT8884B VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 HEX Voltage (V) 1 1 1 1 0 0 0 0 F0 2.890 1 1 1 1 0 0 0 1 F1 2.900 1 1 1 1 0 0 1 0 F2 2.910 1 1 1 1 0 0 1 1 F3 2.920 1 1 1 1 0 1 0 0 F4 2.930 1 1 1 1 0 1 0 1 F5 2.940 1 1 1 1 0 1 1 0 F6 2.950 1 1 1 1 0 1 1 1 F7 2.960 1 1 1 1 1 0 0 0 F8 2.970 1 1 1 1 1 0 0 1 F9 2.980 1 1 1 1 1 0 1 0 FA 2.990 1 1 1 1 1 0 1 1 FB 3.000 1 1 1 1 1 1 0 0 FC 3.010 1 1 1 1 1 1 0 1 FD 3.020 1 1 1 1 1 1 1 0 FE 3.030 1 1 1 1 1 1 1 1 FF 3.040 Copyright © 2013 Richtek Technology Corporation. All rights reserved. www.richtek.com 12 is a registered trademark of Richtek Technology Corporation. DS8884B-01 September 2013 RT8884B Table 2. Standard Serial VID Commands Code Commands Master Payload Contents Slave Payload Contents 00h not supported N/A N/A N/A 01h SetVID_Fast VID code N/A 1. Set new target VID code, VR jumps to new VID target with controlled default “fast” slew rate 12.5mV/μs. 2. Set VR_Settled when VR reaches target VID voltage. 02h SetVID_Slow VID code N/A 1. Set new target VID code, VR jumps to new VID target with controlled default “slow” slew rate 3.125mV/μs. 2. Set VR_Settled when VR reaches target VID voltage. N/A 1. Set new target VID code, VR jumps to new VID target, but does not control the slew rate. The output voltage decays at a rate proportional to the load current. 2. Low side MOSFET is not allowed to sync current. 3. ACK 11b when target higher than current VOUT voltage. 4. ACK 10b when target lower than current VOUT voltage. 03h SetVID_Decay VID code Description 04h SetPS Byte indicating power states N/A 1. Set power state. 2. ACK 11b when not support. 3. ACK 10b even slave not change configuration. 4. ACK 11b for still running SetVID command. 5. VR remains in lower state when receiving SetVID (decay). 05h SetRegADR Pointer of registers in data table N/A 1. Set the pointer of the data register. 2. ACK 11b for address outside of support. 3. NAK 01b for SetADR (all call). 06h SetReg DAT New data register content N/A 1. Write the contents to the data register. 2. NAK 01b for SetReg (all call). 07h GetReg 08h to 1Fh not supported Specified Register Contents N/A N/A Copyright © 2013 Richtek Technology Corporation. All rights reserved. DS8884B-01 September 2013 1. Slave returns the contents of the specified register as the payload. 2. ACK 11b for non support address. 3. NAK 01b for GetReg (all call). N/A is a registered trademark of Richtek Technology Corporation. www.richtek.com 13 RT8884B Table 3. SVID Data and Configuration Register Index Register Name 00h 01h 02h 05h Vendor ID Product ID Product Revision Protocol ID 06h Description Access Default Vendor ID Product ID Product Revision SVID Protocol ID RO, Vendor RO, Vendor RO, Vendor RO, Vendor 1Eh 84h 00h 02h Capability Bit mapped register, identifies the SVID VR Capabilities and which of the optional telemetry register is supported. RO, Vendor 81h 10h Status_1 Data register containing the status of VR. 11h Status-2 Data register containing the status of transmission. 12h Temperature Zone Data register showing temperature zone that has been entered. 15h IOUT At PS0 to PS2, IOUT report data from ADC sense IMON voltage. When power state at PS3, the IOUT report data is fixed to 04h. 1Ch Status_2_lastread The register contains a copy of the status_2. 21h ICC Max Data register containing the ICC max the platform supports. Binary format in A IE 64h = 100A. 22h Temp Max Data register containing the temperature max the platform supports. Binary format in °C IE 64h = 100°C. RO, Platform 64h 24h SR-fast Data register containing the capability of fast slew rate the platform can sustain. Binary format in mV/μs IE 0Ah = 10 mV/μs. RO 0Ah 25h SR-slow Data register containing the capability of slow slew rate. Binary format in mV/μs IE 02h = 2mV/μs. RO 02h 30h VOUT Max The register is programmed by master and sets the maximum VID. RW, Master B5h 31h VID Setting Data register containing currently programmed VID. RW, Master 00h 32h Power State Register containing the current programmed power state. RW, Master 00h 33h Offset Set offset in VID steps. RW, Master 00h 34h Multi VR Configuration Bit mapped data register which configures multiple VRs behavior on the same bus. RW, Master 00h 35h Pointer Scratch pad register for temporary storage of the SetRegADR pointer register. RW, Master 30h R-M, W-PWM R-M, W-PWM R-M, W-PWM R-M, W-PWM R-M, W-PWM RO, Platform 00h 00h 00h 00h 00h 7Dh Notes : RO = Read Only RW = Read/Write R-M = Read by Master W-PWM = Write by PWM Only Vendor = Hard Coded by VR Vendor Platform = Programmed by the Master PWM = Programmed by the VR Control IC Copyright © 2013 Richtek Technology Corporation. All rights reserved. www.richtek.com 14 is a registered trademark of Richtek Technology Corporation. DS8884B-01 September 2013 RT8884B Absolute Maximum Ratings (Note 1) VCC to GND --------------------------------------------------------------------------------------------------------RGND to GND ------------------------------------------------------------------------------------------------------TONSET to GND ---------------------------------------------------------------------------------------------------Other Pins -----------------------------------------------------------------------------------------------------------Power Dissipation, PD @ TA = 25°C −0.3V to 6.5V −0.3V to 0.3V −0.3V to 6.5V −0.3V to (VCC + 0.3V) WQFN-32L 4x4 ----------------------------------------------------------------------------------------------------- 3.6W Package Thermal Resistance (Note 2) WQFN-32L 4x4, θJA ------------------------------------------------------------------------------------------------ 27.8°C/W WQFN-32L 4x4, θJC ----------------------------------------------------------------------------------------------- 7°C/W Junction Temperature ---------------------------------------------------------------------------------------------- 150°C Lead Temperature (Soldering, 10 sec.) ------------------------------------------------------------------------ 260°C Storage Temperature Range ------------------------------------------------------------------------------------- −65°C to 150°C ESD Susceptibility (Note 3) HBM (Human Body Model) --------------------------------------------------------------------------------------- 2kV Recommended Operating Conditions (Note 4) Supply Voltage, VCC ---------------------------------------------------------------------------------------------- 4.5V to 5.5V Junction Temperature Range ------------------------------------------------------------------------------------- −40°C to 125°C Ambient Temperature Range ------------------------------------------------------------------------------------- −40°C to 85°C Electrical Characteristics (VCC = 5V, TA = 25°C, unless otherwise specified) Parameter Symbol Test Conditions Min Typ Max Unit Supply Input Supply Current IVCC VEN = H, Not switching -- 4.1 -- mA Supply Current at PS3 IVCC_PS3 VEN = H, Not switching -- 2.7 -- mA Shutdown Current ISHDN VEN = 0V -- -- 5 μA VDAC = 1.5V − 2.3V −0.5 0 0.5 % of VID VDAC = 1V − 1.49V −8 0 8 VDAC = 0.5V − 0.99V −10 0 10 Set VID slow 2.5 3.125 3.75 Set VID fast 10 12.5 15 Reference and DAC DAC Accuracy VFB mV Slew Rate Dynamic VID Slew Rate SR mV/μs EA Amplifier DC Gain ADC RL = 47kΩ 70 -- -- dB Gain-Bandwidth Product GBW CLOAD = 5pF 4 5 -- MHz Slew Rate SREA CLOAD = 10pF (Gain = −4, RF = 47kΩ, VOUT = 0.5V to −3V) 5 -- -- V/μs Copyright © 2013 Richtek Technology Corporation. All rights reserved. DS8884B-01 September 2013 is a registered trademark of Richtek Technology Corporation. www.richtek.com 15 RT8884B Parameter Symbol Test Conditions Min Typ Max Unit 0.5 -- 3.6 V Output Voltage Range VCOMP R L = 47kΩ Maximum Source/Sink Current IOUTEA VCOMP = 2V -- 5 -- mA Input Offset Voltage VILOFS VIMON = 1V −5 -- 5 mV Current Gain AILGAIN VIMON − VVREF = 1V VFB = VCOMP = 1.7V -- 1/2 -- A/A Load-Line Current Gain Amplifier Current Sensing Amplifier Input Offset Voltage VOSCS −0.8 -- 0.8 mV Impedance at Positive Input R ISENxP 1 -- -- MΩ Current Mirror Gain AMIRROR IIMON / ISENxN 0.97 1 1.03 A/A TONSET Pin Voltage VTON IRTON = 80μA, VDAC = 1.7V 1.6 1.7 1.8 V On-Time Setting T ON IRTON = 80μA, VDAC = 1.7V 450 500 550 ns Input Current Range IRTON VDAC = 1.7V 25 -- 280 μA Minimum Off time T OFF VDAC = 1.7V -- 400 -- ns VIBIAS R IBIAS = 100kΩ 1.85 2 -- V 1 -- -- MΩ Enable OFS function and offset 600mV 1.95 2.4 2.44 Enable OFS function and offset 300mV 1.76 1.8 1.84 Enable OFS function and offset 0V 1.16 1.2 1.24 Enable OFS function and offset −50mV 1.06 1.1 1.14 Enable OFS function and offset −250mV 0.66 0.7 0.74 -- -- 0.55 4.1 4.3 4.45 V -- 200 -- mV TON Setting IBIAS IBIAS Pin Voltage OFS Setting Impedance R OFS Set OFS Voltage VSET3 Disable V Protections Under Voltage Lockout Threshold Over Voltage Protection Threshold VUVLO ΔVUVLO VOV Under Voltage Protection Threshold VUV Negative Voltage Protection VNV Threshold Falling edge hysteresis VID higher than 1.5V VID VID VID + 300 + 350 + 400 VID lower than 1.5V 1800 1850 1900 Respect to VID voltage −400 −350 −300 mV −100 −70 -- mV mV EN and VR_RDY EN Input Voltage Logic-High VIH 0.7 -- -- Logic-Low VIL -- -- 0.3 −1 -- 1 Leakage Current of EN Copyright © 2013 Richtek Technology Corporation. All rights reserved. www.richtek.com 16 V μA is a registered trademark of Richtek Technology Corporation. DS8884B-01 September 2013 RT8884B Parameter Symbol Test Conditions Min Typ Max Unit VR_RDY Delay TVR_RDY VSEN = VBoot to VR_RDY High 3 4.5 6 μs VR_RDY Pull Low Voltage VPGOOD IVR_RDY = 10mA -- -- 0.13 V VDVD Detect VIN Voltage 2 -- -- V Logic-High VIH Respect to INTEL Spec. with 50mV hysteresis 0.65 -- -- Logic-Low VIL -- -- 0.45 −1 -- 1 μA -- -- 0.13 V 0.55 0.6 0.65 V 1.692 1.7 1.708 V VIMON − VIMON_INI = 1.6V 252 255 258 VIMON − VIMON_INI = 0.8V 125 128 131 0 0 3 320 400 480 μs DVD DVD Input Serial VID and VR_HOT VCLK, VDIO Input Voltage Leakage Current of VCLK, I VDIO, ALERT and VR_HOT LEAK_IN V IVDIO = 10mA VDIO, ALERT and VR_HOT IALERT = 10mA Pull Low Voltage IVR_HOT = 10mA VREF and VBOOT VREF Voltage VREF VBOOT Voltage VBOOT No Load, set VBOOT = 1.7V ADC Digital IMON Set VIMON VIMON − VIMON_INI = 0V Decimal Update Period of IMON TIMON TSEN Threshold for Tmp_Zone [7] transition VTSEN 100°C -- 1.887 -- V TSEN Threshold for Tmp_Zone [6] transition VTSEN 97°C -- 1.837 -- V TSEN Threshold for Tmp_Zone [5] transition VTSEN 94°C -- 1.784 -- V TSEN Threshold for Tmp_Zone [4] transition VTSEN 91°C -- 1.729 -- V TSEN Threshold for Tmp_Zone [3] transition VTSEN 88°C -- 1.672 -- V TSEN Threshold for Tmp_Zone [2] transition VTSEN 85°C -- 1.612 -- V TSEN Threshold for Tmp_Zone [1] transition VTSEN 82°C -- 1.551 -- V TSEN Threshold for Tmp_Zone [0] transition VTSEN 75°C -- 1.402 -- V Update Period of TSEN tTSEN 40 50 60 μs Digital Code of ICCMAX C ICCMAX1 VICCMAX = 0.403V 58 64 70 C ICCMAX2 VICCMAX = 0.806V 122 128 134 C ICCMAX3 VICCMAX = 1.6V 248 256 260 Copyright © 2013 Richtek Technology Corporation. All rights reserved. DS8884B-01 September 2013 Decimal is a registered trademark of Richtek Technology Corporation. www.richtek.com 17 RT8884B Parameter Symbol Test Conditions Min Typ Max Unit PWM Driving Capability PWM Source Resistance RPWM_SRC -- -- 30 Ω PWM Sink RPWM_SNK -- -- 10 Ω Note 1. Stresses beyond those listed “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability. Note 2. θJA is measured at TA = 25°C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θJC is measured at the exposed pad of the package. Note 3. Devices are ESD sensitive. Handling precaution is recommended. Note 4. The device is not guaranteed to function outside its operating conditions. Copyright © 2013 Richtek Technology Corporation. All rights reserved. www.richtek.com 18 is a registered trademark of Richtek Technology Corporation. DS8884B-01 September 2013 VCC DS8884B-01 September 2013 Copyright © 2013 Richtek Technology Corporation. All rights reserved. R4 VSS_SENSE VCC_SENSE R3 2.2 R9 9.68k R22 130 Enable R23 150 C9 Optional C7 R25 59.2k R24 10k C8 Optional C6 90pF 18 23 6 7 16 ALERT COMP 9 FB 11 RGND 8 10 VSEN 29 EN 20 VR_HOT VCLK VDIO VR_RDY IMON VREF IBIAS 27 26 5V PHASE UGATE BOOT PHASE UGATE R49 680 EN LGATE RT9624A PWM GND VCC BOOT EN LGATE RT9624A PWM GND VCC R43 680 C31 0.1µF 12V 5V PHASE UGATE BOOT EN LGATE RT9624A PWM GND VCC R37 680 C25 0.1µF 12V 5V PHASE UGATE BOOT EN LGATE RT9624A PWM GND VCC R31 680 C16 0.1µF 12V 5V C10 0.1µF GND 33 (Exposed Pad) ISEN4P 5 ISEN4N 4 PWM4 25 ISEN3P 2 3 ISEN3N PWM3 ISEN2P 30 ISEN2N 31 PWM2 28 ISEN1P 1 32 ISEN1N PWM1 RT8884B 22 TONSET 17 TSEN 13 SET1 14 SET2 15 SET3 12 VCC 24 DVD 21 19 R19 10k C5 390pF R21 130 R20 75 ß = 4485 R18 5.43k R15 100k R5 C2 2.2µF C1 0.1µF R7 1.833k RNTC2 100k VCCIO R17 13.9k R16 12.6k C3 0.1µF R14 130k R12 6.2k Optional R13 1 R11 5.6k R8 75.8k To CPU 5V R2 125k Optional for OFS R6 30k C4 0.47µF VIN ß = 4485 RNTC1 100k R10 100k 12V R1 510k 12V R45 0 R44 2.2 R39 0 R38 2.2 R33 0 R32 2.2 R27 0 R26 2.2 Q8 x 2 C32 0.1µF Q7 Q6 x 2 R34 R40 R41 510 C35 R46 R47 510 Optional R48 C36 1µF L4 360nH / 0.72mΩ C34 390µF Optional R42 C30 1µF L3 C28 390µF Optional R36 C21 1µF 360nH / 0.72mΩ C33 22µF C29 Optional 12V R35 510 C27 22µF C20 L2 R37 VCC_SENSE C22 C23 560µF/7m C22 x4 22µFx19 360nH / 0.72mΩ Optional C19 390µF Optional R30 C15 1µF L1 C13 390µF 360nH / 0.72mΩ R29 510 C18 22µF Optional 12V C26 0.1µF Q5 Q4 x 2 R28 C14 Optional 12V C17 0.1µF Q3 Q2 x 2 C12 22µF Optional 12V C11 0.1µF Q1 LOAD VCORE_OUT R38 VSS_SENSE RT8884B Typical Application Circuit is a registered trademark of Richtek Technology Corporation. www.richtek.com 19 RT8884B Typical Operating Characteristics CORE VR Power On from EN CORE VR Power Off from EN V CORE (2V/Div) V CORE (2V/Div) EN (2V/Div) VR_RDY (2V/Div) EN (2V/Div) VR_RDY (2V/Div) UGATE1 (20V/Div) UGATE1 (20V/Div) VIN = 12V, No Load, Boot VID 1.7V Time (200μs/Div) Time (200μs/Div) CORE VR OCP CORE VR OVP V CORE (2V/Div) V CORE (2V/Div) I LOAD (150A/Div) VR_RDY (1V/Div) VR_RDY (2V/Div) UGATE1 (50V/Div) UGATE1 (20V/Div) LGATE1 (20V/Div) VIN = 12V, Boot VID 1.7V VIN = 12V, Boot VID 1.7V Time (100μs/Div) Time (40μs/Div) CORE VR Dynamic VID Up CORE VR Dynamic VID Down V CORE (1V/Div) V CORE (1V/Div) VCLK (2V/Div) VCLK (2V/Div) VDIO (2V/Div) ALERT (2V/Div) VDIO (2V/Div) ALERT (2V/Div) VIN = 12V, VID = 1.6V to 1.85V, Slew Rate = Slow Time (20μs/Div) Copyright © 2013 Richtek Technology Corporation. All rights reserved. www.richtek.com 20 VIN = 12V, No Load, Boot VID 1.7V VIN = 12V, VID = 1.85V to 1.6V, Slew Rate = Slow Time (20μs/Div) is a registered trademark of Richtek Technology Corporation. DS8884B-01 September 2013 RT8884B CORE VR Dynamic VID Up CORE VR Dynamic VID Down V CORE (1V/Div) V CORE (1V/Div) VCLK (2V/Div) VCLK (2V/Div) VDIO (2V/Div) ALERT (2V/Div) VDIO (2V/Div) ALERT (2V/Div) VIN = 12V, VID = 1.6V to 1.85V, Slew Rate = Fast VIN = 12V, VID = 1.85V to 1.6V, Slew Rate = Fast Time (10μs/Div) Time (10μs/Div) CORE VR Mode Transient CORE VR Mode Transient V CORE (50mV/Div) V CORE (50mV/Div) VCLK (1V/Div) VCLK (1V/Div) UGATE1 (20V/Div) UGATE1 (20V/Div) LGATE1 (10V/Div) LGATE1 (10V/Div) VIN = 12V, VID = 1.7V, PS0 to PS2, ILOAD = 0.6A VIN = 12V, VID = 1.7V, PS2 to PS0, ILOAD = 0.6A Time (100μs/Div) Time (100μs/Div) CORE VR Thermal Monitoring VIMON vs. Load Current 2.5 VIMON (V) 2.0 TSEN (1V/Div) VR_HOT (1V/Div) 1.5 1.0 0.5 VIN = 12V, TSEN Sweep from 1.7V to 2.1V 0.0 Time (10ms/Div) 0 25 50 75 100 125 Load Current (A) Copyright © 2013 Richtek Technology Corporation. All rights reserved. DS8884B-01 September 2013 is a registered trademark of Richtek Technology Corporation. www.richtek.com 21 RT8884B Applications information The RT8884B is a 4/3/2/1 multiphase synchronous Buck controller designed to meet Intel VR12.5 compatible CPU specification with a serial SVID control interface. The controller uses an ADC to implement all kinds of settings to save a total number of pins for easily using and increasing PCB space utilization. RT8884B is used in notebook, desktop computer and server. Current feedback signal Comp signal G-NAVPTM Control Mode The RT8884B adopts the G-NAVPTM controller, which is a current mode constant on-time control with DC offset cancellation. The approach can not only improve DC offset problem for increasing system accuracy but also provide fast transient response. For the RT8884B, when current feedback signal reaches comp signal to generate an ontime width to achieve PWM modulation. Figure 1 shows the basic G-NAVPTM behavior waveforms in continuous conduct mode (CCM). PWM1 PWM2 PWM3 PWM4 Figure 1 (b). G-NAVPTM Behavior Waveforms in CCM in Load Transient. Diode Emulation Mode (DEM) Current feedback signal Comp signal PWM1 PWM2 PWM3 PWM4 Figure 1 (a). G-NAVPTM Behavior Waveforms in CCM in Steady State Copyright © 2013 Richtek Technology Corporation. All rights reserved. www.richtek.com 22 As well-known, the dominate power loss is switching related loss during light load, hence VR needs to be operated in asynchronous mode (or called discontinuous conduct mode, DCM) to reduce switching related loss since switching frequency is dependent on loading in the asynchronous mode. RT8884B can operate in Diode Emulation Mode (DEM) in order to improve light load efficiency. In DEM operation, the behavior of the low side MOSFET(s) needs to work like a diode, that is, the low side MOSFET(s) will be turned on when the phase voltage is a negative value, i.e. the inductor current follows from source to drain of low side MOSFET(s). The low side MOSFET(s) will be turned off when phase voltage is a positive value, i.e. reversed current is not allowed. Figure 2 shows the control behavior in DEM. Figure 3 shows the G-NAVPTM operation in DEM to illustrate the control behaviors. When the load decreases, the discharge time of output capacitors increases during UGATE and LGATE are turned off. Hence, the switching frequency and switching loss will be reduced to improve efficiency in light load condition. is a registered trademark of Richtek Technology Corporation. DS8884B-01 September 2013 RT8884B Inductor current Phase node UGATE LGATE Figure 2. Diode Emulation Mode (DEM) in Steady State Inductor current signal Output capacitor discharge slope COMP signal UGATE LGATE (a). Lighter Load Condition Capacitor discharge slope is lower than Figure 3 (b). Inductor current signal Output capacitor discharge slope COMP signal UGATE LGATE (b). Load Increased Condition Capacitor discharge slope is higher than Figure 3 (a). Figure 3. G-NAVPTM Operation in DEM. Copyright © 2013 Richtek Technology Corporation. All rights reserved. DS8884B-01 September 2013 is a registered trademark of Richtek Technology Corporation. www.richtek.com 23 RT8884B Phase Interleaving Function Per Phase Current Sense RT8884B is a multiphase controller, which has a phase interleaving function, 90 degree phase shift for 4-phase operation, 120 degree phase shift for 3-phase operation and 180 degree phase shift for 2-phase operation which can help reduce output voltage ripple and EMI problem. In the RT8884B, the current signal is used for load-line setting and OC (Over Current) protection. The inductor current sense method adopts the lossless current sensing for allowing high efficiency as illustrated in the Figure 4. When inductance and DCR time constant is equal to RXCX filter network time constant, a voltage ILX x DCR will drop on CX to generate inductor current signal. According to the Figure 4, the ISENxN is as follows : Switching Frequency (TON) Setting RT8884B is one kind of constant on-time control. The patented CCRCOT (Constant Current Ripple COT) technology can generate an adaptive on-time with input voltage and VID code to obtain a constant current ripple. So that the output voltage ripple can be controlled nearly like a constant as different input and output voltage change. Connect a resistor RTON between input terminal and TONSET pin to set the on-time width. TON = TON RTON × C × 2.2 VIN − VDAC R × C × VDAC = TON VIN − VDAC ( VDAC < 2.2V ) ( VDAC ≥ 2.2V ) ISENxN = ILX × DCR RCSx Where LX / DCR = RXCX is held. The method can get high efficiency performance, but DCR value will be drifted by temperature, a NTC resistor should add in the resistor network in the IMON pin to achieve DCR thermal compensation. In RT8884B design, the resistance of the RCSx is restricted to 680Ω; moreover, the accuracy of RCS is recommended to be 1% or higher. Where C = 18.2pF. By using the relationship between TON and fSW, the switching frequency fSW is : ⎛ ⎞ ⎛ VDAC (MAX) ⎞ 1 fSW(MAX) = ⎜ ⎟ × ⎜ VIN (MAX) ⎟ T ON (MAX) ⎝ ⎠ ⎝ ⎠ ISENxN + - Where fSW(MAX) is the maximum switching frequency. VCORE ILx LX DCR RX CX ISENxP ISENxN RCSx Figure 4. Lossless Current Sense Method VDAC(MAX) is the maximum VDAC of application. VIN(MAX) is the maximum application input voltage. TON(MAX) is derived from TON equation with maximum parameters (VIN(MAX), VDAC(MAX)). When load increases, on-time keeps constant. The off-time width will be reduced so that loading can load more power from input terminal to regulate output voltage. Hence the loading current increases in case the switching frequency also increases. Higher switching frequency operation can reduce power components' size and PCB space, trading off the whole efficiency since switching related loss increases, vice versa. Total Current Sense Total current sense method is a patented topology, unlike conventional current sense method requiring a NTC resistor in per phase current loop for thermal compensation. RT8884B adopts the total current sense method requiring only one NTC resistor for thermal compensation, and NTC resistor cost can be saved by using this method. Figure 5 shows the total current sense method which connecting the resistor network between the IMON and VREF pins to set a part of current loop gain for load-line (droop) setting and set accurate over current protection. VIMON − VREF = DCR × REQ × (IL1 + IL2 + IL3 + IL4 ) RCS REQ includes a NTC resistor to compensate DCR thermal drifting for high accuracy load-line (droop). Copyright © 2013 Richtek Technology Corporation. All rights reserved. www.richtek.com 24 is a registered trademark of Richtek Technology Corporation. DS8884B-01 September 2013 RT8884B ISEN1N IMON + - VCORE VCORE IL1 L DCR R C Load-line slope = -RLL RLL x ICC ISEN1P RCS ISEN1N ICC IL2 L DCR R C REQ ISEN2N + - Figure 6. Load-Line (Droop) VCORE ISEN2P Voltage Loop RCS ISEN2N R2 TON Generator - R1 ISEN3N + - - DCR R C DCR RCS 1/2 R C ISEN3P VID L + L ISEN3N + IL1.2.3.4 IL3 VREF + - RNTC RCS ISEN1N + ISEN2N + ISEN[1:4]P ISEN[1:4]N + ISEN3N + ISEN4N RNTC IMON - VREF REQ IL4 ISEN4N + - L DCR R C ISEN4P ISEN4N RCS Figure 5. Total Current Sense Method Load-Line (Droop) Setting The G-NAVPTM topology can set load-line (droop) via the current loop and the voltage loop, the load-line is a slope between load current ICC and output voltage VCORE as shown in Figure 6. Figure 7 shows the voltage control and current loop. By using both loops, the load-line (droop) can easily be set. The load-line set equation is : RLL = AI AV Compensator Design The compensator of RT8884B doesn't need a complex type II or type III compensator to optimize control loop performance. It can adopt a simple type I compensator (one pole, one zero) in G-NAVPTM topology to achieve constant output impedance design for Intel VR12.5 ACLL specification. The one pole one zero compensator is shown as Figure 8, the transfer function of compensator should be designed as the following transfer function to achieve constant output impedance, i.e. Zo(s) = load-line slope in the entire frequency range : GCON s 1+ AI π × fsw (s) ≈ × RLL 1 + s ωESR 1 DCR × × REQ 2 RCS = (mΩ ) R2 R1 Copyright © 2013 Richtek Technology Corporation. All rights reserved. DS8884B-01 Figure 7. Voltage Loop and Current Loop September 2013 is a registered trademark of Richtek Technology Corporation. www.richtek.com 25 RT8884B Where AI is current loop gain, RLL is load-line, fSW is switching frequency and ωESR is a pole that should be located at 1 / (COUT x ESR). Then the C1 and C2 should be designed as follows : Function 2 <5:0> Function 1 <5:0> 80µA ADC VCC 1 C1 = R1× π × fSW Function 1 Register C × ESR C2 = OUT R2 R1 SET[1:2] C1 R2 Function 2 Register C2 R2 - R1 + Function 2 <5:0> Function 1 <5:0> VID Figure 8. Type I Compensator 80µA ADC VCC Multi-Function Pin Setting Mechanism For reducing total pin number of package, the SET[1:2] pins adopt the multi-function pin setting mechanism in RT8884B. Figure 9 illustrates this operating mechanism. First, external voltage divider is to set the Function 1 and then internal current source 80μA is to set the Function 2. The setting voltage of Function 1 and Function 2 can be represented as follows : R2 VFunction 1 = × VCC R1 + R2 R1× R2 VFunction 2 = 80μ A × R1 + R2 All function setting will be done within 500μs after power ready (POR). If VFunction 1 and VFunction 2 are determined, R1 and R2 can be calculated as follows : R1 = VCC × VFunction 2 80μ A × VFunction 1 R2 = R1× VFunction 1 VCC − VFunction 1 Function 1 Register R1 SET[1:2] R2 Function 2 Register Figure 9. Multi-Function Pin Setting Mechanism Connecting a R3 resistor from SET[1:2] pin to the middle node of voltage divider can help to fine tune the set voltage of Function 2, which does not affect the set voltage of Function 1. The Figure 10 shows the setting method and the set voltage of Function 1 and Function 2 can be represented as : R2 × VCC R1 + R2 R1× R2 ⎞ ⎛ = 80μ A × ⎜ R3 + ⎟ R1 + R2 ⎠ ⎝ VFunction 1 = VFunction 2 In addition, Richtek provides a Microsoft Excel-based spreadsheet to help design the SETx resistor network for RT8884B. Copyright © 2013 Richtek Technology Corporation. All rights reserved. www.richtek.com 26 is a registered trademark of Richtek Technology Corporation. DS8884B-01 September 2013 RT8884B QR Width Function 2 <5:0> Function 1 <5:0> 80µA VCORE QR Threshold ADC VCC Function 1 Register PWM1 R1 SET[1:2] PWM2 R3 PWM3 R2 Function 2 Register PWM4 Load Function 2 <5:0> Function 1 <5:0> Figure 11. Quick Response Mechanism 80µA ADC VCC Function 1 Register R1 SET[1:2] Function 2 Register R3 R2 Figure 10. Multi-Function Pin Setting Mechanism with a R3 Resistor to Fine Tune the Set Voltage of Function 2 Quick Response (QR) Mechanism When the transient load step-up becomes quite large, it is difficult for loop response to meet the energy transfer. Hence, that output voltage generate undershoot to fail specification. RT8884B has Quick Response (QR) mechanism being able to improve this issue. It adopts a nonlinear control mechanism which can disable interleaving function and simultaneously to turn on all UGATE one pulse at instantaneous step-up transient load to restrain the output voltage drooping, Figure 11 shows the QR behavior. The output voltage signal behavior needs to be detected so that QR mechanism can be trigged. The output voltage signal is via a remote sense line to connect at the VSEN pin that is shown in Figure 12. The QR mechanism needs to set QR width and QR threshold. Both definitions are shown in Figure 9. A proper QR mechanism set can meet different applications. The SET2 pin is a multi-function pin which can set QR threshold, QR width and ICCMAX. Current Mirror QR trigger IMirror VID VCC_SENSE + - RQR VSEN Figure 12. Simplified QR Trigger Schematic An internal current source 80μA is used in multi-function pin setting mechanism. For example, 35mV QR threshold and 1.3 x TON QR width are set. According to the Table 4, the set voltage should be between 0.4504V and 0.4723V. Please note that a high accuracy resistor is needed for this setting accuracy, <1% error tolerance is recommended. In the Table 4, there are some “No Use” marks in QRWIDTH section. It means that user should not use it to avoid the possibility of shift digital code due to tolerance concern. Copyright © 2013 Richtek Technology Corporation. All rights reserved. DS8884B-01 September 2013 is a registered trademark of Richtek Technology Corporation. www.richtek.com 27 RT8884B Table 4 : SET2 Pin Setting for QR Threshold and QR Width VQR_SET = 80μ A × R1× R2 R1+ R2 QR_TH <2:0> QRWIDTH <2:0> QR Threshold QR Width (%TON) Min Typical Max unit 0.000 10.948 21.896 mV 000 No Use 25.024 35.973 46.921 mV 001 155% 50.049 60.997 71.945 mV 010 133% 75.073 100.098 86.022 111.046 96.970 121.994 mV mV 125.122 136.070 147.019 mV 101 150.147 161.095 172.043 mV 110 44% 175.171 200.196 186.119 211.144 197.067 222.092 mV mV 111 000 No Use No Use 225.220 236.168 247.116 mV 001 155% 250.244 275.269 261.193 286.217 272.141 297.165 mV mV 010 011 133% 111% 300.293 311.241 322.190 mV 325.318 336.266 347.214 mV 101 67% 350.342 375.367 361.290 386.315 372.239 397.263 mV mV 110 111 44% No Use 400.391 411.339 422.287 mV 000 No Use 425.415 450.440 436.364 461.388 447.312 472.336 mV mV 001 010 155% 133% 475.464 486.413 497.361 mV 500.489 525.513 511.437 536.461 522.385 547.410 mV mV 550.538 561.486 572.434 mV 110 44% 575.562 586.510 597.458 mV 111 No Use 600.587 625.611 611.535 636.559 622.483 647.507 mV mV 000 001 No Use 155% 650.635 661.584 672.532 mV 010 133% 675.660 686.608 697.556 mV 700.684 725.709 711.632 736.657 722.581 747.605 mV mV 750.733 761.681 772.630 mV 110 44% 775.758 800.782 786.706 811.730 797.654 822.678 mV mV 111 000 No Use No Use 825.806 836.755 847.703 mV 001 155% 850.831 875.855 861.779 886.804 872.727 897.752 mV mV 010 011 133% 111% 900.880 911.828 922.776 mV 000 001 010 011 100 011 100 100 011 100 101 011 100 101 100 Disable 111% 89% 67% 30mV 35mV 40mV 45mV 89% 111% 89% 67% 111% 89% 67% 89% 925.904 936.852 947.801 mV 101 67% 950.929 975.953 961.877 986.901 972.825 997.849 mV mV 110 111 44% No Use Copyright © 2013 Richtek Technology Corporation. All rights reserved. www.richtek.com 28 is a registered trademark of Richtek Technology Corporation. DS8884B-01 September 2013 RT8884B VQR_SET = 80μ A × R1× R2 R1+ R2 Min Typical Max unit 1000.978 1011.926 1022.874 mV QRWIDTH <2:0> 000 1026.002 1051.026 1076.051 1101.075 1126.100 1151.124 1176.149 1201.173 1226.197 1251.222 1276.246 1301.271 1326.295 1351.320 1376.344 1401.369 1426.393 1451.417 1476.442 1501.466 1526.491 1551.515 1576.540 1036.950 1061.975 1086.999 1112.023 1137.048 1162.072 1187.097 1212.121 1237.146 1262.170 1287.195 1312.219 1337.243 1362.268 1387.292 1412.317 1437.341 1462.366 1487.390 1512.414 1537.439 1562.463 1587.488 1047.898 1072.923 1097.947 1122.972 1147.996 1173.021 1198.045 1223.069 1248.094 1273.118 1298.143 1323.167 1348.192 1373.216 1398.240 1423.265 1448.289 1473.314 1498.338 1523.363 1548.387 1573.412 1598.436 mV mV mV mV mV mV mV mV mV mV mV mV mV mV mV mV mV mV mV mV mV mV mV 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111 Dynamic VID (DVID) Compensation When VID transition event occurs, a charge current will be generated in the loop to cause that DVID performance is deteriorated by this induced charge current, the phenomenon is called droop effect. The droop effect is shown in Figure 13. When VID up transition occurs, the output capacitor will be charged by inductor current. Since current signal is sensed in inductor, an induced charge current will appear in control loop. The induced charge current will produce a voltage drop in R1 to cause output voltage to have a droop effect. Due to this, VID transition performance will be deteriorated. Copyright © 2013 Richtek Technology Corporation. All rights reserved. DS8884B-01 September 2013 QR_TH <2:0> 101 110 111 QR Threshold QR Width (%TON) No Use 50mV 55mV 60mV 155% 133% 111% 89% 67% 44% No Use No Use 155% 133% 111% 89% 67% 44% No Use No Use 155% 133% 111% 89% 67% 44% No Use The RT8884B provides a DVID compensation function. A virtual charge current signal can be established by the SET1 pin to cancel the real induced charge current signal and the virtual charge current signal is defined in Figure 15. Figure 14 shows the operation of cancelling droop effect. A virtual charge current signal is established first and then VID signal plus virtual charge current signal is generated in FB pin. Hence, an induced charge current signal flows to R1 and is cancelled to reduce droop effect. is a registered trademark of Richtek Technology Corporation. www.richtek.com 29 RT8884B Charge current L VIN Q1 CO1 Q2 Gate Driver CO2 RESR CPU Ai Induced charge current signal C2 C1 R2 CCRCOT VIN COMP - VID + tON EA + DVID_Width Output voltage DVID_Threshold R1 IDROOP Figure 15. Definition of Virtual Charge Current Signal VID VID Transition Figure 13. Droop Effect in VID Transition Charge current L VIN Q1 Gate Driver CO1 Q2 CO2 RESR Ai Induced charge current signal Output voltage CPU C2 C1 R2 CCRCOT VIN COMP - VID + tON IDROOP R1 EA + Virtual Charge Current + DVID Event Slew Rate Control Virtual Charge Current Generator VID VID Transition SET1 Figure 14. DVID Compensation Table 5 and Table 6 show the DVID_Threshold and DVID_Width settings in SET1 pin. For example, 25mV DVID_Threshold and 72μs DVID_Width are designed (OCP sets as 100% ICCMAX, and RSET sets as 100% Ramp current). The DVID_Width is set by an external voltage divider and the DVID_Threshold is set by an internal current Copyright © 2013 Richtek Technology Corporation. All rights reserved. www.richtek.com 30 source 80μA by the multi-function pin setting mechanism. According to the Table 5 and Table 6, the DVID_Threshold set voltage should be between 0.225V and 0.247V and the DVID_Width set voltage should be between 0.275V and 0.297V. Please note that a high accuracy resistor is needed for this setting, <1% error tolerance is recommended. is a registered trademark of Richtek Technology Corporation. DS8884B-01 September 2013 RT8884B Table 5 : SET1 Pin Setting for DVID_Threshold VDVID_T hreshold = 80μ A × R1× R2 R1+ R2 DVID_TH <2:0> DVID_Threshold OCP = %ICCMAX Min Typical Max unit 0.000 10.948 21.896 mV OCS <2:0> 000 25.024 50.049 75.073 35.973 60.997 86.022 46.921 71.945 96.970 mV mV mV 001 010 011 100.098 125.122 111.046 136.070 121.994 147.019 mV mV 150.147 175.171 200.196 161.095 186.119 211.144 172.043 197.067 222.092 mV mV mV 110 111 000 150% No Use No Use 225.220 250.244 236.168 261.193 247.116 272.141 mV mV 001 010 100% 110% 275.269 300.293 325.318 286.217 311.241 336.266 297.165 322.190 347.214 mV mV mV 350.342 375.367 361.290 386.315 372.239 397.263 mV mV 110 111 150% No Use 400.391 425.415 411.339 436.364 422.287 447.312 mV mV 000 001 No Use 100% 450.440 475.464 500.489 461.388 486.413 511.437 472.336 497.361 522.385 mV mV mV 010 011 100 110% 120% 130% 525.513 550.538 575.562 536.461 561.486 586.510 547.410 572.434 597.458 mV mV mV 101 110 111 140% 150% No Use 600.587 625.611 650.635 611.535 636.559 661.584 622.483 647.507 672.532 mV mV mV 000 001 010 No Use 100% 110% 675.660 700.684 725.709 750.733 686.608 711.632 736.657 761.681 697.556 722.581 747.605 772.630 mV mV mV mV 775.758 800.782 825.806 786.706 811.730 836.755 797.654 822.678 847.703 mV mV mV 111 000 001 No Use No Use 100% 850.831 875.855 900.880 861.779 886.804 911.828 872.727 897.752 922.776 mV mV mV 010 011 100 110% 120% 130% 925.904 950.929 936.852 961.877 947.801 972.825 mV mV 101 110 140% 150% 975.953 986.901 997.849 mV 111 No Use Copyright © 2013 Richtek Technology Corporation. All rights reserved. DS8884B-01 September 2013 000 001 010 011 100 100 101 011 100 101 011 100 101 110 No Use 15mV 25mV 35mV 45mV 55mV 100% 110% 120% 130% 140% 120% 130% 140% 120% 130% 140% 150% is a registered trademark of Richtek Technology Corporation. www.richtek.com 31 RT8884B Min Typical Max 1000.978 1011.926 1022.874 R1× R2 R1+ R2 DVID_TH unit <2:0> mV 1026.002 1051.026 1076.051 1036.950 1061.975 1086.999 1047.898 1072.923 1097.947 mV mV mV 1101.075 1126.100 1151.124 1112.023 1137.048 1162.072 1122.972 1147.996 1173.021 mV mV mV 1176.149 1201.173 1226.197 1187.097 1212.121 1237.146 1198.045 1223.069 1248.094 mV mV mV 111 000 001 No Use No Use 100% 1251.222 1276.246 1301.271 1262.170 1287.195 1312.219 1273.118 1298.143 1323.167 mV mV mV 010 011 100 110% 120% 130% 1326.295 1351.320 1376.344 1337.243 1362.268 1387.292 1348.192 1373.216 1398.240 mV mV mV 101 110 111 140% 150% No Use 1401.369 1426.393 1412.317 1437.341 1423.265 1448.289 mV mV 000 001 No Use 100% 1451.417 1476.442 1501.466 1462.366 1487.390 1512.414 1473.314 1498.338 1523.363 mV mV mV 010 011 100 110% 120% 130% 1526.491 1551.515 1576.540 1537.439 1562.463 1587.488 1548.387 1573.412 1598.436 mV mV mV VDVID_Threshold = 80μ A × Copyright © 2013 Richtek Technology Corporation. All rights reserved. www.richtek.com 32 101 110 111 OCS <2:0> 000 001 010 011 100 101 110 DVID_Threshold OCP = %ICCMAX No Use 65mV 75mV 85mV 101 110 111 100% 110% 120% 130% 140% 150% 140% 150% No Use is a registered trademark of Richtek Technology Corporation. DS8884B-01 September 2013 RT8884B Min Typical 0.000 25.024 10.948 35.973 50.049 75.073 100.098 125.122 60.997 86.022 111.046 136.070 150.147 161.095 175.171 200.196 186.119 211.144 225.220 236.168 250.244 275.269 300.293 261.193 286.217 311.241 325.318 336.266 350.342 375.367 361.290 386.315 400.391 411.339 425.415 450.440 475.464 436.364 461.388 486.413 500.489 511.437 525.513 550.538 536.461 561.486 575.562 586.510 600.587 625.611 611.535 636.559 650.635 675.660 700.684 661.584 686.608 711.632 725.709 736.657 750.733 761.681 775.758 800.782 786.706 811.730 825.806 850.831 836.755 861.779 875.855 900.880 886.804 911.828 925.904 936.852 950.929 975.953 961.877 986.901 Table 6 : SET1 Pin Setting for DVID_Width R2 VDVID_Width = × VCC R1+ R2 DVID_Width DVID_WTH RSET Max unit <2:0> <2:0> 21.896 mV 000 46.921 mV 001 71.945 mV 010 96.970 mV 011 000 48μs 121.994 mV 100 147.019 mV 101 172.043 mV 110 197.067 mV 111 222.092 mV 000 247.116 mV 001 272.141 mV 010 297.165 mV 011 001 72μs 322.190 mV 100 347.214 mV 101 372.239 mV 110 397.263 mV 111 422.287 mV 000 447.312 mV 001 472.336 mV 010 497.361 mV 011 010 96μs 522.385 mV 100 547.410 mV 101 572.434 mV 110 597.458 mV 111 622.483 mV 000 647.507 mV 001 672.532 mV 010 697.556 mV 011 011 120μs 722.581 mV 100 747.605 mV 101 772.630 mV 110 797.654 mV 111 822.678 mV 000 847.703 mV 001 872.727 mV 010 897.752 mV 011 100 144μs 922.776 mV 100 947.801 mV 101 972.825 mV 110 997.849 mV 111 Copyright © 2013 Richtek Technology Corporation. All rights reserved. DS8884B-01 September 2013 RSET % 130k RTON No Use 75% 87.5% 100% 112.5% 125% 137.5% No Use No Use 75% 87.5% 100% 112.5% 125% 137.5% No Use No Use 75% 87.50% 100% 112.5% 125% 137.5% No Use No Use 75% 87.50% 100% 112.50% 125% 137.5% No Use No Use 75% 87.5% 100% 112.50% 125% 137.5% No Use is a registered trademark of Richtek Technology Corporation. www.richtek.com 33 RT8884B VDVID_Width = R2 × VCC R1+ R2 DVID_WTH unit <2:0> RSET <2:0> DVID_Width RSET % 130k RTON Min Typical Max 1000.978 1011.926 1022.874 mV 000 No Use 1026.002 1036.950 1047.898 mV 001 75% 1051.026 1061.975 1072.923 mV 010 87.5% 1076.051 1086.999 1097.947 mV 1101.075 1112.023 1122.972 mV 1126.100 1137.048 1147.996 mV 101 125% 1151.124 1162.072 1173.021 mV 110 137.5% 1176.149 1187.097 1198.045 mV 111 No Use 1201.173 1212.121 1223.069 mV 000 No Use 1226.197 1237.146 1248.094 mV 001 75% 1251.222 1262.170 1273.118 mV 010 87.5% 1276.246 1287.195 1298.143 mV 1301.271 1312.219 1323.167 mV 1326.295 1337.243 1348.192 mV 101 125% 1351.320 1362.268 1373.216 mV 110 137.5% 1376.344 1387.292 1398.240 mV 111 No Use 1401.369 1412.317 1423.265 mV 000 No Use 1426.393 1437.341 1448.289 mV 001 75% 1451.417 1462.366 1473.314 mV 010 87.50% 1476.442 1487.390 1498.338 mV 1501.466 1512.414 1523.363 mV 1526.491 1537.439 1548.387 mV 101 125% 1551.515 1562.463 1573.412 mV 110 137.5% 1576.540 1587.488 1598.436 mV 111 No Use Copyright © 2013 Richtek Technology Corporation. All rights reserved. www.richtek.com 34 101 110 111 011 100 011 100 011 100 168μs 192μs 216μs 100% 112.5% 100% 112.5% 100% 112.5% is a registered trademark of Richtek Technology Corporation. DS8884B-01 September 2013 RT8884B Ramp Compensation Current Monitor, IMON TM G-NAVP topology is one type of ripple based control that has fast transient response, no beat frequency issue in high repetitive load frequency operation and lower BOM cost. However, ripple based control usually has no good noise immunity. The RT8884B provides that the ramp compensation to increase noise immunity and reduce jitter at the switching node. Figure 16 shows the ramp compensation. Noise Margin w/o ramp compensation IMON-VREF RT8884B includes a current monitor (IMON) function which can be used to detect over current protection and the maximum processor current ICCMAX, and also sets a part of current gain in the load-line setting. It produces an analog voltage proportional to output current between the IMON and VREF pins. The calculation for IMON-VREF voltage is shown as below : DCR VIMON − VREF = × REQ × (IL1 + IL2 + IL3 + IL4 ) RCS Where IL1 + IL2 + IL3 + IL4 are output current and the definitions of DCR, RCS and REQ can refer to Figure 6. VCOMP Maximum Processor Current Setting, ICCMAX Noise Margin w/ ramp compensation IMON-VREF VCOMP The maximum processor current ICCMAX can be set by the SET2 pin. ICCMAX register is set by an external voltage divider by the multi-function mechanism. The Table 7 shows the ICCMAX setting in SET2 pin. For example, ICCMAX = 106A, the VICCMAX needs to be set as 0.67 typically. Additionally, VIMON − VREF needs to be set as 1.6V when IL1 + IL2 + IL3 + IL4 = 106A. The ICCMAX alert signal will be pulled to low level if VIMON − VREF = 1.6V. Figure 16. Ramp Compensation For the RT8884B, the ramp compensation also needs to be considered during mode transition from PS0/1 to PS2. For achieving smooth mode transition into PS2, a proper ramp compensation design is necessary. Since the ramp compensation needs to be proportional to the on-time, in others words, ramp compensation is dependent on RTON design. The Table 6 shows the relationship between RTON and ramp compensation. For example, when designed 130k RTON is 100kΩ, the RAMP is set as × 100% . 100k Copyright © 2013 Richtek Technology Corporation. All rights reserved. DS8884B-01 September 2013 is a registered trademark of Richtek Technology Corporation. www.richtek.com 35 RT8884B Table 7 : SET2 Pin Setting for ICCMAX Min 0.000 12.512 25.024 37.537 50.049 62.561 75.073 87.586 100.098 112.610 125.122 137.634 150.147 162.659 175.171 187.683 200.196 R2 × VCC R1 + R2 Typical Max Unit 3.128 6.256 mV 15.640 18.768 mV 28.152 31.281 mV 40.665 43.793 mV 53.177 56.305 mV 65.689 68.817 mV 78.201 81.329 mV 90.714 93.842 mV 103.226 106.354 mV 115.738 118.866 mV 128.250 131.378 mV 140.762 143.891 mV 153.275 156.403 mV 165.787 168.915 mV 178.299 181.427 mV 190.811 193.939 mV 203.324 206.452 mV 212.708 225.220 237.732 250.244 262.757 275.269 287.781 300.293 312.805 325.318 337.830 350.342 362.854 375.367 387.879 400.391 412.903 425.415 437.928 450.440 462.952 475.464 487.977 500.489 215.836 228.348 240.860 253.372 265.885 278.397 290.909 303.421 315.934 328.446 340.958 353.470 365.982 378.495 391.007 403.519 416.031 428.543 441.056 453.568 466.080 478.592 491.105 503.617 VICCMAX = 218.964 231.476 243.988 256.500 269.013 281.525 294.037 306.549 319.062 331.574 344.086 356.598 369.110 381.623 394.135 406.647 419.159 431.672 444.184 456.696 469.208 481.720 494.233 506.745 mV mV mV mV mV mV mV mV mV mV mV mV mV mV mV mV mV mV mV mV mV mV mV mV ICCMAX Unit 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 A A A A A A A A A A A A A A A A A Min 513.001 525.513 538.025 550.538 563.050 575.562 588.074 600.587 613.099 625.611 638.123 650.635 663.148 675.660 688.172 700.684 713.196 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 A A A A A A A A A A A A A A A A A A A A A A A A 725.709 738.221 750.733 763.245 775.758 788.270 800.782 813.294 825.806 838.319 850.831 863.343 875.855 888.368 900.880 913.392 925.904 938.416 950.929 963.441 975.953 988.465 1000.978 1013.490 Copyright © 2013 Richtek Technology Corporation. All rights reserved. www.richtek.com 36 R2 × VCC ICCMAX Unit R1+ R2 Typical Max Unit 516.129 519.257 mV 82 A 528.641 531.769 mV 84 A 541.153 544.282 mV 86 A 553.666 556.794 mV 88 A 566.178 569.306 mV 90 A 578.690 581.818 mV 92 A 591.202 594.330 mV 94 A 603.715 606.843 mV 96 A 616.227 619.355 mV 98 A 628.739 631.867 mV 100 A 641.251 644.379 mV 102 A 653.763 656.891 mV 104 A 666.276 669.404 mV 106 A 678.788 681.916 mV 108 A 691.300 694.428 mV 110 A 703.812 706.940 mV 112 A 716.325 719.453 mV 114 A 728.837 741.349 753.861 766.373 778.886 791.398 803.910 816.422 828.935 841.447 853.959 866.471 878.983 891.496 904.008 916.520 929.032 941.544 954.057 966.569 979.081 991.593 1004.106 1016.618 VICCMAX = 731.965 744.477 756.989 769.501 782.014 794.526 807.038 819.550 832.063 844.575 857.087 869.599 882.111 894.624 907.136 919.648 932.160 944.673 957.185 969.697 982.209 994.721 1007.234 1019.746 mV mV mV mV mV mV mV mV mV mV mV mV mV mV mV mV mV mV mV mV mV mV mV mV 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 A A A A A A A A A A A A A A A A A A A A A A A A is a registered trademark of Richtek Technology Corporation. DS8884B-01 September 2013 RT8884B Min 1026.002 1038.514 1051.026 1063.539 1076.051 1088.563 1101.075 1113.587 1126.100 1138.612 1151.124 1163.636 1176.149 1188.661 1201.173 1213.685 1226.197 R2 × VCC ICCMAX Unit R1+ R2 Typical Max Unit 1029.13 1032.258 mV 164 A 1041.642 1044.770 mV 166 A 1054.154 1057.283 mV 168 A 1066.667 1069.795 mV 170 A 1079.179 1082.307 mV 172 A 1091.691 1094.819 mV 174 A 1104.203 1107.331 mV 176 A 1116.716 1119.844 mV 178 A 1129.228 1132.356 mV 180 A 1141.740 1144.868 mV 182 A 1154.252 1157.380 mV 184 A 1166.764 1169.892 mV 186 A 1179.277 1182.405 mV 188 A 1191.789 1194.917 mV 190 A 1204.301 1207.429 mV 192 A 1216.813 1219.941 mV 194 A 1229.326 1232.454 mV 196 A 1238.710 1251.222 1263.734 1276.246 1288.759 1301.271 1241.838 1254.350 1266.862 1279.374 1291.887 1304.399 VICCMAX = 1244.966 1257.478 1269.990 1282.502 1295.015 1307.527 mV mV mV mV mV mV 198 200 202 204 206 208 Copyright © 2013 Richtek Technology Corporation. All rights reserved. DS8884B-01 September 2013 A A A A A A Min 1313.783 1326.295 1338.807 1351.320 1363.832 1376.344 1388.856 1401.369 1413.881 1426.393 1438.905 1451.417 R2 × VCC ICCMAX Unit R1+ R2 Typical Max Unit 1316.911 1320.039 mV 210 A 1329.423 1332.551 mV 212 A 1341.935 1345.064 mV 214 A 1354.448 1357.576 mV 216 A 1366.960 1370.088 mV 218 A 1379.472 1382.600 mV 220 A 1391.984 1395.112 mV 222 A 1404.497 1407.625 mV 224 A 1417.009 1420.137 mV 226 A 1429.521 1432.649 mV 228 A 1442.033 1445.161 mV 230 A 1454.545 1457.674 mV 232 A 1463.930 1476.442 1488.954 1501.466 1513.978 1526.491 1539.003 1551.515 1564.027 1576.540 1589.052 1467.058 1479.570 1492.082 1504.594 1517.107 1529.619 1542.131 1554.643 1567.155 1579.668 1592.180 VICCMAX = 1470.186 1482.698 1495.210 1507.722 1520.235 1532.747 1545.259 1557.771 1570.283 1582.796 1595.308 mV mV mV mV mV mV mV mV mV mV mV 234 236 238 240 242 244 246 248 250 252 254 A A A A A A A A A A A is a registered trademark of Richtek Technology Corporation. www.richtek.com 37 RT8884B Over Current Protection Under Voltage Lock Out (UVLO) RT8884B provides Over Current Protection (OCP) which is set by the SET1 pin. The OCP threshold setting can refer to ICCMAX current in the Table 7. For example, if ICCMAX is set as 120A, user can set voltage by using the external voltage divider in SET1 pin as 0.466V typically if DVID_Threshold = 35mV, then 144A OCP (120% x ICCMAX) threshold will be set. When output current is higher than the OCP threshold, OCP is latched with a 40μs delay time to prevent false trigger. Besides, the OCP function is masked when dynamic VID transient occurs and after dynamic VID transition, OCP is masked for 80μs. During normal operation, if the voltage at the VCC or DVD pin drops below POR threshold 4.1V (min), the VR will trigger UVLO. The UVLO protection forces all high side MOSFETs and low side MOSFETs off by shutting down internal PWM logic drivers. Over Output Voltage Protection An OVP condition is detected when the VSEN pin is 350mV more than VID. When OVP is detected, the upper gate voltage UGATEx is pulled-low and the lower gate voltage LGATEx is pulled-high, OVP is latched with a 0.5μs delay time to prevent false trigger. Negative Voltage Protection Since the OVP latch continuously turns on all low side MOSFETs of the VR, the VR will suffer negative output voltage. When the VSEN detects a voltage below −0.05V after triggering OVP, the VR will trigger NVP to turn off all low side MOSFETs of the VR while the high side MOSFETs remains off. After triggering NVP, if the output voltage rises above 0V, the OVP latch will restart to turn on all low side MOSFETs. Therefore, the output voltage may bounce between 0V and −0.05V due to OVP latch and NVP triggering. The NVP function will be active only after OVP is triggered. Power Ready (POR) Detection During start-up, the RT8884B will detect the voltage at the voltage input pins : VCC, EN and DVD. When VCC > 4.45V and VDVD > 2V, the RT8884B will recognize the power state of system to be ready (POR = high) and wait for enable command at the EN pin. After POR = high and VEN > 0.7V, the RT8884B will enter start-up sequence. If the voltage at any voltage pin drops below low threshold (POR = low), the RT8884B will enter power down sequence and all the functions will be disabled. Normally, connecting system voltage VTT (1.05V) to the EN pin and power stage VIN (12V, through a voltage divider) to the DVD pin is recommended. 1ms (max) after the chip has been enabled, the SVID circuitry will be ready. All the protection latches (OVP, OCP, UVP) will be cleared only by VCC. The condition of VEN = low will not clear these latches. Figure 17 and Figure 18 show the POR detection and the timing chart for POR process, respectively. 5V VCC R1 4.45V DVD VTT 1.05V CP + 2V R2 CP POR - Enable EN + 0.7V Under Voltage Protection When the VSEN pin voltage is 350mV less than VID, a UVP will be latched. When UVP latched, both the UGATEx and LGATEx will be pulled-low. A 3μs delay is used in UVP detection circuit to prevent false trigger. Besides, the UVP function is masked when dynamic VID transient occurs and after dynamic VID transition, UVP is masked for 80μs. + CP - Figure 17. POR Detection VCC DVD POR EN 1ms SVID Invalid Valid Invalid Figure 18. Timing Chart for POR Process Copyright © 2013 Richtek Technology Corporation. All rights reserved. www.richtek.com 38 is a registered trademark of Richtek Technology Corporation. DS8884B-01 September 2013 RT8884B VDDIO Precise Reference Current Generation, IBIAS Analog circuits need very precise reference voltage/current to drive/set these analog devices. The RT8884B provides a 2V voltage source at the IBIAS pin, and a 100kΩ resistor is required to be connected between the IBIAS pin and analog ground to generate a very precise reference current. Through this connection, the RT8884B will generate a 20μA current from the IBIAS pin to analog ground, and this 20μA current will be mirrored inside the RT8884B for internal use. The IBIAS pin can only be connected with a 100kΩ resistor to GND for internal analog circuit use. The resistance accuracy of this resistor is recommended to be 1% or higher. Figure 19 shows the IBIAS setting circuit. Current Mirror 2V + 20µA - IBIAS 100k Figure 19. IBIAS Setting Circuit VR_HOT VCC R1 + DS8884B-01 September 2013 R2 1.887V Figure 20. VR_HOT Circuit Differential Remote Sense Setting The VR provides differential remote sense inputs to eliminate the effects of voltage drops along the PC board traces, CPU internal power routes and socket contacts. The CPU contains on-die sense pins, VCC_SENSE and VSS_SENSE. Connecting RGND to VSS_SENSE and FB to VCC_SENSE with a resistor to build the negative input path of the error amplifier. The VDAC and the precision voltage reference are referred to RGND for accurate remote sensing. CPU VCC_SENSE VOUT FB EA + VID + Copyright © 2013 Richtek Technology Corporation. All rights reserved. TSEN - TSEN and VR_HOT The VR_HOT signal is an open-drain signal which is used for VR thermal protection. When the sensed voltage in TSEN pin is over 1.887V, the VR_HOT signal will be pulledlow to notify CPU that the thermal protection needs to work. According to Intel VR definition, VR_HOT signal needs acting if VR power chain temperature exceeds 100°C. Placing an NTC thermistor at the hottest area in the VR power chain and its connection is shown in Figure 20, to design the voltage divider elements (R1, R2 and NTC) so that VTSEN = 1.887V at 100°C. The resistance accuracy of TSEN network is recommended to be 1% or higher. R2 VTSEN = VCC × = 1.887V R2 + ⎡⎣R1//RNTC(100°C) ⎤⎦ NTC RGND R1 COUT R2 CPU VSS_SENSE Figure 21. Remote Sensing Circuit is a registered trademark of Richtek Technology Corporation. www.richtek.com 39 RT8884B NO Load Offset (Platform) Phase Disable (Before POR) RT8884B provides no load offset for platform users. Users can disable this function by pulling the SET3 pin to ground. Figure 22 shows a voltage divider used to set no load offset voltage. No load offset voltage setting is : The number of active phases is determined by the internal circuitry that monitors the ISENxN voltages during startup. Normally, the VR operates as a 4-phase PWM controller. Pulling ISEN4N to VCC programs a 3-phase operation, pulling ISEN3N and ISEN4N to VCC programs a 2-phase operation, and pulling ISEN2N, ISEN3N and ISEN4N to VCC programs a 1-phase operation. Before POR, VR detects whether the voltages of ISEN2N, ISEN3N and ISEN4N are higher than“ VCC−1V” respectively to decide how many phases should be active. Phase selection is only active during POR. When POR = high, the number of active phases is determined and latched. The unused ISENxP pins are recommended to be connected to VCC and unused PWM pins can be left floating. 1 × ( VSET3 − 1.2 ) 2 The range of VOFS is −250mV < VOFS < 600mV. VOFS = For example, a 100mV no load offset requirement, VSET3 needs to be set as 1.4V. From gm DAC VCC + - COMP FB R1 SET3 gm R2 Figure 22. No Load Offset Circuit Copyright © 2013 Richtek Technology Corporation. All rights reserved. www.richtek.com 40 is a registered trademark of Richtek Technology Corporation. DS8884B-01 September 2013 RT8884B Current Loop Design in Details IL1 VREF REQ RIMON3 RNTC RIMON1 IMON ISEN1N + - RIMON2 VCORE L1 DCR1 R1 C1 ISEN1P ISEN1N 680 IL2 COMP 1/2 L2 DCR2 - R2 C2 + 0.6V + ISEN2N + + - ISEN2P ISEN2N 680 IL3 L3 DCR3 R3 ISEN3N + - C3 ISEN3P ISEN3N 680 IL4 L4 DCR4 R4 ISEN4N + - C4 ISEN4P ISEN4N 680 Figure 23. Current Loop Structure Figure 23 shows the whole current loop structure. The current loop plays an important role in RT8884B that can decide ACLL performance, DCLL accuracy and ICCMAX accuracy. For ACLL performance, the correct compensator design is assumed, if RC network time constant matches inductor time constant LX/DCRX, an expected load transient RXCX network is smaller than inductor time constant LX/DCRX, a worst VCORE waveform will sag to create an undershoot to fail the specification. Figure 24 shows the variety of RXCX constant corresponding to the output waveforms. waveform can be designed. If RXCX network time constant is larger than inductor time constant LX/DCRX, VCORE waveform has a sluggish droop during load transient. If Copyright © 2013 Richtek Technology Corporation. All rights reserved. DS8884B-01 September 2013 is a registered trademark of Richtek Technology Corporation. www.richtek.com 41 RT8884B R x × Cx = VCORE Lx DCR x Where : ΔIOUT x RLL (1) The relationship between DCR and temperature is as follows : DCR (T) = DCR (25°C) × [1+ 0.00393 (T − 25)] ΔIOUT IOUT Expected load transient waveform VCORE R x × Cx < Lx DCR x (2) REQ(T) is the equivalent resistor of the resistor network with a NTC thermistor REQ (T) = RIMON1 + {RIMON2 / / ⎡⎣RIMON3 + RNTC (T)⎤⎦} And the relationship between NTC and temperature is as follows : ΔIOUT x RLL RNTC (T) = RNTC (25°C) × e β( 1 1 ) − T+273 298 β is in the NTC thermistor datasheet. ΔIOUT IOUT Undershoot created in VCORE VCORE R x × Cx > Lx DCR x Step3 : Three equations and three unknowns, RIMON1, RIMON2 and RIMON3 can be found out unique solution. RIMON1 = K TR − RIMON2 = ΔIOUT x RLL RIMON2 × (RNTCTR +RIMON3 ) RIMON2 +RNTCTR +RIMON3 2 [KR3 +K R3 (RNTCTL +RNTCTR ) +RNTCTLRNTCTR ]α TL RIMON3 = -RIMON2 +KR3 ΔIOUT IOUT Sluggish droop Figure 24. All Kind of RxCx Constants For DCLL performance and ICCMAX accuracy, since the copper wire of inductor has a positive temperature coefficient, hence when temperature goes high in the heavy load condition then DCR value goes large simultaneously. A resistor network with NTC thermistor compensation connecting between IMON pin and REF pin is necessary, to compensate the positive temperature coefficient of inductor DCR. The design flow is as follows: Step1 : Given the three system temperature TL, TR and TH, at which are compensated. Step2 : Three equations can be listed as Where : α TH = K TH − K TR RNTCTH − RNTCTR α TL = K TL − K TR RNTCTL − RNTCTR KR3 = (α TH / α TL )RNTCTH − RNTCTL 1 − (α TH / α TL ) K TL = 1.6 GCS(TL) × ICC-MAX K TR = 1.6 GCS(TR) × ICC-MAX K TH = 1.6 GCS(TH) × ICC-MAX DCR (TL ) 4 × ∑ iLi × REQ (TL ) = 1.6 680 i=1 DCR (TR ) 4 × ∑ iLi × REQ (TR ) = 1.6 680 i=1 DCR (TH ) 4 × ∑ iLi × REQ (TH ) = 1.6 680 i=1 Copyright © 2013 Richtek Technology Corporation. All rights reserved. www.richtek.com 42 is a registered trademark of Richtek Technology Corporation. DS8884B-01 September 2013 RT8884B Design Step : RT8884B Excel based design tool is available. Users can contact your Richtek representative to get the spreadsheet. Three main design procedures for RT8884B design, first step is initial settings, second step is loop design and the last step is protection settings. The following design example is to explain RT8884B design procedure : Input Voltage No. of Phases Vboot VCORE Specification 12V 3 1.7V VDAC(MAX) 1.85V ICCMAX ICC-DY ICC-TDC Load-Line 90A 60A 55A 1.5mΩ Fast Slew Rate Max Switching Frequency 12.5mV/μs 300kHz In Shark Bay VRTB Guideline, the output filter requirements of VRTB specification for desktop platform are as follows : Output Inductor : 360nH/0.72mΩ Output Bulk Capacitor : 560μF/2.5V/5mΩ (max) 4 to 5pcs Output Ceramic Capacitor : 22μF/0805 (18pcs max sites on top side) (1)Initial Settings : RT8884B initial voltage is 1.7V IBIASE needs to connect a 100kΩ resistor to ground. A voltage divider for setting DVD can choose RDVD_U = 510kΩ and RDVD_L = 125kΩ to set VDVD > 2V, RT8884B enabled. (2)Loop Design : On time setting : Using the specification, TON is tON = 1 fSW(MAX) × VDAC(MAX) VIN = 514n(s) The on time setting resistor RTON = 130kΩ Copyright © 2013 Richtek Technology Corporation. All rights reserved. DS8884B-01 September 2013 Current sensor adopts lossless RC filter to sense current signal in DCR. For getting an expected load transient waveform, RxCx time constant needs to match Lx/DCRx per phase. Cx = 1μF is set, then RX = LX = 500Ω 1μF × DCR X IMON resistor network design : TL = 25°C, TR = 50°C and TH = 100°C are decided, NTC thermistor = 100kΩ @25°C, β = 4485 and ICCMAX = 90A. According to the sub-section “ Current Loop Design in Details” , RIMON1 = 5.43kΩ, RIMON2 = 12.6kΩ and RIMON3 = 13.9kΩ can be decided. The REQ (25°C) = 16.8kΩ. Load-line design : 1.5mΩ droop is required, because REQ (25°C) is decided, the voltage loop Av gain is also decided by the following equation : RLL 1 DCR × × REQ A V 2 RCS = = (mΩ) R2 AI R1 Where DCR(25°C) = 0.72mΩ, R CS = 680Ω and REQ (25°C) = 16.8kΩ. Hence the AV = R2 / R1 = 5.92 can be obtained. R1 = 10kΩ usually is decided, so R2 = 59.2kΩ. Typical compensator design can use the following equations to design the C1 and C2 values 1 C1 = ≈ 106pF R1 × π× fSW C2 = COUT × ESR ≈ 79pF R2 For Intel platform, in order to induce the band width to enhance transient performance to meet Intel's criterion, the compensator of Zero can be designed close to 1/10 of switching frequency. SET1 resistor network design : First the DVID compensation parameters need to be decided. The DVID_TH can be calculated as the following equation : VDVID_TH = LL × COUT × dVID dt Where LL is load-line, COUT is total output capacitance and dVID/dt is DVID fast slew rate. Thus VDVID_TH = 45mV is needed in this case. And DVID_Width is chosen as 72μs typically. Next, OCP threshold is designed as 1.4 x ICCMAX. Last, RAMP = RTON / 130kΩ = 100%, 100% is is a registered trademark of Richtek Technology Corporation. www.richtek.com 43 RT8884B R2 × 5 R1 + R2 0.737 = 80μA × R1× R2 R1 + R2 0.286 = ( ) R1 = 160kΩ, R2 = 9.77kΩ. SET2 resistor network design : the QR mechanism parameters need to be designed first. Initial QR_TH is designed as 0.4 x LL x ICC-DY = 36mV and QR_Width is designed as 1.11 x TON. The ICCMAX is designed as 90A. By using the information, the two equations can be listed by using multi-function pin setting mechanism R2 0.566 = ×5 R1+ R2 ⎛ R1× R2 ⎞ 0.686 = 80μA × ⎜ ⎟ ⎝ R1+ R2 ⎠ R1 = 75.8kΩ, R2 = 9.68kΩ. No load offset function disabled. Just connect a 0Ω resistor from SET3 pin to ground. (3) Protection Settings : OVP/UVP protections : When VSEN pin voltage is 350mV more than VID, the OVP will be latched. When VSEN pin voltage is 350mV less than VID, the UVP will be latched. TSEN and VR_HOT design : Using the following equation to calculate related resistances for VR_HOT setting. VTSEN = VCC × R2 R2 + ⎡⎣RNTC(100°C) // R1⎤⎦ = 1.887V Choosing R1 = 100kΩ and an NTC thermistor RNTC (25°C) = 100kΩ which its β =4485. When temperature is 100°C, the RNTC(100°C) = 4.85kΩ.Then R2 = 2.8kΩ can be calculated. Thermal Considerations For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula : PD(MAX) = (TJ(MAX) − TA) / θJA where TJ(MAX) is the maximum junction temperature, TA is the ambient temperature, and θJA is the junction to ambient thermal resistance. For recommended operating condition specifications, the maximum junction temperature is 125°C. The junction to ambient thermal resistance, θJA, is layout dependent. For WQFN-32L 4x4 package, the thermal resistance, θJA, is 27.8°C/W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at TA = 25°C can be calculated by the following formula : PD(MAX) = (125°C − 25°C) / (27.8°C/W) = 3.6W for WQFN-32L 4x4 package The maximum power dissipation depends on the operating ambient temperature for fixed T J(MAX) and thermal resistance, θJA. The derating curve in Figure 25 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation. 4.0 Maximum Power Dissipation (W) set. By using above information, the two equations can be listed by using multi-function pin setting mechanism Four-Layer PCB 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 25 50 75 100 125 Ambient Temperature (°C) Figure 25. Derating Curve of Maximum Power Dissipation Copyright © 2013 Richtek Technology Corporation. All rights reserved. www.richtek.com 44 is a registered trademark of Richtek Technology Corporation. DS8884B-01 September 2013 RT8884B Layout Considerations Careful PC board layout is critical to achieve low switching losses and clean, stable operation. The switching power stage requires particular attention. If possible, mount all of the power components on the top side of the board with their ground terminals flushed against one another. Follow these guidelines for optimum PC board layout : ` Keep the high current paths short, especially at the ground terminals. ` Keep the power traces and load connections short. This is essential for high efficiency. ` When trade-offs in trace lengths must be made, it's preferable to let the inductor charging path be longer than the discharging path. ` Place the current sense component close to the controller. ISENxP and ISENxN connections for current limit and voltage positioning must be made using Kelvin sense connections to guarantee current sense accuracy. The PCB trace from the sense nodes should be paralleled back to the controller. ` Route high speed switching nodes away from sensitive analog areas (COMP, FB, ISENxP, ISENxN, etc...) ` User need to connect exposed pad to the ground plane through low impedance path. Recommend use of at least 5 vias to connect to ground planes in PCB internal layers. Copyright © 2013 Richtek Technology Corporation. All rights reserved. DS8884B-01 September 2013 is a registered trademark of Richtek Technology Corporation. www.richtek.com 45 RT8884B Outline Dimension 1 1 2 2 DETAIL A Pin #1 ID and Tie Bar Mark Options Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated. Dimensions In Millimeters Dimensions In Inches Symbol Min Max Min Max A 0.700 0.800 0.028 0.031 A1 0.000 0.050 0.000 0.002 A3 0.175 0.250 0.007 0.010 b 0.150 0.250 0.006 0.010 D 3.900 4.100 0.154 0.161 D2 2.650 2.750 0.104 0.108 E 3.900 4.100 0.154 0.161 E2 2.650 2.750 0.104 0.108 e L 0.400 0.300 0.016 0.400 0.012 0.016 W-Type 32L QFN 4x4 Package Richtek Technology Corporation 14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789 Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries. www.richtek.com 46 DS8884B-01 September 2013