RFD14N06L, RFD14N06LSM, RFP14N06L Data Sheet July 1999 14A, 60V, 0.100 Ohm, Logic Level, N-Channel Power MOSFETs • 14A, 60V Formerly developmental type TA09870. Ordering Information PACKAGE 4088.3 Features These are N-Channel power MOSFETs manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI integrated circuits, gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers and relay drivers. This performance is accomplished through a special gate oxide design which provides full rated conductance at gate bias in the 3V - 5V range, thereby facilitating true on-off power control directly from logic level (5V) integrated circuits. PART NUMBER File Number • rDS(ON) = 0.100Ω • Temperature Compensating PSPICE® Model • Can be Driven Directly from CMOS, NMOS, and TTL Circuits • Peak Current vs Pulse Width Curve • UIS Rating Curve • 175oC Operating Temperature • Related Literature - TB334 “Guidelines for Soldering Surface Mount Components to PC Boards” Symbol BRAND RFD14N06L TO-251AA 14N06L RFD14N06LSM TO-252AA 14N06L RFP14N06L TO-220AB FP14N06L D G NOTE: When ordering, use the entire part number. Add the suffix 9A, to obtain the TO-252AA variant in tape and reel, i.e. RFD14N06LSM9A. S Packaging JEDEC TO-251AA JEDEC TO-252AA DRAIN (FLANGE) SOURCE DRAIN GATE DRAIN (FLANGE) GATE SOURCE JEDEC TO-220AB SOURCE DRAIN GATE DRAIN (FLANGE) 6-1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. PSPICE® is a registered trademark of MicroSim Corporation. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 RFD14N06L, RFD14N06LSM, RFP14N06LS Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tpkg RFD14N06L, RFD14N06LSM, RFP14N06LS 60 60 ±10 14 Refer to Peak Current Curve Refer to UIS Curve 48 0.32 -55 to 175 UNITS V V V A W W/oC oC oC oC 300 260 CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 150oC. Electrical Specifications TC = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS Drain to Source Breakdown Voltage BVDSS ID = 250µA, VGS = 0V, Figure 13 60 - - V Gate Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA, Figure 12 1 - 2 V - - 1 µA - - 50 µA VGS = ±10V - - 100 nA ID = 14A, VGS = 5V - - 0.100 Ω VDD = 30V, ID = 7A, RL = 4.28Ω, VGS = 5V, RGS = 0.6Ω Figures 10, 18, 19 - - 60 ns - 13 - ns - 24 - ns td(OFF) - 42 - ns tf - 16 - ns tOFF - - 100 ns - - 40 nC - - 25 nC - - 1.5 nC - 670 - pF - 185 - pF - 50 - pF Zero Gate Voltage Drain Current IDSS Gate to Source Leakage Current IGSS On Resistance rDS(ON) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time tr Turn-Off Delay Time Fall Time Turn-Off Time VDS = 48V, VGS = 0V Total Gate Charge Qg(TOT) VGS = 0V to 10V Gate Charge at 5V Qg(5) VGS = 0V to 5V Qg(TH) VGS = 0V to 1V Threshold Gate Charge Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS Thermal Resistance Junction-to-Case RθJC Thermal Resistance Junction-to-Ambient RθJA TC = 25oC TC = 150oC VDD = 48V, ID = 14A, RL = 3.43Ω Figures 20, 21 VDS = 25V, VGS = 0V, f = 1MHz Figure 14 - - 3.125 oC/W TO-251 and TO-252 - - 100 oC/W TO-220 - - 80 oC/W MIN TYP MAX UNITS ISD = 14A - - 1.5 V ISD = 14A, dISD/dt = 100A/µs - - 125 ns Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Diode Voltage Reverse Recovery Time VSD trr 6-2 TEST CONDITIONS RFD14N06L, RFD14N06LSM, RFP14N06L Typical Performance Curves Unless Otherwise Specified 16 POWER DISSIPATION MULTIPLIER 1.2 ID, DRAIN CURRENT (A) 1.0 0.8 0.6 0.4 12 8 4 0.2 0 125 50 75 100 TC , CASE TEMPERATURE (oC) 25 0 150 0 175 FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE 25 50 75 100 125 TC, CASE TEMPERATURE (oC) 150 175 FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE ZθJC, NORMALIZED THERMAL IMPEDANCE 1 0.5 0.2 PDM 0.1 0.1 0.05 t1 t2 0.02 0.01 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJA + TA SINGLE PULSE 0.01 10-5 10-4 10-2 10-1 10-3 t, RECTANGULAR PULSE DURATION (s) 100 101 ID, DRAIN CURRENT (A) 100 IDM, PEAK CURRENT CAPABILITY (A) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE TC = 25oC TJ = MAX RATED 100µs 10 1ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 1 10ms 100ms DC 10 100 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 4. FORWARD BIAS SAFE OPERATING AREA 6-3 200 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 100 FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 175 – T C I = I 25 --------------------- 150 VGS = 5V TC = 25oC VGS = 10V 10 10-5 10-4 10-3 10-2 10-1 t, PULSE WIDTH (s) 100 FIGURE 5. PEAK CURRENT CAPABILITY 101 RFD14N06L, RFD14N06LSM, RFP14N06L Typical Performance Curves Unless Otherwise Specified (Continued) 35 VGS = 10V VGS = 5V VGS = 4.5V 30 ID, DRAIN CURRENT (A) IAS, AVALANCHE CURRENT (A) 50 STARTING TJ = 25oC 10 STARTING TJ = +150oC If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) 25 0.01 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX. TC = 25oC 20 15 VGS = 3V 10 5 If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS-VDD) +1] 1 VGS = 4V 0.1 1 tAV, TIME IN AVALANCHE (ms) 0 10 VGS = 2.5V 1.5 6.0 3.0 4.5 VDS , DRAIN TO SOURCE VOLTAGE (V) 0 7.5 NOTE: Refer to Intersil Application Notes AN9321 and AN9322. 35 VDD = 15V PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 30 FIGURE 7. SATURATION CHARACTERISTICS 250 25oC -55oC 175oC 25 20 15 10 rDS(ON) , DRAIN TO SOURCE ON RESISTANCE (mΩ) IDS(ON), DRAIN TO SOURCE CURRENT (A) FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING ID = 7A ID = 28A ID = 14A 150 100 ID = 3.5A 50 5 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 0 0 1.5 3.0 4.5 6.0 VGS, GATE TO SOURCE VOLTAGE (V) 0 2.5 7.5 FIGURE 8. TRANSFER CHARACTERISTICS 5.0 2.5 VDD = 25V, ID = 14A, RL = 1.78Ω NORMALIZED DRAIN TO SOURCE ON RESISTANCE td(OFF) 140 120 100 tr 80 tf 60 40 td(ON) 20 0 3.0 3.5 4.0 4.5 VGS , GATE TO SOURCE VOLTAGE (V) FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT 160 SWITCHING TIME (ns) 200 0 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 10. SWITCHING TIME vs GATE TO SOURCE RESISTANCE 6-4 50 VGS = 5V, ID = 14A 2.0 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 1.5 1.0 0.5 0 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 200 RFD14N06L, RFD14N06LSM, RFP14N06L Unless Otherwise Specified (Continued) 2.0 2.0 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE NORMALIZED GATE THRESHOLD VOLTAGE VGS = VDS, ID = 250µA 1.5 1.0 0.5 0 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) 1.5 1.0 0.5 0 -80 200 -40 0 40 80 120 60 VDS, DRAIN-SOURCE VOLTAGE (V) CISS 600 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS ≈ CDS + CGD COSS 200 CRSS 5 10 15 20 VDS, DRAIN TO SOURCE VOLTAGE (V) 10 VDD = BVDSS VDD = BVDSS 45 7.5 30 5.0 0.75 BVDSS 0.50 BVDSS 0.25 BVDSS 15 2.5 RL = 3.57Ω IG(REF) = 0.4mA VGS = 5V 0 0 I G ( REF ) 0 0 200 FIGURE 13. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE 800 400 160 TJ , JUNCTION TEMPERATURE (oC) FIGURE 12. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE C, CAPACITANCE (pF) ID = 250µA 20 ---------------------I G ( ACT ) 25 t, TIME (ms) I G ( REF ) 80 ---------------------I G ( ACT ) NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 14. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 15. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT Test Circuits and Waveforms VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS tP + RG VDS IAS VDD VDD - VGS DUT 0V tP IAS 0 0.01Ω tAV FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT 6-5 FIGURE 17. UNCLAMPED ENERGY WAVEFORMS VGS, GATE-SOURCE VOLTAGE (V) Typical Performance Curves RFD14N06L, RFD14N06LSM, RFP14N06L Test Circuits and Waveforms (Continued) tON tOFF td(ON) td(OFF) tf tr RL VDS 90% 90% + RG - VDD 10% 10% 0 DUT 90% VGS VGS 0 FIGURE 18. SWITCHING TIME TEST CIRCUIT 0.2µF 50% PULSE WIDTH 10% FIGURE 19. RESISTIVE SWITCHING WAVEFORMS VDS (ISOLATED SUPPLY) CURRENT REGULATOR 12V BATTERY 50% SAME TYPE AS DUT 50kΩ VDD Qg(TOT) VDS 0.3µF VGS = 10V Qg(5) D VGS = 5V VGS DUT G VGS = 1V 0 IG(REF) S 0 IG CURRENT SAMPLING RESISTOR Qg(TH) VDS ID CURRENT SAMPLING RESISTOR FIGURE 20. GATE CHARGE TEST CIRCUIT 6-6 IG(REF) 0 FIGURE 21. GATE CHARGE WAVEFORMS RFD14N06L, RFD14N06LSM, RFP14N06L PSPICE Electrical Model .SUBCKT RFP14N06L 2 1 3 ; CA 12 8 1.464e-9 CB 15 14 1.64e-9 CIN 6 8 6.17e-10 rev 9/15/94 DPLCAP LDRAIN DBODY 7 5 DBDMOD DBREAK 5 11 DBKMOD DPLCAP 10 5 DPLCAPMOD DRAIN 2 RSCL1 RSCL2 + 51 5 51 EBREAK 11 7 17 18 65.35 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTO 20 6 18 8 1 DBREAK ESCL 50 ESG + GATE 1 IT 8 17 1 6 8 11 RDRAIN 16 VTO EVTO 9 20 + 18 8 LGATE RGATE LDRAIN 2 5 1e-9 LGATE 1 9 5.68e-9 LSOURCE 3 7 5.35e-9 + 21 6 RBREAK 17 18 RBKMOD 1 RDRAIN 50 16 RDSMOD 33.1e-3 RGATE 9 20 5.85 RIN 6 8 1e9 RSCL1 5 51 RSCLMOD 1e-6 RSCL2 5 50 1e3 RSOURCE 8 7 RDSMOD 14.3e-3 RVTO 18 19 RVTOMOD 1 DBODY MOS2 CIN 8 RSOURCE 7 LSOURCE 3 SOURCE S2A S1A 12 + EBREAK 17 18 MOS1 RIN MOS1 16 6 8 8 MOSMOD M = 0.99 MOS2 16 21 8 8 MOSMOD M = 0.01 S1A S1B S2A S2B 5 10 13 8 S1B RBREAK 15 14 13 17 18 S2B RVTO 13 CA CB + EGS 6 8 EDS + 14 5 8 IT 19 VBAT + 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 8 19 DC 1 VTO 21 6 0.485 ESCL 51 50 VALUE = {(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)*1e6/46,7))} .MODEL DBDMOD D (IS = 2.23e-13 RS = 1.15e-2 TRS1 = 1.64e-3 TRS2 = 7.89e-6 CJO = 6.83e-10 TT = 3.68e-8) .MODEL DBKMOD D (RS = 3.8e-1 TRS1 = 1.89e-3 TRS2 = 1.13e-5) .MODEL DPLCAPMOD D (CJO = 25.7e-11 IS = 1e-30 N = 10) .MODEL MOSMOD NMOS (VTO = 1.935 KP = 18.89 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL RBKMOD RES (TC1 = 7.18e-4 TC2 = 1.53e-6) .MODEL RDSMOD RES (TC1 = 4.45e-3 TC2 = 2.9e-5) .MODEL RSCLMOD RES (TC1 = 2.8e-3 TC2 = 6.0e-6) .MODEL RVTOMOD RES (TC1 = -1.7e-3 TC2 = -2.0e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.55 VOFF= -1.55) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.55 VOFF= -3.55) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.55 VOFF= 2.45) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.45 VOFF= -2.55) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; authored by William J. Hepp and C. Frank Wheatley. 6-7 RFD14N06L, RFD14N06LSM, RFP14N06L All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 6-8 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029