RFD15N06LE, RFD15N06LESM Data Sheet 15A, 60V, 0.065 Ohm, ESD Rated, Logic Level, N-Channel Power MOSFETs These are N-Channel power MOSFETs manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI circuits, gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers, and relay drivers. These transistors can be operated directly from integrated circuits. Formerly developmental type TA49165. PACKAGE File Number 4079.1 Features • 15A, 60V • rDS(ON) = 0.065Ω • 2kV ESD Protected • Temperature Compensating PSPICE™ Model • Peak Current vs Pulse Width Curve • UIS Rating Curve • 175oC Operating Temperature • Related Literature - TB334 “Guidelines for Soldering Surface Mount Components to PC Boards” Ordering Information PART NUMBER April 1999 BRAND RFD15N06LE TO-251AA F15N6L RFD15N06LESM TO-252AA F15N6L Symbol D NOTE: When ordering, use the entire part number. For ordering in tape and reel, add the suffix 9A to the part number, i.e. RFD15N06LESM9A. G S Packaging JEDEC TO-251AA JEDEC TO-252AA SOURCE DRAIN GATE DRAIN (FLANGE) DRAIN (FLANGE) GATE SOURCE 6-149 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. PSPICE™ is a trademark of MicroSim Corporation. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 RFD15N06LE, RFD15N06LESM Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .EAS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .PD Derate above 25oC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TJ, TSTG Electrostatic Discharge Rating MIL-STD-883, Category B(2) . . . . . . . . . . . . . . ESD Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg RFD15N06LE, RFD15N06LESM 60 60 ±10 15 Refer to Peak Current Curve Refer to UIS Curve 72 0.48 -55 to 175 2 UNITS V V V A 300 260 oC oC W W/oC oC kV CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 150oC. Electrical Specifications TC = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS Drain to Source Breakdown Voltage BVDSS ID = 250µA, VGS = 0V, Figure 13 60 - - V Gate Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA, Figure 12 1 - 2 V - - 1 µA - - 50 µA Zero Gate Voltage Drain Current IDSS Gate to Source Leakage Current IGSS Drain to Source On Resistance rDS(ON) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time Turn-Off Delay Time Fall Time Turn-Off Time VDS = 48V, VGS = 0V VGS = ±10V - - 10 µA ID = 15A, VGS = 5V - - 0.065 Ω VDD = 30V, ID = 15A, RL = 2.0Ω, VGS = 5V, RGS = 2.5Ω Figures 10, 18, 19 - - 77 ns - 11 - ns tr - 40 - ns td(OFF) - 30 - ns tf - 18 - ns tOFF - - 75 ns Total Gate Charge Qg(TOT) VGS = 0V to 10V Gate Charge at 5V Qg(5) VGS = 0V to 5V Qg(TH) VGS = 0V to 1V Threshold Gate Charge TC = 25oC TC = 150oC Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance Thermal Resistance Junction to Case Thermal Resistance Junction to Ambient RθJA VDD = 48V, ID = 15A, RL = 3.20Ω Figures 20, 21 VDS = 25V, VGS = 0V, f = 1MHz Figure 14 - 39 49 nC - 21 26 nC - 0.95 1.20 nC - 855 - pF - 240 - pF CRSS - 75 - pF RθJC - - 2.08 oC/W - - 100 oC/W TO-251 and TO-252 Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Diode Voltage VSD Diode Reverse Recovery Time trr TEST CONDITIONS MIN TYP MAX UNITS ISD = 15A - - 1.5 V ISD = 15A, dISD/dt = 100A/µs - - 80 ns NOTES: 2. Pulse Test: Pulse Width ≤ 300ms, Duty Cycle ≤ 2%. 3. Repetitive Rating: Pulse Width limited by max junction temperature. See Transient Thermal Impedance Curve (Figure 3) and Peak Current Capability Curve (Figure 5). 6-150 RFD15N06LE, RFD15N06LESM Typical Performance Curves Unless Otherwise Specified 20 POWER DISSIPATION MULTIPLIER 1.2 ID, DRAIN CURRENT (A) 1.0 0.8 0.6 0.4 15 10 5 0.2 0 25 0 0 125 50 75 100 TC , CASE TEMPERATURE (oC) 25 175 150 FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE 50 75 100 125 TC, CASE TEMPERATURE (oC) 150 175 FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2 THERMAL IMPEDANCE ZθJC, NORMALIZED 1 0.5 0.2 0.1 PDM 0.1 t1 t2 0.05 0.02 0.01 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 t, RECTANGULAR PULSE DURATION (s) 100 101 FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 200 TC = 25oC, TJ = MAX RATED ID, DRAIN CURRENT (A) 100 100µs 10 1ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 10ms 100ms DC 60 FIGURE 4. FORWARD BIAS SAFE OPERATING AREA 6-151 100 IDM, PEAK CURRENT CAPABILITY (A) 200 TC = 25oC VGS = 10V 100 VGS = 5V FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 175 - TC I = I25 150 THERMAL IMPEDANCE MAY LIMIT CURRENT IN THIS REGION 10 10-5 10-4 10-3 10-2 10-1 t, PULSE WIDTH (s) 100 FIGURE 5. PEAK CURRENT CAPABILITY 101 RFD15N06LE, RFD15N06LESM Typical Performance Curves Unless Otherwise Specified (Continued) 30 STARTING TJ = 25oC STARTING TJ = 150oC 10 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) VGS = 5V VGS = 4V 20 VGS = 3.5V 15 10 VGS = 3V 5 If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 1 0.001 TC = 25oC PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX. VGS = 10V 25 ID, DRAIN CURRENT (A) IAS, AVALANCHE CURRENT (A) 50 VGS = 2.5V 0.01 0.1 1 tAV, TIME IN AVALANCHE (ms) 0 10 0 1.5 3.0 4.5 VDS, DRAIN TO SOURCE VOLTAGE (V) 6.0 NOTE: Refer to Intersil Application Notes AN9321 and AN9322. 200 25oC -55oC VDD = 15V PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 25 175oC 20 15 10 5 0 ON RESISTANCE (mΩ) 30 FIGURE 7. SATURATION CHARACTERISTICS rDS(ON), DRAIN TO SOURCE IDS(ON), DRAIN TO SOURCE CURRENT (A) FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING ID = 15A ID = 30A ID = 7.5A 100 ID = 3.75A 50 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 0 1.5 3 4.5 VGS, GATE TO SOURCE VOLTAGE (V) 0 2.0 6 2.5 3.5 3.0 4.0 4.5 5.0 VGS, GATE TO SOURCE VOLTAGE (V) FIGURE 8. TRANSFER CHARACTERISTICS FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT 250 2.5 NORMALIZED DRAIN TO SOURCE ON RESISTANCE VDD = 30 V, ID =15A, RL= 2.00Ω 200 SWITCHING TIME (ns) 150 td(OFF) 150 tr 100 tf 50 VGS = 5V, ID = 15A PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX. 2.0 1.5 1.0 td(ON) 0 0 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 10. SWITCHING TIME vs GATE RESISTANCE 6-152 50 0.5 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 200 RFD15N06LE, RFD15N06LESM Unless Otherwise Specified (Continued) 1.2 1.2 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE NORMALIZED GATE THRESHOLD VOLTAGE VGS = VDS, ID = 250µA 1.0 0.8 0.6 0.4 -80 -40 0 40 80 120 160 VDS , DRAIN TO SOURCE VOLTAGE (V) C, CAPACITANCE (pF) CISS 800 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS ≈ CDS + CGD 600 400 COSS 200 CRSS 5 10 15 20 VDS, DRAIN TO SOURCE VOLTAGE (V) 0.9 -40 0 40 80 120 160 TJ , JUNCTION TEMPERATURE (oC) 200 5.00 60 VDD = BVDSS VDD = BVDSS 3.75 45 RL =4.00Ω IG(REF) = 0.44mA VGS = 5V 2.50 30 15 0 0 1.0 FIGURE 13. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE 1200 1000 1.1 0.8 -80 200 TJ, JUNCTION TEMPERATURE (oC) FIGURE 12. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE ID = 250µA PLATEAU VOLTAGES IN DESCENDING ORDER: VDD = BVDSS VDD = 0.75 BVDSS VDD = 0.50 BVDSS VDD = 0.25 BVDSS 0 0 I G ( REF ) 20 ------------------------I G ( ACT ) 25 1.25 t, TIME (ms) I G ( REF ) 80 ------------------------I G ( ACT ) NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 14. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 15. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT Test Circuits and Waveforms VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS tP + RG VDS IAS VDD VDD - VGS DUT 0V tP IAS 0 0.01Ω tAV FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT 6-153 FIGURE 17. UNCLAMPED ENERGY WAVEFORMS VGS , GATE TO SOURCE VOLTAGE (V) Typical Performance Curves RFD15N06LE, RFD15N06LESM Test Circuits and Waveforms (Continued) tON tOFF td(ON) td(OFF) VDS VDS VGS tf tr RL 90% 90% + VGS - 10% 10% 0 0V 90% DUT RGS VGS 0 50% 10% FIGURE 18. SWITCHING TIME TEST CIRCUIT 50% PULSE WIDTH FIGURE 19. RESISTIVE SWITCHING WAVEFORMS VDS VDD RL Qg(TOT) VDS VGS = 10V VGS Qg(5) + VDD DUT IG(REF) VGS = 5V VGS - VGS = 1V 0 Qg(TH) IG(REF) 0 FIGURE 20. GATE CHARGE TEST CIRCUIT 6-154 FIGURE 21. GATE CHARGE WAVEFORMS RFD15N06LE, RFD15N06LESM PSPICE Electrical Model SUBCKT RFD15N06LE 2 1 3 ; rev 5/13/95 CA 12 8 2.50e-9 CB 15 14 2.4e-9 CIN 6 8 7.70e-10 LDRAIN DPLCAP 10 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DESD1 91 9 DESD1MOD DESD2 91 7 DESD2MOD DPLCAP 10 5 DPLCAPMOD RLDRAIN ESG LGATE RLGATE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 14.52e-3 RGATE 9 20 2.6 RLDRAIN 2 5 10 RLGATE 1 9 27.7 RLSOURCE 3 7 29.8 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 20.05e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B DBREAK 11 50 GATE 1 LDRAIN 2 5 1e-9 LGATE 1 9 2.77e-9 LSOURCE 3 7 2.98e-9 RSLC1 51 + 5 ESLC 51 RSLC2 EBREAK 11 7 17 18 65.18 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 IT 8 17 1 DRAIN 2 5 + EBREAK 17 18 RDRAIN 16 6 8 + EVTHRES + 19 8 EVTEMP RGATE + 18 9 20 22 21 6 DBODY MWEAK MMED MSTRO DESD1 91 DESD2 LSOURCE CIN RSOURCE 8 SOURCE 3 7 RLSOURCE S1A 12 13 8 S2A 15 14 13 S1B RBREAK 18 17 S2B 13 CA RVTEMP CB + EGS 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD 6 8 EDS IT 14 + 19 VBAT 5 8 + 8 22 RVTHRES VBAT 22 19 DC 1 ESLC 51 50 VALUE = {(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*72),5))} .MODEL DBODYMOD D (IS = 6.5e-13 RS = 1.20e-2 TRS1 = 1.75e-3 TRS2 = 5.08e-6 CJO = 7.45e-10 TT = 4.61e-8 M = 0.46) .MODEL DBREAKMOD D (RS = 1.28e-1 TRS1 = -2.15e-3 TRS2 = 1.05e-5) .MODEL DESD1MOD D (BV = 12.7 TBV1 = 0 TBV2 = 0 RS = 35 TRS1 = 1.2e-6 TRS2 = 0) .MODEL DESD2MOD D (BV = 12.7 TBV1 = 0 TBV2 = 0 RS = 0 TRS1 =0 TRS2 = 0) .MODEL DPLCAPMOD D (CJO = 4.32e-10 IS = 1e-30 N = 10 M = 0.54) .MODEL MMEDMOD NMOS (VTO = 1.60 KP = 1.75 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.60) .MODEL MSTROMOD NMOS (VTO = 1.93 KP = 26.0 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.39 KP = 0.09 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 26.0 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 9.76e-4 TC2 = 5.11e-7) .MODEL RDRAINMOD RES (TC1 = 1.30e-2 TC2 = 4.49e-5) .MODEL RSLCMOD RES (TC1 =3.00e-3 TC2 = 6.00e-6) .MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0) .MODEL RVTHRESMOD RES (TC1 = -1.43e-3 TC2 = -6.72e-6) .MODEL RVTEMPMOD RES (TC1 = -9.91e-4 TC2 = 1.02e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.85 VOFF = -1.85) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.85 VOFF = -4.85) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.35 VOFF = 1.65) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 1.65 VOFF = -1.35 .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991. 6-155 RFD15N06LE, RFD15N06LESM All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 6-156 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029