RFD3N08L, RFD3N08LSM Data Sheet 3A, 80V, 0.800 Ohm, Logic Level, N-Channel Power MOSFETs 2836.4 • 3A, 80V • rDS(ON) = 0.800Ω • Temperature Compensating PSPICE® Model • On Resistance vs Gate Drive Voltage Curves • Peak Current vs Pulse Width Curve • UIS Rating Curve • 175oC Operating Temperature • Related Literature - TB334 “Guidelines for Soldering Surface Mount Components to PC Boards” Formerly developmental type TA09922. Ordering Information PACKAGE File Number Features The RFD3N08L and RFD3N08LSM are N-Channel enhancement mode silicon gate power field effect transistors specifically designed for use with logic level (5V) driving sources in applications such as programmable controllers, automotive switching, and solenoid drivers. This performance is accomplished through a special gate oxide design which provides full rated conductance at gate biases in the 3V to 5V range, thereby facilitating true on-off power control directly from logic circuit supply voltages. PART NUMBER July 1999 BRAND RFD3N08L TO-251AA F3N08L RFD3N08LSM TO-252AA F3N08L Symbol D NOTE: When ordering, include the entire part number. Add the suffix 9A to obtain the TO-252AA variant in tape and reel, i.e. RFD3N08LSM9A G S Packaging JEDEC TO-251AA JEDEC TO-252AA SOURCE DRAIN GATE DRAIN (FLANGE) DRAIN (FLANGE) GATE SOURCE 6-26 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. PSPICE® is a registered trademark of MicroSim Corporation. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 RFD3N08L, RFD3N08LSM Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDS Drain to Gate Voltage (RGS = 20KΩ) (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current (Figures 3, 5) (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pulsed Avalanche Energy Rating (Figure 6) (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . .EAS Operating and Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . .TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg RFD3N08L, RFD3N08LSM 80 80 ±10 3 Refer to Peak Current Curve 30 0.2 Refer to UIS Curve -55 to 175 UNITS V V V A W W/oC oC oC oC 300 260 CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 150oC. Electrical Specifications TC = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS - - V Drain to Source Breakdown Voltage BVDSS ID = 250µA, VGS = 0V (Figure 12) 80 Gate to Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 11) 1 - 2.5 V VDS = Rated BVDSS, VGS = 0V - - 25 µA VDS = 0.8 x Rated BVDSS, VGS = 0V 125oC - - 250 µA VGS = ±10V - - ±100 nA ID = 3A, VGS = 5V, (Figures 9, 10) - - 0.800 Ω VDD = 40V, ID = 3A, RL = 13.3Ω, VGS = 5V, RG = 25Ω, (Figures 13, 15, 18, 19) - - 75 ns - 15 - ns - 45 - ns td(OFF) - 22 - ns tf - 15 - ns Zero Gate Voltage Drain Current Gate to Source Leakage Current Drain to Source On Resistance (Note 2) IDSS IGSS rDS(ON) Turn-On Time t(ON) Turn-On Delay Time td(ON) Rise Time tr Turn-Off Delay Time Fall Time Turn-Off Time t(OFF) Total Gate Charge Qg(TOT) VGS = 0V to 10V Gate Charge at 5V Qg(5) VGS = 0V to 5V Qg(TH) VGS = 0V to 1V Threshold Gate Charge Input Capacitance CISS Output Capacitance COSS Reverse Transfer Characterisics CRSS VDD = 64V, ID = 3A, Ig(REF) = 0.1mA RL = 21.3Ω (Figures 15, 20, 21) VDS = 25V, VGS = 0V, f = 1MHz, (Figure 14) - - 45 ns - 6.8 8.5 nC - 3.8 4.8 nC - 0.18 0.24 nC - - 125 pF - - 55 pF - - 15 pF Thermal Resistance, Junction to Case RθJC - - 5.0 oC/W Thermal Resistance, Junction to Ambient RθJA - - 100 oC/W MIN TYP MAX UNITS ISD = 3A - - 1.25 V ISD = 3A, dISD/dt = 100A/µs - - 85 ns Source to Drain Diode Ratings and Specifications PARAMETER Source to Drain Diode Voltage (Note 2) Reverse Recovery Time SYMBOL VSD trr TEST CONDITIONS NOTES: 2. Pulsed: pulse duration = 300µs max, duty cycle = 2%. 3. Repetitive rating: pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve (Figure 3). 4. Refer to Intersil Application Notes AN9321 and AN9322. 6-27 RFD3N08L, RFD3N08LSM 1.2 3.5 1.0 3.0 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER Typical Performance Curves Unless Otherwise Specified 0.8 0.6 0.4 0.2 2.5 2.0 1.5 1.0 0.5 0 125 50 75 100 TC , CASE TEMPERATURE (oC) 25 0 150 0 25 175 FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE 50 75 100 125 TC, CASE TEMPERATURE (oC) 175 150 FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs TEMPERATURE ZθJC, NORMALIZED TRANSIENT THERMAL IMPEDANCE 1 0.5 PDM 0.2 0.1 0.1 t1 t2 0.05 0.02 0.01 NOTES: DUTY FACTOR: D = t1/t2 SINGLE PULSE PEAK TJ = PDM x ZθJC x RθJC + TC 0.01 10-5 10-4 10-3 10-2 10-1 t, RECTANGULAR PULSE DURATION (s) 100 101 FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 30 IDM, PEAK CURRENT CAPABILITY (A) 20 ID, DRAIN CURRENT (A) 10 100µs 1ms 1 10ms 100ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 0.1 1 VDSS MAX = 80V TC = 25oC TJ = MAX RATED DC 10 100 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 4. FORWARD BIAS SAFE OPERATING AREA 6-28 200 FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: I = I25 10 VGS = 10V 175 - TC 150 VGS = 5V TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 1 10-5 10-4 TC = 25oC 10-3 10-2 10-1 t, PULSE WIDTH (s) 100 FIGURE 5. PEAK CURRENT CAPABILITY 101 RFD3N08L, RFD3N08LSM Typical Performance Curves Unless Otherwise Specified (Continued) 10 10 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] VGS = 10V ID, DRAIN CURRENT (A) IAS, AVALANCHE CURRENT (A) 20 STARTING TJ = 25oC STARTING TJ = 150oC 8 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC 6 VGS = 5V VGS = 4.5V 4 VGS = 4V VGS = 3.5V 2 VGS = 3V 1 0.001 0.01 0.1 tAV, TIME IN AVALANCHE (ms) 0 1 0 2 4 6 8 VDS, DRAIN TO SOURCE VOLTAGE (V) 10 NOTE: Refer to Intersil Application Notes AN9321 and AN9322. 10 2.5 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V 8 -55oC 6 25oC 4 175oC 2 ID = 4A 2 ID = 3A 1.5 ID = 1.5A 1 2.5 3.5 4 4.5 3 VGS, GATE TO SOURCE VOLTAGE (V) 2 7.5 5 FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT 2 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 5V, ID = 3A VGS = VDS, ID = 250µA NORMALIZED GATE THRESHOLD VOLTAGE 2.5 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V 0 1.5 3 4.5 6 VGS, GATE TO SOURCE VOLTAGE (V) FIGURE 8. TRANSFER CHARACTERISTICS 3 ID = 0.75A 0.5 0 0 NORMALIZED ON RESISTANCE FIGURE 7. SATURATION CHARACTERISTICS rDS(ON), ON-STATE RESISTANCE (Ω) IDS(ON), DRAIN TO SOURCE CURRENT (A) FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY 2 1.5 1 1.5 1 0.5 0.5 0 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 6-29 200 0 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) 200 FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE RFD3N08L, RFD3N08LSM Typical Performance Curves Unless Otherwise Specified (Continued) 2.0 100 VDD = 40V, ID = 3A, RL = 13.3Ω 1.5 1.0 0.5 60 tf 40 td(OFF) 20 td(ON) 0 -40 0 40 80 120 160 TJ , JUNCTION TEMPERATURE (oC) 200 COSS 90 60 CRSS 30 0 0 30 40 50 5 10 15 20 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 13. SWITCHING TIME vs GATE RESISTANCE VDS, DRAIN TO SOURCE VOLTAGE (V) 120 20 5.00 80 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS ≈ CDS + CGD CISS 150 10 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE 180 0 3.75 60 RL = 26.67Ω IG(REF) = 0.1mA VGS = 5V 2.50 40 PLATEAU VOLTAGES IN DESCENDING ORDER: VDD = BVDSS VDD = 0.75 BVDSS VDD = 0.50 BVDSS VDD = 0.25BVDSS 20 0 25 20 IG(REF) IG(ACT) t, TIME (µs) 80 1.25 IG(REF) IG(ACT) 0 NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 14. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 15. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT Test Circuits and Waveforms VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS tP + RG VDS IAS VDD VDD - VGS DUT 0V tP IAS 0 0.01Ω tAV FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT 6-30 FIGURE 17. UNCLAMPED ENERGY WAVEFORMS VGS, GATE TO SOURCE VOLTAGE (V) 0 -80 C, CAPACITANCE (pF) tr 80 SWITCHING TIME (ns) NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE ID = 250µA RFD3N08L, RFD3N08LSM Test Circuits and Waveforms (Continued) tON tOFF td(ON) td(OFF) tf tr RL VDS 90% 90% + RG - VDD 10% 10% 0 DUT 90% VGS VGS 0 50% 10% FIGURE 18. SWITCHING TIME TEST CIRCUIT 50% PULSE WIDTH FIGURE 19. RESISTIVE SWITCHING WAVEFORMS VDS VDD RL Qg(TOT) VDS VGS = 10V VGS Qg(5) + VDD DUT Ig(REF) VGS = 5V VGS - VGS = 1V 0 Qg(TH) IG(REF) 0 FIGURE 20. GATE CHARGE TEST CIRCUIT 6-31 FIGURE 21. GATE CHARGE WAVEFORMS RFD3N08L, RFD3N08LSM PSPICE Electrical Model SUBCKT RFD3N08L 2 1 3 ; rev 5/10/95 CA 12 8 4.10e-10 CB 15 14 3.25e-10 CIN 6 8 1.10e-10 LDRAIN DPLCAP 5 DRAIN 2 10 DBODY 7 5 DBDMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD RSCL1 +51 RSCL2 EBREAK 11 7 17 18 93.57 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRESH 6 21 19 8 1 EZTEMPCO 20 6 18 22 1 5 ESCL 51 DBREAK 50 ESG IT 8 17 1 EZTEMPCO 20 + 18 22 RGATE RLGATE 16 EVTHRESH + 19 8 9 6 EBREAK 21 14 13 S1B S2A 15 EGS 6 8 RSOURCE 7 3 SOURCE RLSOURCE RBREAK 18 17 S2B + MOS2 LSOURCE 13 CA DBODY CIN RIN 8 S1A 12 13 8 + 17 18 MOS1 MOS1 16 6 8 8 MSTRONG M = 0.80 MOS2 16 21 8 8 MWEAK M = 0.20 RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 174.2e-3 RGATE 9 20 24.9 RIN 6 8 1e9 RLDRAIN 2 5 10 RLGATE 1 9 58 RLSOURCE 3 7 58 RSCL1 5 51 RSCLMOD 1e-6 RSCL2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 200.2e-3 RTHRESH 22 8 RTHRESHMOD 1 RZTEMPCO 18 19 RZTEMPCOMOD 1 11 RDRAIN 6 8 + LGATE GATE 1 LDRAIN 2 5 1e-9 LGATE 1 9 5.8e-9 LSOURCE 3 7 5.8e-9 S1A S1B S2A S2B RLDRAIN RZTEMPCO CB + 5 EDS 8 14 IT 19 VBAT + 22 RTHRESH 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESCL 51 50 VALUE = {(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*10),6))} .MODEL DBDMOD D (IS = 9.90e-14 RS = 6.00e-2 TRS1 = 1.42e-3 TRS2 = -3.58e-6 CJO = 1.40e-10 TT = 5.75e-8 M = 0.4) .MODEL DBREAKMOD D (RS = 2.32 TRS1 = 1.03e-3 TRS2 = -6.17e-11) .MODEL DPLCAPMOD D (CJO = 1.13e-10 IS = 1e-30 N = 10 M=0.6) .MODEL MSTRONG NMOS (VTO = 1.773 KP = 1.70 IS = 1e-30 N = 10 TOX = 1L = 1u W = 1u) .MODEL MWEAK NMOS (VTO = 1.496 KP = 2.09 IS = 1e-30 N = 10 TOX = 1L = 1u W = 1u) .MODEL RBREAKMOD RES (TC1 = 8.19e-4 TC2 = 5.9e-7) .MODEL RDRAINMOD RES (TC1 = 1.55e-2 TC2 = 8.58e-5) .MODEL RDSOURCEMOD RES (TC1 = 0 TC2 = 0) .MODEL RSCLMOD RES (TC1 = 0 TC2 = 0) .MODEL RTHRESHMOD RES (TC1 = -5.0e-4 TC2 = -6.0e-6) .MODEL RZTEMPCOMOD RES (TC1 = -1.19e-3 TC2 = 1.12e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -5.2 VOFF= -3.2) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.2 VOFF= -5.2) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.60 VOFF= 4.4) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 4.4 VOFF= -0.60) .ENDS NOTE: 1. For further discussion of the PSPICE model, consult A New PSPICE Sub-circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991. 6-32 RFD3N08L, RFD3N08LSM All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 6-33 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029