INTERSIL RFP3055LE

RFD3055LE, RFD3055LESM, RFP3055LE
Data Sheet
November 1999
11A, 60V, 0.107 Ohm, Logic Level,
N-Channel Power MOSFETs
• 11A, 60V
Formerly developmental type TA49158.
• rDS(ON) = 0.107Ω
• Temperature Compensating PSPICE® Model
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount
Components to PC Boards”
Symbol
Ordering Information
PACKAGE
4044.3
Features
These N-Channel enhancement-mode power MOSFETs are
manufactured using the latest manufacturing process
technology. This process, which uses feature sizes
approaching those of LSI circuits, gives optimum utilization
of silicon, resulting in outstanding performance. They were
designed for use in applications such as switching
regulators, switching converters, motor drivers and relay
drivers. These transistors can be operated directly from
integrated circuits.
PART NUMBER
File Number
D
BRAND
RFD3055LE
TO-251AA
F3055L
RFD3055LESM
TO-252AA
F3055L
RFP3055LE
TO-220AB
FP3055LE
G
S
NOTE: When ordering, use the entire part number. Add the suffix, 9A,
to obtain the TO-252 variant in tape and reel, e.g. RFD3055LESM9A.
Packaging
JEDEC TO-220AB
JEDEC TO-251AA
SOURCE
DRAIN
GATE
SOURCE
DRAIN
GATE
DRAIN (FLANGE)
DRAIN (FLANGE)
JEDEC TO-252AA
DRAIN (FLANGE)
GATE
SOURCE
6-1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
PSPICE® is a registered trademark of MicroSim Corporation.
1-888-INTERSIL or 407-727-9207 | Copyright © Intersil Corporation 1999
RFD3055LE, RFD3055LESM, RFP3055LE
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified
RFD3055LE, RFD3055LESM,
RFP3055LE
60
60
±16
11
Refer to Peak Current Curve
Refer to UIS Curve
38
0.25
-55 to 175
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VGS
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM
Single Pulse Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .EAS
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
UNITS
V
V
V
A
W
W/oC
oC
oC
oC
300
260
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 150oC.
Electrical Specifications
TC = 25oC, Unless Otherwise Specified
MIN
TYP
MAX
UNITS
Drain to Source Breakdown Voltage
PARAMETER
SYMBOL
BVDSS
ID = 250µA, VGS = 0V
60
-
-
V
Gate Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA
1
-
3
V
VDS = 55V, VGS = 0V
-
-
1
µA
Zero Gate Voltage Drain Current
IDSS
Gate to Source Leakage Current
IGSS
Drain to Source On Resistance (Note 2)
rDS(ON)
Turn-On Time
tON
Turn-On Delay Time
td(ON)
Rise Time
Turn-Off Delay Time
Fall Time
Turn-Off Time
TEST CONDITIONS
VDS = 50V, VGS = 0V, TC = 150oC
-
-
250
µA
VGS = ±16V
-
-
±100
nA
ID = 8A, VGS = 5V (Figure 11)
-
-
0.107
Ω
VDD ≈ 30V, ID = 8A,
VGS = 4.5V, RGS = 32Ω
(Figures 10, 18, 19)
-
-
170
ns
-
8
-
ns
tr
-
105
-
ns
td(OFF)
-
22
-
ns
tf
-
39
-
ns
tOFF
Total Gate Charge
Gate Charge at 5V
Threshold Gate Charge
Qg(TOT)
VGS = 0V to 10V
Qg(5)
VGS = 0V to 5V
Qg(TH)
VGS = 0V to 1V
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
Thermal Resistance Junction to Case
Thermal Resistance Junction to Ambient
RθJA
VDD = 30V, ID = 8A,
Ig(REF) = 1.0mA
(Figures 20, 21)
VDS = 25V, VGS = 0V, f = 1MHz
(Figure 14)
-
-
92
ns
-
9.4
11.3
nC
-
5.2
6.2
nC
-
0.36
0.43
nC
-
350
-
pF
-
105
-
pF
CRSS
-
23
-
pF
RθJC
-
-
3.94
oC/W
TO-220AB
-
-
62
oC/W
TO-251AA, TO-252AA
-
-
100
oC/W
TYP
MAX
UNITS
ISD = 8A
-
1.25
V
ISD = 8A, dISD/dt = 100A/µs
-
66
ns
Source to Drain Diode Specifications
PARAMETER
SYMBOL
Source to Drain Diode Voltage
VSD
Diode Reverse Recovery Time
trr
TEST CONDITIONS
MIN
NOTES:
2. Pulse Test: Pulse Width ≤ 300ms, Duty Cycle ≤ 2%.
3. Repetitive Rating: Pulse Width limited by max junction temperature. See Transient Thermal Impedance Curve (Figure 3) and Peak Current
Capability Curve (Figure 5).
6-2
RFD3055LE, RFD3055LESM, RFP3055LE
Typical Performance Curves
Unless Otherwise Specified
POWER DISSIPATION MULTIPLIER
1.2
15
ID, DRAIN CURRENT (A)
1.0
0.8
0.6
0.4
VGS = 10V
10
VGS = 4.5V
5
0.2
0
0
25
0
125
50
75
100
TC , CASE TEMPERATURE (oC)
150
25
175
50
75
100
125
150
175
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
2
ZθJC, NORMALIZED
THERMAL IMPEDANCE
1
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
PDM
0.1
t1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
SINGLE PULSE
0.01
10-5
10-4
10-3
10-2
10-1
100
101
t, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED TRANSIENT THERMAL IMPEDANCE
200
10
IDM, PEAK CURRENT (A)
ID, DRAIN CURRENT (A)
100
100µs
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
1
1ms
10ms
SINGLE PULSE
TJ = MAX RATED TC = 25oC
0.1
10
100
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA
6-3
200
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
100
I = I25
175 - TC
150
VGS = 5V
10
1
TC = 25oC
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
10-5
10-4
10-3
10-2
10-1
100
t, PULSE WIDTH (s)
FIGURE 5. PEAK CURRENT CAPABILITY
101
RFD3055LE, RFD3055LESM, RFP3055LE
Typical Performance Curves
Unless Otherwise Specified (Continued)
15
VGS = 10V
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R ≠ 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
ID, DRAIN CURRENT (A)
IAS, AVALANCHE CURRENT (A)
100
STARTING TJ = 25oC
10
STARTING TJ = 150oC
1
VGS = 5V
12
9
VGS = 3.5V
6
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
3
0.01
0.1
1
10
VGS = 3V
TC = 25oC
0
0.001
VGS = 4V
0
1
2
3
VDS, DRAIN TO SOURCE VOLTAGE (V)
tAV, TIME IN AVALANCHE (ms)
4
NOTE: Refer to Intersil Application Notes AN9321 and AN9322
FIGURE 7. SATURATION CHARACTERISTICS
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
15
150
ID, DRAIN CURRENT (A)
12
rDS(ON), DRAIN TO SOURCE
ON RESISTANCE (mΩ)
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15V
9
TJ = 25oC
6
3
TJ = 175oC
ID = 3A
ID = 5A
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
TC = 25oC
120
90
TJ = -55oC
0
60
2
3
4
5
2
4
6
8
VGS, GATE TO SOURCE VOLTAGE (V)
VGS, GATE TO SOURCE VOLTAGE (V)
FIGURE 8. TRANSFER CHARACTERISTICS
10
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
150
2.5
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
VGS = 4.5V, VDD = 30V, ID = 8A
SWITCHING TIME (ns)
ID = 11A
tr
100
tf
50
td(OFF)
td(ON)
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
2.0
1.5
1.0
VGS = 10V, ID = 11A
0.5
0
0
10
20
30
40
RGS, GATE TO SOURCE RESISTANCE (Ω)
FIGURE 10. SWITCHING TIME vs GATE RESISTANCE
6-4
50
-80
-40
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 11. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
200
RFD3055LE, RFD3055LESM, RFP3055LE
Typical Performance Curves
Unless Otherwise Specified (Continued)
1.2
1.2
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
NORMALIZED GATE
THRESHOLD VOLTAGE
VGS = VDS, ID = 250µA
1.0
0.8
1.1
1.0
0.9
0.6
-80
-40
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
-80
200
-40
0
40
80
120
160
200
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 12. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
FIGURE 13. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
10
VGS , GATE TO SOURCE VOLTAGE (V)
1000
CISS = CGS + CGD
C, CAPACITANCE (pF)
ID = 250µA
COSS ≅ CDS + CGD
100
VGS = 0V, f = 1MHz
CRSS = CGD
6
4
WAVEFORMS IN
DESCENDING ORDER:
ID = 11A
ID = 5A
ID = 3A
2
0
60
1
10
VDS , DRAIN TO SOURCE VOLTAGE (V)
8
0
10
0.1
VDD = 30V
2
4
6
Qg, GATE CHARGE (nC)
8
10
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 14. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
FIGURE 15. NORMALIZED SWITCHING WAVEFORMS FOR
CONSTANT GATE CURRENT
Test Circuits and Waveforms
VDS
BVDSS
L
VARY tP TO OBTAIN
REQUIRED PEAK IAS
tP
+
RG
VDS
IAS
VDD
VDD
-
VGS
DUT
0V
tP
IAS
0
0.01Ω
tAV
FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT
6-5
FIGURE 17. UNCLAMPED ENERGY WAVEFORMS
RFD3055LE, RFD3055LESM, RFP3055LE
Test Circuits and Waveforms
(Continued)
tON
tOFF
td(ON)
VDS
td(OFF)
tf
tr
VDS
90%
90%
RL
VGS
+
-
DUT
10%
10%
0
VDD
90%
RGS
VGS
VGS
0
10%
FIGURE 18. SWITCHING TEST CIRCUIT
50%
50%
PULSE WIDTH
FIGURE 19. RESISTIVE SWITCHING WAVEFORMS
VDS
VDD
RL
Qg(TOT)
VDS
Qg(10) OR Qg(5)
VGS
+
VDD
VGS
DUT
Ig(REF)
VGS = 2V
0
VGS = 1V FOR
L2 DEVICES
Qg(TH)
VGS = 20V
VGS = 10V FOR
L2 DEVICES
VGS = 10V
VGS = 5V FOR
L2 DEVICES
Ig(REF)
0
FIGURE 20. GATE CHARGE TEST CIRCUIT
6-6
FIGURE 21. GATE CHARGE WAVEFORMS
RFD3055LE, RFD3055LESM, RFP3055LE
PSPICE Electrical Model
.SUBCKT RFD3055LE 2 1 3 ;
rev 1/30/95
CA 12 8 3.9e-9
CB 15 14 4.9e-9
CIN 6 8 3.25e-10
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
LDRAIN
DPLCAP
DRAIN
2
5
10
5
51
ESLC
11
-
RDRAIN
6
8
EVTHRES
+ 19 8
+
LGATE
GATE
1
EVTEMP
RGATE +
18 22
9
20
21
DBODY
-
16
MWEAK
6
MMED
MSTRO
RLGATE
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
+
17
EBREAK 18
50
ESG
LSOURCE
CIN
8
SOURCE
3
7
RSOURCE
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 3.7e-2
RGATE 9 20 3.37
RLDRAIN 2 5 10
RLGATE 1 9 54.2
RLSOURCE 3 7 25.7
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 2.50e-2
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A
S1B
S2A
S2B
DBREAK
+
RSLC2
IT 8 17 1
LDRAIN 2 5 1.0e-9
LGATE 1 9 5.42e-9
LSOURCE 3 7 2.57e-9
RLDRAIN
RSLC1
51
EBREAK 11 7 17 18 67.8
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
RLSOURCE
S1A
12
S2A
13
8
14
13
S1B
CA
RBREAK
15
17
18
RVTEMP
S2B
13
CB
6
8
-
6 12 13 8 S1AMOD
13 12 13 8 S1BMOD
6 15 14 13 S2AMOD
13 15 14 13 S2BMOD
-
IT
14
+
+
EGS
19
VBAT
5
8
EDS
-
+
8
22
RVTHRES
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*30),3))}
.MODEL DBODYMOD D (IS = 1.75e-13 RS = 1.75e-2 TRS1 = 1e-4 TRS2 = 5e-6 CJO = 5.9e-10 TT = 5.45e-8 N = 1.03 M = 0.6)
.MODEL DBREAKMOD D (RS = 6.50e-1 TRS1 = 1.25e-4 TRS2 = 1.34e-6)
.MODEL DPLCAPMOD D (CJO = 3.21e-10 IS = 1e-30 N = 10 M = 0.81)
.MODEL MMEDMOD NMOS (VTO = 2.02 KP = .83 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.37)
.MODEL MSTROMOD NMOS (VTO = 2.39 KP = 14 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 1.78 KP = 0.02 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 33.7 RS = 0.1)
.MODEL RBREAKMOD RES (TC1 = 1.06e-3 TC2 = 0)
.MODEL RDRAINMOD RES (TC1 = 1.23e-2 TC2 = 2.58e-5)
.MODEL RSLCMOD RES (TC1 = 0 TC2 = 0)
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 0)
.MODEL RVTHRESMOD RES (TC1 = -2.19e-3 TC2 = -4.97e-6)
.MODEL RVTEMPMOD RES (TC1 = -1.6e-3 TC2 = 1e-7)
.MODEL S1AMOD VSWITCH (RON = 1e-5
.MODEL S1BMOD VSWITCH (RON = 1e-5
.MODEL S2AMOD VSWITCH (RON = 1e-5
.MODEL S2BMOD VSWITCH (RON = 1e-5
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
VON = -4 VOFF= -2.5)
VON = -2.5 VOFF= -4)
VON = -0.5 VOFF= 0)
VON = 0 VOFF= -0.5)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
6-7
RFD3055LE, RFD3055LESM, RFP3055LE
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240
6-8
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029