30-F212R6A100SC-M449E-PM 30-F212R6A100SC01-M449E10-PM flowPACK 2 1200V/100A Features flowPACK 2 ● Inverter, blocking diodes ● Built-in thermistor ● IGBT4 technology for low saturation losses Target Applications ● Power Regeneration Schematic Types ● 30-F212R6A100SC-M449E ● 30-F212R6A100SC01-M449E10 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V D7,D8 Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM Th=80°C Tc=80°C tp=10ms Tj=25°C 154 208 A 1270 A 2400 A2s 189 287 W Tjmax 150 °C VCE 1200 V 116 148 A tp limited by Tjmax 300 A VCE ≤ 1200V, Tj ≤ Top max 200 A 307 466 W 20 V 10 800 µs V 175 °C I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Th=80°C Tc=80°C T1,T2,T3,T4,T5,T6 Collector-emitter break down voltage DC collector current Pulsed collector current IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Copyright by Vincotech Tj=Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 1 30-F212R6A100SC-M449E-PM 30-F212R6A100SC01-M449E10-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 64 84 A 100 A 127 192 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm D1,D2,D3,D4,D5,D6 Peak Repetitive Reverse Voltage DC forward current VRRM IF Th=80°C Tj=Tjmax Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage Comparative tracking index Copyright by Vincotech Vis t=2s DC voltage CTI >200 2 Revision: 1 30-F212R6A100SC-M449E-PM 30-F212R6A100SC01-M449E10-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ Unit Max D7,D8 Forward voltage VF 100 Threshold voltage (for power loss calc. only) Vto 100 Slope resistance (for power loss calc. only) rt 100 Reverse current Ir Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to heatsink per chip RthJC 1600 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,12 1,07 0,89 0,76 2 3 0,05 V V mΩ mA 0,37 Phase-Change Material K/W 0,24 T1,T2,T3,T4,T5,T6 Gate emitter threshold voltage Collector-emitter saturation voltage Collector-emitter cut-off current incl. Diode VGE(th) 15 ICES 0 Gate-emitter leakage current IGES Rgint Rise time Turn-off delay time Fall time 0,0034 VCE(sat) Integrated Gate resistor Turn-on delay time VCE=VGE 100 1200 0 20 tr tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 5 5,8 6,5 1,6 1,88 2,26 2,1 0,028 1200 Rgoff=4 Ω Rgon=4 Ω 600 ±15 100 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 2 td(on) td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 105 109 23 27 220 301 49 117 4,67 6,78 5,28 9,38 ns mWs 5540 f=1MHz 25 0 Tj=25°C pF 410 320 960 ±15 100 Tj=25°C nC 480 0,31 Phase-Change Material K/W 0,2 D1,D2,D3,D4,D5,D6 Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current 100 Rgon=4 Ω 600 ±15 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 100 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 2,29 2,49 103,19 118,1 131,1 289,8 7,03 13,9 4928 2403 2,79 5,92 V A ns µC A/µs mWs 0,75 Phase-Change Material K/W 0,49 Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P R100=1486 Ω Tc=100°C -5 5 % 200 mW Tj=25°C 2 mW/K Tc=100°C Power dissipation constant Ω 22000 Tj=25°C B-value B(25/50) Tol. ±3% Tj=25°C 3950 K B-value B(25/100) Tol. ±3% Tj=25°C 3998 K Vincotech NTC Reference Copyright by Vincotech Tj=25°C 3 B Revision: 1 30-F212R6A100SC-M449E-PM 30-F212R6A100SC01-M449E10-PM T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b/D1,D2,D3,D4,D5,D6 T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT Figure 1 Typical output characteristics IC = f(VCE) T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 300 IC (A) 300 250 250 200 200 150 150 100 100 50 50 0 0 0 At tp = Tj = VGE from 1 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 5 µs 250 150 °C 7 V to 17 V in steps of 1 V D1,D2,D3,D4,D5,D6 FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 200 IC (A) IF (A) 100 80 150 60 100 40 50 20 0 0 0 At Tj = tp = VCE = 2 25/150 250 10 4 6 8 10 V GE (V) 12 0 At Tj = tp = °C µs V Copyright by Vincotech 4 1 25/150 250 2 3 4 V F (V) 5 °C µs Revision: 1 30-F212R6A100SC-M449E-PM 30-F212R6A100SC01-M449E10-PM T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b/D1,D2,D3,D4,D5,D6 T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 20 E (mWs) E (mWs) 20 Eoff High T 16 Eon High T 16 Eon High T Eon Low T 12 12 Eon Low T Eoff High T Eoff Low T 8 8 Eoff Low T 4 4 0 0 0 25 50 75 100 125 150 175 I C (A) 200 0 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 RG(Ω) 20 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = 99 A Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) D1,D2,D3,D4,D5,D6 FWD D1,D2,D3,D4,D5,D6 FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 9 E (mWs) E (mWs) 9 8 8 Erec 6 6 Erec 5 5 Erec 3 3 Erec 2 2 0 0 0 25 50 75 100 125 150 175 I C (A) 200 0 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 4 Ω Copyright by Vincotech 4 8 12 16 RG(Ω) 20 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = 99 A 5 Revision: 1 30-F212R6A100SC-M449E-PM 30-F212R6A100SC01-M449E10-PM T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b/D1,D2,D3,D4,D5,D6 T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdoff t ( µs) t ( µs) 1,00 tdoff tdon tdon 0,10 tf 0,10 tf tr tr 0,01 0,01 0,00 0,00 0 25 50 75 100 125 150 175 I C (A) 200 0 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 R G ( Ω ) 20 16 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 99 A D1,D2,D3,D4,D5,D6 FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) D1,D2,D3,D4,D5,D6 FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,8 t rr( µs) t rr( µs) 0,48 0,4 trr 0,6 trr 0,32 trr trr 0,24 0,4 0,16 0,2 0,08 0 0 0 At Tj = VCE = VGE = Rgon = 25 25/150 600 ±15 4 50 75 100 125 150 175 I (A) 200 C 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 6 4 25/150 600 99 ±15 8 12 16 R gon ( Ω ) 20 °C V A V Revision: 1 30-F212R6A100SC-M449E-PM 30-F212R6A100SC01-M449E10-PM T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b/D1,D2,D3,D4,D5,D6 Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) D1,D2,D3,D4,D5,D6 FWD D1,D2,D3,D4,D5,D6 FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr( µC) 20 Qrr( µC) 20 Qrr 16 Qrr 16 12 12 Qrr 8 8 4 4 0 Qrr 0 0 25 At At Tj = VCE = VGE = Rgon = 50 75 100 125 150 175 200 0 I C (A) At Tj = VR = IF = VGE = °C V V Ω 25/150 600 ±15 4 Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) D1,D2,D3,D4,D5,D6 FWD 4 25/150 600 99 ±15 8 12 R gon ( Ω) 20 °C V A V D1,D2,D3,D4,D5,D6 FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 250 IrrM (A) 150 16 IRRM 120 200 IRRM 90 150 60 100 30 50 IRRM 0 IRRM 0 0 At Tj = VCE = VGE = Rgon = 25 25/150 600 ±15 4 50 75 100 125 150 175 I C (A) 200 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 4 25/150 600 99 ±15 8 12 16 R gon ( Ω ) 20 °C V A V Revision: 1 30-F212R6A100SC-M449E-PM 30-F212R6A100SC01-M449E10-PM T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b/D1,D2,D3,D4,D5,D6 D1,D2,D3,D4,D5,D6 FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 12500 direc / dt (A/ µs) direc / dt (A/µ s) 7500 D1,D2,D3,D4,D5,D6 FWD dI0/dt dIrec/dt 6000 dI0/dt dIo/dtLow T dIrec/dt 10000 dIo/dtLow T dIrec/dtLow T 4500 di0/dtHigh T 7500 di0/dtHigh T 5000 3000 dIrec/dtLow T dIrec/dtHigh T 1500 2500 0 0 dIrec/dtHigh T 0 At Tj = VCE = VGE = Rgon = 25 25/150 600 ±15 4 50 75 100 125 150 175 I C (A) 200 0 At Tj = VR = IF = VGE = °C V V Ω T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/150 600 99 ±15 8 12 16 20 D1,D2,D3,D4,D5,D6 FWD ZthJH (K/W) Zth-JH (K/W) 100 -1 10 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10 R gon ( Ω ) °C V A V Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 10 4 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 10 2 At D= RthJH = tp / T 0,31 K/W RthJH = 0,30 -2 10-5 101 10 K/W 10-4 10-3 10-2 K/W RthJH = FWD thermal model values Phase-Change Material R (C/W) 0,06 0,07 0,12 0,04 0,01 R (C/W) 0,04 0,07 0,25 0,32 0,06 Copyright by Vincotech 8 100 t p (s) 2 101 10 tp / T 0,75 IGBT thermal model values Phase-Change Material Tau (s) 1,7E+00 2,3E-01 5,4E-02 1,4E-02 1,2E-03 10-1 0,73 K/W Tau (s) 3,6E+00 6,2E-01 8,6E-02 2,1E-02 3,5E-03 Revision: 1 30-F212R6A100SC-M449E-PM 30-F212R6A100SC01-M449E10-PM T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b/D1,D2,D3,D4,D5,D6 T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 180 IC (A) Ptot (W) 600 500 150 400 120 300 90 200 60 100 30 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 D1,D2,D3,D4,D5,D6 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V D1,D2,D3,D4,D5,D6 FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 120 IF (A) Ptot (W) 250 150 200 90 150 60 100 30 50 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = °C Copyright by Vincotech 9 50 175 100 150 T h ( o C) 200 °C Revision: 1 30-F212R6A100SC-M449E-PM 30-F212R6A100SC01-M449E10-PM T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b/D1,D2,D3,D4,D5,D6 T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) 17,5 IC (A) VGE (V) 103 15 240V 10 2 100uS 12,5 960V 10 1mS 10 1 7,5 10mS 100mS 5 DC 10 0 2,5 0 10-1 10 0 At D= Th = VGE = 10 1 10 V CE (V) 2 0 103 At IC = single pulse ºC 80 ±15 V Tjmax ºC Tj = T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT Figure 27 50 99 100 200 250 300 350 Q g (nC) 400 A T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) 150 Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) 800 tsc (µS) IC (sc) 17,5 700 15 600 12,5 500 10 400 7,5 300 5 200 2,5 100 0 0 12 13 14 15 16 17 18 19 V GE (V) 12 20 13 14 16 17 18 19 20 V GE (V) At VCE = 1200 V At VCE ≤ 1200 V Tj ≤ 175 ºC Tj = 175 ºC Copyright by Vincotech 15 10 Revision: 1 30-F212R6A100SC-M449E-PM 30-F212R6A100SC01-M449E10-PM T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 250 IC MAX Ic CHIP 200 MODULE 150 VCE MAX Ic 100 50 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = Rgon = Rgoff = 151 °C 4Ω 4Ω Copyright by Vincotech 11 Revision: 1 30-F212R6A100SC-M449E-PM 30-F212R6A100SC01-M449E10-PM D7a-b,D8a-b D7a-b,D8a-b Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) D7a-b,D8a-b Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 300 0 IF (A) ZthJC (K/W) 10 250 200 150 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 100 50 0 0 At Tj = tp = 0,5 1 1,5 2 V F (V) 10-2 2,5 °C µs 25/125 250 D7a-b,D8a-b Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-5 10-4 At D= RthJH = 0,37 10-2 10-1 100 t p (s) 1 10 102 tp / T K/W D7a-b,D8a-b Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 250 Ptot (W) IF (A) 500 400 200 300 150 200 100 100 50 0 0 0 At Tj = 10-3 50 150 100 150 T h ( o C) 200 0 At Tj = ºC Copyright by Vincotech 12 50 150 100 150 T h ( o C) 200 ºC Revision: 1 30-F212R6A100SC-M449E-PM 30-F212R6A100SC01-M449E10-PM Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 13 Revision: 1 30-F212R6A100SC-M449E-PM 30-F212R6A100SC01-M449E10-PM Switching Definitions Output Inverter General conditions = 151 °C Tj = 4Ω Rgon Rgoff = 4Ω T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT Figure 1 T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 250 140 % % IC 120 tdoff 200 VCE 100 VCE 90% VGE 90% 150 80 IC VCE 60 100 tEoff 40 VGE tdon 50 20 0 VGE -20 -0,4 VCE 3% IC10% VGE10% IC 1% 0 tEon -50 -0,2 0 0,2 0,4 0,6 0,8 1 2,9 2,98 3,06 3,14 3,22 3,3 3,38 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 600 99 0,30 0,66 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT Figure 3 3,46 time(us) -15 15 600 99 0,11 0,33 T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT Figure 4 Turn-off Switching Waveforms & definition of tf V V V A µs µs Turn-on Switching Waveforms & definition of tr 140 250 % % 120 fitted VCE IC Ic 200 100 IC 90% 150 80 VCE IC 60% 60 100 40 IC90% tr IC 40% 50 20 IC10% IC10% 0 0 tf -20 0 0,1 0,2 0,3 0,4 0,5 -50 3,08 0,6 3,11 3,14 3,17 VC (100%) = IC (100%) = tf = 600 99 0,12 Copyright by Vincotech 3,2 3,23 time(us) time (us) VC (100%) = IC (100%) = tr = V A µs 14 600 99 0,03 V A µs Revision: 1 30-F212R6A100SC-M449E-PM 30-F212R6A100SC01-M449E10-PM Switching Definitions Output Inverter T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT Figure 5 T1a-b,T2a-b,T3a-b,T4a-b,T5a-b,T6a-b IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 200 120 Poff % Eoff % 100 Pon 150 80 100 60 40 Eon 50 VGE 10% 20 VCE 3% VGE 90% IC 1% 0 0 tEon tEoff -50 -20 -0,2 0 0,2 0,4 0,6 2,9 0,8 3 3,1 3,2 time (us) Poff (100%) = Eoff (100%) = tEoff = 59,69 9,38 0,66 3,3 3,4 3,5 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ µs 59,69 6,78 0,33 kW mJ µs D1,D2,D3,D4,D5,D6 FWD Figure 7 Turn-off Switching Waveforms & definition of trr 150 % Id 100 trr 50 0 IRRM10% Vd -50 fitted -100 IRRM90% IRRM100% -150 2,9 3,1 3,3 3,5 3,7 3,9 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = 600 99 -118 0,29 Copyright by Vincotech V A A µs 15 Revision: 1 30-F212R6A100SC-M449E-PM 30-F212R6A100SC01-M449E10-PM Switching Definitions Output Inverter D1,D2,D3,D4,D5,D6 FWD Figure 8 D1,D2,D3,D4,D5,D6 FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 125 % % Qrr Id 100 Erec 100 tQrr 50 75 0 50 -50 25 -100 0 tErec Prec -150 -25 3 3,2 3,4 3,6 3,8 4 4,2 3 3,2 3,4 3,6 59,69 5,92 1,00 kW mJ µs time(us) Id (100%) = Qrr (100%) = tQrr = 99 13,90 1,00 Copyright by Vincotech Prec (100%) = Erec (100%) = tErec = A µC µs 16 3,8 4 time(us) 4,2 Revision: 1 30-F212R6A100SC-M449E-PM 30-F212R6A100SC01-M449E10-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version 17mm housing 17mm housing, without thermistor Ordering Code 30-F212R6A100SC-M449E 30-F212R6A100SC01-M449E10 in DataMatrix as in packaging barcode as M449-E M449-E10 M449-E M449-E10 Outline Pinout Copyright by Vincotech 17 Revision: 1 30-F212R6A100SC-M449E-PM 30-F212R6A100SC01-M449E10-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 18 Revision: 1