FZ06RIA045FH01 preliminary datasheet flowSOL RI 600V/30A & 45mΩ Features flow0 housing ● High efficiency ● Ultra fast rectification and switching frequency ● Low inductive design ● Tandem to FZ06BIA083FI Target Applications Schematic ● Transformer-based solar inverters Types ● FZ06RIA045FH01 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 28 37 A 300 A 450 A2s 41 62 W 150 °C 600 V Fast Rectifier Diode Repetitive peak reverse voltage VRRM Forward average current IFAV Repetitive peak forward current IFSM I2t-value I2t Power dissipation per diode Ptot Maximum Junction Temperature sine,d=0.5 Tj=Tjmax Th=80°C Tc=80°C tp=10ms Tj=25°C Tj=Tjmax Th=80°C Tc=80°C Tjmax Buck Diode Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Th=80°C Tc=80°C 22 28 A Repetitive peak forward current IFRM tp limited by Tjmax Tc=100°C 70 A Power dissipation per Diode Ptot Tj=Tjmax Th=80°C Tc=80°C 34 52 W 150 °C Maximum Junction Temperature Copyright by Vincotech Tjmax 1 Revision: 1 FZ06RIA045FH01 preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Buck MOSFET Drain to source breakdown voltage DC drain current Pulsed drain current VDS ID IDpulse Tj=Tjmax Th=80°C Tc=80°C 30 37 A tp limited by Tjmax Tc=25°C 230 A Th=80°C 94 142 W Power dissipation Ptot Gate-source peak voltage Vgs ±20 V Tjmax 150 °C VCE 600 V 36 40 A 225 A Maximum Junction Temperature Tj=Tjmax Tc=80°C Boost IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpuls Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Th=80°C Tc=80°C Tj=Tjmax tp limited by Tjmax Th=80°C Tc=80°C Tj=Tjmax 79 129 W ±20 V 6 360 μs V Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Tj≤150°C VGE=15V Thermal Properties Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 1 FZ06RIA045FH01 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 1 2,38 1,70 1,58 1,02 27 22 0,1 0,5 2,7 Fast Rectifier Diode Forward voltage VF Threshold voltage (for power loss calc. only) Vto Slope resistance (for power loss calc. only) rt Reverse current Ir Thermal resistance chip to heatsink per chip RthJH 30 600 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Thermal grease thickness≤50um λ = 1 W/mK V V mΩ mA 1,72 K/W Buck Diode Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip VF 15 IRRM trr Qrr Rgon=4 Ω 400 10 15 di(rec)max /dt Erec RthJH Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1 Thermal grease thickness≤50um λ = 1 W/mK 2,04 1,50 42 58 12 19 0,26 0,65 14190 13169 0,04 0,11 2,7 V A ns μC A/μs mWs 2,04 K/W Buck MOSFET Static drain to source ON resistance Gate threshold voltage Rds(on) 44 10 V(GS)th 0,003 0 Gate to Source Leakage Current Igss 20 0 Zero Gate Voltage Drain Current Idss 0 600 Turn On Delay Time Rise Time Turn off delay time Fall time td(ON) tr td(OFF) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge Qg Gate to source charge Qgs Gate to drain charge Qgd Input capacitance Ciss Rgoff=4 Ω Rgon=4 Ω Coss Thermal resistance chip to heatsink per chip RthJH Copyright by Vincotech 15 2,1 45 89 3 400 10 44 Tj=25°C mΩ 3,9 200 25000 31 30 6 6 158 170 45 12 0,132 0,229 0,026 0,026 150 34 V nA nA ns mWs 190 nC 51 6800 f=1MHz Output capacitance 400 10 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 100 0 Tj=25°C pF 320 Thermal grease thickness≤50um λ = 1 W/mK 0,75 3 K/W Revision: 1 FZ06RIA045FH01 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1 1,59 1,83 2,1 Boost IGBT Gate emitter threshold voltage VGE(th) VCE=VGE 0,0008 Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 50 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,1 650 Integrated Gate resistor Rgint none Input capacitance Cies 3140 Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH f=1MHz 0 25 15 480 V V mA nA Ω Tj=25°C 200 pF Tj=25°C 310 nC 1,20 K/W 93 50 Thermal grease thickness≤50um λ = 1 W/mK Note: For the Boost IGBT only LF switching allowed Thermistor Rated resistance* R25 R100 Power dissipation P B(25/100) B-value Tj=25°C Tol. ±5% Tol. ±3% 17,5 22 1486 29,0 kΩ Ω Tj=25°C 210 mW Tj=25°C 4000 K * see details on Thermistor charts on Figure 2. Copyright by Vincotech 4 Revision: 1 FZ06RIA045FH01 preliminary datasheet Buck MOSFET Figure 1 Typical output characteristics IC = f(VCE) MOSFET Figure 2 Typical output characteristics IC = f(VCE) 60 IC (A) IC (A) 60 50 50 40 40 30 30 20 20 10 10 0 0 0 1 At tp = Tj = VGE from 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 μs 25 °C 4 V to 14 V in steps of 1 V MOSFET Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 4 250 μs 125 °C 4 V to 14 V in steps of 1 V FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) IF (A) 50 IC (A) 50 5 Tj = Tjmax-25°C 40 40 30 30 20 Tj = Tjmax-25°C Tj = 25°C 20 Tj = 25°C 10 10 0 0 0 At tp = VCE = 1 250 10 2 3 4 5 V GE (V) 6 0 At tp = μs V Copyright by Vincotech 5 0,8 250 1,6 2,4 3,2 V F (V) 4 μs Revision: 1 FZ06RIA045FH01 preliminary datasheet Buck MOSFET Figure 5 Typical switching energy losses as a function of collector current E = f(IC) MOSFET Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 0,40 E (mWs) 0,40 E (mWs) Eon High T 0,32 0,32 0,24 0,24 Eon High T Eon Low T Eon Low T 0,16 0,16 0,08 0,08 Eoff High T Eoff Low T Eoff High T Eoff Low T 0,00 0,00 0 5 10 15 20 25 I C (A) 0 30 With an inductive load at Tj = °C 25/125 VCE = 400 V VGE = 10 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G (W) 20 With an inductive load at Tj = °C 25/125 VCE = 400 V VGE = 10 V IC = 15 A FRED Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FRED Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,150 E (mWs) E (mWs) 0,250 0,200 0,120 Erec High T 0,150 0,090 0,100 0,060 Erec Low T Erec Low T Erec High T 0,030 0,050 0,000 0,000 0 5 10 15 20 25 I C (A) 0 30 With an inductive load at Tj = 25/125 °C VCE = 400 V VGE = 10 V Rgon = 4 Ω Copyright by Vincotech 4 8 12 16 R G (W) 20 With an inductive load at Tj = 25/125 °C VCE = 400 V VGE = 10 V IC = 15 A 6 Revision: 1 FZ06RIA045FH01 preliminary datasheet Buck MOSFET MOSFET 1,00 1,00 t (ms) Figure 10 Typical switching times as a function of gate resistor t = f(RG) t (ms) Figure 9 Typical switching times as a function of collector current t = f(IC) tdoff tdoff 0,10 0,10 tf tdon tdon tr 0,01 0,01 tf tr 0,00 0,00 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = 125 °C VCE = 400 V VGE = 10 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G (W) 20 With an inductive load at Tj = 125 °C VCE = 400 V VGE = 10 V IC = 15 A FRED Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FRED Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,040 t rr(ms) 0,025 t rr(ms) trr High T 0,020 0,032 0,015 0,024 trr High T trr Low T 0,010 0,016 0,005 0,008 0,000 trr Low T 0,000 0 At Tj = VCE = VGE = Rgon = 5 25/125 400 10 4 10 15 20 25 I C (A) 30 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 4 25/125 400 15 10 8 12 16 R gon (W) 20 °C V A V Revision: 1 FZ06RIA045FH01 preliminary datasheet Buck FRED Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Qrr (mC) Qrr (mC) 1,20 1,00 FRED Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 0,9 0,75 Qrr High T 0,80 0,6 Qrr High T 0,60 0,45 0,40 0,3 Qrr Low T Qrr Low T 0,20 0,15 0,00 0 0 At At Tj = VCE = VGE = Rgon = 5 25/125 400 10 4 10 15 20 25 I C (A) 30 0 At Tj = VR = IF = VGE = °C V V Ω FRED 25/125 400 15 10 8 12 16 100 100 IrrM (A) R g on ( Ω) 20 °C V A V FRED Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 4 IRRM High T 80 80 IRRM High T 60 60 IRRM Low T 40 40 IRRM Low T 20 20 0 0 0 5 At Tj = VCE = VGE = Rgon = 25/125 400 10 4 10 15 20 25 I C (A) 30 °C V V Ω Copyright by Vincotech 8 0 4 At Tj = VR = IF = VGE = 25/125 400 15 10 8 12 16 R gon (W) 20 °C V A V Revision: 1 FZ06RIA045FH01 preliminary datasheet Buck FRED Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 25000 direc / dt (A/ms) 25000 direc / dt (A/ms) FRED Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dI0/dt dIrec/dt dIrec/dtLow T 20000 15000 dI0/dt dIrec/dt 20000 15000 dIrec/dtHigh T dIrec/dtHigh T 10000 10000 dI0/dtLow T dIo/dtLow T 5000 dIrec/dtLow T 5000 di0/dtHigh T dI0/dtHigh T 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 400 10 4 10 15 20 25 I C (A) 30 0 At Tj = VR = IF = VGE = °C V V Ω MOSFET Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 4 25/125 400 15 10 8 12 R gon (W) 16 °C V A V FRED Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 20 0 100 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 -5 -4 10 10 At D= RthJH = -3 10 10 -2 10 -1 0 10 t p (s) 10-5 1 10 1 At D= RthJH = tp / T 0,75 K/W 10-4 10-3 2,04 R (C/W) 0,03 0,12 0,41 0,11 0,03 0,04 R (C/W) 0,06 0,25 0,90 0,53 0,23 0,07 9 100 t p (s) 1011 K/W FRED thermal model values Copyright by Vincotech 10-1 tp / T IGBT thermal model values Tau (s) 9,3E+00 1,2E+00 1,6E-01 3,8E-02 5,2E-03 3,7E-04 10-2 Tau (s) 5,6E+00 5,0E-01 7,8E-02 1,5E-02 1,8E-03 3,3E-04 Revision: 1 FZ06RIA045FH01 preliminary datasheet Buck MOSFET Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) MOSFET Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 50 IC (A) Ptot (W) 250 200 40 150 30 100 20 50 10 0 0 0 50 At Tj = 150 100 150 T h ( o C) 200 0 At Tj = VGE = °C FRED Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 150 15 100 150 T h ( o C) 200 °C V FRED Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 50 IF (A) Ptot (W) 90 75 40 60 30 45 20 30 10 15 0 0 0 At Tj = 50 150 100 150 T h ( o C) 0 200 At Tj = °C Copyright by Vincotech 10 50 150 100 150 T h ( o C) 200 °C Revision: 1 FZ06RIA045FH01 preliminary datasheet Buck MOSFET Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) VGE = f(Qg) 3 10 IC (A) VGE (V) 10 MOSFET Figure 26 Gate voltage vs Gate charge 100uS 10 2 10 1 100mS DC 10uS 10mS 8 120V 1mS 480V 6 4 100 2 10-1 0 0 20 40 60 80 100 120 140 160 Q g (nC) 0 10 At D= Th = VGE = Tj = 1 10 10 2 V CE (V) 103 At IC = single pulse 80 ºC 15 V Tjmax ºC Copyright by Vincotech 11 44 A Revision: 1 FZ06RIA045FH01 preliminary datasheet Boost IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 60 IC (A) IC (A) 60 50 50 40 40 30 30 20 20 10 10 0 0 0 At tp = Tj = VGE from 1 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 μs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 4 5 250 μs 125 °C 7 V to 17 V in steps of 1 V IGBT Figure 4 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) IC (A) 50 40 100 30 Tj = Tjmax-25°C Tj = 25°C D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 20 -1 10 10 0 10-2 0 At tp = VCE = 2 250 10 4 6 8 10 V GE (V) 12 -5 10 μs V Copyright by Vincotech At D= RthJH = 12 -4 10 -3 10 -2 10 -1 10 10 t p (s) 0 1 10 1 IGBT thermal model values tp / T 1,20 K/W R (C/W) 0,03 0,14 0,56 0,31 0,10 Tau (s) 1,2E+01 1,1E+00 1,5E-01 3,3E-02 5,4E-03 Revision: 1 FZ06RIA045FH01 preliminary datasheet Boost IGBT Figure 5 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 6 Collector current as a function of heatsink temperature IC = f(Th) 50 IC (A) Ptot (W) 150 120 40 90 30 60 20 30 10 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = ºC Copyright by Vincotech 13 50 175 15 100 150 T h ( o C) 200 ºC V Revision: 1 FZ06RIA045FH01 preliminary datasheet Fast Rectifier Rectifier Figure 1 Typical rectifier forward current as a function of forward voltage IF= f(VF) Rectifier Figure 2 Rectifier transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJC (K/W) IF (A) 100 Tj = Tjmax-25°C 80 100 Tj = 25°C 60 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 40 -1 10 20 0 10-2 0 0,8 At tp = 1,6 2,4 3,2 VF (V) 4 -5 μs 250 Rectifier Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10 At D= RthJH = tp / T -3 10 1,72 10 -2 -1 0 10 10 t p (s) 1 10 1 K/W Rectifier Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 50 Ptot (W) IF (A) 100 80 40 60 30 40 20 20 10 0 0 0 At Tj = -4 10 50 150 100 150 T h ( o C) 200 0 At Tj = ºC Copyright by Vincotech 14 50 150 100 150 T h ( o C) 200 ºC Revision: 1 FZ06RIA045FH01 preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) Thermistor Figure 2 Typical NTC resistance values B25/100⋅ 1 − 1 T T 25 NTC-typical temperature characteristic R(T ) = R25 ⋅ e R/Ω 25000 [Ω] 20000 15000 10000 5000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 15 Revision: 1 FZ06RIA045FH01 preliminary datasheet Switching Definitions BUCK MOSFET General conditions = 125 °C Tj = 4Ω Rgon Rgoff = 4Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 550 140 IC 120 tdoff 450 VCE 100 IC VGE 90% VCE 90% 350 80 % %60 250 40 150 tEoff IC 1% VCE 20 IC10% tdon VGE 50 0 VGE10% VGE -20 -0,1 -0,05 0 0,05 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,1 time (us) 0 10 400 15 0,17 0,19 0,15 0,2 0,25 0,3 2,9 2,95 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs Output inverter IGBT Figure 3 VCE3% tEon -50 3 3,05 time(us) 0 10 400 15 0,03 0,06 3,1 3,2 V V V A μs μs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,15 Turn-on Switching Waveforms & definition of tr 160 550 fitted 130 Ic IC 450 VCE 100 IC 90% 350 70 % IC 60% % 250 IC 40% 40 150 IC10% 10 VCE tf -20 -50 0,12 IC90% tr 50 IC10% 0,13 VC (100%) = IC (100%) = tf = 0,14 0,15 400 15 0,01 Copyright by Vincotech 0,16 time (us) 0,17 0,18 0,19 -50 0,2 2,9 VC (100%) = IC (100%) = tr = V A μs 16 2,95 time(us) 3 400 15 0,01 3,05 3,1 3,15 V A μs Revision: 1 FZ06RIA045FH01 preliminary datasheet Switching Definitions BUCK MOSFET Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 190 350 % Poff Pon % 300 150 250 Eoff 110 200 150 70 Eon 100 30 VGE90% 50 VGE10% -10 IC 1% tEoff VCE3% 0 tEon -50 -0,1 -50 -0,05 0 Poff (100%) = Eoff (100%) = tEoff = 0,05 6,00 0,03 0,19 0,1 time (us) 0,15 0,2 0,25 2,9 0,3 2,93 2,96 Pon (100%) = Eon (100%) = tEon = kW mJ μs Output inverter FRED Figure 7 Gate voltage vs Gate charge (measured) 2,99 6,00 0,23 0,06 3,02 time(us) 3,05 3,08 3,11 3,14 kW mJ μs Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 15 200 fitted Id 100 trr 10 VGE (V) 0 IRRM10% Vd -100 % 5 -200 -300 0 IRRM90% IRRM100% -400 -500 2,95 -5 -30 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = 0 30 0 10 400 15 112,61 Copyright by Vincotech 60 Qg (nC) 90 120 150 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 17 2,98 3,01 400 15 -58 0,02 3,04 time(us) 3,07 3,1 3,13 V A A μs Revision: 1 FZ06RIA045FH01 preliminary datasheet Switching Definitions BUCK MOSFET Output inverter FRED Figure 9 Output inverter FRED Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 200 200 150 150 Id Qrr Erec 100 100 tQrr % 50 tErec % 50 0 Prec 0 -50 -100 -50 2,9 Id (100%) = Qrr (100%) = tQrr = 2,95 3 3,05 15 0,65 0,04 A μC μs 3,1 3,15 time(us) 3,2 2,9 2,95 Prec (100%) = Erec (100%) = tErec = 3 6,00 0,11 0,04 3,05 3,1 3,15 time(us) 3,2 kW mJ μs Measurement circuits Figure 11 BUCK stage switching measurement circuit Copyright by Vincotech 18 Revision: 1 FZ06RIA045FH01 preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code 10-FZ06RIA045FH01-P906D10 in DataMatrix as P906D10 in packaging barcode as P906D10 Outline Pinout Copyright by Vincotech 19 Revision: 1 FZ06RIA045FH01 preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 20 Revision: 1