V23990-K420-A40-PM MiniSKiiP® 3 PIM 1200V/100A MiniSKiiP® 3 housing Features ● Solderless interconnection ● Trench Fieldstop IGBT4 technology Target Applications Schematic ● Industrial Motor Drives Types ● V23990-K420-A40-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 91 A 500 A 1250 A2s 99 W Tjmax 150 °C VCE 1200 V 88 A 300 A 198 W ±20 V 10 800 µs V 175 °C D8,D9,D10,D11,D12,D13 Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature DC current Th=80°C tp=10ms Tj=25°C Tj=Tjmax Th=80°C T1,T2,T3,T4,T5,T6,T7 Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature copyright Vincotech Tj=Tjmax Th=80°C tp limited by Tjmax Tj=Tjmax Tj=150°C VGE=15V Tjmax 1 Th=80°C Revision: 2.1 V23990-K420-A40-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 70 A 300 A 144 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12.7 mm Clearance min 12.7 mm D1,D2,D3,D4,D5,D6,D7 Repetitive peak reverse voltage DC forward current VRRM IF Tj=Tjmax Th=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Thermal Properties Insulation Properties Insulation voltage copyright Vincotech Vis t=2s DC voltage 2 Revision: 2.1 V23990-K420-A40-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,8 0,97 0,88 0,85 0,71 0,0035 0,0047 1,35 D8,D9,D10,D11,D12,D13 Forward voltage VF Threshold voltage (for power loss calc. only) Vto Slope resistance (for power loss calc. only) rt Reverse current Ir Thermal resistance chip to heatsink per chip 35 1500 RthJH Thermal grease thickness≤50µm λ=1W/mK VGE(th) VCE=VGE V V Ω 0,1 1,1 mA K/W 0,7 T1,T2,T3,T4,T5,T6,T7 Gate emitter threshold voltage Collector-emitter saturation voltage VCE(sat) 0,0038 100 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time tr tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 5 5,8 6,5 1,6 1,92 2,33 2,2 0,12 600 Rgoff=4Ω Rgon=4Ω ±15 600 100 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 7,5 td(on) td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 204 216 35 42 296 384 78 112 7,83 12,12 5,72 9,25 ns mWs 6150 f=1MHz Tj=25°C 25 0 405 pF 345 Tj=25°C ±15 Thermal grease thickness≤50µm λ=1W/mK 800 nC 0,48 K/W D1,D2,D3,D4,D5,D6,D7 Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF IRRM trr Qrr Rgon=4Ω ±15 600 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH copyright Vincotech 100 Thermal grease thickness≤50µm λ=1W/mK 100 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,5 2,47 2,46 68,3 91,3 267 455 5,69 15,08 2761 977 1,87 5,42 0,66 3 2,7 V A ns µC A/µs mWs K/W Revision: 2.1 V23990-K420-A40-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ Unit Max Thermistor Rated resistance R Deviation of R100 ∆R/R R100 T=25°C R100=1670 Ω T=100°C P T=100°C Power dissipation constant Ω 1000 -3 3 % Ω 1670,313 mW/K T=25°C A-value B(25/50) Tol. % T=25°C 7,635*10-3 1/K B-value B(25/100) Tol. % T=25°C 1,731*10-5 1/K² Vincotech NTC Reference copyright Vincotech E 4 Revision: 2.1 V23990-K420-A40-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 1 Typical output characteristics IC = f(VCE) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 2 Typical output characteristics IC = f(VCE) 300 IC (A) IC (A) 300 250 250 200 200 150 150 100 100 50 50 0 0 0 At tp = Tj = VGE from 1 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V T1,T2,T3,T4,T5,T6,T7 IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 4 V CE (V) 5 250 µs 150 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) D1,D2,D3,D4,D5,D6,D7 FWD 300 IC (A) IF (A) 100 3 Tj = 25°C 250 80 200 60 Tj = Tjmax-25°C 150 40 100 20 Tj = Tjmax-25°C 50 Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 copyright Vincotech 4 6 8 10 V GE (V) 12 0 At tp = µs V 5 1 250 2 3 4 V F (V) 5 µs Revision: 2.1 V23990-K420-A40-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 30 E (mWs) 30 T1,T2,T3,T4,T5,T6,T7 IGBT Eon High T 25 25 Eon Low T 20 Eoff High T 15 Eon High T 20 10 15 Eon Low T 10 Eoff High T Eoff Low T Eoff Low T 5 5 0 0 0 50 100 150 I C (A) 200 0 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 8 12 16 RG( Ω ) 20 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = A 100 Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) T1,T2,T3,T4,T5,T6,T7 IGBT 7,5 Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) E (mWs) T1,T2,T3,T4,T5,T6,T7 IGBT 7,5 Erec Tj = Tjmax -25°C 6 4 Tj = Tjmax -25°C 6 Erec 4,5 4,5 Erec 3 3 Tj = 25°C Tj = 25°C 1,5 Erec 1,5 0 0 0 50 100 150 I C (A) 200 0 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 4 Ω copyright Vincotech 4 8 12 16 RG( Ω ) 20 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 100 A 6 Revision: 2.1 V23990-K420-A40-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( µs) 1 t ( µs) 1 tdoff tdoff tdon tdon tf 0,1 tf 0,1 tr tr 0,01 0,01 0,001 0,001 0 50 100 150 I C (A) 200 0 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 RG( Ω ) 16 20 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = A 100 D1,D2,D3,D4,D5,D6,D7 FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,8 D1,D2,D3,D4,D5,D6,D7 FWD 0,8 t rr( µs) t rr( µs) trr Tj = Tjmax -25°C trr 0,6 0,6 Tj = Tjmax -25°C trr 0,4 0,4 trr Tj = 25°C Tj = 25°C 0,2 0,2 0 0 0 At Tj = VCE = VGE = Rgon = 50 25/150 600 ±15 4 copyright Vincotech 100 150 I C (A) 0 200 At Tj = VR = IF = VGE = °C V V Ω 7 4 25/150 600 100 ±15 8 12 16 R g on ( Ω ) 20 °C V A V Revision: 2.1 V23990-K420-A40-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 25 D1,D2,D3,D4,D5,D6,D7 FWD Qrr( µC) Qrr( µC) 25 Qrr 20 20 Tj = Tjmax -25°C Tj = Tjmax -25°C 15 15 10 Qrr 10 Qrr Tj = 25°C Tj = 25°C 5 Qrr 5 0 0 At 0 At Tj = VCE = VGE = Rgon = 50 25/150 600 ±15 4 100 150 I C (A) 200 0 4 At Tj = VR = IF = VGE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD 8 25/150 600 100 ±15 12 R g on ( Ω) 16 20 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) D1,D2,D3,D4,D5,D6,D7 FWD 150 IrrM (A) IrrM (A) 100 Tj = Tjmax -25°C IRRM 120 80 IRRM Tj = 25°C 90 60 Tj = Tjmax - 25°C IRRM 60 40 Tj = 25°C IRRM 30 20 0 0 0 At Tj = VCE = VGE = Rgon = 50 25/150 600 ±15 4 copyright Vincotech 100 150 I C (A) 0 200 At Tj = VR = IF = VGE = °C V V Ω 8 4 25/150 600 100 ±15 8 12 16 R gon ( Ω ) 20 °C V A V Revision: 2.1 V23990-K420-A40-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 D1,D2,D3,D4,D5,D6,D7 FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 5000 direc / dt (A/ µs) direc / dt (A/µ s) 5000 D1,D2,D3,D4,D5,D6,D7 FWD dI0/dt dIrec/dt 4000 dI0/dt dIrec/dt 4000 dIrec/dtLow T Tj = 25°C 3000 3000 dIo/dtLow T 2000 2000 Tj = Tjmax - 25°C di0/dtHigh T 1000 1000 dIrec/dtHigh T dIrec/dtHigh T 0 0 0 At Tj = VCE = VGE = Rgon = 50 25/150 600 ±15 4 100 150 I C (A) 200 0 At Tj = VR = IF = VGE = °C V V Ω T1,T2,T3,T4,T5,T6,T7 IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 4 25/150 600 100 ±15 8 12 20 °C V A V D1,D2,D3,D4,D5,D6,D7 FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) Zth-JH (K/W) 100 ZthJH (K/W) 100 R gon ( Ω ) 16 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) At D= RthJH = tp / T 0,48 -2 10-5 10110 K/W 10-4 10-3 R (C/W) 0,08 0,21 0,13 0,05 0,00 R (C/W) 0,04 0,12 0,28 0,13 0,09 9 100 t p (s) 10110 K/W FWD thermal model values copyright Vincotech 10-1 tp / T 0,66 IGBT thermal model values Tau (s) 1,1E+00 1,8E-01 6,5E-02 1,0E-02 1,2E-03 10-2 Tau (s) 2,7E+00 5,0E-01 1,4E-01 3,9E-02 9,9E-03 Revision: 2.1 V23990-K420-A40-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 120 IC (A) Ptot (W) 400 100 320 80 240 60 160 40 80 20 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = °C D1,D2,D3,D4,D5,D6,D7 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V D1,D2,D3,D4,D5,D6,D7 FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 120 IF (A) Ptot (W) 300 150 250 90 200 150 60 100 30 50 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 10 50 175 100 150 T h ( o C) 200 °C Revision: 2.1 V23990-K420-A40-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) Figure 26 Gate voltage vs Gate charge T1,T2,T3,T4,T5,T6,T7 IGBT VGE = f(QGE) 103 IC (A) VGE (V) 16 14 10 2 1mS DC 10 100mS 240V 12 100uS 960V 10mS 10 8 1 6 10 4 0 2 0 10-1 0 10 At D= Th = VGE = Tj = 10 1 10 2 V CE (V) 0 103 At IC = single pulse 80 ºC ±15 V Tjmax ºC copyright Vincotech 11 100 100 200 300 400 Q g (nC) 500 A Revision: 2.1 V23990-K420-A40-PM D8,D9,D10,D11,D12,D13 D8,D9,D10,D11,D12,D13 diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 200 0 ZthJC (K/W) IF (A) 10 D8,D9,D10,D11,D12,D13 diode 160 120 10 -1 80 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 Tj = Tjmax-25°C 40 Tj = 25°C 0 0 0,3 0,6 0,9 1,2 1,5 V F (V) 10-2 1,8 10-5 At tp = At D= RthJH = µs 250 10-4 Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) D8,D9,D10,D11,D12,D13 diode 10-3 10-2 100 t p (s) 101 10 tp / T 0,7 K/W Figure 4 Forward current as a function of heatsink temperature IF = f(Th) D8,D9,D10,D11,D12,D13 diode 120 Ptot (W) IF (A) 240 10-1 100 180 80 120 60 40 60 20 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 T h ( o C) 150 0 At Tj = ºC 12 30 150 60 90 120 T h ( o C) 150 ºC Revision: 2.1 V23990-K420-A40-PM Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 2000 1800 1600 1400 1200 1000 25 copyright Vincotech 50 75 100 T (°C) 125 13 Revision: 2.1 V23990-K420-A40-PM Switching Definitions Output Inverter General conditions Tj = 150 °C Rgon = 4Ω Rgoff = 4Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 250 160 IC 130 tdoff 200 VCE 100 VGE 90% VCE 90% 150 70 % IC % 40 VCE 100 tEoff IC 1% VGE tdon 50 10 IC10% VGE -20 VCE 3% VGE10% 0 tEon -50 -0,2 -0,05 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,1 0,25 -15 15 600 100 0,38 0,75 0,4 0,55 0,7 -50 0,85 time (us) 2,8 2,95 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 3,1 3,25 -15 15 600 100 0,22 0,58 V V V A µs µs 3,4 3,55 Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,7 time(us) Turn-on Switching Waveforms & definition of tr 140 250 fitted Ic 120 VCE 200 100 IC IC 90% 150 80 IC 60% % 60 VCE % 100 IC90% IC 40% 40 tr 50 20 IC10% -20 0,25 IC10% 0 tf 0 -50 0,3 VC (100%) = IC (100%) = tf = copyright Vincotech 0,35 0,4 600 100 0,11 V A µs 0,45 0,5 0,55 time (us) 2,9 VC (100%) = IC (100%) = tr = 14 3 3,1 600 100 0,04 3,2 3,3 3,4 3,5 time(us) V A µs Revision: 2.1 V23990-K420-A40-PM Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 110 210 Poff Pon Eoff 90 170 70 130 Eon 50 90 % % 30 50 10 IC 1% VGE 90% Uce3% Uge10% 10 -10 tEon tEoff -30 -0,2 -0,05 Poff (100%) = Eoff (100%) = tEoff = 0,1 0,25 0,4 time (us) 60,10 9,25 0,75 0,55 0,7 -30 2,85 0,85 3,15 Pon (100%) = Eon (100%) = tEon = kW mJ µs Figure 7 Gate voltage vs Gate charge (measured) 3 Output inverter FWD 60,10 12,12 0,58 3,3 time(us) 3,45 3,6 3,75 kW mJ µs Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 120 20 Id 15 80 trr 10 40 Vge (V) 5 % 0 Vd 0 IRRM10% -5 -40 -10 IRRM90% -80 -15 IRRM100% fitted -20 -100 -120 0 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright Vincotech 100 -15 15 600 100 597,46 200 300 Qg (nC) 400 500 2,8 600 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 15 3 3,2 600 100 -91 0,46 3,4 time(us) 3,6 3,8 4 V A A µs Revision: 2.1 V23990-K420-A40-PM Switching Definitions Output Inverter Output inverter FWD Figure 9 Output inverter FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 Erec 100 Qrr Id 100 tQrr 80 tErec 50 60 % 0 % 40 -50 20 Prec -100 0 -150 -20 2,8 3,1 Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 3,4 3,7 time(us) 100 15,08 0,91 A µC µs 4 4,3 4,6 2,8 Prec (100%) = Erec (100%) = tErec = 16 3,1 3,4 3,7 time(us) 60,10 5,42 0,91 kW mJ µs 4 4,3 4,6 Revision: 2.1 V23990-K420-A40-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version with std lid (black V23990-K32-T-PM) with std lid (black V23990-K32-T-PM) and P12 with thin lid (white V23990-K33-T-PM) with thin lid (white V23990-K33-T-PM) and P12 Ordering Code in DataMatrix as V23990-K420-A40-/0A/-PM V23990-K420-A40-/1A/-PM V23990-K420-A40-/0B/-PM V23990-K420-A40-/1B/-PM K420A40 K420A40 K420A40 K420A40 in packaging barcode as K420A40-/0A/ K420A40-/1A/ K420A40-/0B/ K420A40-/1B/ Outline Pinout copyright Vincotech 17 Revision: 2.1 V23990-K420-A40-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 18 Revision: 2.1