V23990 K420 A40 D2 14

V23990-K420-A40-PM
MiniSKiiP® 3 PIM
1200V/100A
MiniSKiiP® 3 housing
Features
● Solderless interconnection
● Trench Fieldstop IGBT4 technology
Target Applications
Schematic
● Industrial Motor Drives
Types
● V23990-K420-A40-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
91
A
500
A
1250
A2s
99
W
Tjmax
150
°C
VCE
1200
V
88
A
300
A
198
W
±20
V
10
800
µs
V
175
°C
D8,D9,D10,D11,D12,D13
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
DC current
Th=80°C
tp=10ms
Tj=25°C
Tj=Tjmax
Th=80°C
T1,T2,T3,T4,T5,T6,T7
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Th=80°C
tp limited by Tjmax
Tj=Tjmax
Tj=150°C
VGE=15V
Tjmax
1
Th=80°C
Revision: 2.1
V23990-K420-A40-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
70
A
300
A
144
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12.7
mm
Clearance
min 12.7
mm
D1,D2,D3,D4,D5,D6,D7
Repetitive peak reverse voltage
DC forward current
VRRM
IF
Tj=Tjmax
Th=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Thermal Properties
Insulation Properties
Insulation voltage
copyright Vincotech
Vis
t=2s
DC voltage
2
Revision: 2.1
V23990-K420-A40-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,8
0,97
0,88
0,85
0,71
0,0035
0,0047
1,35
D8,D9,D10,D11,D12,D13
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
Thermal resistance chip to heatsink per chip
35
1500
RthJH
Thermal grease
thickness≤50µm
λ=1W/mK
VGE(th)
VCE=VGE
V
V
Ω
0,1
1,1
mA
K/W
0,7
T1,T2,T3,T4,T5,T6,T7
Gate emitter threshold voltage
Collector-emitter saturation voltage
VCE(sat)
0,0038
100
15
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
5
5,8
6,5
1,6
1,92
2,33
2,2
0,12
600
Rgoff=4Ω
Rgon=4Ω
±15
600
100
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
7,5
td(on)
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
204
216
35
42
296
384
78
112
7,83
12,12
5,72
9,25
ns
mWs
6150
f=1MHz
Tj=25°C
25
0
405
pF
345
Tj=25°C
±15
Thermal grease
thickness≤50µm
λ=1W/mK
800
nC
0,48
K/W
D1,D2,D3,D4,D5,D6,D7
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
IRRM
trr
Qrr
Rgon=4Ω
±15
600
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
copyright Vincotech
100
Thermal grease
thickness≤50µm
λ=1W/mK
100
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,5
2,47
2,46
68,3
91,3
267
455
5,69
15,08
2761
977
1,87
5,42
0,66
3
2,7
V
A
ns
µC
A/µs
mWs
K/W
Revision: 2.1
V23990-K420-A40-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Unit
Max
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
R100
T=25°C
R100=1670 Ω
T=100°C
P
T=100°C
Power dissipation constant
Ω
1000
-3
3
%
Ω
1670,313
mW/K
T=25°C
A-value
B(25/50) Tol. %
T=25°C
7,635*10-3
1/K
B-value
B(25/100) Tol. %
T=25°C
1,731*10-5
1/K²
Vincotech NTC Reference
copyright Vincotech
E
4
Revision: 2.1
V23990-K420-A40-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
300
IC (A)
IC (A)
300
250
250
200
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
4
V CE (V)
5
250
µs
150
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
D1,D2,D3,D4,D5,D6,D7 FWD
300
IC (A)
IF (A)
100
3
Tj = 25°C
250
80
200
60
Tj = Tjmax-25°C
150
40
100
20
Tj = Tjmax-25°C
50
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
copyright Vincotech
4
6
8
10
V GE (V)
12
0
At
tp =
µs
V
5
1
250
2
3
4
V F (V)
5
µs
Revision: 2.1
V23990-K420-A40-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
30
E (mWs)
30
T1,T2,T3,T4,T5,T6,T7 IGBT
Eon High T
25
25
Eon Low T
20
Eoff High T
15
Eon High T
20
10
15
Eon Low T
10
Eoff High T
Eoff Low T
Eoff Low T
5
5
0
0
0
50
100
150
I C (A)
200
0
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
8
12
16
RG( Ω )
20
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
A
100
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
T1,T2,T3,T4,T5,T6,T7 IGBT
7,5
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
E (mWs)
T1,T2,T3,T4,T5,T6,T7 IGBT
7,5
Erec
Tj = Tjmax -25°C
6
4
Tj = Tjmax -25°C
6
Erec
4,5
4,5
Erec
3
3
Tj = 25°C
Tj = 25°C
1,5
Erec
1,5
0
0
0
50
100
150
I C (A)
200
0
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
4
Ω
copyright Vincotech
4
8
12
16
RG( Ω )
20
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
100
A
6
Revision: 2.1
V23990-K420-A40-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( µs)
1
t ( µs)
1
tdoff
tdoff
tdon
tdon
tf
0,1
tf
0,1
tr
tr
0,01
0,01
0,001
0,001
0
50
100
150
I C (A)
200
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
RG( Ω )
16
20
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
A
100
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,8
D1,D2,D3,D4,D5,D6,D7 FWD
0,8
t rr( µs)
t rr( µs)
trr
Tj = Tjmax -25°C
trr
0,6
0,6
Tj = Tjmax -25°C
trr
0,4
0,4
trr
Tj = 25°C
Tj = 25°C
0,2
0,2
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
50
25/150
600
±15
4
copyright Vincotech
100
150
I C (A)
0
200
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
4
25/150
600
100
±15
8
12
16
R g on ( Ω )
20
°C
V
A
V
Revision: 2.1
V23990-K420-A40-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
25
D1,D2,D3,D4,D5,D6,D7 FWD
Qrr( µC)
Qrr( µC)
25
Qrr
20
20
Tj = Tjmax -25°C
Tj = Tjmax -25°C
15
15
10
Qrr
10
Qrr
Tj = 25°C
Tj = 25°C
5
Qrr
5
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
50
25/150
600
±15
4
100
150
I C (A)
200
0
4
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
8
25/150
600
100
±15
12
R g on ( Ω)
16
20
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
D1,D2,D3,D4,D5,D6,D7 FWD
150
IrrM (A)
IrrM (A)
100
Tj = Tjmax -25°C
IRRM
120
80
IRRM
Tj = 25°C
90
60
Tj = Tjmax - 25°C
IRRM
60
40
Tj = 25°C
IRRM
30
20
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
50
25/150
600
±15
4
copyright Vincotech
100
150
I C (A)
0
200
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
8
4
25/150
600
100
±15
8
12
16
R gon ( Ω )
20
°C
V
A
V
Revision: 2.1
V23990-K420-A40-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
5000
direc / dt (A/ µs)
direc / dt (A/µ s)
5000
D1,D2,D3,D4,D5,D6,D7 FWD
dI0/dt
dIrec/dt
4000
dI0/dt
dIrec/dt
4000
dIrec/dtLow T
Tj = 25°C
3000
3000
dIo/dtLow T
2000
2000
Tj = Tjmax - 25°C
di0/dtHigh T
1000
1000
dIrec/dtHigh T
dIrec/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
50
25/150
600
±15
4
100
150
I C (A)
200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
4
25/150
600
100
±15
8
12
20
°C
V
A
V
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Zth-JH (K/W)
100
ZthJH (K/W)
100
R gon ( Ω )
16
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
At
D=
RthJH =
tp / T
0,48
-2
10-5
10110
K/W
10-4
10-3
R (C/W)
0,08
0,21
0,13
0,05
0,00
R (C/W)
0,04
0,12
0,28
0,13
0,09
9
100
t p (s)
10110
K/W
FWD thermal model values
copyright Vincotech
10-1
tp / T
0,66
IGBT thermal model values
Tau (s)
1,1E+00
1,8E-01
6,5E-02
1,0E-02
1,2E-03
10-2
Tau (s)
2,7E+00
5,0E-01
1,4E-01
3,9E-02
9,9E-03
Revision: 2.1
V23990-K420-A40-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
120
IC (A)
Ptot (W)
400
100
320
80
240
60
160
40
80
20
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
120
IF (A)
Ptot (W)
300
150
250
90
200
150
60
100
30
50
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
10
50
175
100
150
T h ( o C)
200
°C
Revision: 2.1
V23990-K420-A40-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
Figure 26
Gate voltage vs Gate charge
T1,T2,T3,T4,T5,T6,T7 IGBT
VGE = f(QGE)
103
IC (A)
VGE (V)
16
14
10
2
1mS
DC
10
100mS
240V
12
100uS
960V
10mS
10
8
1
6
10
4
0
2
0
10-1 0
10
At
D=
Th =
VGE =
Tj =
10
1
10
2
V CE (V)
0
103
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
copyright Vincotech
11
100
100
200
300
400
Q g (nC)
500
A
Revision: 2.1
V23990-K420-A40-PM
D8,D9,D10,D11,D12,D13
D8,D9,D10,D11,D12,D13 diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
200
0
ZthJC (K/W)
IF (A)
10
D8,D9,D10,D11,D12,D13 diode
160
120
10
-1
80
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
Tj = Tjmax-25°C
40
Tj = 25°C
0
0
0,3
0,6
0,9
1,2
1,5
V F (V)
10-2
1,8
10-5
At
tp =
At
D=
RthJH =
µs
250
10-4
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
D8,D9,D10,D11,D12,D13 diode
10-3
10-2
100
t p (s)
101 10
tp / T
0,7
K/W
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
D8,D9,D10,D11,D12,D13 diode
120
Ptot (W)
IF (A)
240
10-1
100
180
80
120
60
40
60
20
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
T h ( o C)
150
0
At
Tj =
ºC
12
30
150
60
90
120
T h ( o C)
150
ºC
Revision: 2.1
V23990-K420-A40-PM
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
2000
1800
1600
1400
1200
1000
25
copyright Vincotech
50
75
100
T (°C)
125
13
Revision: 2.1
V23990-K420-A40-PM
Switching Definitions Output Inverter
General conditions
Tj
= 150 °C
Rgon
= 4Ω
Rgoff
= 4Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
250
160
IC
130
tdoff
200
VCE
100
VGE 90%
VCE 90%
150
70
%
IC
%
40
VCE
100
tEoff
IC 1%
VGE
tdon
50
10
IC10%
VGE
-20
VCE 3%
VGE10%
0
tEon
-50
-0,2
-0,05
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,1
0,25
-15
15
600
100
0,38
0,75
0,4
0,55
0,7
-50
0,85
time (us)
2,8
2,95
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
3,1
3,25
-15
15
600
100
0,22
0,58
V
V
V
A
µs
µs
3,4
3,55
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,7
time(us)
Turn-on Switching Waveforms & definition of tr
140
250
fitted
Ic
120
VCE
200
100
IC
IC 90%
150
80
IC 60%
% 60
VCE
% 100
IC90%
IC 40%
40
tr
50
20
IC10%
-20
0,25
IC10%
0
tf
0
-50
0,3
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,35
0,4
600
100
0,11
V
A
µs
0,45
0,5
0,55
time (us)
2,9
VC (100%) =
IC (100%) =
tr =
14
3
3,1
600
100
0,04
3,2
3,3
3,4
3,5
time(us)
V
A
µs
Revision: 2.1
V23990-K420-A40-PM
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
110
210
Poff
Pon
Eoff
90
170
70
130
Eon
50
90
%
%
30
50
10
IC 1%
VGE 90%
Uce3%
Uge10%
10
-10
tEon
tEoff
-30
-0,2
-0,05
Poff (100%) =
Eoff (100%) =
tEoff =
0,1
0,25
0,4
time (us)
60,10
9,25
0,75
0,55
0,7
-30
2,85
0,85
3,15
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Figure 7
Gate voltage vs Gate charge (measured)
3
Output inverter FWD
60,10
12,12
0,58
3,3
time(us)
3,45
3,6
3,75
kW
mJ
µs
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
120
20
Id
15
80
trr
10
40
Vge (V)
5
%
0
Vd
0
IRRM10%
-5
-40
-10
IRRM90%
-80
-15
IRRM100%
fitted
-20
-100
-120
0
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright Vincotech
100
-15
15
600
100
597,46
200
300
Qg (nC)
400
500
2,8
600
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
15
3
3,2
600
100
-91
0,46
3,4
time(us)
3,6
3,8
4
V
A
A
µs
Revision: 2.1
V23990-K420-A40-PM
Switching Definitions Output Inverter
Output inverter FWD
Figure 9
Output inverter FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
Erec
100
Qrr
Id
100
tQrr
80
tErec
50
60
% 0
%
40
-50
20
Prec
-100
0
-150
-20
2,8
3,1
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
3,4
3,7
time(us)
100
15,08
0,91
A
µC
µs
4
4,3
4,6
2,8
Prec (100%) =
Erec (100%) =
tErec =
16
3,1
3,4
3,7
time(us)
60,10
5,42
0,91
kW
mJ
µs
4
4,3
4,6
Revision: 2.1
V23990-K420-A40-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
with std lid (black V23990-K32-T-PM)
with std lid (black V23990-K32-T-PM) and P12
with thin lid (white V23990-K33-T-PM)
with thin lid (white V23990-K33-T-PM) and P12
Ordering Code
in DataMatrix as
V23990-K420-A40-/0A/-PM
V23990-K420-A40-/1A/-PM
V23990-K420-A40-/0B/-PM
V23990-K420-A40-/1B/-PM
K420A40
K420A40
K420A40
K420A40
in packaging barcode as
K420A40-/0A/
K420A40-/1A/
K420A40-/0B/
K420A40-/1B/
Outline
Pinout
copyright Vincotech
17
Revision: 2.1
V23990-K420-A40-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
18
Revision: 2.1