10 Fx122PA150SC P990F0x P1 14

FZ12 / F0122PA150SC
preliminary datasheet
flowPHASE0
1200V/150A
Features
flow0 housing
● Trench Fieldstop IGBT technology
● 2-clip housing in 12mm and 17mm height
● Compact and low inductance design
4
Target Applications
Schematic
● Motor Drive
● UPS
Types
● FZ122PA150SC
● F0122PA150SC
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
92
119
A
450
A
172
260
W
±20
V
10
800
μs
V
175
°C
1200
V
75
101
A
300
A
106
160
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Thermal Properties
Copyright by Vincotech
1
Revision: 1
FZ12 / F0122PA150SC
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 1
FZ12 / F0122PA150SC
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,4
1,98
2,43
2,4
Inverter Transistor
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,006
150
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
0,05
700
Rgoff=2 Ω
Rgon=2 Ω
±15
600
150
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
5
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
185
204
28,2
37,2
305
387
79
116
8,89
14,15
9,11
14,92
ns
mWs
9300
f=1MHz
0
580
Tj=25°C
25
pF
510
960
±15
150
579
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
nC
0,553
K/W
Inverter Diode
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Rgon=2 Ω
±15
600
di(rec)max
/dt
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Copyright by Vincotech
150
Thermal grease
thickness≤50um
λ = 1 W/mK
150
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1
1,91
1,91
183,3
209,5
127
298
13,9
26,6
3265
2538
5,21
10,45
2,4
V
A
ns
μC
A/μs
mWs
0,90
K/W
3
Revision: 1
FZ12 / F0122PA150SC
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
450
IC (A)
450
375
375
300
300
225
225
150
150
75
75
0
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
350
μs
25
°C
7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
5
350
μs
150
°C
7 V to 17 V in steps of 1 V
Output inverter FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
150
4
IC (A)
IF (A)
450
Tj = 25°C
375
120
Tj = Tjmax-25°C
300
90
225
60
Tj = Tjmax-25°C
150
30
75
Tj = 25°C
0
0
0
At
tp =
VCE =
2
350
10
4
6
8
10
V GE (V)
12
0
At
tp =
μs
V
Copyright by Vincotech
4
0,8
350
1,6
2,4
3,2
V F (V)
4
μs
Revision: 1
FZ12 / F0122PA150SC
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
30
E (mWs)
E (mWs)
30
Eon High T
25
25
Eon High T
Eoff High T
20
20
Eon Low T
Eoff Low T
15
Eoff High T
10
10
Eoff Low T
5
5
15
Eon Low T
0
0
0
50
100
150
200
250
I C (A)
0
300
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
2
Ω
Rgoff =
2
Ω
2
4
6
8
RG( Ω )
10
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
150
A
Output inverter IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
15
15
E (mWs)
Erec
E (mWs)
Output inverter IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
12
12
Erec
Tj = Tjmax -25°C
9
Tj = Tjmax -25°C
9
Tj = 25°C
Erec
6
6
Tj = 25°C
Erec
3
3
0
0
0
50
100
150
200
250
I C (A)
300
0
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
2
Ω
Copyright by Vincotech
2
4
6
8
RG( Ω )
10
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
150
A
5
Revision: 1
FZ12 / F0122PA150SC
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( μs)
1
t ( μs)
1
tdoff
tdoff
tdon
tdon
tf
0,1
0,1
tf
tr
tr
0,01
0,01
0,001
0,001
0
50
100
150
200
250
I C (A)
300
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
2
Ω
Rgoff =
2
Ω
2
4
6
8
RG( Ω )
10
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
150
A
Output inverter FRED
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
Output inverter FRED
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,5
t rr( μs)
t rr( μs)
0,5
0,4
trr
0,4
Tj = Tjmax -25°C
Tj = Tjmax -25°C
trr
0,3
0,3
0,2
0,2
Tj = 25°C
Tj = 25°C
trr
trr
0,1
0,1
0
0
0
50
At
Tj =
VCE =
VGE =
Rgon =
25/150
600
±15
2
100
150
200
250
I C (A)
0
300
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
6
2
25/150
600
150
±15
4
6
8
R g on ( Ω )
10
°C
V
A
V
Revision: 1
FZ12 / F0122PA150SC
preliminary datasheet
Output Inverter
Output inverter FRED
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Output inverter FRED
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
40
Qrr( μC)
40
Qrr( μC)
Qrr
32
32
Qrr
Tj = Tjmax -25°C
Tj = Tjmax -25°C
24
24
Qrr
16
16
Qrr
Tj = 25°C
Tj = 25°C
8
8
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
50
100
25/150
600
±15
2
150
200
250
I C (A)
300
0
2
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter FRED
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
4
25/150
600
150
±15
6
8
R g on ( Ω)
10
°C
V
A
V
Output inverter FRED
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
300
IrrM (A)
IrrM (A)
300
IRRM
250
250
IRRM
Tj = Tjmax -25°C
Tj = Tjmax - 25°C
200
200
150
150
IRRM
Tj = 25°C
IRRM
Tj = 25°C
100
100
50
50
0
0
0
50
At
Tj =
VCE =
VGE =
Rgon =
25/150
600
±15
2
100
150
200
250
I C (A)
0
300
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
2
25/150
600
150
±15
4
6
8
R gon ( Ω )
10
°C
V
A
V
Revision: 1
FZ12 / F0122PA150SC
preliminary datasheet
Output Inverter
Output inverter FRED
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
10000
direc / dt (A/ μs)
10000
direc / dt (A/μ s)
Output inverter FRED
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dI0/dt
dIrec/dt
8000
dIo/dtLow T
6000
dI0/dt
dIrec/dt
8000
6000
Tj = 25°C
di0/dtHigh T
dIrec/dtLow T
4000
4000
2000
2000
Tj = Tjmax - 25°C
dIrec/dtHigh T
dIrec/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
50
25/150
600
±15
2
100
150
200
250 I C (A)
300
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
2
25/150
600
150
±15
4
6
10
°C
V
A
V
Output inverter FRED
Figure 20
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
ZthJH (K/W)
Zth-JH (K/W)
100
R gon ( Ω )
8
-1
-1
10
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-2
10
10-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
10-5
1011
At
D=
RthJH =
tp / T
0,55
K/W
10-4
10-3
0,90
R (C/W)
0,04
0,13
0,31
0,06
0,01
0,01
R (C/W)
0,03
0,16
0,50
0,14
0,04
0,03
8
100
t p (s)
1011
K/W
FRED thermal model values
Copyright by Vincotech
10-1
tp / T
IGBT thermal model values
Tau (s)
5,0E+00
9,8E-01
2,3E-01
3,1E-02
4,1E-03
3,6E-04
10-2
Tau (s)
9,4E+00
1,1E+00
1,9E-01
3,8E-02
6,6E-03
4,3E-04
Revision: 1
FZ12 / F0122PA150SC
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
150
IC (A)
Ptot (W)
400
320
120
240
90
160
60
80
30
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
Output inverter FRED
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
Output inverter FRED
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
200
150
Ptot (W)
IF (A)
120
100
160
80
120
60
80
40
40
20
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
°C
Copyright by Vincotech
9
50
175
100
150
T h ( o C)
200
°C
Revision: 1
FZ12 / F0122PA150SC
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
103
VGE (V)
IC (A)
16
10uS
14
100uS
2
10
240V
12
960V
DC
10mS
100mS
1mS
10
101
8
0
10
6
4
10-1
2
0
0
10
At
D=
Th =
VGE =
Tj =
101
102
103
0
100 150 200 250 300 350 400 450 500 550 600 650 700 750
Q g (nC)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Copyright by Vincotech
50
V CE (V)
10
150
A
Revision: 1
FZ12 / F0122PA150SC
preliminary datasheet
Switching Definitions Output Inverter
General conditions
= 150 °C
Tj
= 2Ω
Rgon
Rgoff
= 2Ω
Output inverter IGBT
Figure 1
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
140
250
%
%
120
tdoff
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
VCE
IC
210
100
VGE 90%
VCE 90%
170
80
60
130
IC
VCE
tEoff
40
90
VGE
tdon
20
50
0
IC 1%
VGE
-40
-0,2
0
0,2
0,4
0,6
0,8
-15
15
600
150
0,39
0,78
2,8
2,95
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
Output inverter IGBT
Figure 3
VCE 3%
tEon
-30
1
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
IC10%
VGE10%
10
-20
3,1
3,25
-15
15
600
150
0,20
0,52
V
V
V
A
μs
μs
3,4
3,7
time(us)
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,55
Turn-on Switching Waveforms & definition of tr
140
250
%
fitted
%
120
IC
210
VCE
100
170
IC 90%
80
130
VCE
IC 60%
60
IC90%
90
IC 40%
40
tr
50
20
IC10%
0
Ic
tf
-20
0,25
0,3
0,35
0,4
0,45
0,5
-30
2,95
0,55
time (us)
VC (100%) =
IC (100%) =
tf =
600
150
0,12
Copyright by Vincotech
IC10%
10
3,1
3,25
3,4
3,55
3,7
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
μs
11
600
150
0,04
V
A
μs
Revision: 1
FZ12 / F0122PA150SC
preliminary datasheet
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
180
%
Poff
100
Pon
%
Eoff
150
80
120
60
90
40
60
20
30
Eon
VGE 10%
VCE 3%
VGE 90%
0
0
tEon
tEoff
IC 1%
-20
-0,2
-30
-0,05
0,1
0,25
0,4
0,55
0,7
2,9
0,85
3
3,1
3,2
3,3
3,4
3,5
3,6
Poff (100%) =
Eoff (100%) =
tEoff =
90,25
14,92
0,78
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
Output inverter FRED
Figure 7
Gate voltage vs Gate charge (measured)
3,7
time(us)
time (us)
90,25
14,15
0,52
kW
mJ
μs
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
20
VGE (V)
120
%
15
Id
80
trr
10
40
5
0
Vd
0
IRRM10%
-40
-5
-80
-10
IRRM90%
-120
-15
fitted
-20
-250
IRRM100%
-160
0
250
500
750
3,1
1000
3,25
3,4
3,55
Qg (nC)
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
-15
15
600
150
8359,90
Copyright by Vincotech
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
12
600
150
-210
0,30
3,7
time(us)
3,85
V
A
A
μs
Revision: 1
FZ12 / F0122PA150SC
preliminary datasheet
Switching Definitions Output Inverter
Output inverter FRED
Figure 9
Output inverter FRED
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
120
150
%
Erec
%
Qrr
100
100
Id
80
50
tQrr
tErec
60
0
40
-50
20
Prec
-100
0
-20
-150
3
3,2
3,4
3,6
3,8
4
4,2
3
4,4
3,2
3,4
3,6
3,8
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
150
26,55
0,88
Copyright by Vincotech
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
13
90,25
10,45
0,88
4
4,2
4,4
time(us)
kW
mJ
μs
Revision: 1
FZ12 / F0122PA150SC
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
in DataMatrix as
in packaging barcode as
without thermal paste 12mm housing
without thermal paste 17mm housing
10-FZ122PA150SC-P990F08
10-F0122PA150SC-P990F09
P990F08
P990F09
P990F08
P990F09
Outline
Pinout
Copyright by Vincotech
14
Revision: 1
FZ12 / F0122PA150SC
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
15
Revision: 1