80-M006PNB006SA*-K614* MiniSKiiP®0 PIM 600V/6A MiniSKiiP®0 housing Features ● Solderless interconnection ● Trench Fieldstop IGBT's for low saturation losses ● Optional 2- and 3-leg rectifier Target Applications Schematic ● Industrial Drives ● Embedded Drives Types 80-M006PNB006SA01-K614D, 2-leg rectifier 80-M006PNB006SA-K614C, 3-leg rectifier Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 25 25 A 220 A 240 A2s 46 70 W Tjmax 150 °C VCE 600 V 10 10 A tp limited by Tjmax 18 A VCE ≤ 1200V, Tj ≤ Top max 18 A D7,D8,D9,D10,D11,D12 Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp=10ms Tj=25°C Tj=Tjmax Th=80°C Tc=80°C T1,T2,T3,T4,T5,T6 Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Copyright by Vincotech Tj=Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C 40 60 W ±20 V 6 360 µs V 175 °C Revision: 2.1 80-M006PNB006SA*-K614* Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 10 10 A 22 A 31 47 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm D1,D2,D3,D4,D5,D6 Peak Repetitive Reverse Voltage DC forward current VRRM IF Th=80°C Tj=Tjmax Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 2.1 80-M006PNB006SA*-K614* Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Unit Typ Max 1,43 1,44 0,92 0,79 20,29 26,11 1,64 D7,D8,D9,D10,D11,D12 Forward voltage VF 25 Threshold voltage (for power loss calc. only) Vto 25 Slope resistance (for power loss calc. only) rt 25 Reverse current Ir Thermal resistance chip to heatsink per chip RthJH 1500 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V mΩ 0,05 Thermal grease thickness≤50um λ = 1 W/mK V 1,5 mA K/W T1,T2,T3,T4,T5,T6 Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 ICES 0 Collector-emitter cut-off current incl. Diode Gate-emitter leakage current IGES Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time 0,00009 6 600 20 0 tr td(off) tf Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate RthJH Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 5 5,8 6,5 1,24 1,59 1,84 2,04 0,0004 300 Rgoff=64 Ω Rgon=64 Ω ±15 300 6 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω none td(on) Turn-on energy loss per pulse Thermal resistance chip to heatsink per chip VCE=VGE 105 102,4 21,8 27,8 142,2 163,6 102,7 132,4 0,15 0,22 0,15 0,19 ns mWs 368 f=1MHz 0 Tj=25°C 25 28 pF 11 15 480 6 Tj=25°C 62 Thermal grease thickness≤50um λ = 1 W/mK 42 2,4 nC K/W D1,D2,D3,D4,D5,D6 Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip VF 6 IRRM trr Qrr Rgon=64 Ω 300 ±15 di(rec)max /dt Erec RthJH 6 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,42 1,36 3,92 5,82 182,7 288,1 0,32 0,77 45 57 0,06 0,16 Thermal grease thickness≤50um λ = 1 W/mK V A ns µC A/µs mWs 3 K/W Thermistor Rated resistance Tr=25°C R Deviation of R ∆R/R R100 R100 R25=1000 Ω R100=1670 Ω Tr=25°C Tr=100°C Ω 1000 -3 -2 3 2 % Tr=25°C 1670 Ω 0,76 % /K A-value Temperature coefficient B(25/50) Tol. % Tr=25°C 7,635*10-3 1/K B-value B(25/100) Tol. % Tr=25°C 1,731*10-5 1/K² Vincotech NTC Reference Copyright by Vincotech E 3 Revision: 2.1 80-M006PNB006SA*-K614* T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 1 Typical output characteristics IC = f(VCE) T1,T2,T3,T4,T5,T6 IGBT Figure 2 Typical output characteristics IC = f(VCE) 20 IC (A) IC (A) 20 16 16 12 12 8 8 4 4 0 0 0 1 tp = Tj = VGE from 2 3 4 V CE (V) 5 0 tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V T1,T2,T3,T4,T5,T6 IGBT 2 3 6 20 IF (A) 4 V CE (V) 5 250 µs 150 °C 7 V to 17 V in steps of 1 V D1,D2,D3,D4,D5,D6 FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) IC (A) Figure 3 Typical transfer characteristics IC = f(VGE) 1 Tj = 25°C 5 16 4 12 3 8 2 4 1 Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C 0 0 0 tp = VCE = 2 250 10 4 6 8 V GE (V) 10 0,0 tp = µs V Copyright by Vincotech 4 0,5 250 1,0 1,5 2,0 V F (V) 2,5 µs Revision: 2.1 80-M006PNB006SA*-K614* T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) T1,T2,T3,T4,T5,T6 IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) E (mWs) 0,6 0,5 0,6 0,5 Eon High T Eon High T 0,4 0,4 Eon Low T Eon Low T 0,3 0,3 Eoff High T Eoff Low T 0,2 Eoff High T 0,2 Eoff Low T 0,1 0,1 0,0 0,0 0 3 inductive load Tj = 25/150 VCE = 300 VGE = ±15 Rgon = 64 Rgoff = 64 6 9 I C (A) 12 0 64 inductive load Tj = 25/150 VCE = 300 VGE = ±15 IC = 6 °C V V Ω Ω Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) D1,D2,D3,D4,D5,D6 FWD 128 192 320 °C V V A D1,D2,D3,D4,D5,D6 FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,25 E (mWs) E (mWs) 0,3 RG( Ω ) 256 Erec 0,2 0,20 Tj = Tjmax -25°C 0,2 0,15 Tj = Tjmax -25°C Erec Erec 0,1 0,10 Tj = 25°C 0,1 0,05 Erec Tj = 25°C 0,0 0,00 0 3 inductive load Tj = 25/150 VCE = 300 VGE = ±15 Rgon = 64 6 9 I C (A) 12 0 °C V V Ω Copyright by Vincotech 64 inductive load Tj = 25/150 VCE = 300 VGE = ±15 IC = 6 5 128 192 256 RG( Ω ) 320 °C V V A Revision: 2.1 80-M006PNB006SA*-K614* T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) T1,T2,T3,T4,T5,T6 IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( µs) 1,00 t ( µs) 1,00 tdoff tdoff tf tf 0,10 0,10 tdon tr tr tdon 0,01 0,01 0,00 0,00 0 3 inductive load Tj = 150 VCE = 300 VGE = ±15 Rgon = 64 Rgoff = 64 6 9 I C (A) 12 0 64 inductive load Tj = 150 VCE = 300 VGE = ±15 IC = 6 °C V V Ω Ω D1,D2,D3,D4,D5,D6 FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) 128 192 320 °C V V A D1,D2,D3,D4,D5,D6 FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,5 t rr( µs) t rr( µs) 0,5 RG( Ω ) 256 0,4 trr 0,4 trr Tj = Tjmax -25°C 0,3 0,3 trr trr Tj = Tjmax -25°C 0,2 0,2 Tj = 25°C 0,1 0,1 Tj = 25°C 0,0 0,0 0 3 Tj = VCE = VGE = Rgon = 25/150 300 ±15 64 6 9 I C (A) 12 °C V V Ω Copyright by Vincotech 6 0 64 Tj = VR = IF = VGE = 25/150 300 6 ±15 128 192 256 R g on ( Ω ) 320 °C V A V Revision: 2.1 80-M006PNB006SA*-K614* T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6 Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) D1,D2,D3,D4,D5,D6 FWD D1,D2,D3,D4,D5,D6 FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr( µC) 1,2 Qrr( µC) 1,2 Qrr 1,0 1,0 0,8 0,8 0,6 0,6 Tj = Tjmax -25°C Qrr Tj = Tjmax -25°C Qrr Tj = 25°C 0,4 0,4 Qrr Tj = 25°C 0,2 0,2 0,0 0,0 0 At Tj = VCE = VGE = Rgon = 3 25/150 300 ±15 64 6 9 I C (A) 12 0 Tj = VR = IF = VGE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) D1,D2,D3,D4,D5,D6 FWD 64 25/150 300 6 ±15 128 192 320 °C V A V D1,D2,D3,D4,D5,D6 FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 8 R g on ( Ω) 256 Tj = Tjmax - 25°C IrrM (A) IrrM (A) 8 6 6 IRRM Tj = Tjmax -25°C IRRM IRRM 4 4 Tj = 25°C Tj = 25°C IRRM 2 2 0 0 0 3 Tj = VCE = VGE = Rgon = 25/150 300 ±15 64 6 9 I C (A) 12 0 Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 64 25/150 300 6 ±15 128 192 256 R gon ( Ω ) 320 °C V A V Revision: 2.1 80-M006PNB006SA*-K614* T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6 D1,D2,D3,D4,D5,D6 FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) 900 direc / dt (A/ µs) 400 direc / dt (A/µ s) D1,D2,D3,D4,D5,D6 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dI0/dt dIrec/dt 320 dI0/dt dIrec/dt 750 dIo/dtLow T 600 dIo/dtLow T 240 450 di0/dtHigh T 160 300 dIrec/dtHigh T 80 150 di0/dtHigh T dIrec/dtLow T dIrec/dtHigh T dIrec/dtLow T 0 0 0 Tj = VCE = VGE = Rgon = 3 25/150 300 ±15 64 6 I C (A) 9 0 12 Tj = VR = IF = VGE = °C V V Ω T1,T2,T3,T4,T5,T6 IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 64 25/150 300 6 ±15 128 192 R gon ( Ω ) 320 °C V A V D1,D2,D3,D4,D5,D6 FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) Zth-JH (K/W) 101 256 10 0 10 -1 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10 10-2 10-5 D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) -2 10-5 10110 tp / T 2,40 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D= RthJH = K/W 10-4 10-2 10-1 100 t p (s) 10110 tp / T 3 IGBT thermal model values K/W FWD thermal model values Thermal grease Thermal grease R (C/W) 0,08 0,18 0,82 0,59 0,43 0,30 R (C/W) 0,17 0,87 0,95 0,56 0,50 Tau (s) 9,7E+00 4,8E-01 7,5E-02 1,5E-02 2,9E-03 3,0E-04 Copyright by Vincotech 10-3 8 Tau (s) 1,2E+00 1,1E-01 2,6E-02 4,6E-03 8,4E-04 Revision: 2.1 80-M006PNB006SA*-K614* T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) T1,T2,T3,T4,T5,T6 IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 12 Ptot (W) IC (A) 80 10 60 8 40 6 4 20 2 0 0 0 Tj = 50 175 100 150 T h ( o C) 200 0 Tj = VGE = °C D1,D2,D3,D4,D5,D6 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V D1,D2,D3,D4,D5,D6 FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 12 IF (A) Ptot (W) 60 150 10 40 8 6 20 4 2 0 0 0 Tj = 50 175 100 150 T h ( o C) 200 0 Tj = °C Copyright by Vincotech 9 50 175 100 150 T h ( o C) 200 °C Revision: 2.1 80-M006PNB006SA*-K614* T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) T1,T2,T3,T4,T5,T6 IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) 102 IC (A) VGE (V) 18 10mS 1mS 16 10uS 100uS 100mS DC 120V 14 101 12 480V 10 10 0 8 6 10-1 4 2 0 100 D= Th = VGE = 101 102 V CE (V) 0 103 IC = single pulse 80 ºC ±15 V Tjmax ºC Tj = T1,T2,T3,T4,T5,T6 IGBT Figure 27 11 6 22 33 Q g (nC) 55 A T1,T2,T3,T4,T5,T6 IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) 44 Typical short circuit collector current as a function of gate-emitter voltage Isc = f(VGE) 250 250 1000 C(sc) tsc (µS) tsc (µS) IC(sc)/INOMII(%) C(sc) 17,5 17,5 225 225 1515 200 200 800 12,5 12,5 175 175 150 150 600 1010 125 125 7,5 7,5 5 100 100 400 75 75 5 50 50 200 2,5 2,5 0 25 25 0 12 12 13 13 12,6 14 14 15 13,2 15 16 16 13,817 17 1814,4 18 00 0 12 1212 20 15 V19 GE (V) (V) 20 19 VVGEGE(V) 13 13 14 14 14 VCE = 300 V VCE ≤ 300 V Tj ≤ 175 ºC Tj = 175 ºC Copyright by Vincotech 10 15 15 16 16 16 17 17 18 18 19 20 V GE (V) 20 V GEV(V) GE (V) Revision: 2.1 80-M006PNB006SA*-K614* D7,D8,D9,D10,D11,D12 D7,D8,D9,D10,D11,D12 diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 75 D7,D8,D9,D10,D11,D12 diode IF (A) ZthJC (K/W) 101 60 10 0 45 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 30 10-1 15 Tj = Tjmax-25°C Tj = 25°C 0 10-2 0,0 tp = 0,5 1,0 250 µs 1,5 2,5 V F (V) 3,0 10-5 D= RthJH = Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) D7,D8,D9,D10,D11,D12 diode 10-4 10-3 10-2 100 t p (s) 10110 tp / T 1,5 K/W Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 120 10-1 D7,D8,D9,D10,D11,D12 diode 30 IF (A) Ptot (W) 2,0 25 90 20 60 15 10 30 5 0 0 0 Tj = 30 150 60 90 o 120 T h ( C) 150 0 Tj = ºC Copyright by Vincotech 11 30 150 60 90 120 T h ( o C) 150 ºC Revision: 2.1 80-M006PNB006SA*-K614* Thermistor Thermistor Figure 1 Typical PTC characteristic as a function of temperature RT = f(T) Thermistor Equation of PTC resistance temperature dependency PTC-typical temperature characteristic R(T) = 1000*[1+ A*(T-25°C) +B*(T-25°C) 2] R/Ω 2000 [Ω] 1800 1600 1400 1200 1000 25 45 65 Copyright by Vincotech 85 105 T (°C) 125 12 Revision: 2.1 80-M006PNB006SA*-K614* Switching Definitions Output Inverter General conditions Tj = 150 °C Rgon = 64 Ω Rgoff = 64 Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 250 140 % % 120 tdoff 200 IC VCE 100 VGE 90% VCE 90% 150 80 VCE IC 100 60 40 tdon tEoff VGE 50 20 IC 1% VGE IC10% VGE10% 0 VCE 3% 0 tEon -50 -20 -0,2 -0,1 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0 0,1 -15 15 300 6 0,16 0,53 0,2 0,3 0,4 2,8 0,5 time (us) 2,9 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 3 3,1 -15 15 300 6 0,10 0,27 3,2 time(us) 3,4 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,3 Turn-on Switching Waveforms & definition of tr 140 250 % % Ic 120 fitted VCE 200 100 IC IC 90% 150 80 IC 60% 60 40 100 VCE IC90% tr IC 40% 50 20 IC10% IC10% 0 0 tf -20 -0,05 0 0,05 0,1 0,15 0,2 0,25 -50 2,95 0,3 3 3,05 3,1 time (us) VC (100%) = IC (100%) = tf = 300 6 0,13 Copyright by Vincotech 3,15 3,2 3,25 time(us) VC (100%) = IC (100%) = tr = V A µs 13 300 6 0,03 V A µs Revision: 2.1 80-M006PNB006SA*-K614* Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 180 % Pon % Eoff 100 150 Poff 80 120 Eon 60 90 40 60 20 30 IC 1% VGE 90% VCE 3% VGE 10% 0 0 tEoff -20 -0,2 tEon -30 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 2,9 time (us) Poff (100%) = Eoff (100%) = tEoff = 1,80 0,19 0,53 3 Pon (100%) = Eon (100%) = tEon = kW mJ µs 3,1 1,80 0,23 0,27 3,2 3,3 time(us) 3,4 kW mJ µs Output inverter FWD Figure 7 Turn-off Switching Waveforms & definition of trr 120 % Id 80 trr 40 Vd fitted 0 IRRM10% -40 -80 IRRM90% IRRM100% -120 2,95 3,1 3,25 3,4 3,55 3,7 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = Copyright by Vincotech 14 300 6 -6 0,29 V A A µs Revision: 2.1 80-M006PNB006SA*-K614* Switching Definitions Output Inverter Output inverter FWD Figure 8 Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 % Id Erec % Qrr 100 100 tQrr 80 tErec 50 60 0 40 -50 20 Prec -100 0 -150 -20 2,9 Id (100%) = Qrr (100%) = tQrr = 3,1 3,3 6 0,78 1,00 Copyright by Vincotech 3,5 3,7 3,9 4,1 time(us) 4,3 2,9 3,1 3,3 3,5 3,7 3,9 4,1 4,3 time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 15 1,80 0,16 1,00 kW mJ µs Revision: 2.1 80-M006PNB006SA*-K614* Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code in DataMatrix as in packaging barcode as with 2-leg rectifier, std lid (black V23990-K02-T-PM) with 2-leg rectifier, std lid (black V23990-K02-T-PM) and P12 with 2-leg rectifier, thin lid (white V23990-K03-T-PM) with 2-leg rectifier, thin lid (white V23990-K03-T-PM) and P12 with 3-leg rectifier, std lid (black V23990-K02-T-PM) with 3-leg rectifier, std lid (black V23990-K02-T-PM) and P12 with 3-leg rectifier, thin lid (white V23990-K03-T-PM) with 3-leg rectifier, thin lid (white V23990-K03-T-PM) and P12 80-M006PNB006SA01-K614D-/0A/ 80-M006PNB006SA01-K614D-/1A/ 80-M006PNB006SA01-K614D-/0B/ 80-M006PNB006SA01-K614D-/1B/ 80-M006PNB006SA-K614C-/0A/ 80-M006PNB006SA-K614C-/1A/ 80-M006PNB006SA-K614C-/0B/ 80-M006PNB006SA-K614C-/1B/ K614D K614D K614D K614D K614C K614C K614C K614C K614D K614D K614D K614D K614C K614C K614C K614C Outline Pinout Copyright by Vincotech 16 Revision: 2.1 80-M006PNB006SA*-K614* DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 17 Revision: 2.1