Maximum Ratings

80-M006PNB006SA*-K614*
MiniSKiiP®0 PIM
600V/6A
MiniSKiiP®0 housing
Features
● Solderless interconnection
● Trench Fieldstop IGBT's for low saturation losses
● Optional 2- and 3-leg rectifier
Target Applications
Schematic
● Industrial Drives
● Embedded Drives
Types
80-M006PNB006SA01-K614D, 2-leg rectifier
80-M006PNB006SA-K614C, 3-leg rectifier
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
25
25
A
220
A
240
A2s
46
70
W
Tjmax
150
°C
VCE
600
V
10
10
A
tp limited by Tjmax
18
A
VCE ≤ 1200V, Tj ≤ Top max
18
A
D7,D8,D9,D10,D11,D12
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
T1,T2,T3,T4,T5,T6
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Copyright by Vincotech
Tj=Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
40
60
W
±20
V
6
360
µs
V
175
°C
Revision: 2.1
80-M006PNB006SA*-K614*
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
10
10
A
22
A
31
47
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
D1,D2,D3,D4,D5,D6
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Th=80°C
Tj=Tjmax
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 2.1
80-M006PNB006SA*-K614*
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Unit
Typ
Max
1,43
1,44
0,92
0,79
20,29
26,11
1,64
D7,D8,D9,D10,D11,D12
Forward voltage
VF
25
Threshold voltage (for power loss calc. only)
Vto
25
Slope resistance (for power loss calc. only)
rt
25
Reverse current
Ir
Thermal resistance chip to heatsink per chip
RthJH
1500
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
mΩ
0,05
Thermal grease
thickness≤50um
λ = 1 W/mK
V
1,5
mA
K/W
T1,T2,T3,T4,T5,T6
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
ICES
0
Collector-emitter cut-off current incl. Diode
Gate-emitter leakage current
IGES
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
0,00009
6
600
20
0
tr
td(off)
tf
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
RthJH
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
5
5,8
6,5
1,24
1,59
1,84
2,04
0,0004
300
Rgoff=64 Ω
Rgon=64 Ω
±15
300
6
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
none
td(on)
Turn-on energy loss per pulse
Thermal resistance chip to heatsink per chip
VCE=VGE
105
102,4
21,8
27,8
142,2
163,6
102,7
132,4
0,15
0,22
0,15
0,19
ns
mWs
368
f=1MHz
0
Tj=25°C
25
28
pF
11
15
480
6
Tj=25°C
62
Thermal grease
thickness≤50um
λ = 1 W/mK
42
2,4
nC
K/W
D1,D2,D3,D4,D5,D6
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
VF
6
IRRM
trr
Qrr
Rgon=64 Ω
300
±15
di(rec)max
/dt
Erec
RthJH
6
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,42
1,36
3,92
5,82
182,7
288,1
0,32
0,77
45
57
0,06
0,16
Thermal grease
thickness≤50um
λ = 1 W/mK
V
A
ns
µC
A/µs
mWs
3
K/W
Thermistor
Rated resistance
Tr=25°C
R
Deviation of R
∆R/R
R100
R100
R25=1000 Ω
R100=1670 Ω
Tr=25°C
Tr=100°C
Ω
1000
-3
-2
3
2
%
Tr=25°C
1670
Ω
0,76
% /K
A-value
Temperature coefficient
B(25/50)
Tol. %
Tr=25°C
7,635*10-3
1/K
B-value
B(25/100)
Tol. %
Tr=25°C
1,731*10-5
1/K²
Vincotech NTC Reference
Copyright by Vincotech
E
3
Revision: 2.1
80-M006PNB006SA*-K614*
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
T1,T2,T3,T4,T5,T6 IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
20
IC (A)
IC (A)
20
16
16
12
12
8
8
4
4
0
0
0
1
tp =
Tj =
VGE from
2
3
4
V CE (V)
5
0
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
T1,T2,T3,T4,T5,T6 IGBT
2
3
6
20
IF (A)
4
V CE (V)
5
250
µs
150
°C
7 V to 17 V in steps of 1 V
D1,D2,D3,D4,D5,D6 FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
IC (A)
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
Tj = 25°C
5
16
4
12
3
8
2
4
1
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
tp =
VCE =
2
250
10
4
6
8
V GE (V)
10
0,0
tp =
µs
V
Copyright by Vincotech
4
0,5
250
1,0
1,5
2,0
V F (V)
2,5
µs
Revision: 2.1
80-M006PNB006SA*-K614*
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
T1,T2,T3,T4,T5,T6 IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
E (mWs)
0,6
0,5
0,6
0,5
Eon High T
Eon High T
0,4
0,4
Eon Low T
Eon Low T
0,3
0,3
Eoff High T
Eoff Low T
0,2
Eoff High T
0,2
Eoff Low T
0,1
0,1
0,0
0,0
0
3
inductive load
Tj =
25/150
VCE =
300
VGE =
±15
Rgon =
64
Rgoff =
64
6
9
I C (A)
12
0
64
inductive load
Tj =
25/150
VCE =
300
VGE =
±15
IC =
6
°C
V
V
Ω
Ω
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
D1,D2,D3,D4,D5,D6 FWD
128
192
320
°C
V
V
A
D1,D2,D3,D4,D5,D6 FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,25
E (mWs)
E (mWs)
0,3
RG( Ω )
256
Erec
0,2
0,20
Tj = Tjmax -25°C
0,2
0,15
Tj = Tjmax -25°C
Erec
Erec
0,1
0,10
Tj = 25°C
0,1
0,05
Erec
Tj = 25°C
0,0
0,00
0
3
inductive load
Tj =
25/150
VCE =
300
VGE =
±15
Rgon =
64
6
9
I C (A)
12
0
°C
V
V
Ω
Copyright by Vincotech
64
inductive load
Tj =
25/150
VCE =
300
VGE =
±15
IC =
6
5
128
192
256
RG( Ω )
320
°C
V
V
A
Revision: 2.1
80-M006PNB006SA*-K614*
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
T1,T2,T3,T4,T5,T6 IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( µs)
1,00
t ( µs)
1,00
tdoff
tdoff
tf
tf
0,10
0,10
tdon
tr
tr
tdon
0,01
0,01
0,00
0,00
0
3
inductive load
Tj =
150
VCE =
300
VGE =
±15
Rgon =
64
Rgoff =
64
6
9
I C (A)
12
0
64
inductive load
Tj =
150
VCE =
300
VGE =
±15
IC =
6
°C
V
V
Ω
Ω
D1,D2,D3,D4,D5,D6 FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
128
192
320
°C
V
V
A
D1,D2,D3,D4,D5,D6 FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,5
t rr( µs)
t rr( µs)
0,5
RG( Ω )
256
0,4
trr
0,4
trr
Tj = Tjmax -25°C
0,3
0,3
trr
trr
Tj = Tjmax -25°C
0,2
0,2
Tj = 25°C
0,1
0,1
Tj = 25°C
0,0
0,0
0
3
Tj =
VCE =
VGE =
Rgon =
25/150
300
±15
64
6
9
I C (A)
12
°C
V
V
Ω
Copyright by Vincotech
6
0
64
Tj =
VR =
IF =
VGE =
25/150
300
6
±15
128
192
256
R g on ( Ω )
320
°C
V
A
V
Revision: 2.1
80-M006PNB006SA*-K614*
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
D1,D2,D3,D4,D5,D6 FWD
D1,D2,D3,D4,D5,D6 FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr( µC)
1,2
Qrr( µC)
1,2
Qrr
1,0
1,0
0,8
0,8
0,6
0,6
Tj = Tjmax -25°C
Qrr
Tj = Tjmax -25°C
Qrr
Tj = 25°C
0,4
0,4
Qrr
Tj = 25°C
0,2
0,2
0,0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
3
25/150
300
±15
64
6
9
I C (A)
12
0
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
D1,D2,D3,D4,D5,D6 FWD
64
25/150
300
6
±15
128
192
320
°C
V
A
V
D1,D2,D3,D4,D5,D6 FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
8
R g on ( Ω)
256
Tj = Tjmax - 25°C
IrrM (A)
IrrM (A)
8
6
6
IRRM
Tj = Tjmax -25°C
IRRM
IRRM
4
4
Tj = 25°C
Tj = 25°C
IRRM
2
2
0
0
0
3
Tj =
VCE =
VGE =
Rgon =
25/150
300
±15
64
6
9
I C (A)
12
0
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
64
25/150
300
6
±15
128
192
256
R gon ( Ω )
320
°C
V
A
V
Revision: 2.1
80-M006PNB006SA*-K614*
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
D1,D2,D3,D4,D5,D6 FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
900
direc / dt (A/ µs)
400
direc / dt (A/µ s)
D1,D2,D3,D4,D5,D6 FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dI0/dt
dIrec/dt
320
dI0/dt
dIrec/dt
750
dIo/dtLow T
600
dIo/dtLow T
240
450
di0/dtHigh T
160
300
dIrec/dtHigh T
80
150
di0/dtHigh T
dIrec/dtLow T
dIrec/dtHigh T
dIrec/dtLow T
0
0
0
Tj =
VCE =
VGE =
Rgon =
3
25/150
300
±15
64
6
I C (A)
9
0
12
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
T1,T2,T3,T4,T5,T6 IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
64
25/150
300
6
±15
128
192
R gon ( Ω )
320
°C
V
A
V
D1,D2,D3,D4,D5,D6 FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
Zth-JH (K/W)
101
256
10
0
10
-1
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
10-2
10-5
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
-2
10-5
10110
tp / T
2,40
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D=
RthJH =
K/W
10-4
10-2
10-1
100
t p (s)
10110
tp / T
3
IGBT thermal model values
K/W
FWD thermal model values
Thermal grease
Thermal grease
R (C/W)
0,08
0,18
0,82
0,59
0,43
0,30
R (C/W)
0,17
0,87
0,95
0,56
0,50
Tau (s)
9,7E+00
4,8E-01
7,5E-02
1,5E-02
2,9E-03
3,0E-04
Copyright by Vincotech
10-3
8
Tau (s)
1,2E+00
1,1E-01
2,6E-02
4,6E-03
8,4E-04
Revision: 2.1
80-M006PNB006SA*-K614*
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
T1,T2,T3,T4,T5,T6 IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
12
Ptot (W)
IC (A)
80
10
60
8
40
6
4
20
2
0
0
0
Tj =
50
175
100
150
T h ( o C)
200
0
Tj =
VGE =
°C
D1,D2,D3,D4,D5,D6 FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
D1,D2,D3,D4,D5,D6 FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
12
IF (A)
Ptot (W)
60
150
10
40
8
6
20
4
2
0
0
0
Tj =
50
175
100
150
T h ( o C)
200
0
Tj =
°C
Copyright by Vincotech
9
50
175
100
150
T h ( o C)
200
°C
Revision: 2.1
80-M006PNB006SA*-K614*
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
T1,T2,T3,T4,T5,T6 IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
102
IC (A)
VGE (V)
18
10mS
1mS
16
10uS
100uS
100mS
DC
120V
14
101
12
480V
10
10
0
8
6
10-1
4
2
0
100
D=
Th =
VGE =
101
102
V CE (V)
0
103
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Tj =
T1,T2,T3,T4,T5,T6 IGBT
Figure 27
11
6
22
33
Q g (nC)
55
A
T1,T2,T3,T4,T5,T6 IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
44
Typical short circuit collector current as a function of
gate-emitter voltage
Isc = f(VGE)
250
250
1000
C(sc)
tsc (µS)
tsc (µS)
IC(sc)/INOMII(%)
C(sc)
17,5
17,5
225
225
1515
200
200
800
12,5
12,5
175
175
150
150
600
1010
125
125
7,5
7,5
5
100
100
400
75
75
5
50
50
200
2,5
2,5
0
25
25
0
12
12
13
13
12,6 14
14
15
13,2
15
16
16
13,817
17
1814,4
18
00
0
12
1212
20
15
V19
GE (V)
(V) 20
19
VVGEGE(V)
13
13
14
14
14
VCE =
300
V
VCE ≤
300
V
Tj ≤
175
ºC
Tj =
175
ºC
Copyright by Vincotech
10
15
15
16
16
16
17
17
18
18
19
20
V GE (V) 20
V GEV(V)
GE (V)
Revision: 2.1
80-M006PNB006SA*-K614*
D7,D8,D9,D10,D11,D12
D7,D8,D9,D10,D11,D12 diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
75
D7,D8,D9,D10,D11,D12 diode
IF (A)
ZthJC (K/W)
101
60
10
0
45
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
30
10-1
15
Tj = Tjmax-25°C
Tj = 25°C
0
10-2
0,0
tp =
0,5
1,0
250
µs
1,5
2,5
V F (V)
3,0
10-5
D=
RthJH =
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
D7,D8,D9,D10,D11,D12 diode
10-4
10-3
10-2
100
t p (s)
10110
tp / T
1,5
K/W
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
120
10-1
D7,D8,D9,D10,D11,D12 diode
30
IF (A)
Ptot (W)
2,0
25
90
20
60
15
10
30
5
0
0
0
Tj =
30
150
60
90
o
120 T h ( C)
150
0
Tj =
ºC
Copyright by Vincotech
11
30
150
60
90
120
T h ( o C)
150
ºC
Revision: 2.1
80-M006PNB006SA*-K614*
Thermistor
Thermistor
Figure 1
Typical PTC characteristic
as a function of temperature
RT = f(T)
Thermistor
Equation of PTC resistance temperature dependency
PTC-typical temperature characteristic
R(T) = 1000*[1+ A*(T-25°C) +B*(T-25°C) 2]
R/Ω
2000
[Ω]
1800
1600
1400
1200
1000
25
45
65
Copyright by Vincotech
85
105
T (°C)
125
12
Revision: 2.1
80-M006PNB006SA*-K614*
Switching Definitions Output Inverter
General conditions
Tj
= 150 °C
Rgon
= 64 Ω
Rgoff
= 64 Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
250
140
%
%
120
tdoff
200
IC
VCE
100
VGE 90%
VCE 90%
150
80
VCE
IC
100
60
40
tdon
tEoff
VGE
50
20
IC 1%
VGE
IC10%
VGE10%
0
VCE 3%
0
tEon
-50
-20
-0,2
-0,1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0
0,1
-15
15
300
6
0,16
0,53
0,2
0,3
0,4
2,8
0,5
time (us)
2,9
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
3
3,1
-15
15
300
6
0,10
0,27
3,2
time(us)
3,4
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,3
Turn-on Switching Waveforms & definition of tr
140
250
%
%
Ic
120
fitted
VCE
200
100
IC
IC 90%
150
80
IC 60%
60
40
100
VCE
IC90%
tr
IC 40%
50
20
IC10%
IC10%
0
0
tf
-20
-0,05
0
0,05
0,1
0,15
0,2
0,25
-50
2,95
0,3
3
3,05
3,1
time (us)
VC (100%) =
IC (100%) =
tf =
300
6
0,13
Copyright by Vincotech
3,15
3,2
3,25
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
13
300
6
0,03
V
A
µs
Revision: 2.1
80-M006PNB006SA*-K614*
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
180
%
Pon
%
Eoff
100
150
Poff
80
120
Eon
60
90
40
60
20
30
IC 1%
VGE 90%
VCE 3%
VGE 10%
0
0
tEoff
-20
-0,2
tEon
-30
-0,1
0
0,1
0,2
0,3
0,4
0,5
0,6
2,9
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
1,80
0,19
0,53
3
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
3,1
1,80
0,23
0,27
3,2
3,3
time(us)
3,4
kW
mJ
µs
Output inverter FWD
Figure 7
Turn-off Switching Waveforms & definition of trr
120
%
Id
80
trr
40
Vd
fitted
0
IRRM10%
-40
-80
IRRM90%
IRRM100%
-120
2,95
3,1
3,25
3,4
3,55
3,7
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
Copyright by Vincotech
14
300
6
-6
0,29
V
A
A
µs
Revision: 2.1
80-M006PNB006SA*-K614*
Switching Definitions Output Inverter
Output inverter FWD
Figure 8
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
%
Id
Erec
%
Qrr
100
100
tQrr
80
tErec
50
60
0
40
-50
20
Prec
-100
0
-150
-20
2,9
Id (100%) =
Qrr (100%) =
tQrr =
3,1
3,3
6
0,78
1,00
Copyright by Vincotech
3,5
3,7
3,9
4,1
time(us)
4,3
2,9
3,1
3,3
3,5
3,7
3,9
4,1
4,3
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
15
1,80
0,16
1,00
kW
mJ
µs
Revision: 2.1
80-M006PNB006SA*-K614*
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
in DataMatrix as
in packaging barcode as
with 2-leg rectifier, std lid (black V23990-K02-T-PM)
with 2-leg rectifier, std lid (black V23990-K02-T-PM) and P12
with 2-leg rectifier, thin lid (white V23990-K03-T-PM)
with 2-leg rectifier, thin lid (white V23990-K03-T-PM) and P12
with 3-leg rectifier, std lid (black V23990-K02-T-PM)
with 3-leg rectifier, std lid (black V23990-K02-T-PM) and P12
with 3-leg rectifier, thin lid (white V23990-K03-T-PM)
with 3-leg rectifier, thin lid (white V23990-K03-T-PM) and P12
80-M006PNB006SA01-K614D-/0A/
80-M006PNB006SA01-K614D-/1A/
80-M006PNB006SA01-K614D-/0B/
80-M006PNB006SA01-K614D-/1B/
80-M006PNB006SA-K614C-/0A/
80-M006PNB006SA-K614C-/1A/
80-M006PNB006SA-K614C-/0B/
80-M006PNB006SA-K614C-/1B/
K614D
K614D
K614D
K614D
K614C
K614C
K614C
K614C
K614D
K614D
K614D
K614D
K614C
K614C
K614C
K614C
Outline
Pinout
Copyright by Vincotech
16
Revision: 2.1
80-M006PNB006SA*-K614*
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
17
Revision: 2.1