10-FY064PA075SG-M583F08 Maximum Ratings

10-FY064PA075SG-M583F08
flowPACK 1 H
650V/75A
Features
flowPACK 1 H
● Low inductive 12mm flow1 package
● H-Bridge topology
● High-speed IGBT + ultrafast FWD
● Temperature sensor
Target Applications
Schematic
● Solar inverter
● Power Supply
● Inverter based welding
Types
● 10-FY064PA075SG-M583F08
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
650
V
53
71
A
tp limited by Tjmax
225
A
VCE ≤ 650V, Tj ≤ Top max
150
A
93
141
W
±20
V
5
400
µs
V
175
°C
650
V
42
55
A
225
A
70
106
W
175
°C
H-Bridge IGBT
Collector-emitter break down voltage
VCE
DC collector current
IDC
Pulsed collector current
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
H-Bridge FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright by Vincotech
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 1
10-FY064PA075SG-M583F08
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Comparative tracking index
copyright by Vincotech
Vis
t=2s
DC voltage
CTI
>200
2
Revision: 1
10-FY064PA075SG-M583F08
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
4,2
5,1
5,6
1,38
1,72
1,97
2,5
H-Bridge IGBT
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
650
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,0012
75
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Rgoff=4 Ω
Rgon=4 Ω
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
300
±15
75
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
uA
nA
Ω
85
87
14
17
125
147
18
31
0,51
0,9
0,66
1,17
ns
mWs
4620
f=1MHz
Reverse transfer capacitance
150
none
tr
td(off)
15
V
25
0
Tj=25°C
pF
137
15
480
75
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
470
nC
1,02
K/W
H-Bridge FWD
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
50
IRRM
trr
Qrr
Rgon=4 Ω
300
±15
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
75
Tj=25°C
Tj=125°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
2,4
1,9
63
82
17
94
0,96
2,94
15698
5163
0,13
0,54
Thermal grease
thickness≤50um
λ = 1 W/mK
3
V
A
ns
µC
A/µs
mWs
1,36
K/W
22000
Ω
Thermistor
Rated resistance
R
Deviation of R25
∆R/R
Power dissipation
P
T=25°C
R100=1486 Ω
T=100°C
Power dissipation constant
-5
5
%
T=25°C
200
mW
Tj=25°C
2
mW/K
B-value
B(25/50)
Tol. ±3%
Tj=25°C
3950
K
B-value
B(25/100)
Tol. ±3%
Tj=25°C
3996
K
Vincotech NTC Reference
copyright by Vincotech
B
3
Revision: 1
10-FY064PA075SG-M583F08
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
250
IC (A)
IC (A)
250
200
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
5
250
µs
150
°C
7 V to 17 V in steps of 1 V
Output inverter FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
200
IC (A)
IF (A)
75
4
Tj = Tjmax-25°C
Tj = Tjmax-25°C
60
160
Tj = 25°C
Tj = 25°C
45
120
30
80
15
40
0
0
0
At
tp =
VCE =
1
2
250
10
copyright by Vincotech
3
4
5
6
7
V 8GE (V)
9
0
At
tp =
µs
V
4
1
250
2
3
4
V F (V)
5
µs
Revision: 1
10-FY064PA075SG-M583F08
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
5
E (mWs)
E (mWs)
5
4
Eon High T
4
Eon Low T
3
3
2
2
Eoff High T
Eon High T
Eoff High T
Eoff Low T
Eon Low T
1
1
Eoff Low T
0
0
0
25
50
75
100
125
I C (A)
150
0
With an inductive load at
Tj =
°C
25/150
VCE =
300
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
8
16
24
32
RG( Ω )
40
With an inductive load at
Tj =
°C
25/150
VCE =
300
V
VGE =
±15
V
IC =
75
A
Output inverter FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Output inverter FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,8
E (mWs)
E (mWs)
0,8
0,6
Tj = Tjmax -25°C
0,6
Tj = Tjmax -25°C
0,4
0,4
Erec
Erec
Tj = 25°C
0,2
0,2
Tj = 25°C
Erec
0
0
0
25
50
75
100
125
I C (A) 150
0
With an inductive load at
Tj =
°C
25/150
VCE =
300
V
VGE =
±15
V
Rgon =
4
Ω
copyright by Vincotech
8
16
24
32
RG( Ω )
40
With an inductive load at
Tj =
25/150
°C
VCE =
300
V
VGE =
±15
V
IC =
75
A
5
Revision: 1
10-FY064PA075SG-M583F08
Output Inverter
Output inverter IGBT
Output inverter IGBT
1,00
1,00
t ( µs)
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( µs)
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
tdoff
tdon
tdoff
0,10
0,10
tdon
tr
tf
tfr
0,01
0,01
0,00
0,00
0
25
50
75
100
125
I C (A)
150
0
With an inductive load at
Tj =
°C
150
VCE =
300
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
8
16
24
32
RG( Ω )
40
With an inductive load at
Tj =
150
°C
VCE =
300
V
VGE =
±15
V
IC =
75
A
Output inverter FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
Output inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,30
t rr( µs)
t rr( µs)
0,12
0,10
trr
0,25
Tj = Tjmax -25°C
trr
0,08
0,20
0,06
0,15
0,04
0,10
Tj = Tjmax -25°C
Tj = 25°C
0,05
trr
0,02
Tj = 25°C
trr
0,00
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/150
300
±15
4
copyright by Vincotech
50
75
100
125
0
I C (A) 150
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
6
8
25/150
300
75
±15
16
24
32
R g on ( Ω )
40
°C
V
A
V
Revision: 1
10-FY064PA075SG-M583F08
Output Inverter
Output inverter FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
4
Qrr( µC)
Qrr( µC)
4
3,2
3,2
2,4
2,4
Tj = Tjmax -25°C
Qrr
Tj = Tjmax -25°C
Qrr
1,6
1,6
Tj = 25°C
Tj = 25°C
0,8
0,8
Qrr
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
25
25/150
300
±15
4
50
75
100
125
I C (A)
150
0
8
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
16
25/150
300
75
±15
24
R g on ( Ω)
40
°C
V
A
V
Output inverter FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
100
32
IrrM (A)
IrrM (A)
125
80
Tj = Tjmax - 25°C
100
IRRM
Tj = Tjmax -25°C
60
75
Tj = 25°C
40
50
Tj = 25°C
IRRM
20
25
IRRM
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/150
300
±15
4
copyright by Vincotech
50
75
100
125 I C (A)
150
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
8
25/150
300
75
±15
16
24
32
R gon ( Ω ) 40
°C
V
A
V
Revision: 1
10-FY064PA075SG-M583F08
Output Inverter
Output inverter FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
18000
25000
direc / dt (A/ µs)
direc / dt (A/µ s)
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dI0/dt
16000
dIrec/dt
dIrec/dtLow T
dI0/dt
dIrec/dt
20000
14000
12000
15000
10000
di0/dtHigh T
8000
10000
dIo/dtLow T
6000
dIrec/dtHigh T
4000
5000
dIo/dtLow T
2000
di0/dtHigh T
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/150
300
±15
4
50
75
100
125
0
I C (A) 150
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/150
300
75
±15
16
24
32
R gon ( Ω )
40
°C
V
A
V
Output inverter FWD
ZthJH (K/W)
Zth-JH (K/W)
101
0
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
8
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
10
dIrec/dtLow T
dIrec/dtHigh T
0
-2
10-5
At
D=
RthJH =
10-4
10-2
10-1
100
t p (s)
1,02
K/W
0,87
copyright by Vincotech
R (C/W)
0,17
0,42
0,16
0,09
0,03
10
-2
At
D=
RthJH =
IGBT thermal model values
Phase change interface
Tau (s)
9,7E-01
2,1E-01
6,2E-02
1,4E-02
1,7E-03
-1
10-5
10110
tp / T
Thermal grease
R (C/W)
0,20
0,49
0,19
0,11
0,03
10-3
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-4
R (C/W)
0,09
0,40
0,49
0,22
0,10
0,06
8
10-2
10-1
100
t p (s)
10110
tp / T
1,36
Thermal grease
Tau (s)
8,2E-01
1,8E-01
5,2E-02
1,2E-02
1,4E-03
10-3
K/W
1,16
FWD thermal model values
Phase change interface
Tau (s)
3,0E+00
3,3E-01
9,8E-02
1,7E-02
3,2E-03
6,7E-04
R (C/W)
0,07
0,34
0,41
0,19
0,09
0,05
Tau (s)
2,5E+00
2,8E-01
8,3E-02
1,5E-02
2,8E-03
5,7E-04
Revision: 1
10-FY064PA075SG-M583F08
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
100
IC (A)
Ptot (W)
200
160
80
120
60
80
40
40
20
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
175
Output inverter FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
Output inverter FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
70
IF (A)
Ptot (W)
150
150
60
120
50
90
40
30
60
20
30
10
0
0
0
At
Tj =
50
175
copyright by Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
9
50
175
100
150
T h ( o C)
200
°C
Revision: 1
10-FY064PA075SG-M583F08
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
IC (A)
VGE (V)
16
14
10
100uS
3
12
1mS
DC
102
120V
480V
10
100mS
10mS
8
101
6
4
10
0
2
0
10-1
10
0
At
D=
Th =
VGE =
Tj =
10
1
10
V CE (V)
2
0
103
100
300
400
500
Q g (nC)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Output inverter IGBT
Figure 27
200
75
A
Output inverter IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
tsc (µS)
IC (sc)
10
1400
9
1200
8
1000
7
6
800
5
600
4
3
400
2
200
1
0
0
12
13
14
15
16
17
18
19
V GE (V)
20
12
13
14
At
VCE =
400
V
At
VCE ≤
400
V
Tj ≤
150
ºC
Tj =
150
ºC
copyright by Vincotech
10
15
16
17
18
19
V GE (V)
20
Revision: 1
10-FY064PA075SG-M583F08
IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
160
IC MAX
150
140
Ic CHIP
130
120
110
100
90
MODULE
80
70
Ic
60
50
40
VCE MAX
30
20
10
0
0
100
200
300
400
500
600
700
V CE (V)
At
Tj =
Tjmax-25
Switching mode :
ºC
3phase SPWM
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
22000
Thermistor
Figure 2
Typical NTC resistance values
R/Ω
R(T ) = R25 ⋅ e
20000



 B25/100⋅ 1 − 1  
 T T 

25  


[Ω]
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
25
45
copyright by Vincotech
65
85
105
T (°C)
125
11
Revision: 1
10-FY064PA075SG-M583F08
Switching Definitions Output Inverter
General conditions
= 150 °C
Tj
= 8Ω
Rgon
Rgoff
= 8Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
200
140
%
%
120
IC
175
tdoff
VCE
150
100
VGE 90%
VCE 90%
125
80
IC
VCE
100
60
75
tEoff
VGE
tdon
40
50
20
VGE
IC 1%
25
IC10%
VGE10%
0
0
-20
-0,2
VCE 3%
tEon
-25
-0,05
0,1
0,25
0,4
0,55
2,7
2,9
3,1
3,3
3,5
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
300
75
0,21
0,40
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
3,7
time(us)
-15
15
300
75
0,14
0,30
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
140
200
fitted
%
%
Ic
175
120
VCE
IC
150
100
IC 90%
125
80
VCE
100
IC 60%
60
IC90%
75
40
tr
IC 40%
50
20
25
IC10%
IC10%
0
0
tf
-20
-25
0,1
0,15
VC (100%) =
IC (100%) =
tf =
copyright by Vincotech
0,2
300
75
0,03
0,25
time (us)
0,3
3
VC (100%) =
IC (100%) =
tr =
V
A
µs
12
3,1
3,2
300
75
0,03
3,3
time(us)
3,4
V
A
µs
Revision: 1
10-FY064PA075SG-M583F08
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
140
%
Poff
Pon
%
Eoff
120
100
Eon
100
80
80
60
60
40
40
20
20
VGE 90%
0
0
tEoff
-20
-0,2
VCE 3%
VGE 10%
IC 1%
tEon
-20
-0,1
0
0,1
0,2
0,3
0,4
0,5
2,8
0,6
2,9
3
3,1
3,2
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
22,61
1,15
0,40
3,3
3,4
3,5
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
22,61
1,52
0,30
kW
mJ
µs
Output inverter IGBT
Figure 7
Turn-off Switching Waveforms & definition of trr
120
%
Id
80
trr
40
Vd
0
IRRM10%
-40
IRRM90%
IRRM100%
-80
fitted
-120
3
3,1
3,2
3,3
3,4
3,5
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright by Vincotech
300
75
-57
0,11
V
A
A
µs
13
Revision: 1
10-FY064PA075SG-M583F08
Switching Definitions Output Inverter
Output inverter FWD
Figure 8
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
Erec
%
%
Id
Qrr
100
100
80
tQrr
tErec
50
60
40
0
20
Prec
-50
0
-20
-100
3
3,1
Id (100%) =
Qrr (100%) =
tQrr =
copyright by Vincotech
3,2
75
2,94
0,21
3,3
3,4
3
3,5 time(us) 3,6
3,1
3,2
3,3
3,4
3,5
3,6
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
14
22,61
0,50
0,21
kW
mJ
µs
Revision: 1
10-FY064PA075SG-M583F08
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
10-FY064PA075SG-M583F08
in DataMatrix as
M583F08
in packaging barcode as
M583F08
Outline
Pinout
copyright by Vincotech
15
Revision: 1
10-FY064PA075SG-M583F08
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright by Vincotech
16
Revision: 1