10-FY064PA075SG-M583F08 flowPACK 1 H 650V/75A Features flowPACK 1 H ● Low inductive 12mm flow1 package ● H-Bridge topology ● High-speed IGBT + ultrafast FWD ● Temperature sensor Target Applications Schematic ● Solar inverter ● Power Supply ● Inverter based welding Types ● 10-FY064PA075SG-M583F08 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 650 V 53 71 A tp limited by Tjmax 225 A VCE ≤ 650V, Tj ≤ Top max 150 A 93 141 W ±20 V 5 400 µs V 175 °C 650 V 42 55 A 225 A 70 106 W 175 °C H-Bridge IGBT Collector-emitter break down voltage VCE DC collector current IDC Pulsed collector current ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C Tj≤150°C VGE=15V Tjmax H-Bridge FWD Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature copyright by Vincotech Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 1 10-FY064PA075SG-M583F08 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Comparative tracking index copyright by Vincotech Vis t=2s DC voltage CTI >200 2 Revision: 1 10-FY064PA075SG-M583F08 Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 4,2 5,1 5,6 1,38 1,72 1,97 2,5 H-Bridge IGBT Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 650 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,0012 75 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Rgoff=4 Ω Rgon=4 Ω Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 300 ±15 75 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V uA nA Ω 85 87 14 17 125 147 18 31 0,51 0,9 0,66 1,17 ns mWs 4620 f=1MHz Reverse transfer capacitance 150 none tr td(off) 15 V 25 0 Tj=25°C pF 137 15 480 75 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 470 nC 1,02 K/W H-Bridge FWD Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 50 IRRM trr Qrr Rgon=4 Ω 300 ±15 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH 75 Tj=25°C Tj=125°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 2,4 1,9 63 82 17 94 0,96 2,94 15698 5163 0,13 0,54 Thermal grease thickness≤50um λ = 1 W/mK 3 V A ns µC A/µs mWs 1,36 K/W 22000 Ω Thermistor Rated resistance R Deviation of R25 ∆R/R Power dissipation P T=25°C R100=1486 Ω T=100°C Power dissipation constant -5 5 % T=25°C 200 mW Tj=25°C 2 mW/K B-value B(25/50) Tol. ±3% Tj=25°C 3950 K B-value B(25/100) Tol. ±3% Tj=25°C 3996 K Vincotech NTC Reference copyright by Vincotech B 3 Revision: 1 10-FY064PA075SG-M583F08 Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 250 IC (A) IC (A) 250 200 200 150 150 100 100 50 50 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 5 250 µs 150 °C 7 V to 17 V in steps of 1 V Output inverter FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 200 IC (A) IF (A) 75 4 Tj = Tjmax-25°C Tj = Tjmax-25°C 60 160 Tj = 25°C Tj = 25°C 45 120 30 80 15 40 0 0 0 At tp = VCE = 1 2 250 10 copyright by Vincotech 3 4 5 6 7 V 8GE (V) 9 0 At tp = µs V 4 1 250 2 3 4 V F (V) 5 µs Revision: 1 10-FY064PA075SG-M583F08 Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 5 E (mWs) E (mWs) 5 4 Eon High T 4 Eon Low T 3 3 2 2 Eoff High T Eon High T Eoff High T Eoff Low T Eon Low T 1 1 Eoff Low T 0 0 0 25 50 75 100 125 I C (A) 150 0 With an inductive load at Tj = °C 25/150 VCE = 300 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 8 16 24 32 RG( Ω ) 40 With an inductive load at Tj = °C 25/150 VCE = 300 V VGE = ±15 V IC = 75 A Output inverter FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Output inverter FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,8 E (mWs) E (mWs) 0,8 0,6 Tj = Tjmax -25°C 0,6 Tj = Tjmax -25°C 0,4 0,4 Erec Erec Tj = 25°C 0,2 0,2 Tj = 25°C Erec 0 0 0 25 50 75 100 125 I C (A) 150 0 With an inductive load at Tj = °C 25/150 VCE = 300 V VGE = ±15 V Rgon = 4 Ω copyright by Vincotech 8 16 24 32 RG( Ω ) 40 With an inductive load at Tj = 25/150 °C VCE = 300 V VGE = ±15 V IC = 75 A 5 Revision: 1 10-FY064PA075SG-M583F08 Output Inverter Output inverter IGBT Output inverter IGBT 1,00 1,00 t ( µs) Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( µs) Figure 9 Typical switching times as a function of collector current t = f(IC) tdoff tdon tdoff 0,10 0,10 tdon tr tf tfr 0,01 0,01 0,00 0,00 0 25 50 75 100 125 I C (A) 150 0 With an inductive load at Tj = °C 150 VCE = 300 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 8 16 24 32 RG( Ω ) 40 With an inductive load at Tj = 150 °C VCE = 300 V VGE = ±15 V IC = 75 A Output inverter FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) Output inverter FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,30 t rr( µs) t rr( µs) 0,12 0,10 trr 0,25 Tj = Tjmax -25°C trr 0,08 0,20 0,06 0,15 0,04 0,10 Tj = Tjmax -25°C Tj = 25°C 0,05 trr 0,02 Tj = 25°C trr 0,00 0,00 0 At Tj = VCE = VGE = Rgon = 25 25/150 300 ±15 4 copyright by Vincotech 50 75 100 125 0 I C (A) 150 At Tj = VR = IF = VGE = °C V V Ω 6 8 25/150 300 75 ±15 16 24 32 R g on ( Ω ) 40 °C V A V Revision: 1 10-FY064PA075SG-M583F08 Output Inverter Output inverter FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 4 Qrr( µC) Qrr( µC) 4 3,2 3,2 2,4 2,4 Tj = Tjmax -25°C Qrr Tj = Tjmax -25°C Qrr 1,6 1,6 Tj = 25°C Tj = 25°C 0,8 0,8 Qrr 0 0 At 0 At Tj = VCE = VGE = Rgon = 25 25/150 300 ±15 4 50 75 100 125 I C (A) 150 0 8 At Tj = VR = IF = VGE = °C V V Ω Output inverter FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 16 25/150 300 75 ±15 24 R g on ( Ω) 40 °C V A V Output inverter FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 100 32 IrrM (A) IrrM (A) 125 80 Tj = Tjmax - 25°C 100 IRRM Tj = Tjmax -25°C 60 75 Tj = 25°C 40 50 Tj = 25°C IRRM 20 25 IRRM 0 0 0 At Tj = VCE = VGE = Rgon = 25 25/150 300 ±15 4 copyright by Vincotech 50 75 100 125 I C (A) 150 0 At Tj = VR = IF = VGE = °C V V Ω 7 8 25/150 300 75 ±15 16 24 32 R gon ( Ω ) 40 °C V A V Revision: 1 10-FY064PA075SG-M583F08 Output Inverter Output inverter FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) 18000 25000 direc / dt (A/ µs) direc / dt (A/µ s) Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dI0/dt 16000 dIrec/dt dIrec/dtLow T dI0/dt dIrec/dt 20000 14000 12000 15000 10000 di0/dtHigh T 8000 10000 dIo/dtLow T 6000 dIrec/dtHigh T 4000 5000 dIo/dtLow T 2000 di0/dtHigh T 0 0 At Tj = VCE = VGE = Rgon = 25 25/150 300 ±15 4 50 75 100 125 0 I C (A) 150 At Tj = VR = IF = VGE = °C V V Ω Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/150 300 75 ±15 16 24 32 R gon ( Ω ) 40 °C V A V Output inverter FWD ZthJH (K/W) Zth-JH (K/W) 101 0 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 8 Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 10 dIrec/dtLow T dIrec/dtHigh T 0 -2 10-5 At D= RthJH = 10-4 10-2 10-1 100 t p (s) 1,02 K/W 0,87 copyright by Vincotech R (C/W) 0,17 0,42 0,16 0,09 0,03 10 -2 At D= RthJH = IGBT thermal model values Phase change interface Tau (s) 9,7E-01 2,1E-01 6,2E-02 1,4E-02 1,7E-03 -1 10-5 10110 tp / T Thermal grease R (C/W) 0,20 0,49 0,19 0,11 0,03 10-3 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-4 R (C/W) 0,09 0,40 0,49 0,22 0,10 0,06 8 10-2 10-1 100 t p (s) 10110 tp / T 1,36 Thermal grease Tau (s) 8,2E-01 1,8E-01 5,2E-02 1,2E-02 1,4E-03 10-3 K/W 1,16 FWD thermal model values Phase change interface Tau (s) 3,0E+00 3,3E-01 9,8E-02 1,7E-02 3,2E-03 6,7E-04 R (C/W) 0,07 0,34 0,41 0,19 0,09 0,05 Tau (s) 2,5E+00 2,8E-01 8,3E-02 1,5E-02 2,8E-03 5,7E-04 Revision: 1 10-FY064PA075SG-M583F08 Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 100 IC (A) Ptot (W) 200 160 80 120 60 80 40 40 20 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 Output inverter FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V Output inverter FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 70 IF (A) Ptot (W) 150 150 60 120 50 90 40 30 60 20 30 10 0 0 0 At Tj = 50 175 copyright by Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 9 50 175 100 150 T h ( o C) 200 °C Revision: 1 10-FY064PA075SG-M583F08 Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) Output inverter IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) IC (A) VGE (V) 16 14 10 100uS 3 12 1mS DC 102 120V 480V 10 100mS 10mS 8 101 6 4 10 0 2 0 10-1 10 0 At D= Th = VGE = Tj = 10 1 10 V CE (V) 2 0 103 100 300 400 500 Q g (nC) At IC = single pulse 80 ºC ±15 V Tjmax ºC Output inverter IGBT Figure 27 200 75 A Output inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) tsc (µS) IC (sc) 10 1400 9 1200 8 1000 7 6 800 5 600 4 3 400 2 200 1 0 0 12 13 14 15 16 17 18 19 V GE (V) 20 12 13 14 At VCE = 400 V At VCE ≤ 400 V Tj ≤ 150 ºC Tj = 150 ºC copyright by Vincotech 10 15 16 17 18 19 V GE (V) 20 Revision: 1 10-FY064PA075SG-M583F08 IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 160 IC MAX 150 140 Ic CHIP 130 120 110 100 90 MODULE 80 70 Ic 60 50 40 VCE MAX 30 20 10 0 0 100 200 300 400 500 600 700 V CE (V) At Tj = Tjmax-25 Switching mode : ºC 3phase SPWM Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic 22000 Thermistor Figure 2 Typical NTC resistance values R/Ω R(T ) = R25 ⋅ e 20000 B25/100⋅ 1 − 1 T T 25 [Ω] 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 25 45 copyright by Vincotech 65 85 105 T (°C) 125 11 Revision: 1 10-FY064PA075SG-M583F08 Switching Definitions Output Inverter General conditions = 150 °C Tj = 8Ω Rgon Rgoff = 8Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 200 140 % % 120 IC 175 tdoff VCE 150 100 VGE 90% VCE 90% 125 80 IC VCE 100 60 75 tEoff VGE tdon 40 50 20 VGE IC 1% 25 IC10% VGE10% 0 0 -20 -0,2 VCE 3% tEon -25 -0,05 0,1 0,25 0,4 0,55 2,7 2,9 3,1 3,3 3,5 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 300 75 0,21 0,40 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 3,7 time(us) -15 15 300 75 0,14 0,30 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 140 200 fitted % % Ic 175 120 VCE IC 150 100 IC 90% 125 80 VCE 100 IC 60% 60 IC90% 75 40 tr IC 40% 50 20 25 IC10% IC10% 0 0 tf -20 -25 0,1 0,15 VC (100%) = IC (100%) = tf = copyright by Vincotech 0,2 300 75 0,03 0,25 time (us) 0,3 3 VC (100%) = IC (100%) = tr = V A µs 12 3,1 3,2 300 75 0,03 3,3 time(us) 3,4 V A µs Revision: 1 10-FY064PA075SG-M583F08 Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 140 % Poff Pon % Eoff 120 100 Eon 100 80 80 60 60 40 40 20 20 VGE 90% 0 0 tEoff -20 -0,2 VCE 3% VGE 10% IC 1% tEon -20 -0,1 0 0,1 0,2 0,3 0,4 0,5 2,8 0,6 2,9 3 3,1 3,2 time (us) Poff (100%) = Eoff (100%) = tEoff = 22,61 1,15 0,40 3,3 3,4 3,5 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ µs 22,61 1,52 0,30 kW mJ µs Output inverter IGBT Figure 7 Turn-off Switching Waveforms & definition of trr 120 % Id 80 trr 40 Vd 0 IRRM10% -40 IRRM90% IRRM100% -80 fitted -120 3 3,1 3,2 3,3 3,4 3,5 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright by Vincotech 300 75 -57 0,11 V A A µs 13 Revision: 1 10-FY064PA075SG-M583F08 Switching Definitions Output Inverter Output inverter FWD Figure 8 Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 Erec % % Id Qrr 100 100 80 tQrr tErec 50 60 40 0 20 Prec -50 0 -20 -100 3 3,1 Id (100%) = Qrr (100%) = tQrr = copyright by Vincotech 3,2 75 2,94 0,21 3,3 3,4 3 3,5 time(us) 3,6 3,1 3,2 3,3 3,4 3,5 3,6 time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 14 22,61 0,50 0,21 kW mJ µs Revision: 1 10-FY064PA075SG-M583F08 Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code 10-FY064PA075SG-M583F08 in DataMatrix as M583F08 in packaging barcode as M583F08 Outline Pinout copyright by Vincotech 15 Revision: 1 10-FY064PA075SG-M583F08 DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright by Vincotech 16 Revision: 1