V23990 K439 F60 D3 14

V23990-K439-F60-PM
datasheet
MiniSkiiP®PACK 3
1200 V / 100 A
Features
MiniSkiiP® 3 housing
● Solderless interconnection
● Mitsubishi Generation 6.1 technology
Schematic
Target applications
● Battery chargers
● UPS
Types
● V23990-K439-F60-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
TParameter
j=
Condition
Symbol
Value
Unit
1200
V
81
A
200
A
167
W
Inverter Switch
Collector-emitter voltage
Collector current
V CES
IC
T j = T jmax
T S =80 °C
Repetitive peak collector current
I CRM
t p limited by T jmax
Total power dissipation
P tot
T j = T jmax
Gate-emitter voltage
VGES
±20
V
Maximum Junction Temperature
T jmax
175
°C
Copyright Vincotech
1
T S =80 °C
23 Jul. 2015 / Revision 3
V23990-K439-F60-PM
datasheet
Parameter
Conditions
Symbol
Value
Unit
1200
V
70
A
200
A
129
W
175
°C
Inverter Diode
Peak Repetitive Reverse Voltage
Continuous (direct) forward current
V RRM
IF
Repetitive peak forward current
I FRM
Total power dissipation
P tot
Maximum Junction Temperature
T jmax
T j = T jmax
T h = 80°C
T j = T jmax
T h = 80°C
Module Properties
Parameter
Conditions
Symbol
Value
Unit
Thermal Properties
Storage temperature
T stg
-40…+125
°C
Operation Junction Temperature
T jop
-40…+(T jmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Isolation Properties
Isolation voltage
Comparative Tracking Index
Copyright Vincotech
V isol
DC voltage
t p=2s
>200
CTI
2
23 Jul. 2015 / Revision 3
V23990-K439-F60-PM
datasheet
Characteristic Values
Inverter Switch
TParameter
j=
Symbol
Conditions
V GE [V] V CE [V]
Value
I C [A]
T j[ °C]
Unit
Min
Typ
Max
5,4
6
6,6
25
1,89
2,15
125
2,20
150
2,27
Static
Gate-emitter threshold voltage
Collec tor-emitter saturation voltage
V GE(th)
V GE=V CE
0,01
15
V CEsat
100
Collec tor-emitter c ut-off current
I CES
0
1200
Gate-emitter leakage c urrent
I GES
20
0
25
125
25
340
0,5
125
rg
none
Input capacitance
C ies
10000
Output capacitance
C oes
Reverse transfer capac itance
C res
Internal gate resistance
Gate c harge
f=100 kHz
0
V
125
25
10
25
2000
V
µA
nA
Ω
pF
170
15
Qg
0
100
25
210
nC
0,57
K/W
Thermal
Thermal resistance junc tion to sink
R th(j-s)
Thermal grease
thickness≤50um
λ = 1 W /mK
IGBT Switching
Turn-on delay time
t d(on)
R goff = 8 Ω
Rise time
Turn-off delay time
tr
R gon = 8 Ω
t d(off)
±15
Fall time
Turn-on energy (per pulse)
Turn-off energy (per pulse)
Copyright Vincotech
tf
E on
Q rFWD = 6,4 µC
Q rFWD = 17,6 µC
Q rFWD = 21 µC
E off
3
600
100
25
125
150
25
125
150
25
125
150
25
125
150
25
125
150
25
125
150
102
100
101
56
59
58
156
195
210
46
82
94
7,873
11,529
12,564
5,280
8,134
9,080
ns
mWs
23 Jul. 2015 / Revision 3
V23990-K439-F60-PM
datasheet
Inverter Diode
Parameter
Symbol
Conditions
Value
V r [V] I F [A] T j [°C]
Min
Unit
Typ
Max
25
2,57
3,3
125
2,31
150
2,19
Static
Forward voltage
Reverse leakage c urrent
100
VF
25
1200
Ir
V
50
150
-
µA
Thermal
Thermal resistance junc tion to sink
R th(j-s)
Thermal grease
thickness≤50um
λ = 1 W/mK
0,73
K/W
FWD Switching
Peak recovery current
I RRM
Reverse recovery time
t rr
Recovered charge
Qr
Reverse recovered energy
Peak rate of fall of recovery current
di /dt = 881 A/µs
di /dt = 1190 A/µs ±15
di /dt = 905 A/µs
600
100
E rec
(di rf/dt )max
25
125
150
25
125
150
25
125
150
25
125
150
25
125
150
34
55
59
441
829
922
6,433
17,587
21,022
2,864
8,226
9,792
161
151
156
A
ns
µC
mWs
A/µs
Thermistor
Parameter
Conditions
Symbol
V GE [V]
Rated resistance
Deviation of R100
R100
Value
I C [A]
T j[ °C]
Min
25
R
ΔR/R
V CE [V]
R100=1670 Ω
100
R
Power dissipation constant
Unit
Typ
Max
1
kΩ
-2
+2
100
1670
Ω
25
0,76
mW/K
-3
A-value
A(25/50)
25
7,635*10
B-value
B(25/100)
25
1,731*10 -5
Vincotech NTC Reference
Copyright Vincotech
%
1/K
1/K²
E
4
23 Jul. 2015 / Revision 3
V23990-K439-F60-PM
datasheet
Inverter Switch Characteristics
Typical output characteristics
Typical output characteristics
IGBT
I C = f(V CE)
IGBT
I C = f(V CE)
300
I C (A)
I C (A)
300
250
250
200
200
150
150
100
100
50
50
0
0
0
1
2
3
4
0
5
1
2
3
4
5
V C E (V)
V C E (V)
tp =
250
µs
25 °C
tp =
250
V GE =
15
V
125 °C
Tj =
150
150 °C
V GE from
7 V to 17 V in steps of 1 V
T j:
Typical transfer characteristics
IGBT
µs
°C
Transient Thermal Impedance as function of Pulse duration
I C = f(V GE)
IGBT
Z th(j-s) = f(t p)
100
Z t h( jj--s)(K/W)
I C (A)
100
75
10-1
50
0,5
0,2
0,1
25
0,05
0,02
0,01
0,005
0
10-2
0
0
2
4
6
8
10
10-4
12
10-3
10-2
V G E (V)
tp =
100
µs
25 °C
D=
tp / T
V CE =
10
V
125 °C
R th(j-s) =
0,57
T j:
Copyright Vincotech
150 °C
10-1
10
101
t p (s)
102
K/W
IGBT thermal model values
R th (K/W)
5
3,44E-02
τ (s)
4,47E+00
8,64E-02
9,79E-01
2,99E-01
1,86E-01
1,08E-01
5,73E-02
4,32E-02
9,99E-03
23 Jul. 2015 / Revision 3
V23990-K439-F60-PM
datasheet
Inverter Switch Characteristics
Gate voltage vs Gate charge
IGBT
V GE = f(Q G)
V G E (V)
20
600V
17,5
15
12,5
10
7,5
5
2,5
0
0
50
100
150
200
250
Q G (nC)
At
I C=
100
Copyright Vincotech
A
6
23 Jul. 2015 / Revision 3
V23990-K439-F60-PM
datasheet
Inverter Diode Characteristics
FWD
Typical forward characteristics
FWD
Transient thermal impedance as a function of pulse width
I F = f(V F )
Z th(j-s) = f(t p)
300
Z t h(j
h(j--s) (K/W)
IF (A)
100
250
200
10-1
150
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
100
50
10-2
0
0
1
2
3
4
10-4
5
10-3
10-2
VF (V)
tp =
250
µs
T j:
10-1
100
101
102
t p (s)
25 °C
D=
tp / T
125 °C
R th(j-s) =
0,73
K/W
150 °C
FWD thermal model values
R (K/W)
3,26E-02
τ (s)
5,06E+00
1,07E-01
8,09E-01
3,56E-01
1,29E-01
1,29E-01
3,96E-02
6,34E-02
9,08E-03
4,64E-02
1,20E-03
Thermistor Characteristics
Typical Thermistor resistance values
Thermistor typical temperature characteristic
Typical PTC characteristic
as a function of temperature
R T = f(T )
PTC-typical temperature characteristic
R (Ω)
2000
1800
1600
1400
1200
1000
25
50
75
100
125
T (°C)
Copyright Vincotech
7
23 Jul. 2015 / Revision 3
V23990-K439-F60-PM
datasheet
Inverter Switching Characteristics
Figure 1.
IGBT
Figure 2.
IGBT
Typical swit ching energy losses as a f unct ion of collect or current
Typical switching energy losses as a f unct ion of gat e resist or
E = f(I C)
E = f(rg)
E (mWs)
E ( mWs)
40
Eon
Eon
25
Eon
Eon
20
30
Eo n
15
Eon
20
10
Eoff
Eoff
Eoff
Eoff
10
E o ff
5
0
Eoff
0
0
25
50
75
100
125
150
175
200
0
I C (A)
25 °C
With an inductive load at
600
V
V CE =
V GE =
±15
V
R gon =
8
Ω
R goff =
8
Ω
16
150 °C
Figure 3.
FWD
V GE =
±15
V
IC =
100
A
24
R g ( Ω)
150 °C
Figure 4.
FWD
Typical reverse recovered energy loss as a f unct ion of gat e resist or
E rec = f(I c)
E rec = f(r g )
16
12
E ( mWs)
40
125 °C
T j:
Typical reverse recovered energy loss as a f unct ion of collect or current
E (mWs)
32
25 °C
With an inductive load at
600
V
V CE =
125 °C
T j:
8
Erec
12
9
Erec
Erec
Erec
6
8
Erec
4
3
Erec
0
0
0
25
50
75
With an inductive load at
600
V
V CE =
V GE =
±15
V
R gon =
8
Ω
Copyright Vincotech
100
125
150
175
I C (A)
0
200
25 °C
T j:
8
16
With an inductive load at
600
V
V CE =
125 °C
150 °C
8
V GE =
±15
V
IC=
100
A
24
32
r g (Ω)
40
25 °C
T j:
125 °C
150 °C
23 Jul. 2015 / Revision 3
V23990-K439-F60-PM
datasheet
Inverter Switching Characteristics
Figure 5.
IGBT
Figure 6.
IGBT
Typical swit ching t imes as a f unct ion of collect or current
Typical switching t imes as a f unct ion of gat e resist or
t = f(I C)
t = f(r g)
1
t ( μ s)
t ( μs)
1
td(off )
tr
td(on)
tf
0,1
td(off )
td(on)
tr
0,1
tf
0,01
0,01
0,001
0,001
0
25
50
75
100
125
150
175
200
0
I C (A)
(A)
With an inductive load at
150
°C
Tj=
8
16
V CE =
600
V
V CE =
600
V
±15
V
V GE =
±15
V
IC =
100
A
R gon =
8
Ω
8
Ω
32
r g (Ω)
40
With an inductive load at
150
°C
Tj =
V GE =
R goff =
24
Figure 7.
FWD
Figure 8.
FWD
Typical reverse recovery t ime as a f unct ion of collect or current
Typical reverse recovery time as a f unct ion of IGBT t urn on gat e resist or
t rr = f(I C)
t rr = f(R gon)
t rr (μs)
t rr (μs)
1,2
trr
trr
1,2
trr
trr
0,9
0,9
trr
0,6
trr
0,6
0,3
0,3
0
0
0
25
50
75
100
125
150
175
200
0
I C (A)
At
600
V
V GE =
±15
V
R gon =
8
Ω
V CE=
Copyright Vincotech
T j:
8
16
24
32
40
R g o n (Ω)
25 °C
At
V CE =
600
V
125 °C
V GE =
±15
V
150 °C
IC=
100
A
9
25 °C
T j:
125 °C
150 °C
23 Jul. 2015 / Revision 3
V23990-K439-F60-PM
datasheet
Inverter Switching Characteristics
Figure 9.
FWD
Figure 10.
FWD
Typical recoved charge as a f unction of IGBT turn on gat e resist or
Q r = f(I C)
Q r = f(R gon)
30
Q r (µC)
Q r (μC)
Typical recovered charge as a f unct ion of collect or current
Qr
25
25
20
Qr
Qr
Qr
20
15
15
10
Qr
10
0
At
Qr
5
5
0
0
25
50
75
100
125
150
175
200
0
8
16
24
32
40
R g on (Ω)
I C (A)
600
V
V GE =
±15
V
R gon =
8
Ω
At
V CE =
25 °C
T j:
600
V
125 °C
V GE =
±15
V
150 °C
I C=
100
A
At
Figure 11.
FWD
VCE=
25 °C
T j:
125 °C
150 °C
Figure 12.
FWD
Typical peak reverse recovery current current as a f unction of collector current
Typical peak reverse recovery current as a f unct ion of IGBT t urn on gat e resistor
I RM = f(I C)
I RM = f(R gon)
80
I R M (A)
I R M (A)
160
60
120
IRM
I RM
80
40
IRM
20
40
0
0
IRM
IRM
IRM
0
At
25
50
75
600
V
V GE =
±15
V
R gon =
8
Ω
V CE =
Copyright Vincotech
100
125
150
175
I C (A)
0
200
T j:
8
16
24
32
40
R go n (Ω)
25 °C
At
V CE =
600
V
125 °C
V GE =
±15
V
150 °C
IC=
100
A
10
25 °C
T j:
125 °C
150 °C
23 Jul. 2015 / Revision 3
V23990-K439-F60-PM
datasheet
Inverter Switching Characteristics
Figure 13.
FWD
Figure 14.
FWD
Typical rat e of f all of f orward and reverse recovery current as a f unct ion of IGBT t urn on gate resist or
di F/dt ,di rr/dt = f(I c)
di F/dt ,di rr/dt = f(R g)
15000
3000
d i /dt (A/
(A/µ
µs)
d i /dt (A/
(A/µs)
s)
Typical rat e of f all of f orward and reverse recovery current as a f unct ion of collect or current
di F / dt
dir r/dt
2500
di F / dt
di r r / dt
12000
2000
9000
1500
6000
1000
3000
500
0
0
0
25
50
75
100
125
150
175
0
200
8
16
I C (A)
600
V
V GE =
±15
V
R gon =
8
Ω
At
V CE =
25 °C
T j:
600
V
125 °C
V GE =
±15
V
150 °C
I C=
100
A
At
Figure 15.
V CE =
24
32
40
R g o n (Ω)
IGBT
Reverse bias saf e operat ing area
I C = f(V CE)
I C (A)
250
I C MAX
I c CHIP
200
Ic
MODULE
150
100
V CE MAX
50
0
0
200
400
600
800
1000
1200
1400
V C E (V)
At
175
°C
R gon =
8
Ω
R goff =
8
Ω
Tj =
Copyright Vincotech
11
23 Jul. 2015 / Revision 3
V23990-K439-F60-PM
datasheet
Inverter Switching Definitions
General conditions
=
150 °C
=
8Ω
Tj
R gon
=
R goff
Figure 1.
IGBT
Turn-of f Swit ching Wavef orms & def init ion of tdof f , tEof f (t Eof f = int egrating t ime f or Eof f )
8Ω
Figure 2.
IGBT
Turn-on Swit ching Wavef orms & def init ion of t don, t Eon (tEon = int egrat ing t ime f or Eon)
120
200
tdoff
%
IC
%
VCE
100
150
VCE 90%
VGE 90%
80
VCE
100
60
IC
VGE
tdon
tEoff
40
50
20
IC 1%
VGE
tEon
0
-20
-0,2
VCE 3%
IC 10%
VGE 10%
0
-50
0
0,2
0,4
0,6
0,8
1
2,9
t (µs)
-15
V
V GE (100%) =
15
V
V C (100%) =
600
V
I C (100%) =
100
A
t doff =
0,212
t Eoff =
Figure 3.
0,850
V GE (0%) =
3
3,1
3,2
-15
V
V GE (100%) =
15
V
V C (100%) =
600
V
I C (100%) =
100
A
µs
t don =
0,099
µs
µs
t Eon =
Figure 4.
0,375
µs
V GE (0%) =
IGBT
Turn-of f Swit ching Wavef orms & def init ion of tf
3,3
3,4
3,5
t (µs)
IGBT
Turn-on Swit ching Wavef orms & def init ion of t r
125
200
fitted
%
IC
100
%
VCE
IC
150
IC 90%
75
VCE
IC 90%
100
IC 60%
50
tr
IC 40%
50
25
IC10%
0
IC 10%
0
tf
-25
0,1
0,15
0,2
0,25
0,3
0,35
0,4
0,45
0,5
0,55
-50
0,6
3
t (µs)
V C (100%) =
600
V
I C (100%) =
100
A
tf=
0,086
µs
Copyright Vincotech
3,05
3,1
3,15
3,2
3,25
3,3
3,35
3,4
3,45
t (µs)
12
V C (100%) =
600
V
I C (100%) =
100
A
tr =
0,030
µs
23 Jul. 2015 / Revision 3
V23990-K439-F60-PM
datasheet
Inverter Switching Definitions
Figure 5.
IGBT
Turn-of f Swit ching Wavef orms & def init ion of tEof f
Figure 6.
IGBT
Turn-on Swit ching Wavef orms & def init ion of t Eon
125
175
%
Eoff
100
%
IC 1%
Pon
150
Poff
125
Eon
75
100
50
75
50
25
VGE 90%
25
VCE 3%
VGE 10%
0
tEoff
0
tEon
-25
-25
-0,1
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
2,9
3
3,1
3,2
3,3
P off (100%) =
60,08
kW
P on (100%) =
60,08
kW
E off (100%) =
8,94
mJ
E on (100%) =
9,38
mJ
t Eoff =
0,85
µs
t Eon =
0,37
µs
Figure 7.
3,4
3,5
3,6
t (µs)
t (µs)
FWD
Turn-of f Swit ching Wavef orms & def inition of t rr
%
115
Id
90
65
trr
40
15
IRRM 10%
Vd
-10
-35
fitted
-60
IRRM 90%
IRRM 100%
-85
-110
3
3,2
3,4
3,6
3,8
4
4,2
t (µs)
V d (100%) =
600
V
I d (100%) =
100
A
I RRM (100%) =
-87
A
t rr =
0,764
µs
Copyright Vincotech
13
23 Jul. 2015 / Revision 3
V23990-K439-F60-PM
datasheet
Inverter Switching Definitions
Figure 8.
FWD
Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr)
Figure 9.
FWD
Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec)
120
150
%
%
Qrr
Id
Erec
100
100
80
tErec
tQrr
50
60
40
0
20
Prec
-50
0
-100
2,8
3
3,2
3,4
3,6
3,8
4
4,2
-20
4,4
3
t (µs)
3,2
3,4
3,6
3,8
4,2
4,4
t (µs)
I d (100%) =
100
A
P rec (100%) =
60,08
Q rr (100%) =
22,45
µC
E rec (100%) =
10,49
mJ
t Qrr =
1,00
µs
t Erec =
1,00
µs
Copyright Vincotech
4
14
kW
23 Jul. 2015 / Revision 3
V23990-K439-F60-PM
datasheet
Ordering Code & Marking
Version
with std lid (black V23990-K32-T-PM)
with std lid (black V23990-K32-T-PM) and P12
NN-NNNNNNNNNN
NNNN-TTTTTTTVV
Vinco LLLLL
WWYY SSSS UL
Ordering Code
V23990-K439-F60-/0A/-PM
V23990-K439-F60-/1A/-PM
Text
Datamatrix
in DataMatrix as
K439F60
K439F60
in packaging barcode as
K439F60-/0A/
K439F60-/1A/
Name
Type&Ver
Date code
Vinco&Lot
Serial&UL
NN-NNNNNNNNNNNNNN
TTTTTTTVV
WWYY
Vinco LLLLL
SSSS UL
Type&Ver
Lot number
Serial
Date code
TTTTTTTVV
LLLLL
SSSS
WWYY
Outline
Copyright Vincotech
15
23 Jul. 2015 / Revision 3
V23990-K439-F60-PM
datasheet
Pinout
Identification
ID
Component
Voltage
Current
Function
T1,T2,T3,T4,T5,T6
IGBT
1200V
100A
Inverter Switch
D1,D2,D3,D4,D5,D6
FWD
1200V
100A
Inverter Diode
NTC
NTC
-
-
Thermistor
Copyright Vincotech
16
Comment
23 Jul. 2015 / Revision 3
V23990-K439-F60-PM
datasheet
Packaging instruction
Standard packaging quantity (SPQ)
48
>SPQ
Standard
<SPQ
Sample
Handling instruction
Handling instructions for MiniSkiiP® 3 packages see vincotech.com website.
General datasheet
General datasheet for MiniSkiiP® 3 packages see vincotech.com website.
Document No.:
Date:
Modification:
Pages
V23990-K439-F60-D3-14
23 Jul. 2015
Features correction
1
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to
reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations
that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability,
function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said
information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons
or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine
the suitability of the information and the product for reader’s intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval
of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause
the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright Vincotech
17
23 Jul. 2015 / Revision 3