4.7 MB

The following document contains information on Cypress products.
S6E2CC Series
®
32-bit ARM Cortex®-M4F based Microcontroller
S6E2CC8H0A/S6E2CC9H0A/S6E2CCAH0A/
S6E2CC8J0A/S6E2CC9J0A/S6E2CCAJ0A/
S6E2CC8L0A/S6E2CC9L0A/S6E2CCAL0A/
S6E2CC8HHA/S6E2CC9HHA/S6E2CCAHHA/
S6E2CC8JHA/S6E2CC9JHA/S6E2CCAJHA/
S6E2CC8LHA/S6E2CC9LHA/S6E2CCALHA/
S6E2CCAJGA /S6E2CC8JGA/S6E2CC8JFA/
S6E2CCAJFA
Data Sheet (Full Production)
Notice to Readers: This document states the current technical specifications regarding the Spansion
product(s) described herein. Spansion Inc. deems the products to have been in sufficient production volume
such that subsequent versions of this document are not expected to change. However, typographical or
specification corrections, or modifications to the valid combinations offered may occur.
Publication Number S6E2CC_DS709-00009
CONFIDENTIAL
Revision 1.0
Issue Date March 25, 2015
D a t a S h e e t
Notice On Data Sheet Designations
Spansion Inc. issues data sheets with advance information or preliminary designations to advise readers of
product information or intended specifications throughout the product life cycle, including development,
qualification, initial production, and full production. In all cases, however, readers are encouraged to verify
that they have the latest information before finalizing their design. The following descriptions of Spansion
data sheet designations are presented here to highlight their presence and definitions.
Advance Information
The Advance Information designation indicates that Spansion Inc. is developing one or more specific
products, but has not committed any design to production. Information presented in a document with this
designation is likely to change, and in some cases, development on the product may discontinue. Spansion
Inc. therefore places the following conditions upon Advance Information content:
“This document contains information on one or more products under development at Spansion Inc.
The information is intended to help you evaluate this product. Do not design in this product without
contacting the factory. Spansion Inc. reserves the right to change or discontinue work on this
proposed product without notice.”
Preliminary
The Preliminary designation indicates that the product development has progressed such that a commitment
to production has taken place. This designation covers several aspects of the product life cycle, including
product qualification, initial production, and the subsequent phases in the manufacturing process that occur
before full production begins. Changes to the technical specifications presented in a Preliminary document
should be expected while keeping these aspects of production under consideration. Spansion places the
following conditions upon Preliminary content:
“This document states the current technical specifications regarding the Spansion product(s)
described herein. The Preliminary status of this document indicates that product qualification has
been completed and that initial production has begun. Due to the phases of the manufacturing
process that require maintaining efficiency and quality, this document may be revised by subsequent
versions or modifications to accommodate changes in technical specifications.”
Combination
Some data sheets contain a combination of products with different designations (Advance Information,
Preliminary, or Full Production). This type of document distinguishes these products and their designations
wherever necessary, typically on the first page, the ordering information page, and pages with the DC
Characteristics table and the AC Erase and Program table (in the table notes). The disclaimer on the first
page refers the reader to the notice on this page.
Full Production (No Designation on Document)
When a product has been in production for a period of time such that no changes or only nominal changes
are expected, the Preliminary designation is removed from the data sheet. Nominal changes may include
those affecting the number of ordering part numbers available, such as the addition or deletion of a speed
option, temperature range, package type, or VIO range. Changes may also include those needed to clarify a
description or to correct a typographical error or incorrect specification. Spansion Inc. applies the following
conditions to documents in this category:
“This document states the current technical specifications regarding the Spansion product(s)
described herein. Spansion Inc. deems the products to have been in sufficient production volume
such that subsequent versions of this document are not expected to change. However,
typographical or specification corrections, or modifications to the valid combinations offered may
occur.”
Questions regarding these document designations may be directed to your local sales office.
2
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
S6E2CC Series
32-bit ARM® Cortex®-M4F based Microcontroller
S6E2CC8H0A/S6E2CC9H0A/S6E2CCAH0A/
S6E2CC8J0A/S6E2CC9J0A/S6E2CCAJ0A/
S6E2CC8L0A/S6E2CC9L0A/S6E2CCAL0A/
S6E2CC8HHA/S6E2CC9HHA/S6E2CCAHHA/
S6E2CC8JHA/S6E2CC9JHA/S6E2CCAJHA/
S6E2CC8LHA/S6E2CC9LHA/S6E2CCALHA
S6E2CCAJGA /S6E2CC8JGA/S6E2CC8JFA/
S6E2CCAJFA
Data Sheet (Full Production)
1.
Description
Devices in the S6E2CC Series are highly integrated 32-bit microcontrollers with high performance and
competitive cost.
This series is based on the ARM Cortex-M4F processor with on-chip flash memory and SRAM. The series
has peripherals such as motor control timers, A/D converters, and communications interfaces (USB, CAN,
2
UART, CSIO (SPI), I C, LIN).
The products that are described in this data sheet are placed into TYPE3-M4 product categories "FM4
Family Peripheral Manual Main Part (MN709-00001)."
Note:
−
ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries.
Publication Number S6E2CC_DS709-00009
Revision 1.0
Issue Date March 25, 2015
This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient
production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the
valid combinations offered may occur.
CONFIDENTIAL
D a t a S h e e t
Table of Contents
1.
2.
3.
4.
5.
6.
7.
8.
Description ............................................................................................................................................... 3
Features .................................................................................................................................................... 6
Product Lineup ...................................................................................................................................... 15
Packages ................................................................................................................................................ 17
Pin Assignments.................................................................................................................................... 18
Pin Descriptions .................................................................................................................................... 22
I/O Circuit Type ...................................................................................................................................... 75
Handling Precautions ............................................................................................................................ 83
8.1. Precautions for Product Design ..................................................................................................... 83
8.2. Precautions for Package Mounting ................................................................................................ 84
8.3. Precautions for Use Environment .................................................................................................. 86
9. Handling Devices ................................................................................................................................... 87
10. Block Diagram........................................................................................................................................ 90
11. Memory Size ........................................................................................................................................... 91
12. Memory Map ........................................................................................................................................... 91
13. Pin Status In Each CPU State ............................................................................................................... 97
14. Electrical Characteristics .................................................................................................................... 106
14.1. Absolute Maximum Ratings ....................................................................................................... 106
14.2. Recommended Operating Conditions ........................................................................................ 108
14.3. DC Characteristics ..................................................................................................................... 113
14.3.1. Current Rating................................................................................................................ 113
14.3.2. Pin Characteristics ......................................................................................................... 123
14.4. AC Characteristics ..................................................................................................................... 125
14.4.1. Main Clock Input Characteristics.................................................................................... 125
14.4.2. Sub Clock Input Characteristics ..................................................................................... 126
14.4.3. Built-In CR Oscillation Characteristics ........................................................................... 126
14.4.4. Operating Conditions of Main PLL (in the case of using main clock for input clock
of PLL)
....................................................................................................................... 127
2
14.4.5. Operating Conditions of USB/Ethernet PLL・I S PLL (in the case of using main clock
for input clock of PLL)...................................................................................................... 127
14.4.6. Operating Conditions of Main PLL (in the case of using built-in High-speed CR clock
for input clock of Main PLL) ............................................................................................. 128
14.4.7. Reset Input Characteristics ............................................................................................ 128
14.4.8. Power-On Reset Timing ................................................................................................. 129
14.4.9. GPIO Output Characteristics ......................................................................................... 129
14.4.10. External Bus Timing ..................................................................................................... 130
14.4.11. Base Timer Input Timing .............................................................................................. 141
14.4.12. CSIO (SPI) Timing ....................................................................................................... 142
14.4.13. External Input Timing ................................................................................................... 175
14.4.14. Quadrature Position/Revolution Counter Timing .......................................................... 176
2
14.4.15. I C Timing .................................................................................................................... 178
14.4.16. SD Card Interface Timing ............................................................................................ 180
14.4.17. ETM/ HTM Timing ........................................................................................................ 182
14.4.18. JTAG Timing ................................................................................................................ 183
14.4.19. Ethernet-MAC Timing .................................................................................................. 184
2
14.4.20. I S Timing .................................................................................................................... 189
14.4.21. High-speed Quad SPI Timing ...................................................................................... 194
14.5. 12-bit A/D Converter .................................................................................................................. 196
14.6. 12-bit D/A Converter .................................................................................................................. 199
14.7. USB Characteristics ................................................................................................................... 200
14.8. Low-Voltage Detection Characteristics ...................................................................................... 204
4
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
14.8.1. Low-Voltage Detection Reset ........................................................................................ 204
14.8.2. Interrupt of Low-Voltage Detection................................................................................. 204
14.9. MainFlash Memory Write/Erase Characteristics ........................................................................ 205
14.10. Dual Flash Memory Write/Erase Characteristics ...................................................................... 205
14.11. Standby Recovery Time ........................................................................................................... 206
14.11.1. Recovery cause: Interrupt/WKUP ................................................................................ 206
14.11.2. Recovery Cause: Reset ............................................................................................... 208
15. Ordering Information ........................................................................................................................... 210
16. Package Dimensions ........................................................................................................................... 211
17. Major Changes ..................................................................................................................................... 215
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
5
D a t a S h e e t
2.
Features
32-bit ARM Cortex-M4F Core
 Processor version: r0p1
 Up to 200 MHz frequency operation
 FPU built-in
 Support DSP instructions
 Memory protection unit (MPU): improves the reliability of an embedded system
 Integrated nested vectored interrupt controller (NVIC): 1 NMI (non-maskable interrupt) and 128 peripheral
interrupts and 16 priority levels
 24-bit system timer (Sys Tick): system timer for OS task management
On-chip Memories
 Flash memory
This series is based on two independent on-chip flash memories.
− Up to 2048 Kbytes
− Built-in flash accelerator system with 16 Kbytes trace buffer memory
− Read access to flash memory that can be achieved without wait-cycle up to an operating frequency of
72 MHz. Even at the operating frequency more than 72 MHz, an equivalent single cycle access to
flash memory can be obtained by the flash accelerator system.
− Security function for code protection
 SRAM
This is composed of three independent SRAMs (SRAM0, SRAM1 and SRAM2). SRAM0 is connected to the
I-code bus and D-code bus of Cortex-M4F core. SRAM1 and SRAM2 are connected to system bus of
Cortex-M4F core.
− SRAM0: up to 192 Kbytes
− SRAM1: 32 Kbytes
− SRAM2: 32 Kbytes
External Bus Interface
 Supports SRAM, NOR, NAND flash and SDRAM device
 Up to 9 chip selects CS0 to CS8 (CS8 is only for SDRAM)
 8-/16-/32-bit data width
 Up to 25-bit address bus
 Supports address/data multiplexing
 Supports external RDY function
 Supports scramble function
− Possible to set the validity/invalidity of the scramble function for the external areas 0x6000_0000 to
0xDFFF_FFFF in 4 Mbytes units.
− Possible to set two kinds of the scramble key
Note:
−
6
CONFIDENTIAL
Note: It is necessary to use the Spansion provided software library to use the scramble function.
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
USB Interface (Max two channels)
The USB interface is composed of a function and a host.
 USB function
− USB 2.0 Full-speed supported
− Max 6 EndPoint supported
−
−
−
−
−
−
−
EndPoint 0 is control transfer
EndPoint 1, 2 can be selected bulk-transfer, interrupt-transfer or isochronous-transfer
EndPoint 3 to 5 can select bulk-transfer or interrupt-transfer
EndPoint 1 to 5 comprise double buffer
The size of each endpoint is as follows.
Endpoint 0, 2 to 5: 64 byte
EndPoint 1: 256 byte
 USB host
− USB2.0 Full-Speed/Low-Speed supported
− Bulk-transfer, interrupt-transfer, and isochronous-transfer support
− USB Device connected/dis-connected automatically detect
− IN/OUT token handshake packet automatically
− Max 256-byte packet length supported
− Wake-up function supported
CAN Interface (Max two channels)
 Compatible with CAN specification 2.0A/B
 Maximum transfer rate: 1 Mbps
 Built-in 32-message buffer
CAN-FD Interface (One channel)
 Compatible with CAN Specification 2.0A/B
 Maximum transfer rate: 5 Mbps
 Message buffer for receiver: up to 192 messages
 Message buffer for transmitter: up to 32 messages
 CAN with flexible data rate (non-ISO CAN FD)
Notes:
−
−
CAN FD cannot communicate between non-ISO CAN FD and ISO CAN FD, because non-ISO CAN
FD and ISO CAN FD are different frame format.
About the problem of "non-ISO CAN FD", see the White Paper from CiA(CAN in Automation).
http://www.can-newsletter.org/engineering/standardization/141222_can-fd-and-crc-issued_white-pa
per_bosch
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
7
D a t a S h e e t
Multi-function Serial Interface (Max 16 Channels)
 Separate 64 byte receive and transmit FIFO buffers for channels 0 to 7.
 Operation mode is selectable for each channel from the following:
− UART
− CSIO (SPI)
− LIN
− I2 C
 UART
− Full-duplex double buffer
− Selection with or without parity supported
− Built-in dedicated baud rate generator
− External clock available as a serial clock
− Various error detect functions available (parity errors, framing errors, and overrun errors)
 CSIO (SPI)
− Full-duplex double buffer
− Built-in dedicated baud rate generator
− Overrun error detect function available
− Serial chip select function (ch 6 and ch 7 only)
− Supports high-speed SPI (ch 4 and ch 6 only)
− Data length 5 to 16-bit
 LIN
− LIN protocol Rev.2.1 supported
− Full-duplex double buffer
− Master/slave mode supported
− LIN break field generation (can change to 13- to 16-bit length)
− LIN break delimiter generation (can change to 1- to 4-bit length)
− Various error detect functions available (parity errors, framing errors, and overrun errors)
 I2 C
− Standard mode (Max 100 kbps)/Fast mode (Max 400 kbps) supported
− Fast mode Plus (Fm+) (Max 1000 kbps, only for ch 3 = ch A and ch 7 = ch B) supported
DMA Controller (Eight Channels)
DMA controller has an independent bus, so the CPU and DMA controller can process simultaneously.







Eight independently configured and operated channels
Transfer can be started by software or request from the built-in peripherals
Transfer address area: 32-bit (4 GB)
Transfer mode: Block transfer/Burst transfer/Demand transfer
Transfer data type: bytes/half-word/word
Transfer block count: 1 to 16
Number of transfers: 1 to 65536
DSTC (Descriptor System Data Transfer Controller; 256 channels)
The DSTC can transfer data at high-speed without going via the CPU. The DSTC adopts the descriptor
system and, following the specified contents of the descriptor that has already been constructed on the
memory, can access directly the memory/peripheral device and perform the data-transfer operation.
It supports the software activation, the hardware activation, and the chain activation functions.
8
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
A/D Converter (Max 32 Channels)
 12-bit A/D Converter
− Successive approximation type
− Built-in three units
− Conversion time: 0.5 μs at 5 V
− Priority conversion available (priority at two levels)
− Scanning conversion mode
− Built-in FIFO for conversion data storage (for SCAN conversion: 16 steps, for priority conversion: 4
steps)
D/A Converter (Max two channels)
 R-2R type
 12-bit resolution
Base Timer (Max 16 channels)
Operation mode is selected from the following for each channel:




16-bit PWM timer
16-bit PPG timer
16-/32-bit reload timer
16-/32-bit PWC timer
General Purpose I/O Port
This series can use its pins as general purpose I/O ports when they are not used for external bus or
peripherals; moreover, the port relocate function is built in. It can set the I/O port to which the peripheral
function can be allocated.





Capable of pull-up control per pin
Capable of reading pin level directly
Built-in port-relocate function
Up to 120 high-speed general-purpose I/O ports in 144-pin package
Some pins 5 V tolerant I/O.
See "6. Pin Descriptions" and "7. I/O Circuit Type" for the corresponding pins.
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
9
D a t a S h e e t
Multi-function Timer (Max three units)
The multi-function timer is composed of the following blocks:
Minimum resolution: 5.00 ns






16-bit free-run timer × 3 ch/unit
Input capture × 4 ch/unit
Output compare × 6 ch/unit
A/D activation compare × 6 ch/unit
Waveform generator × 3 ch/unit
16-bit PPG timer × 3 ch/unit
The following functions can be used to achieve the motor control:






PWM signal output function
DC chopper waveform output function
Dead time function
Input capture function
A/D convertor activate function
DTIF (motor emergency stop) interrupt function
Real-Time Clock (RTC)
The real-time clock can count year, month, day, hour, minute, second, or day of the week from 01 to 99.
 Interrupt function with specifying date and time (year/month/day/hour/minute/second/day of the week) is
available. This function is also available by specifying only year, month, day, hour, or minute.
 Timer interrupt function after set time or each set time.
 Capable of rewriting the time with continuing the time count.
 Leap year automatic count is available.
Quadrature Position/Revolution Counter (QPRC; Max four channels)
The Quadrature Position/Revolution Counter (QPRC) is used to measure the position of the position
encoder. It is also possible to use up/down counter.




The detection edge of the three external event input pins AIN, BIN and ZIN is configurable.
16-bit position counter
16-bit revolution counter
Two 16-bit compare registers
Dual Timer (32-/16-bit Down Counter)
The dual timer consists of two programmable 32-/16-bit down counters.
Operation mode is selectable from the following for each channel:
 Free-running
 Periodic (= Reload)
 One shot
Watch Counter
The watch counter is used for wake up from low-power consumption mode. It is possible to select the main
clock, sub clock, built-in High-speed CR clock, or built-in low-speed CR clock as the clock source.
 Interval timer: up to 64 s (max) with a sub clock of 32.768 kHz
10
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
External Interrupt Controller Unit
 External interrupt input pin: Max 32 pins
 Include one non-maskable interrupt (NMI)
Watchdog Timer (Two channels)
A watchdog timer can generate interrupts or a reset when a time-out value is reached.
This series consists of two different watchdogs: a "hardware" watchdog and a "software" watchdog.
The hardware watchdog timer is clocked by low-speed internal CR oscillator. The hardware watchdog is thus
active in any power saving mode except RTC mode and Stop mode.
Cyclic Redundancy Check (CRC) Accelerator
The CRC accelerator helps to verify data transmission or storage integrity.
CCITT CRC16 and IEEE-802.3 CRC32 are supported.
 CCITT CRC16 generator polynomial: 0x1021
 IEEE-802.3 CRC32 generator polynomial: 0x04C11DB7
Programmable Cyclic Redundancy Check (PRGCRC) Accelerator
The CRC accelerator helps a verify data transmission or storage integrity.
CCITT CRC16, IEEE-802.3 CRC32 and generating polynomial are supported.
 CCITT CRC16 generator polynomial: 0x1021
 IEEE-802.3 CRC32 generator polynomial: 0x04C11DB7
 Generating polynomial
SD Card Interface
It is possible to use the SD card that conforms to the following standards.




Part 1 Physical Layer Specification version 3.01
Part E1 SDIO Specification version 3.00
Part A2 SD Host Controller Standard Specification version 3.00
1-bit or 4-bit data bus
Ethernet-MAC
 Compliant with IEEE802.3 specification
 10 Mbps/100 Mbps data transfer rates supported
 MII/RMII for external PHY device supported.
 MII: Max one channel
 RMII: Max one channel
 Full-duplex and half-duplex mode supported.
 Wake-ON-LAN supported
 Built-in dedicated descriptor-system DMAC
 Built-in 2 Kbytes transmit FIFO and 2 Kbytes receive FIFO.
 Compliant IEEE1558-2008 (PTP)
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
11
D a t a S h e e t
2
I S (Inter-IC Sound Bus) Interface (TX x one channel, RX x one channel)
 Supports three transfer protocols
− I2 S
− Left justified
− DSP mode
− Separate clock generation block for flexible system integration options





Master/slave mode selectable
RX Only, TX Only or TX and RX simultaneous operation selectable
Word length is programmable from 7-bits to 32-bits
RX/TX FIFO integrated (RX: 66 words x 32-bits, TX: 66 words x 32-bits)
DMA, interrupts, or polling based data transfer supported
High-speed Quad SPI
Up to 66 MHz clock rates for very fast data transfers to and from SPI compatible devices.
Up to 256 Mbytes of memory mapped address space.
 Single data rate (SDR)
 Supports single, dual, and quad data modes
 Built-in direct mode and command sequencer mode
− Direct mode: Access by use of transmission FIFO/reception FIFO (up to16 word x 32 bit)
− Command sequencer mode: Automatic access assigned to external device area.
Clock and Reset
 Clocks
Five clock sources (two external oscillators, two internal CR oscillators, and Main PLL) that are dynamically
selectable.
−
−
−
−
−
Main clock: 4 MHz to 48 MHz
Sub clock: 30 kHz to 100 kHz
High-speed internal CR clock: 4 MHz
Low-speed internal CR clock: 100 kHz
Main PLL Clock
 Resets
− Reset requests from INITX pin
− Power on reset
− Software reset
− Watchdog timer reset
− Low-voltage detector reset
− Clock supervisor reset
Clock Supervisor (CSV)
Clocks generated by internal CR oscillators are used to supervise abnormality of the external clocks.
 External OSC clock failure (clock stop) is detected, reset is asserted.
 External OSC frequency anomaly is detected, interrupt or reset is asserted.
Low-Voltage Detector (LVD)
This Series include two-stage monitoring of voltage on the VCC pins. when the voltage falls below the
voltage that has been set, the low-voltage detector function generates an interrupt or reset.
 LVD1: error reporting via interrupt
 LVD2: auto-reset operation
12
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Low-power Consumption mode
Six low power consumption modes are supported.






Sleep
Timer
RTC
Stop
Deep standby RTC (selectable from with/without RAM retention)
Deep standby stop (selectable from with/without RAM retention)
Peripheral Clock Gating
The system can reduce the current consumption of the total system with gating the operation clocks of
peripheral functions not used.
VBAT
The consumption power during the RTC operation can be reduced by supplying the power supply
independent from the RTC (calendar circuit)/32 kHz oscillation circuit. The following circuits can also be
used.





RTC
32-kHz oscillation circuit
Power-on circuit
Back up register: 32 bytes
Port circuit
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
13
D a t a S h e e t
Crypto Assist Function
These features are enabled for the crypto assist function.
The dedicated middleware is necessary for this calculator operation.
 PKA (Public Key Accelerator)
− PKA(Public Key Accelerator)is modular exponentiation calculation accelerator used of RSA Public
Key crypto and so on.
− Available bit length: Up to 2048-bit
 AES calculator
− AES (Advanced Encryption Standard) calculator is a AES common key crypto accelerator which is
compliant with FIPS (Federal Information Processing Standard Publication)197.
− Available key length: 128/192/256-bit
− CBC mode and ECB mode support
 SHA-256 calculator
− SHA-256 calculator is a SHA-256 hash function accelerator which is compliant with FIPS180-2.
 External Bus Data Scramble
− It enables to scramble input/output data of External Bus Interface.
Voice Function
These features are enabled for the voice function.
The dedicated library is necessary for using the voice function.
 Automatic Speech Recognition (ASR)
− 100 custom commands in multiple languages
− User commands defined with a text file (no audio input or training required)
 Natural Language Understanding (NLU)
Debug
 Serial wire JTAG debug port (SWJ-DP)
 Embedded trace macrocells (ETM) provide comprehensive debug and trace facilities.
 AHB trace macrocells (HTM)
Unique ID
Unique value of the device (41-bit) is set.
Power Supply
 Five power supplies
− Wide range voltage:
− Power supply for USB ch 0 I/O:
VCC
= 2.7 V to 5.5 V
USBVCC0 = 3.0 V to 3.6 V (when USB is used)
= 2.7 V to 5.5 V (when GPIO is used)
− Power supply for USB ch 1 I/O:
USBVCC1
= 3.0 V to 3.6 V (when USB is used)
= 2.7 V to 5.5 V (when GPIO is used)
− Power supply for Ethernet-MAC I/O: ETHVCC
= 3.0 V to 5.5 V (when Ethernet is used.)
= 2.7 V to 5.5 V (when GPIO is used)
− Power supply for VBAT:
14
CONFIDENTIAL
VBAT
= 1.65 V to 5.5 V
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
3.
Product Lineup
Memory Size
Product Name
On-chip flash memory
On-chip
S6E2CC8H/J/L
S6E2CC9H/J/L
S6E2CCAH/J/L
1024 Kbytes
1536 Kbytes
2048 Kbytes
SRAM
128 Kbytes
192 Kbytes
256 Kbytes
SRAM0
64 Kbytes
128 Kbytes
192 Kbytes
SRAM1
32 Kbytes
32 Kbytes
32 Kbytes
SRAM2
32 Kbytes
32 Kbytes
32 Kbytes
S6E2CC8H0A
S6E2CC8J0A
S6E2CC8L0A
S6E2CC9H0A
S6E2CC9J0A
S6E2CC9L0A
S6E2CCAH0A
S6E2CCAJ0A
S6E2CCAL0A
S6E2CC8HHA
S6E2CC8JHA
S6E2CC8LHA
S6E2CC9HHA
S6E2CC9JHA
S6E2CC9LHA
S6E2CCAHHA
S6E2CCAJHA
S6E2CCALHA
Function
Product Name
S6E2CCAJGA
S6E2CC8JGA
S6E2CC8JFA
S6E2CCAJFA
Pin count
144
176/192
CPU
Freq.
200 MHz
Power supply voltage range
2.7 V to 5.5 V
USB2.0 (function/host)
2 ch
Ethernet-MAC
1ch.(Max) MII: 1 ch /RMII: 1 ch (Max)
CAN
2 ch (Max)
CAN-FD (non-ISO CAN FD)
1 ch
DMAC
8ch
DSTC
256 ch
Addr: 25-bit (Max),
Data: 8-/16-bit
CS: 9 (Max),
SRAM,
NOR flash
NAND flash
External bus interface
Multi-function serial interface
Base timer
NAND flash,
SDRAM
16 ch (Max)
(PWC/Reload timer/PWM/PPG)
A/D activation compare
6 ch
Input capture
4 ch
Free-run timer
3 ch
Output compare
6 ch
Waveform generator
3 ch
PPG
3 ch
3 units (Max)
SD card interface
I2S
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
Addr: 25-bit (Max),
Data: 8-/16-/32-bit
CS: 9 (Max),
SRAM,
NOR flash ,
Addr: 25-bit (Max),
Data: 8-/16-bit
CS: 9 (Max),
SRAM,
NOR flash ,
NAND flash
SDRAM
16ch (Max)
ch 0 to ch 7:FIFO, ch 8 to ch 15:No FIFO
(UART/CSIO/LIN/I2C)
MF timer
216
Cortex-M4F, MPU, NVIC 128 ch
1 unit
-
1 unit
15
D a t a S h e e t
Product Name
S6E2CC8H0A
S6E2CC8J0A
S6E2CC8L0A
S6E2CC9H0A
S6E2CC9J0A
S6E2CC9L0A
S6E2CCAH0A
S6E2CCAJ0A
S6E2CCAL0A
S6E2CC8HHA
S6E2CC8JHA
S6E2CC8LHA
S6E2CC9HHA
S6E2CC9JHA
S6E2CC9LHA
S6E2CCAHHA
S6E2CCAJHA
S6E2CCALHA
S6E2CCAJGA
S6E2CC8JGA
S6E2CC8JFA
S6E2CCAJFA
High-speed quad SPI
-
1 unit
QPRC
4 ch (Max)
Dual timer
1 unit
Real-time clock
1 unit
Watch counter
1 unit
CRC accelerator
Yes (fixed, programmable)
Watchdog timer
1 ch (SW) + 1 ch (HW)
External interrupts
32 pins (Max)+ NMI × 1
I/O ports
120 pins (Max)
12-bit A/D converter
24 ch (3 units)
152 pins (Max)
12-bit D/A converter
2 units (Max)
CSV (clock supervisor)
Yes
LVD (low-voltage detector)
2 ch
Built-in CR
190 pins (Max)
32 ch (3 units)
High-speed
4 MHz (±2%)
Low-speed
100 kHz (Typ)
Debug function
SWJ-DP/ETM/HTM
Unique ID
Yes
Crypto Assist Function
Yes*1
-
Voice Function
-
-
Yes*1
-
*2
Yes
Yes*1
-
*1: Crypto Assist Function is built in following products.
S6E2CC8HHA, S6E2CC9HHA, S6E2CCAHHA, S6E2CC8JHA, S6E2CC9JHA, S6E2CCAJHA,
S6E2CC8LHA, S6E2CC9LHA, S6E2CCALHA, S6E2CCAJGA
*2: Voice Function is built in following products.
S6E2CCAJGA, S6E2CC8JGA, S6E2CC8JFA, S6E2CCAJFA
Notes:
16
CONFIDENTIAL
−
All signals of the peripheral function in each product cannot be allocated by limiting the pins of
package.
It is necessary to use the port relocate function of the I/O port according to your function use.
−
See 14.4.3 Built-In CR Oscillation Characteristics for the accuracy of the built-in CR.
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
4.
Packages
S6E2CC8H0A
S6E2CC9H0A
Product Name
Package
S6E2CCAH0A
S6E2CC8HHA
S6E2CC9HHA
S6E2CCAHHA
S6E2CC8J0A
S6E2CC9J0A
S6E2CCAJ0A
S6E2CC8JHA
S6E2CC9JHA
S6E2CCAJHA
S6E2CCAJGA
LQFP: FPT-144P-M08 (0.5 mm pitch)

LQFP: FPT-176P-M07 (0.5 mm pitch)
-

BGA: LBE192
-
(0.8 mm pitch)
LQFP: FPT-216P-M01 (0.4 mm pitch)
-
S6E2CC8L0A
S6E2CC9L0A
S6E2CCAL0A
S6E2CC8LHA
S6E2CC9LHA
S6E2CC8JGA
S6E2CC8JFA
S6E2CCAJFA
S6E2CCALHA
-
-
-
-

-

-

-
: Supported
Note:
−
See 16. Package Dimensions for detailed information on each package.
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
17
D a t a S h e e t
5.
Pin Assignments
FPT-144P-M08
VSS
P81/UDP0
P80/UDM0
USBVCC0
P60/SIN4_0/INT31_0/WKUP3
P61/UHCONX0/SOT4_0/MALE_0/RTCCO_0/SUBOUT_0
P62/SCK4_0/MWEX_0
P63/ADTG_3/RTS4_0/INT30_0/MOEX_0
P6E/ADTG_5/SCK4_1/IC23_1/INT29_0/E_PPS
PD2/CTS4_1/FRCK2_1/E_TXEN
PD1/INT31_1/E_TX00
PD0/INT30_1/E_TX01
PCF/RTS4_1/INT12_0/E_TX02
PCE/SIN4_1/INT15_0/E_TX03
PCD/SOT4_1/INT14_0/E_TXER
PCC/E_TCK
PCB/INT28_0/E_COUT
VSS
ETHVCC
PCA/TIOA15_0/E_CRS
PC9/TIOB15_0/E_COL
PC8/E_RXCK_REFCK
PC7/INT13_0/E_MDC/CROUT_1
PC6/TIOA14_0/E_MDIO
PC5/TIOB14_0/E_RXDV
PC4/TIOA7_0/E_RX00
PC3/TIOB7_0/E_RX01
PC2/TIOA6_0/E_RX02
PC1/TIOB6_0/E_RX03
PC0/E_RXER
P04/TDO/SWO
P03/TMS/SWDIO
P02/TDI
P01/TCK/SWCLK
P00/TRSTX
VCC
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
(Top View)
VCC
1
108
VSS
PA0/RTO20_0/TIOA8_0/AIN2_0/INT00_0/MADATA00_0
2
107
P83/UDP1
PA1/RTO21_0/TIOA9_0/BIN2_0/MADATA01_0
3
106
P82/UDM1
PA2/RTO22_0/TIOA10_0/ZIN2_0/MADATA02_0
4
105
USBVCC1
PA3/RTO23_0/TIOA11_0/MADATA03_0
5
104
P20/NMIX/WKUP0
PA4/RTO24_0/TIOA12_0/MADATA04_0
6
103
P21/ADTG_4/SIN0_0/INT27_0/CROUT_0
PA5/SIN1_0/RTO25_0/TIOA13_0/INT01_0/MADATA05_0
7
102
P22/AN31/SOT0_0/INT26_0
PA6/SOT1_0/DTTI2X_0/MADATA06_0
8
101
P23/UHCONX1/AN30/SCK0_0/TIOB13_1
PA7/SCK1_0/IC20_0/MADATA07_0
9
100
P24/AN29/TIOA13_1/MAD18_0
PA8/SIN7_0/IC21_0/INT02_0/WKUP1/MADATA08_0
10
99
P25/AN28/RX1_0/INT25_0/MAD17_0
PA9/SOT7_0/IC22_0/MADATA09_0
11
98
P26/TX1_0/MAD16_0
PAA/SCK7_0/IC23_0/MADATA10_0
12
97
P27/AN27/SIN5_0/INT24_0/MAD15_0
PAB/SCS70_0/RX0_0/FRCK2_0/INT03_0/MADATA11_0
13
96
P28/AN26/SOT5_0/MAD14_0
PAC/SCS71_0/TX0_0/TIOB8_0/AIN3_0/MADATA12_0
14
95
P29/AN25/SCK5_0/MAD13_0
PAD/SCK3_0/TIOB9_0/BIN3_0/MADATA13_0
15
94
P2A/AN24/CTS5_0/MAD12_0
PAE/ADTG_0/SOT3_0/TIOB10_0/ZIN3_0/MADATA14_0
16
93
P1F/AN15/RTS5_0/TIOB8_1/INT27_1/MAD11_0
PAF/SIN3_0/TIOB11_0/INT16_0/MADATA15_0
17
92
P1E/AN14/TIOA8_1/INT26_1/MAD10_0
P08/SIN14_0/TIOB12_0/INT17_0/MDQM0_0
18
91
P1D/AN13/SCK12_0/TIOB5_2/TRACED3
P09/SOT14_0/TIOB13_0/INT18_0/MDQM1_0
19
90
P1C/AN12/SOT12_0/TIOA5_2/TRACED2
P0A/ADTG_1/SCK14_0/AIN2_1/MCLKOUT_0
20
89
P1B/AN11/SIN12_0/TIOB4_2/INT11_0/TRACED1
P32/BIN2_1/INT19_0/S_DATA1_0
21
88
P1A/AN10/SCK2_0/TIOA4_2/TRACED0
P33/FRCK0_0/ZIN2_1/S_DATA0_0
22
87
P19/AN09/SOT2_0/TIOB3_2/INT24_1/TRACECLK
P34/IC03_0/INT00_1/S_CLK_0
23
86
P18/AN08/SIN2_0/TIOA3_2/INT10_0
VCC
24
85
P17/AN07/SCK11_0/TIOB2_2/ZIN1_2
VSS
25
84
P16/AN06/SOT11_0/TIOA2_2/BIN1_2
P35/IC02_0/INT01_1/S_CMD_0
26
83
P15/AN05/SIN11_0/TIOB1_2/AIN1_2/INT09_0
P36/IC01_0/INT02_1/S_DATA3_0
27
82
P14/AN04/SOT6_1/TX1_1
P37/IC00_0/INT03_1/S_DATA2_0
28
81
P13/AN03/SIN6_1/RX1_1/INT25_1
P38/ADTG_2/DTTI0X_0/S_WP_0
29
80
P12/AN02/SCK10_0/TIOA1_2/ZIN0_2
P39/SIN2_1/RTO00_0/TIOA0_1/AIN3_1/INT16_1/S_CD_0/MAD24_0
30
79
P11/AN01/SOT10_0/TIOB0_2/BIN0_2
P3A/SOT2_1/RTO01_0/TIOA1_1/BIN3_1/INT17_1/MAD23_0
31
78
P10/AN00/SIN10_0/TIOA0_2/AIN0_2/INT08_0
P3B/SCK2_1/RTO02_0/TIOA2_1/ZIN3_1/INT18_1/MAD22_0/MNALE_0
32
77
AVRH
P3C/SIN13_0/RTO03_0/TIOA3_1/INT19_1/MAD21_0/MNCLE_0
33
76
AVRL
P3D/SOT13_0/RTO04_0/TIOA4_1/MAD20_0/MNWEX_0
34
75
AVSS
P3E/SCK13_0/RTO05_0/TIOA5_1/MAD19_0/MNREX_0
35
74
AVCC
VSS
36
73
VCC
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
P47/X1A
VBAT
P48/VREGCTL
P49/VWAKEUP
P70/ADTG_8/SIN1_1/INT06_0/MRDY_0
P71/SOT1_1/MAD00_0
P72/SIN9_0/TIOB0_0/INT07_0/MAD01_0
P73/SOT9_0/TIOB1_0/MAD02_0
P74/SCK9_0/TIOB2_0/MAD03_0
P75/SIN8_0/TIOB3_0/AIN1_0/INT20_0/MAD04_0
P76/SOT8_0/TIOB4_0/BIN1_0/MAD05_0
P77/SCK8_0/TIOB5_0/ZIN1_0/MAD06_0
P78/SIN6_0/IC10_0/INT21_0/MAD07_0
P79/SOT6_0/IC11_0/MAD08_0
P7A/SCK6_0/IC12_0/MAD09_0
72
50
P46/X0A
VSS
49
INITX
71
48
P7E/ADTG_7/TX2_0/FRCK1_0/MCSX0_0
PE3/X1
47
P7D/SCK1_1/RX2_0/DTTI1X_0/INT05_0/WKUP2/MCSX1_0
70
46
VCC
PE2/X0
45
VSS
69
44
C
MD0
43
P45/SCK15_0/RTO15_0/TIOA5_0/MCSX2_0
68
42
P44/SOT15_0/RTO14_0/TIOA4_0/MCSX3_0
PE0/MD1
41
P43/SIN15_0/RTO13_0/TIOA3_0/INT04_0/MCSX4_0
67
40
P7C/DA0/SCS61_0/INT04_1
39
P42/SCK3_1/RTO12_0/TIOA2_0/ZIN0_0/MCSX5_0
66
38
P41/SOT3_1/RTO11_0/TIOA1_0/BIN0_0/MCSX6_0
P7B/DA1/SCS60_0/IC13_0/INT22_0
37
VCC
P40/SIN3_1/RTO10_0/TIOA0_0/AIN0_0/INT23_0/MCSX7_0
LQFP - 144
Note:
−
18
CONFIDENTIAL
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the
relocated port number. For these pins, there are multiple pins that provide the same function for the
same channel.
Use the extended port function register (EPFR) to select the pin.
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
FPT-176P-M07
VSS
P81/UDP0
P80/UDM0
USBVCC0
P60/SIN4_0/INT31_0/WKUP3
P61/UHCONX0/SOT4_0/MALE_0/RTCCO_0/SUBOUT_0
P62/SCK4_0/MWEX_0
P63/ADTG_3/RTS4_0/INT30_0/MOEX_0
P64/CTS4_0/RTO25_1/INT29_1
P65/RTO24_1/INT28_1
P6E/ADTG_5/SCK4_1/IC23_1/INT29_0/E_PPS
PD2/CTS4_1/FRCK2_1/E_TXEN
PD1/INT31_1/E_TX00
PD0/INT30_1/E_TX01
PCF/RTS4_1/INT12_0/E_TX02
PCE/SIN4_1/INT15_0/E_TX03
PCD/SOT4_1/INT14_0/E_TXER
PCC/E_TCK
PCB/INT28_0/E_COUT
VSS
ETHVCC
PCA/TIOA15_0/E_CRS
PC9/TIOB15_0/E_COL
PC8/E_RXCK_REFCK
PC7/INT13_0/E_MDC/CROUT_1
PC6/TIOA14_0/E_MDIO
PC5/TIOB14_0/E_RXDV
PC4/TIOA7_0/E_RX00
PC3/TIOB7_0/E_RX01
PC2/TIOA6_0/E_RX02
PC1/TIOB6_0/E_RX03
PC0/E_RXER
P95/RTS5_1/Q_CS0_0
P94/CTS5_1/Q_SCK_0
P93/SCK5_1/INT15_1/Q_IO0_0
P92/SOT5_1/INT14_1/Q_IO1_0
P91/SIN5_1/INT13_1/Q_IO2_0
P90/INT12_1/Q_IO3_0
P04/TDO/SWO
P03/TMS/SWDIO
P02/TDI
P01/TCK/SWCLK
P00/TRSTX
VCC
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
(Top View)
VCC
1
132
VSS
PA0/RTO20_0/TIOA8_0/AIN2_0/INT00_0/MADATA00_0
2
131
P83/UDP1
PA1/RTO21_0/TIOA9_0/BIN2_0/MADATA01_0
3
130
P82/UDM1
PA2/RTO22_0/TIOA10_0/ZIN2_0/MADATA02_0
4
129
USBVCC1
PA3/RTO23_0/TIOA11_0/MADATA03_0
5
128
P20/NMIX/WKUP0
PA4/RTO24_0/TIOA12_0/MADATA04_0
6
127
P21/ADTG_4/SIN0_0/INT27_0/CROUT_0
PA5/SIN1_0/RTO25_0/TIOA13_0/INT01_0/MADATA05_0
7
126
P22/AN31/SOT0_0/INT26_0
PA6/SOT1_0/DTTI2X_0/MADATA06_0
8
125
P23/UHCONX1/AN30/SCK0_0/TIOB13_1
PA7/SCK1_0/IC20_0/MADATA07_0
9
124
P24/AN29/TIOA13_1/MAD18_0
P50/SCS72_0/RTO00_1/TIOA8_2
10
123
P25/AN28/RX1_0/INT25_0/MAD17_0
P51/SCS73_0/RTO01_1/TIOB8_2
11
122
P26/TX1_0/MAD16_0
P52/RTO02_1/TIOA9_2
12
121
P27/AN27/SIN5_0/INT24_0/MAD15_0
PA8/SIN7_0/IC21_0/INT02_0/WKUP1/MADATA08_0
13
120
P28/AN26/SOT5_0/MAD14_0
PA9/SOT7_0/IC22_0/MADATA09_0
14
119
P29/AN25/SCK5_0/MAD13_0
PAA/SCK7_0/IC23_0/MADATA10_0
15
118
P2A/AN24/CTS5_0/MAD12_0
PAB/SCS70_0/RX0_0/FRCK2_0/INT03_0/MADATA11_0
16
117
P1F/AN15/RTS5_0/TIOB8_1/INT27_1/MAD11_0
PAC/SCS71_0/TX0_0/TIOB8_0/AIN3_0/MADATA12_0
17
116
P1E/AN14/TIOA8_1/INT26_1/MAD10_0
PAD/SCK3_0/TIOB9_0/BIN3_0/MADATA13_0
18
115
PB7/AN23/TIOB12_1/TRACED7
PAE/ADTG_0/SOT3_0/TIOB10_0/ZIN3_0/MADATA14_0
19
114
PB6/AN22/SCK8_1/TIOA12_1/TRACED6
PAF/SIN3_0/TIOB11_0/INT16_0/MADATA15_0
20
113
PB5/AN21/SOT8_1/TIOB11_1/INT11_1/TRACED5
P08/SIN14_0/TIOB12_0/INT17_0/MDQM0_0
21
112
PB4/AN20/SIN8_1/TIOA11_1/INT10_1/TRACED4
P09/SOT14_0/TIOB13_0/INT18_0/MDQM1_0
22
111
P1D/AN13/SCK12_0/TIOB5_2/TRACED3
P0A/ADTG_1/SCK14_0/AIN2_1/MCLKOUT_0
23
110
P1C/AN12/SOT12_0/TIOA5_2/TRACED2
P30/RX0_1/TIOA13_2/INT03_2/I2SDI0_0
24
109
P1B/AN11/SIN12_0/TIOB4_2/INT11_0/TRACED1
P31/TX0_1/TIOB13_2/I2SCK0_0
25
108
P1A/AN10/SCK2_0/TIOA4_2/TRACED0
P32/BIN2_1/INT19_0/S_DATA1_0
26
107
P19/AN09/SOT2_0/TIOB3_2/INT24_1/TRACECLK
P33/FRCK0_0/ZIN2_1/S_DATA0_0
27
106
P18/AN08/SIN2_0/TIOA3_2/INT10_0
P34/IC03_0/INT00_1/S_CLK_0
28
105
PB3/AN19/SCS62_1/TIOB10_1
VCC
29
104
PB2/AN18/SCS61_1/TIOA10_1/INT09_1
VSS
30
103
PB1/AN17/SCS60_1/TIOB9_1/INT08_1
P35/IC02_0/INT01_1/S_CMD_0
31
102
PB0/AN16/SCK6_1/TIOA9_1
P36/IC01_0/INT02_1/S_DATA3_0
32
101
P17/AN07/SCK11_0/TIOB2_2/ZIN1_2
P37/IC00_0/INT03_1/S_DATA2_0
33
100
P16/AN06/SOT11_0/TIOA2_2/BIN1_2
P38/ADTG_2/DTTI0X_0/S_WP_0
34
99
P15/AN05/SIN11_0/TIOB1_2/AIN1_2/INT09_0
P39/SIN2_1/RTO00_0/TIOA0_1/AIN3_1/INT16_1/S_CD_0/MAD24_0
35
98
P14/AN04/SOT6_1/TX1_1
P3A/SOT2_1/RTO01_0/TIOA1_1/BIN3_1/INT17_1/MAD23_0
36
97
P13/AN03/SIN6_1/RX1_1/INT25_1
P3B/SCK2_1/RTO02_0/TIOA2_1/ZIN3_1/INT18_1/MAD22_0/MNALE_0
37
96
P12/AN02/SCK10_0/TIOA1_2/ZIN0_2
P3C/SIN13_0/RTO03_0/TIOA3_1/INT19_1/MAD21_0/MNCLE_0
38
95
P11/AN01/SOT10_0/TIOB0_2/BIN0_2
P3D/SOT13_0/RTO04_0/TIOA4_1/MAD20_0/MNWEX_0
39
94
P10/AN00/SIN10_0/TIOA0_2/AIN0_2/INT08_0
P3E/SCK13_0/RTO05_0/TIOA5_1/MAD19_0/MNREX_0
40
93
AVRH
P5D/SIN10_1/TIOB11_2/INT01_2/I2SMCLK0_0
41
92
AVRL
P5E/SOT10_1/TIOA12_2/I2SDO0_0
42
91
AVSS
P5F/SCK10_1/TIOB12_2/I2SWS0_0
43
90
AVCC
VSS
44
89
VCC
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
VCC
P40/SIN3_1/RTO10_0/TIOA0_0/AIN0_0/INT23_0/MCSX7_0
P41/SOT3_1/RTO11_0/TIOA1_0/BIN0_0/MCSX6_0
P42/SCK3_1/RTO12_0/TIOA2_0/ZIN0_0/MCSX5_0
P43/SIN15_0/RTO13_0/TIOA3_0/INT04_0/MCSX4_0
P44/SOT15_0/RTO14_0/TIOA4_0/MCSX3_0
P45/SCK15_0/RTO15_0/TIOA5_0/MCSX2_0
C
VSS
VCC
P7D/SCK1_1/RX2_0/DTTI1X_0/INT05_0/WKUP2/MCSX1_0
P7E/ADTG_7/TX2_0/FRCK1_0/MCSX0_0
INITX
P46/X0A
P47/X1A
VBAT
P48/VREGCTL
P49/VWAKEUP
PF0/SCS63_0/RX2_1/FRCK1_1/TIOA15_1/INT22_1
PF1/SCS62_0/TX2_1/TIOB15_1/INT23_1
P70/ADTG_8/SIN1_1/INT06_0/MRDY_0
P71/SOT1_1/MAD00_0
P72/SIN9_0/TIOB0_0/INT07_0/MAD01_0
P73/SOT9_0/TIOB1_0/MAD02_0
P74/SCK9_0/TIOB2_0/MAD03_0
PF2/RTO10_1/TIOA6_1/MRASX_0
PF3/RTO11_1/TIOB6_1/INT05_1/MCASX_0
PF4/RTO12_1/TIOA7_1/INT06_1/MSDWEX_0
PF5/RTO13_1/TIOB7_1/INT07_1/MCSX8_0
PF6/RTO14_1/TIOA14_1/INT20_1/MSDCKE_0
PF7/RTO15_1/TIOB14_1/INT21_1/MSDCLK_0
P75/SIN8_0/TIOB3_0/AIN1_0/INT20_0/MAD04_0
P76/SOT8_0/TIOB4_0/BIN1_0/MAD05_0
P77/SCK8_0/TIOB5_0/ZIN1_0/MAD06_0
P78/SIN6_0/IC10_0/INT21_0/MAD07_0
P79/SOT6_0/IC11_0/MAD08_0
P7A/SCK6_0/IC12_0/MAD09_0
P7B/DA1/SCS60_0/IC13_0/INT22_0
P7C/DA0/SCS61_0/INT04_1
PE0/MD1
MD0
PE2/X0
PE3/X1
VSS
LQFP - 176
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the
relocated port number. For these pins, there are multiple pins that provide the same function for the
same channel.
Use the extended port function register (EPFR) to select the pin.
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
19
D a t a S h e e t
FPT-216P-M01
VSS
P81/UDP0
P80/UDM0
USBVCC0
P60/SIN4_0/INT31_0/WKUP3
P61/UHCONX0/SOT4_0/MALE_0/RTCCO_0/SUBOUT_0
P62/SCK4_0/MWEX_0
P63/ADTG_3/RTS4_0/INT30_0/MOEX_0
P64/CTS4_0/RTO25_1/INT29_1
P65/RTO24_1/INT28_1
P66/SIN13_1/RTO23_1/TIOA15_2/INT15_2
P67/SOT13_1/RTO22_1/TIOB15_2
P68/SCK13_1/RTO21_1/TIOA14_2
P69/RTO20_1/TIOB14_2
P6A/DTTI2X_1/TIOA7_2
P6B/SIN14_1/IC20_1/TIOB7_2/INT14_2
P6C/SOT14_1/IC21_1/TIOA6_2
P6D/SCK14_1/IC22_1/TIOB6_2
P6E/ADTG_5/SCK4_1/IC23_1/INT29_0/E_PPS
PD2/CTS4_1/FRCK2_1/E_TXEN
PD1/INT31_1/E_TX00
PD0/INT30_1/E_TX01
PCF/RTS4_1/INT12_0/E_TX02
PCE/SIN4_1/INT15_0/E_TX03
PCD/SOT4_1/INT14_0/E_TXER
PCC/E_TCK
PCB/INT28_0/E_COUT
VSS
ETHVCC
PCA/TIOA15_0/E_CRS
PC9/TIOB15_0/E_COL
PC8/E_RXCK_REFCK
PC7/INT13_0/E_MDC/CROUT_1
PC6/TIOA14_0/E_MDIO
PC5/TIOB14_0/E_RXDV
PC4/TIOA7_0/E_RX00
PC3/TIOB7_0/E_RX01
PC2/TIOA6_0/E_RX02
PC1/TIOB6_0/E_RX03
PC0/E_RXER
P97/TX0_2/INT13_2/Q_CS2_0
P96/RX0_2/INT12_2/Q_CS1_0
P95/RTS5_1/Q_CS0_0
P94/CTS5_1/Q_SCK_0
P93/SCK5_1/INT15_1/Q_IO0_0
P92/SOT5_1/INT14_1/Q_IO1_0
P91/SIN5_1/INT13_1/Q_IO2_0
P90/INT12_1/Q_IO3_0
P04/TDO/SWO
P03/TMS/SWDIO
P02/TDI
P01/TCK/SWCLK
P00/TRSTX
VCC
216
215
214
213
212
211
210
209
208
207
206
205
204
203
202
201
200
199
198
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
(Top View)
VCC
1
162
VSS
PA0/RTO20_0/TIOA8_0/AIN2_0/INT00_0/MADATA00_0
2
161
P83/UDP1
PA1/RTO21_0/TIOA9_0/BIN2_0/MADATA01_0
3
160
P82/UDM1
PA2/RTO22_0/TIOA10_0/ZIN2_0/MADATA02_0
4
159
USBVCC1
PA3/RTO23_0/TIOA11_0/MADATA03_0
5
158
P20/NMIX/WKUP0
PA4/RTO24_0/TIOA12_0/MADATA04_0
6
157
P21/ADTG_4/SIN0_0/INT27_0/CROUT_0
PA5/SIN1_0/RTO25_0/TIOA13_0/INT01_0/MADATA05_0
7
156
P22/AN31/SOT0_0/INT26_0
PA6/SOT1_0/DTTI2X_0/MADATA06_0
8
155
P23/UHCONX1/AN30/SCK0_0/TIOB13_1
PA7/SCK1_0/IC20_0/MADATA07_0
9
154
P24/AN29/TIOA13_1/MAD18_0
P50/SCS72_0/RTO00_1/TIOA8_2/MADATA16_0
10
153
P25/AN28/RX1_0/INT25_0/MAD17_0
P51/SCS73_0/RTO01_1/TIOB8_2/MADATA17_0
11
152
P26/TX1_0/MAD16_0
P52/RTO02_1/TIOA9_2/MADATA18_0
12
151
PBF/SIN0_1/ZIN3_2/INT11_2/TRACED15
P53/RTO03_1/TIOB9_2/MADATA19_0
13
150
PBE/SOT0_1/BIN3_2/TRACED14
PA8/SIN7_0/IC21_0/INT02_0/WKUP1/MADATA08_0
14
149
PBD/SCK0_1/RX1_2/AIN3_2/INT10_2/TRACED13
PA9/SOT7_0/IC22_0/MADATA09_0
15
148
PBC/TX1_2/TRACED12
PAA/SCK7_0/IC23_0/MADATA10_0
16
147
P27/AN27/SIN5_0/INT24_0/MAD15_0
PAB/SCS70_0/RX0_0/FRCK2_0/INT03_0/MADATA11_0
17
146
P28/AN26/SOT5_0/MAD14_0
PAC/SCS71_0/TX0_0/TIOB8_0/AIN3_0/MADATA12_0
18
145
P29/AN25/SCK5_0/MAD13_0
P54/SIN15_1/RTO04_1/TIOA10_2/INT00_2/MADATA20_0
19
144
P2A/AN24/CTS5_0/MAD12_0
P55/SOT15_1/RTO05_1/TIOB10_2/MADATA21_0
20
143
P1F/AN15/RTS5_0/TIOB8_1/INT27_1/MAD11_0
P56/SCK15_1/DTTI0X_1/TIOB0_1/MADATA22_0
21
142
P1E/AN14/TIOA8_1/INT26_1/MAD10_0
P57/IC00_1/TIOB1_1/MADATA23_0
22
141
PB7/AN23/TIOB12_1/TRACED7
PAD/SCK3_0/TIOB9_0/BIN3_0/MADATA13_0
23
140
PB6/AN22/SCK8_1/TIOA12_1/TRACED6
PAE/ADTG_0/SOT3_0/TIOB10_0/ZIN3_0/MADATA14_0
24
139
PB5/AN21/SOT8_1/TIOB11_1/INT11_1/TRACED5
PAF/SIN3_0/TIOB11_0/INT16_0/MADATA15_0
25
138
PB4/AN20/SIN8_1/TIOA11_1/INT10_1/TRACED4
P58/SIN11_1/IC01_1/TIOB2_1/INT02_2/MADATA24_0
26
137
VCC
P59/SOT11_1/IC02_1/TIOB3_1/MADATA25_0
27
136
VSS
P5A/SCK11_1/IC03_1/TIOB4_1/MADATA26_0
28
135
P1D/AN13/SCK12_0/TIOB5_2/TRACED3
LQFP - 216
P5B/FRCK0_1/TIOB5_1/MADATA27_0
29
134
P1C/AN12/SOT12_0/TIOA5_2/TRACED2
P08/SIN14_0/TIOB12_0/INT17_0/MDQM0_0
30
133
P1B/AN11/SIN12_0/TIOB4_2/INT11_0/TRACED1
P09/SOT14_0/TIOB13_0/INT18_0/MDQM1_0
31
132
P1A/AN10/SCK2_0/TIOA4_2/TRACED0
P0A/ADTG_1/SCK14_0/AIN2_1/MCLKOUT_0
32
131
P19/AN09/SOT2_0/TIOB3_2/INT24_1/TRACECLK
P5C/TIOA11_2/MADATA28_0/RTCCO_1/SUBOUT_1
33
130
P18/AN08/SIN2_0/TIOA3_2/INT10_0
P30/RX0_1/TIOA13_2/INT03_2/MDQM2_0/I2SDI0_0
34
129
PB3/AN19/SCS62_1/TIOB10_1
P31/TX0_1/TIOB13_2/MDQM3_0/I2SCK0_0
35
128
PB2/AN18/SCS61_1/TIOA10_1/INT09_1
P32/BIN2_1/INT19_0/S_DATA1_0
36
127
PB1/AN17/SCS60_1/TIOB9_1/INT08_1
P33/FRCK0_0/ZIN2_1/S_DATA0_0
37
126
PB0/AN16/SCK6_1/TIOA9_1
P34/IC03_0/INT00_1/S_CLK_0
38
125
P17/AN07/SCK11_0/TIOB2_2/ZIN1_2
VCC
39
124
P16/AN06/SOT11_0/TIOA2_2/BIN1_2
VSS
40
123
P15/AN05/SIN11_0/TIOB1_2/AIN1_2/INT09_0
P35/IC02_0/INT01_1/S_CMD_0
41
122
PBB/SCK9_1/ZIN2_2/TRACED11
P36/IC01_0/INT02_1/S_DATA3_0
42
121
PBA/SOT9_1/BIN2_2/TRACED10
P37/IC00_0/INT03_1/S_DATA2_0
43
120
PB9/SIN9_1/AIN2_2/INT09_2/TRACED9
106
107
108
PE3/X1
VSS
96
P78/SIN6_0/IC10_0/INT21_0/MAD07_0
105
95
PF9/SCS71_1/IC10_1/BIN1_1
MD0
94
PF8/SCS70_1/DTTI1X_1/AIN1_1
PE2/X0
93
P77/SCK8_0/TIOB5_0/ZIN1_0/MAD06_0
104
92
P76/SOT8_0/TIOB4_0/BIN1_0/MAD05_0
PE0/MD1
91
P75/SIN8_0/TIOB3_0/AIN1_0/INT20_0/MAD04_0
103
90
PFC/SIN7_1/IC13_1/INT06_2
89
PF6/RTO14_1/TIOA14_1/INT20_1/MSDCKE_0
PF7/RTO15_1/TIOB14_1/INT21_1/MSDCLK_0
102
88
PF5/RTO13_1/TIOB7_1/INT07_1/MCSX8_0
101
87
PF4/RTO12_1/TIOA7_1/INT06_1/MSDWEX_0
PFA/SCK7_1/IC11_1/ZIN1_1
86
PFB/SOT7_1/IC12_1/INT07_2
85
PF2/RTO10_1/TIOA6_1/MRASX_0
PF3/RTO11_1/TIOB6_1/INT05_1/MCASX_0
100
84
P74/SCK9_0/TIOB2_0/MAD03_0
P7C/DA0/SCS61_0/INT04_1
83
P73/SOT9_0/TIOB1_0/MAD02_0
99
82
P7B/DA1/SCS60_0/IC13_0/INT22_0
81
P71/SOT1_1/MAD00_0
P72/SIN9_0/TIOB0_0/INT07_0/MAD01_0
98
80
P70/ADTG_8/SIN1_1/INT06_0/MRDY_0
97
79
PF1/SCS62_0/TX2_1/TIOB15_1/INT23_1
P79/SOT6_0/IC11_0/MAD08_0
78
PF0/SCS63_0/RX2_1/FRCK1_1/TIOA15_1/INT22_1
P7A/SCK6_0/IC12_0/MAD09_0
77
75
VBAT
76
74
P47/X1A
P48/VREGCTL
73
P49/VWAKEUP
72
71
P7E/ADTG_7/TX2_0/FRCK1_0/MCSX0_0
INITX
70
P7D/SCK1_1/RX2_0/DTTI1X_0/INT05_0/WKUP2/MCSX1_0
P46/X0A
69
VCC
68
109
P4E/SCS73_1/TX2_2
54
P4D/SCS72_1/RX2_2/INT05_2
AVCC
VSS
67
110
P4C/SCK12_1/ZIN0_1
53
66
AVSS
P5F/SCK10_1/TIOB12_2/MADATA31_0/I2SWS0_0
P4B/SOT12_1/BIN0_1
111
65
52
64
AVRL
P5E/SOT10_1/TIOA12_2/MADATA30_0/I2SDO0_0
VCC
112
P4A/SIN12_1/AIN0_1/INT04_2
51
63
AVRH
P5D/SIN10_1/TIOB11_2/INT01_2/MADATA29_0/I2SMCLK0_0
VSS
P10/AN00/SIN10_0/TIOA0_2/AIN0_2/INT08_0
113
62
114
50
C
49
P3E/SCK13_0/RTO05_0/TIOA5_1/MAD19_0/MNREX_0
61
P11/AN01/SOT10_0/TIOB0_2/BIN0_2
P3D/SOT13_0/RTO04_0/TIOA4_1/MAD20_0/MNWEX_0
60
115
P45/SCK15_0/RTO15_0/TIOA5_0/MCSX2_0
48
P44/SOT15_0/RTO14_0/TIOA4_0/MCSX3_0
P12/AN02/SCK10_0/TIOA1_2/ZIN0_2
P3C/SIN13_0/RTO03_0/TIOA3_1/INT19_1/MAD21_0/MNCLE_0
59
116
P43/SIN15_0/RTO13_0/TIOA3_0/INT04_0/MCSX4_0
47
58
P13/AN03/SIN6_1/RX1_1/INT25_1
P3B/SCK2_1/RTO02_0/TIOA2_1/ZIN3_1/INT18_1/MAD22_0/MNALE_0
P42/SCK3_1/RTO12_0/TIOA2_0/ZIN0_0/MCSX5_0
117
57
46
56
P14/AN04/SOT6_1/TX1_1
P3A/SOT2_1/RTO01_0/TIOA1_1/BIN3_1/INT17_1/MAD23_0
55
PB8/ADTG_6/SCS63_1/INT08_2/TRACED8
118
VCC
119
45
P41/SOT3_1/RTO11_0/TIOA1_0/BIN0_0/MCSX6_0
44
P40/SIN3_1/RTO10_0/TIOA0_0/AIN0_0/INT23_0/MCSX7_0
P38/ADTG_2/DTTI0X_0/S_WP_0
P39/SIN2_1/RTO00_0/TIOA0_1/AIN3_1/INT16_1/S_CD_0/MAD24_0
Note:
−
20
CONFIDENTIAL
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the
relocated port number. For these pins, there are multiple pins that provide the same function for the
same channel.
Use the extended port function register (EPFR) to select the pin.
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
LBE192
(Top View)
1
A
2
3
UDP0 UDM0
4
5
6
7
8
9
10
11
12
13
14
USBV
ETHV
VSS PCD PCB VSS CC PC8 VSS TCK VCC
CC0
B
VSS PA0 P60 P62 P64 PD1 PCA PC1 P95 P92 TDO TMS
C
VCC PA1 PA2 P61 P63 PD2 PCC PC5 PC0 P93 P90
D
PA5 PA4 PA6 PA7 PA3 P6E PCE PC6 PC2 P94 P91 P22 P21 UDM1
E
VSS P50 P51 P52 PA8 P65 PCF PC7 PC3 P26 P25 P24 P23
F
PA9 PAA PAB PAC PAD PAE PD0 PC9 PC4 P2A P29 P28 P27 PB5
G
VSS PAF P08 P09 P0A P30 VSS VSS P1F P1E PB7 PB6 PB4 P1B
H
VCC P32 P34 P31 VSS P35 VSS VSS P18 PB2 P1D P19 P1C P1A
J
P33 P39 P38 P37 P36 P71 VSS P74 PB1 PB0 P17 P16 P15 PB3
K
P3A P3B P3C P3D PF0 PF1 VSS P73 P75 P79 P14 P12 P11 P13
L
P3E P5D P5E P43 P7D P70 VSS P72 PF7 P78 P10 AVRH AVRL VSS
M
VSS P5F P42 P44 P7E P49 VSS PF3 PF6 P7A P7C AVSS AVCC VCC
N
VCC P40 P41 P45 INITX P48 VSS PF2 PF4 P77 P7B MD0 MD1 VSS
P
C
VSS VCC X0A X1A VSS VBAT PF5 P76 VSS
TRSTX
VSS
TDI P20 UDP1
X0
USBV
CC1
X1
PFBGA-192
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the
relocated port number. For these pins, there are multiple pins that provide the same function for the
same channel.
Use the extended port function register (EPFR) to select the pin.
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
21
D a t a S h e e t
6.
Pin Descriptions
List of Pin Functions
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port
number. For these pins, there are multiple pins that provide the same function for the same channel.
Use the extended port function register (EPFR) to select the pin.
I/O
Pin Number
Pin Name
LQFP-216
LQFP-176
LQFP-144
LBE192
1
1
1
C1
Circuit
Type
VCC
Pin State
Type
-
-
G
K
G
I
G
I
G
I
G
I
G
K
PA0
RTO20_0
(PPG20_0)
2
2
2
B2
TIOA8_0
AIN2_0
INT00_0
MADATA00_0
PA1
RTO21_0
3
3
3
C2
(PPG20_0)
TIOA9_0
BIN2_0
MADATA01_0
PA2
RTO22_0
4
4
4
C3
(PPG22_0)
TIOA10_0
ZIN2_0
MADATA02_0
PA3
RTO23_0
5
5
5
D5
(PPG22_0)
TIOA11_0
MADATA03_0
PA4
RTO24_0
6
6
6
D2
(PPG24_0)
TIOA12_0
MADATA04_0
PA5
SIN1_0
RTO25_0
7
7
7
D1
(PPG24_0)
TIOA13_0
INT01_0
MADATA05_0
22
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
I/O
Pin Number
Pin Name
LQFP-216
LQFP-176
LQFP-144
LBE192
Circuit
Type
Pin State
Type
PA6
SOT1_0
8
8
8
D3
(SDA1_0))
E
I
E
I
E
I
E
I
E
I
E
I
I
Q
N
I
N
I
DTTI2X_0
MADATA06_0
PA7
SCK1_0
9
9
9
D4
(SCL1_0)
IC20_0
MADATA07_0
P50
SCS72_0
10
10
-
E2
RTO00_1
(PPG00_1)
TIOA8_2
MADATA16_0
P51
SCS73_0
11
11
-
E3
RTO01_1
(PPG00_1)
TIOB8_2
MADATA17_0
P52
RTO02_1
12
12
-
E4
(PPG02_1)
TIOA9_2
MADATA18_0
P53
RTO03_1
13
-
-
-
(PPG02_1)
TIOB9_2
MADATA19_0
PA8
SIN7_0
14
13
10
E5
IC21_0
INT02_0
WKUP1
MADATA08_0
PA9
SOT7_0
15
14
11
F1
(SDA7_0)
IC22_0
MADATA09_0
PAA
SCK7_0
16
15
12
F2
(SCL7_0)
IC23_0
MADATA10_0
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
23
D a t a S h e e t
I/O
Pin Number
Pin Name
LQFP-216
LQFP-176
LQFP-144
LBE192
Circuit
Type
Pin State
Type
PAB
SCS70_0
17
16
13
F3
RX0_0
FRCK2_0
E
K
E
I
E
K
E
I
E
I
E
I
N
I
INT03_0
MADATA11_0
PAC
SCS71_0
18
17
14
F4
TX0_0
TIOB8_0
AIN3_0
MADATA12_0
P54
SIN15_1
RTO04_1
19
-
-
-
(PPG04_1)
TIOA10_2
INT00_2
MADATA20_0
P55
SOT15_1
(SDA15_1)
20
-
-
-
RTO05_1
(PPG04_1)
TIOB10_2
MADATA21_0
P56
SCK15_1
21
-
-
-
(SCL15_1)
DTTI0X_1
TIOB0_1
MADATA22_0
P57
22
-
-
-
IC00_1
TIOB1_1
MADATA23_0
PAD
SCK3_0
(SCL3_0)
23
18
15
F5
TIOB9_0
BIN3_0
MADATA13_0
24
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
I/O
Pin Number
Pin Name
LQFP-216
LQFP-176
LQFP-144
LBE192
Circuit
Type
Pin State
Type
PAE
ADTG_0
SOT3_0
24
19
16
F6
(SDA3_0)
N
I
I
K
E
K
E
I
E
I
E
I
E
K
E
K
TIOB10_0
ZIN3_0
MADATA14_0
PAF
SIN3_0
25
20
17
G2
TIOB11_0
INT16_0
MADATA15_0
P58
SIN11_1
26
-
-
-
IC01_1
TIOB2_1
INT02_2
MADATA24_0
P59
SOT11_1
27
-
-
-
(SDA11_1)
IC02_1
TIOB3_1
MADATA25_0
P5A
SCK11_1
28
-
-
-
(SCL11_1)
IC03_1
TIOB4_1
MADATA26_0
P5B
29
-
-
-
FRCK0_1
TIOB5_1
MADATA27_0
P08
SIN14_0
30
21
18
G3
TIOB12_0
INT17_0
MDQM0_0
P09
SOT14_0
31
22
19
G4
(SDA14_0)
TIOB13_0
INT18_0
MDQM1_0
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
25
D a t a S h e e t
I/O
Pin Number
Pin Name
LQFP-216
LQFP-176
LQFP-144
LBE192
Circuit
Type
Pin State
Type
P0A
ADTG_1
32
23
20
G5
SCK14_0
(SCL14_0)
L
I
E
I
E
K
E
I
L
K
L
I
L
K
AIN2_1
MCLKOUT_0
P5C
TIOA11_2
33
-
-
-
MADATA28_0
RTCCO_1
SUBOUT_1
P30
RX0_1
34
24
-
G6
TIOA13_2
INT03_2
MDQM2_0
I2SDI0_0
P31
TX0_1
35
25
-
H4
TIOB13_2
MDQM3_0
I2SCK0_0
P32
36
26
21
H2
BIN2_1
INT19_0
S_DATA1_0
P33
37
27
22
J1
FRCK0_0
ZIN2_1
S_DATA0_0
P34
38
28
23
H3
IC03_0
INT00_1
S_CLK_0
39
29
24
H1
VCC
-
-
40
30
25
H5
VSS
-
-
L
K
L
K
L
K
P35
41
31
26
H6
IC02_0
INT01_1
S_CMD_0
P36
42
32
27
J5
IC01_0
INT02_1
S_DATA3_0
P37
43
33
28
J4
IC00_0
INT03_1
S_DATA2_0
26
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
I/O
Pin Number
Pin Name
LQFP-216
LQFP-176
LQFP-144
LBE192
Circuit
Type
Pin State
Type
P38
44
34
29
J3
ADTG_2
DTTI0X_0
E
I
G
K
G
K
G
K
G
K
G
I
S_WP_0
P39
SIN2_1
RTO00_0
(PPG00_0)
45
35
30
J2
TIOA0_1
AIN3_1
INT16_1
S_CD_0
MAD24_0
P3A
SOT2_1
(SDA2_1)
RTO01_0
46
36
31
K1
(PPG00_0)
TIOA1_1
BIN3_1
INT17_1
MAD23_0
P3B
SCK2_1
(SCL2_1)
RTO02_0
47
37
32
K2
(PPG02_0)
TIOA2_1
ZIN3_1
INT18_1
MAD22_0
MNALE_0
P3C
SIN13_0
RTO03_0
48
38
33
K3
(PPG02_0)
TIOA3_1
INT19_1
MAD21_0
MNCLE_0
P3D
SOT13_0
(SDA13_0)
49
39
34
K4
RTO04_0
(PPG04_0)
TIOA4_1
MAD20_0
MNWEX_0
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
27
D a t a S h e e t
I/O
Pin Number
Pin Name
LQFP-216
LQFP-176
LQFP-144
LBE192
Circuit
Type
Pin State
Type
P3E
SCK13_0
(SCL13_0)
50
40
35
L1
RTO05_0
(PPG04_0)
G
I
E
K
E
I
E
I
TIOA5_1
MAD19_0
MNREX_0
P5D
SIN10_1
51
41
-
L2
TIOB11_2
INT01_2
MADATA29_0
I2SMCLK0_0
P5E
SOT10_1
52
42
-
L3
(SDA10_1)
TIOA12_2
MADATA30_0
I2SDO0_0
P5F
SCK10_1
53
43
-
M2
(SCL10_1)
TIOB12_2
MADATA31_0
I2SWS0_0
54
44
36
M1
VSS
-
-
55
45
37
N1
VCC
-
-
G
K
G
I
P40
SIN3_1
RTO10_0
56
46
38
N2
(PPG10_0)
TIOA0_0
AIN0_0
INT23_0
MCSX7_0
P41
SOT3_1
(SDA3_1)
57
47
39
N3
RTO11_0
(PPG10_0)
TIOA1_0
BIN0_0
MCSX6_0
28
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
I/O
Pin Number
Pin Name
LQFP-216
LQFP-176
LQFP-144
LBE192
Circuit
Type
Pin State
Type
P42
SCK3_1
(SCL3_1)
58
48
40
M3
RTO12_0
(PPG12_0)
G
I
G
K
G
I
G
I
TIOA2_0
ZIN0_0
MCSX5_0
P43
SIN15_0
RTO13_0
59
49
41
L4
(PPG12_0)
TIOA3_0
INT04_0
MCSX4_0
P44
SOT15_0
(SDA15_0)
60
50
42
M4
RTO14_0
(PPG14_0)
TIOA4_0
MCSX3_0
P45
SCK15_0
(SCL15_0)
61
51
43
N4
RTO15_0
(PPG14_0)
TIOA5_0
MCSX2_0
62
52
44
P2
C
-
-
63
53
45
P3
VSS
-
-
64
54
46
P4
VCC
-
-
E
K
E
I
E
I
E
K
P4A
65
-
-
-
SIN12_1
AIN0_1
INT04_2
P4B
66
-
-
-
SOT12_1
(SDA12_1)
BIN0_1
P4C
67
-
-
-
SCK12_1
(SCL12_1)
ZIN0_1
P4D
68
-
-
-
SCS72_1
RX2_2
INT05_2
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
29
D a t a S h e e t
I/O
Pin Number
Pin Name
LQFP-216
LQFP-176
LQFP-144
LBE192
69
-
-
-
Circuit
Type
Pin State
Type
P4E
SCS73_1
E
I
L
Q
L
I
B
C
P
S
Q
T
-
-
O
U
O
U
E
K
E
K
I
K
E
I
TX2_2
P7D
SCK1_1
(SCL1_1)
70
55
47
L5
RX2_0
DTTI1X_0
INT05_0
WKUP2
MCSX1_0
P7E
ADTG_7
71
56
48
M5
TX2_0
FRCK1_0
MCSX0_0
72
57
49
N5
73
58
50
P5
74
59
51
P6
75
60
52
P8
76
61
53
N6
77
62
54
M6
INITX
P46
X0A
P47
X1A
VBAT
P48
VREGCTL
P49
VWAKEUP
PF0
SCS63_0
78
63
-
K5
RX2_1
FRCK1_1
TIOA15_1
INT22_1
PF1
SCS62_0
79
64
-
K6
TX2_1
TIOB15_1
INT23_1
P70
ADTG_8
80
65
55
L6
SIN1_1
INT06_0
MRDY_0
P71
81
66
56
J6
SOT1_1
(SDA1_1)
MAD00_0
30
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
I/O
Pin Number
Pin Name
LQFP-216
LQFP-176
LQFP-144
LBE192
Circuit
Type
Pin State
Type
P72
SIN9_0
82
67
57
L8
TIOB0_0
E
K
E
I
E
I
L
I
L
K
L
K
L
K
L
K
INT07_0
MAD01_0
P73
SOT9_0
83
68
58
K8
(SDA9_0)
TIOB1_0
MAD02_0
P74
SCK9_0
84
69
59
J8
(SCL9_0)
TIOB2_0
MAD03_0
PF2
RTO10_1
85
70
-
N8
(PPG10_1)
TIOA6_1
MRASX_0
PF3
RTO11_1
86
71
-
M8
(PPG10_1)
TIOB6_1
INT05_1
MCASX_0
PF4
RTO12_1
87
72
-
N9
(PPG12_1)
TIOA7_1
INT06_1
MSDWEX_0
PF5
RTO13_1
88
73
-
P9
(PPG12_1)
TIOB7_1
INT07_1
MCSX8_0
PF6
RTO14_1
89
74
-
M9
(PPG14_1)
TIOA14_1
INT20_1
MSDCKE_0
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
31
D a t a S h e e t
I/O
Pin Number
Pin Name
LQFP-216
LQFP-176
LQFP-144
LBE192
Circuit
Type
Pin State
Type
PF7
RTO15_1
90
75
-
L9
(PPG14_1)
TIOB14_1
L
K
E
K
E
I
E
I
E
I
E
I
E
K
L
I
L
I
INT21_1
MSDCLK_0
P75
SIN8_0
91
76
60
K9
TIOB3_0
AIN1_0
INT20_0
MAD04_0
P76
SOT8_0
92
77
61
P10
(SDA8_0)
TIOB4_0
BIN1_0
MAD05_0
P77
SCK8_0
93
78
62
N10
(SCL8_0)
TIOB5_0
ZIN1_0
MAD06_0
PF8
94
-
-
-
SCS70_1
DTTI1X_1
AIN1_1
PF9
95
-
-
-
SCS71_1
IC10_1
BIN1_1
P78
SIN6_0
96
79
63
L10
IC10_0
INT21_0
MAD07_0
P79
SOT6_0
97
80
64
K10
(SDA6_0)
IC11_0
MAD08_0
P7A
SCK6_0
98
81
65
M10
(SCL6_0)
IC12_0
MAD09_0
32
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
I/O
Pin Number
Pin Name
LQFP-216
LQFP-176
LQFP-144
LBE192
Circuit
Type
Pin State
Type
P7B
DA1
99
82
66
N11
SCS60_0
R
J
R
J
E
I
E
K
E
K
C
E
J
D
A
A
A
B
IC13_0
INT22_0
P7C
100
83
67
M11
DA0
SCS61_0
INT04_1
PFA
SCK7_1
101
-
-
-
(SCL7_1)
IC11_1
ZIN1_1
PFB
SOT7_1
102
-
-
-
(SDA7_1)
IC12_1
INT07_2
PFC
103
-
-
-
SIN7_1
IC13_1
INT06_2
PE0
104
84
68
N13
105
85
69
N12
106
86
70
P12
107
87
71
P13
108
88
72
N14
VSS
-
-
109
89
73
M14
VCC
-
-
110
90
74
M13
AVCC
-
-
111
91
75
M12
AVSS
-
-
112
92
76
L13
AVRL
-
-
113
93
77
L12
AVRH
-
-
F
M
MD1
MD0
PE2
X0
PE3
X1
P10
AN00
114
94
78
L11
SIN10_0
TIOA0_2
AIN0_2
INT08_0
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
33
D a t a S h e e t
I/O
Pin Number
Pin Name
LQFP-216
LQFP-176
LQFP-144
LBE192
Circuit
Type
Pin State
Type
P11
AN01
115
95
79
K13
SOT10_0
(SDA10_0)
F
L
F
L
F
M
F
L
E
O
E
O
E
N
E
N
F
M
TIOB0_2
BIN0_2
P12
AN02
116
96
80
K12
SCK10_0
(SCL10_0)
TIOA1_2
ZIN0_2
P13
AN03
117
97
81
K14
SIN6_1
RX1_1
INT25_1
P14
AN04
118
98
82
K11
SOT6_1
(SDA6_1)
TX1_1
PB8
ADTG_6
119
-
-
-
SCS63_1
INT08_2
TRACED8
PB9
SIN9_1
120
-
-
-
AIN2_2
INT09_2
TRACED9
PBA
SOT9_1
121
-
-
-
(SDA9_1)
BIN2_2
TRACED10
PBB
SCK9_1
122
-
-
-
(SCL9_1)
ZIN2_2
TRACED11
P15
AN05
123
99
83
J13
SIN11_0
TIOB1_2
AIN1_2
INT09_0
34
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
I/O
Pin Number
Pin Name
LQFP-216
LQFP-176
LQFP-144
LBE192
Circuit
Type
Pin State
Type
P16
AN06
124
100
84
J12
SOT11_0
(SDA11_0)
F
L
F
L
F
L
F
M
F
M
F
L
F
M
F
O
TIOA2_2
BIN1_2
P17
AN07
125
101
85
J11
SCK11_0
(SCL11_0)
TIOB2_2
ZIN1_2
PB0
AN16
126
102
-
J10
SCK6_1
(SCL6_1)
TIOA9_1
PB1
AN17
127
103
-
J9
SCS60_1
TIOB9_1
INT08_1
PB2
AN18
128
104
-
H10
SCS61_1
TIOA10_1
INT09_1
PB3
129
105
-
J14
AN19
SCS62_1
TIOB10_1
P18
AN08
130
106
86
H9
SIN2_0
TIOA3_2
INT10_0
P19
AN09
SOT2_0
131
107
87
H12
(SDA2_0)
TIOB3_2
INT24_1
TRACECLK
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
35
D a t a S h e e t
I/O
Pin Number
Pin Name
LQFP-216
LQFP-176
LQFP-144
LBE192
Circuit
Type
Pin State
Type
P1A
AN10
132
108
88
H14
SCK2_0
(SCL2_0)
F
N
F
O
F
N
F
N
TIOA4_2
TRACED0
P1B
AN11
133
109
89
G14
SIN12_0
TIOB4_2
INT11_0
TRACED1
P1C
AN12
134
110
90
H13
SOT12_0
(SDA12_0)
TIOA5_2
TRACED2
P1D
AN13
135
111
91
H11
SCK12_0
(SCL12_0)
TIOB5_2
TRACED3
136
-
-
-
VSS
-
-
137
-
-
-
VCC
-
-
F
O
F
O
F
N
PB4
AN20
138
112
-
G13
SIN8_1
TIOA11_1
INT10_1
TRACED4
PB5
AN21
SOT8_1
139
113
-
F14
(SDA8_1)
TIOB11_1
INT11_1
TRACED5
PB6
AN22
140
114
-
G12
SCK8_1
(SCL8_1)
TIOA12_1
TRACED6
36
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
I/O
Pin Number
Pin Name
LQFP-216
LQFP-176
LQFP-144
LBE192
Circuit
Type
Pin State
Type
PB7
141
115
-
G11
AN23
TIOB12_1
F
N
F
M
F
M
F
L
F
L
F
L
F
M
E
N
E
O
TRACED7
P1E
AN14
142
116
92
G10
TIOA8_1
INT26_1
MAD10_0
P1F
AN15
143
117
93
G9
RTS5_0
TIOB8_1
INT27_1
MAD11_0
P2A
144
118
94
F10
AN24
CTS5_0
MAD12_0
P29
AN25
145
119
95
F11
SCK5_0
(SCL5_0)
MAD13_0
P28
AN26
146
120
96
F12
SOT5_0
(SDA5_0)
MAD14_0
P27
AN27
147
121
97
F13
SIN5_0
INT24_0
MAD15_0
PBC
148
-
-
-
TX1_2
TRACED12
PBD
SCK0_1
(SCL0_1)
149
-
-
-
RX1_2
AIN3_2
INT10_2
TRACED13
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
37
D a t a S h e e t
I/O
Pin Number
Pin Name
LQFP-216
LQFP-176
LQFP-144
LBE192
Circuit
Type
Pin State
Type
PBE
SOT0_1
150
-
-
-
(SDA0_1)
E
N
E
O
E
I
F
M
F
L
F
L
F
M
I
K
I
F
-
-
H
R
H
R
BIN3_2
TRACED14
PBF
SIN0_1
151
-
-
-
ZIN3_2
INT11_2
TRACED15
P26
152
122
98
E10
TX1_0
MAD16_0
P25
AN28
153
123
99
E11
RX1_0
INT25_0
MAD17_0
P24
154
124
100
E12
AN29
TIOA13_1
MAD18_0
P23
UHCONX1
155
125
101
E13
AN30
SCK0_0
(SCL0_0)
TIOB13_1
P22
AN31
156
126
102
D12
SOT0_0
(SDA0_0)
INT26_0
P21
ADTG_4
157
127
103
D13
SIN0_0
INT27_0
CROUT_0
P20
158
128
104
C13
NMIX
159
129
105
E14
USBVCC1
160
130
106
D14
161
131
107
C14
162
132
108
B14
VSS
-
-
163
133
109
A13
VCC
-
-
WKUP0
38
CONFIDENTIAL
P82
UDM1
P83
UDP1
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
I/O
Pin Number
Pin Name
LQFP-216
LQFP-176
LQFP-144
LBE192
164
134
110
B13
165
135
111
A12
Circuit
Type
P00
TRSTX
Pin State
Type
E
G
E
G
E
G
E
G
E
G
S
K
S
K
S
K
S
K
S
I
S
I
S
K
S
K
K
V
P01
TCK
SWCLK
166
136
112
C12
P02
TDI
P03
167
137
113
B12
TMS
SWDIO
P04
168
138
114
B11
TDO
SWO
P90
169
139
-
C11
INT12_1
Q_IO3_0
P91
170
140
-
D11
SIN5_1
INT13_1
Q_IO2_0
P92
SOT5_1
171
141
-
B10
(SDA5_1)
INT14_1
Q_IO1_0
P93
SCK5_1
172
142
-
C10
(SCL5_1)
INT15_1
Q_IO0_0
P94
173
143
-
D10
CTS5_1
Q_SCK_0
P95
174
144
-
B9
RTS5_1
Q_CS0_0
P96
175
-
-
-
RX0_2
INT12_2
Q_CS1_0
P97
176
-
-
-
TX0_2
INT13_2
Q_CS2_0
177
145
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
115
C9
PC0
E_RXER
39
D a t a S h e e t
I/O
Pin Number
Pin Name
LQFP-216
LQFP-176
LQFP-144
LBE192
178
146
116
B8
Circuit
Type
Pin State
Type
PC1
TIOB6_0
K
V
K
V
K
V
K
V
K
V
K
V
E
W
K
V
K
V
K
V
ETHVCC
-
-
VSS
-
-
L
W
K
V
L
W
L
W
E_RX03
PC2
179
147
117
D9
TIOA6_0
E_RX02
PC3
180
148
118
E9
TIOB7_0
E_RX01
PC4
181
149
119
F9
TIOA7_0
E_RX00
PC5
182
150
120
C8
TIOB14_0
E_RXDV
PC6
183
151
121
D8
TIOA14_0
E_MDIO
PC7
184
152
122
E8
INT13_0
E_MDC
CROUT_1
185
153
123
A10
186
154
124
F8
PC8
E_RXCK_REFCK
PC9
TIOB15_0
E_COL
PCA
187
155
125
B7
TIOA15_0
E_CRS
188
156
126
A9
189
157
127
A8
PCB
190
158
128
A7
INT28_0
E_COUT
191
159
129
C7
PCC
E_TCK
PCD
SOT4_1
192
160
130
A6
(SDA4_1)
INT14_0
E_TXER
PCE
193
161
131
D7
SIN4_1
INT15_0
E_TX03
40
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
I/O
Pin Number
Pin Name
LQFP-216
LQFP-176
LQFP-144
LBE192
Circuit
Type
Pin State
Type
PCF
194
162
132
E7
RTS4_1
INT12_0
L
W
L
W
L
W
L
V
E
W
E
I
E
I
E
K
E
I
E
I
E
I
E_TX02
PD0
195
163
133
F7
INT30_1
E_TX01
PD1
196
164
134
B6
INT31_1
E_TX00
PD2
197
165
135
C6
CTS4_1
FRCK2_1
E_TXEN
P6E
ADTG_5
SCK4_1
198
166
136
D6
(SCL4_1)
IC23_1
INT29_0
E_PPS
P6D
SCK14_1
199
-
-
-
(SCL14_1)
IC22_1
TIOB6_2
P6C
SOT14_1
200
-
-
-
(SDA14_1)
IC21_1
TIOA6_2
P6B
SIN14_1
201
-
-
-
IC20_1
TIOB7_2
INT14_2
P6A
202
-
-
-
DTTI2X_1
TIOA7_2
P69
203
-
-
-
RTO20_1
(PPG20_1)
TIOB14_2
P68
SCK13_1
204
-
-
-
(SCL13_0)
RTO21_1
(PPG20_1)
TIOA14_2
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
41
D a t a S h e e t
I/O
Pin Number
Pin Name
LQFP-216
LQFP-176
LQFP-144
LBE192
Circuit
Type
Pin State
Type
P67
SOT13_1
205
-
-
-
(SDA13_1)
RTO22_1
E
I
E
K
E
K
I
K
L
K
L
I
L
I
I
Q
-
-
H
R
H
R
(PPG22_1)
TIOB15_2
P66
SIN13_1
206
-
-
-
RTO23_1
(PPG22_1)
TIOA15_2
INT15_2
P65
207
167
-
E6
RTO24_1
(PPG24_1)
INT28_1
P64
CTS4_0
208
168
-
B5
RTO25_1
(PPG24_1)
INT29_1
P63
ADTG_3
209
169
137
C5
RTS4_0
INT30_0
MOEX_0
P62
210
170
138
B4
SCK4_0
(SCL4_0)
MWEX_0
P61
UHCONX0
SOT4_0
211
171
139
C4
(SDA4_0)
MALE_0
RTCCO_0
SUBOUT_0
P60
212
172
140
B3
SIN4_0
INT31_0
WKUP3
42
CONFIDENTIAL
213
173
141
A4
214
174
142
A3
215
175
143
A2
USBVCC0
P80
UDM0
P81
UDP0
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
I/O
Pin Number
Pin Name
Pin State
Type
LQFP-216
LQFP-176
LQFP-144
LBE192
216
176
144
B1
-
-
-
-
-
E1
-
-
-
-
-
G1
-
-
-
-
-
P7
-
-
-
-
-
P11
-
-
-
-
-
L14
-
-
-
-
-
A11
-
-
-
-
-
A5
-
-
-
-
-
N7
-
-
-
-
-
M7
-
-
-
-
-
L7
-
-
-
-
-
K7
-
-
-
-
-
J7
-
-
--
-
-
G7
-
-
-
-
-
H7
-
-
-
-
-
H8
-
-
-
-
-
G8
-
-
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
Circuit
Type
VSS
43
D a t a S h e e t
Signal Descriptions
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port
number. For these pins, there are multiple pins that provide the same function for the same channel.
Use the extended port function register (EPFR) to select the pin.
Pin Number
Module
Pin Name
converter
CONFIDENTIAL
LQFP
LQFP
LBE
192
216
176
144
24
19
16
F6
ADTG_1
32
23
20
G5
ADTG_2
44
34
29
J3
ADTG_3
209
169
137
C5
157
127
103
D13
ADTG_5
A/D converter external trigger input pin
198
166
136
D6
ADTG_6
119
-
-
-
ADTG_7
71
56
48
M5
ADTG_8
80
65
55
L6
AN00
114
94
78
L11
AN01
115
95
79
K13
AN02
116
96
80
K12
AN03
117
97
81
K14
AN04
118
98
82
K11
AN05
123
99
83
J13
AN06
124
100
84
J12
AN07
125
101
85
J11
AN08
130
106
86
H9
AN09
131
107
87
H12
AN10
132
108
88
H14
AN11
133
109
89
G14
AN12
134
110
90
H13
AN13
135
111
91
H11
G10
AN14
44
LQFP
ADTG_0
ADTG_4
A/D
Function
142
116
92
AN15
A/D converter analog input pin.
143
117
93
G9
AN16
ANxx describes A/D converter ch xx.
126
102
-
J10
AN17
127
103
-
J9
AN18
128
104
-
H10
AN19
129
105
-
J14
AN20
138
112
-
G13
AN21
139
113
-
F14
AN22
140
114
-
G12
AN23
141
115
-
G11
AN24
144
118
94
F10
AN25
145
119
95
F11
AN26
146
120
96
F12
AN27
147
121
97
F13
AN28
153
123
99
E11
AN29
154
124
100
E12
AN30
155
125
101
E13
AN31
156
126
102
D12
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Pin Number
Module
Pin Name
Function
TIOA0_0
TIOA0_1
Base Timer ch 0 TIOA pin
LQFP
LQFP
LBE
216
176
144
192
56
46
38
N2
45
35
30
J2
Base Timer
TIOA0_2
114
94
78
L11
0
TIOB0_0
82
67
57
L8
21
-
-
-
TIOB0_2
115
95
79
K13
TIOA1_0
57
47
39
N3
TIOB0_1
TIOA1_1
Base Timer ch 0 TIOB pin
46
36
31
K1
Base Timer
TIOA1_2
116
96
80
K12
1
TIOB1_0
83
68
58
K8
TIOB1_1
Base Timer ch 1 TIOA pin
22
-
-
-
TIOB1_2
123
99
83
J13
TIOA2_0
58
48
40
M3
TIOA2_1
Base Timer ch 1 TIOB pin
47
37
32
K2
124
100
84
J12
84
69
59
J8
26
-
-
-
125
101
85
J11
59
49
41
L4
48
38
33
K3
130
106
86
H9
91
76
60
K9
27
-
-
-
TIOB3_2
131
107
87
H12
TIOA4_0
60
50
42
M4
49
39
34
K4
Base Timer
TIOA2_2
2
TIOB2_0
TIOB2_1
Base Timer ch 2 TIOA pin
Base Timer ch 2 TIOB pin
TIOB2_2
TIOA3_0
TIOA3_1
Base Timer
TIOA3_2
3
TIOB3_0
TIOB3_1
TIOA4_1
Base Timer ch 3 TIOA pin
Base Timer ch 3 TIOB pin
Base Timer ch 4 TIOA pin
Base Timer
TIOA4_2
132
108
88
H14
4
TIOB4_0
92
77
61
P10
28
-
-
-
TIOB4_2
133
109
89
G14
TIOA5_0
61
51
43
N4
50
40
35
L1
TIOB4_1
TIOA5_1
Base Timer ch 4 TIOB pin
Base Timer ch 5 TIOA pin
Base Timer
TIOA5_2
134
110
90
H13
5
TIOB5_0
93
78
62
N10
29
-
-
-
TIOB5_2
135
111
91
H11
TIOA6_0
179
147
117
D9
TIOB5_1
TIOA6_1
Base Timer ch 5 TIOB pin
85
70
-
N8
Base Timer
TIOA6_2
200
-
-
-
6
TIOB6_0
178
146
116
B8
86
71
-
M8
199
-
-
-
TIOB6_1
TIOB6_2
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
LQFP
Base Timer ch 6 TIOA pin
Base Timer ch 6 TIOB pin
45
D a t a S h e e t
Pin Number
Module
Pin Name
Function
TIOA7_0
TIOA7_1
Base Timer ch 7 TIOA pin
LQFP
LBE
216
176
144
192
181
149
119
F9
87
72
-
N9
TIOA7_2
202
-
-
-
7
TIOB7_0
180
148
118
E9
88
73
-
P9
201
-
-
-
Base Timer ch 7 TIOB pin
TIOB7_2
TIOA8_0
TIOA8_1
Base Timer ch 8 TIOA pin
2
2
2
B2
142
116
92
G10
Base Timer
TIOA8_2
10
10
-
E2
8
TIOB8_0
18
17
14
F4
143
117
93
G9
TIOB8_2
11
11
-
E3
TIOA9_0
3
3
3
C2
126
102
-
J10
TIOB8_1
TIOA9_1
Base Timer ch 8 TIOB pin
Base Timer ch 9 TIOA pin
Base Timer
TIOA9_2
12
12
-
E4
9
TIOB9_0
23
18
15
F5
127
103
-
J9
TIOB9_2
13
-
-
-
TIOA10_0
4
4
4
C3
128
104
-
H10
TIOB9_1
TIOA10_1
Base Timer ch 9 TIOB pin
Base Timer ch 10 TIOA pin
Base Timer
TIOA10_2
19
-
-
-
10
TIOB10_0
24
19
16
F6
TIOB10_1
129
105
-
J14
TIOB10_2
20
-
-
-
TIOA11_0
5
5
5
D5
138
112
-
G13
TIOA11_1
Base Timer ch 10 TIOB pin
Base Timer ch 11 の TIOA pin
Base Timer
TIOA11_2
33
-
-
-
11
TIOB11_0
25
20
17
G2
139
113
-
F14
51
41
-
L2
TIOB11_1
Base Timer ch 11 TIOB pin
TIOB11_2
TIOA12_0
TIOA12_1
Base Timer ch 12 TIOA pin
6
6
6
D2
140
114
-
G12
Base Timer
TIOA12_2
52
42
-
L3
12
TIOB12_0
30
21
18
G3
141
115
-
G11
TIOB12_2
53
43
-
M2
TIOA13_0
7
7
7
D1
154
124
100
E12
TIOB12_1
TIOA13_1
Base Timer ch 12 TIOB pin
Base Timer ch 13 TIOA pin
Base Timer
TIOA13_2
34
24
-
G6
13
TIOB13_0
31
22
19
G4
155
125
101
E13
35
25
-
H4
TIOB13_1
TIOB13_2
CONFIDENTIAL
LQFP
Base Timer
TIOB7_1
46
LQFP
Base Timer ch 13 TIOB pin
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Pin Number
Module
Pin Name
Function
TIOA14_0
TIOA14_1
Base Timer ch 14 TIOA pin
LQFP
LQFP
LQFP
LBE
216
176
144
192
183
151
121
D8
89
74
-
M9
Base Timer
TIOA14_2
204
-
-
-
14
TIOB14_0
182
150
120
C8
90
75
-
L9
TIOB14_1
Base Timer ch 14 TIOB pin
TIOB14_2
203
-
-
-
TIOA15_0
187
155
125
B7
78
63
-
K5
TIOA15_1
Base Timer ch 15 TIOA pin
Base Timer
TIOA15_2
206
-
-
-
15
TIOB15_0
186
154
124
F8
79
64
-
K6
TIOB15_2
205
-
-
-
TX0_0
18
17
14
F4
TIOB15_1
TX0_1
Base timer ch 15 TIOB pin
35
25
-
H4
TX0_2
CAN interface ch 0 TX output pin
176
-
-
-
RX0_0
17
16
13
F3
34
24
-
G6
RX0_2
175
-
-
-
TX1_0
152
122
98
E10
118
98
82
K11
148
-
-
-
153
123
99
E11
117
97
81
K14
RX1_2
149
-
-
-
TX2_0
71
56
48
M5
79
64
-
K6
CAN 0
RX0_1
TX1_1
CAN interface ch 0 RX output pin
CAN interface ch 1 TX output pin
TX1_2
CAN 1
RX1_0
RX1_1
TX2_1
CAN-FD interface ch 2 TX output pin
CAN 2
TX2_2
69
-
-
-
(CAN-FD)
RX2_0
70
55
47
L5
78
63
-
K5
68
-
-
-
RX2_1
RX2_2
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
CAN interface ch 1 RX output pin
CAN-FD interface ch 2 RX input pin
47
D a t a S h e e t
Pin Number
Module
Pin Name
SWCLK
SWDIO
Function
Serial wire debug interface clock input
pin
Serial wire debug interface data input/
output pin
LQFP
LQFP
LBE
216
176
144
192
165
135
111
A12
167
137
113
B12
SWO
Serial wire viewer output pin
168
138
114
B11
TCK
J-TAG test clock input pin
165
135
111
A12
TDI
J-TAG test data input pin
166
136
112
C12
TDO
J-TAG debug data output pin
168
138
114
B11
167
137
113
B12
131
107
87
H12
132
108
88
H14
TMS
TRACECLK
J-TAG test mode state input/output pin
Trace CLK output pin of ETM/HTM
TRACED0
Debugger
LQFP
TRACED1
Trace data output pin of ETM/
133
109
89
G14
TRACED2
Trace data output pin of HTM
134
110
90
H13
TRACED3
135
111
91
H11
TRACED4
138
112
-
G13
TRACED5
139
113
-
F14
TRACED6
140
114
-
G12
TRACED7
141
115
-
G11
TRACED8
119
-
-
-
120
-
-
-
TRACED10
121
-
-
-
TRACED11
122
-
-
-
TRACED12
148
-
-
-
TRACED13
149
-
-
-
TRACED14
150
-
-
-
TRACED15
151
-
-
-
164
134
110
B13
TRACED9
Trace data output pin of HTM
TRSTX
48
CONFIDENTIAL
J-TAG test reset Input pin
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Pin Number
Module
Pin Name
Function
LQFP
LQFP
LBE
216
176
144
192
MAD00_0
81
66
56
J6
MAD01_0
82
67
57
L8
MAD02_0
83
68
58
K8
MAD03_0
84
69
59
J8
MAD04_0
91
76
60
K9
MAD05_0
92
77
61
P10
MAD06_0
93
78
62
N10
MAD07_0
96
79
63
L10
MAD08_0
97
80
64
K10
MAD09_0
98
81
65
M10
MAD10_0
142
116
92
G10
MAD11_0
143
117
93
G9
144
118
94
F10
MAD13_0
145
119
95
F11
MAD14_0
146
120
96
F12
MAD15_0
147
121
97
F13
External
MAD16_0
152
122
98
E10
bus
MAD17_0
153
123
99
E11
MAD18_0
154
124
100
E12
MAD19_0
50
40
35
L1
MAD20_0
49
39
34
K4
MAD21_0
48
38
33
K3
MAD22_0
47
37
32
K2
MAD23_0
46
36
31
K1
MAD24_0
45
35
30
J2
MCSX0_0
71
56
48
M5
MCSX1_0
70
55
47
L5
MCSX2_0
61
51
43
N4
60
50
42
M4
MAD12_0
External bus interface address bus
MCSX3_0
MCSX4_0
External bus interface chip select
59
49
41
L4
MCSX5_0
58
48
40
M3
MCSX6_0
57
47
39
N3
MCSX7_0
56
46
38
N2
MCSX8_0
88
73
-
P9
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
LQFP
output pin
49
D a t a S h e e t
Pin Number
Module
External
Pin Name
Function
LQFP
LQFP
LQFP
LBE
216
176
144
192
MADATA00_0
2
2
2
B2
MADATA01_0
3
3
3
C2
MADATA02_0
4
4
4
C3
MADATA03_0
5
5
5
D5
MADATA04_0
6
6
6
D2
MADATA05_0
7
7
7
D1
MADATA06_0
8
8
8
D3
MADATA07_0
9
9
9
D4
MADATA08_0
14
13
10
E5
MADATA09_0
15
14
11
F1
MADATA10_0
16
15
12
F2
MADATA11_0
17
16
13
F3
MADATA12_0
18
17
14
F4
MADATA13_0
23
18
15
F5
MADATA14_0
24
19
16
F6
MADATA15_0
External bus interface data bus
25
20
17
G2
MADATA16_0
(address/data multiplex bus)
10
-
-
-
MADATA17_0
11
-
-
-
MADATA18_0
12
-
-
-
MADATA19_0
13
-
-
-
MADATA20_0
19
-
-
-
MADATA21_0
20
-
-
-
MADATA22_0
21
-
-
-
MADATA23_0
22
-
-
-
MADATA24_0
26
-
-
-
MADATA25_0
27
-
-
-
MADATA26_0
28
-
-
-
MADATA27_0
29
-
-
-
MADATA28_0
33
-
-
-
MADATA29_0
51
-
-
-
MADATA30_0
52
-
-
-
MADATA31_0
53
-
-
-
MDQM0_0
30
21
18
G3
bus
MDQM1_0
External bus interface byte mask signal
31
22
19
G4
MDQM2_0
output pin
34
-
-
-
35
-
-
-
211
171
139
C4
80
65
55
L6
32
23
20
G5
MDQM3_0
MALE_0
MRDY_0
MCLKOUT_0
50
CONFIDENTIAL
External bus interface address latch
enable output signal for multiplex
External bus interface external RDY
input signal
External bus interface external clock
output pin
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Pin Number
Module
Pin Name
LQFP
LQFP
LQFP
LBE
216
176
144
192
47
37
32
K2
48
38
33
K3
50
40
35
L1
49
39
34
K4
209
169
137
C5
210
170
138
B4
90
75
-
L9
89
74
-
M9
85
70
-
N8
86
71
-
M8
87
72
-
N9
2
2
2
B2
38
28
23
H3
INT00_2
19
-
-
-
INT01_0
7
7
7
D1
MNALE_0
MNCLE_0
MNREX_0
MNWEX_0
MOEX_0
External
bus
Function
MWEX_0
MSDCLK_0
MSDCKE_0
MRASX_0
MCASX_0
MSDWEX_0
External bus interface ALE signal to
control NAND flash output pin
External bus interface CLE signal to
control NAND flash output pin
External bus interface read enable signal
to control NAND flash
External bus interface write enable signal
to control NAND flash
External bus interface read enable
signal for SRAM
External bus interface write enable
signal for SRAM
SDRAM interface
SDRAM clock output pin
SDRAM interface
SDRAM clock enable pin
SDRAM interface
SDRAM column active strobe pin
SDRAM interface
SDRAM row active strobe pin
SDRAM interface
SDRAM write enable pin
INT00_0
INT00_1
INT01_1
External interrupt request 00 input pin
41
31
26
H6
INT01_2
51
41
-
L2
INT02_0
14
13
10
E5
42
32
27
J5
INT02_1
External interrupt request 01 input pin
External interrupt request 02 input pin
External
INT02_2
26
-
-
-
interrupt
INT03_0
17
16
13
F3
43
33
28
J4
34
24
-
G6
INT03_1
External interrupt request 03 input pin
INT03_2
INT04_0
59
49
41
L4
100
83
67
M11
INT04_2
65
-
-
-
INT05_0
70
55
47
L5
86
71
-
M8
68
-
-
-
INT04_1
INT05_1
INT05_2
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
External interrupt request 04 input pin
External interrupt request 05 input pin
51
D a t a S h e e t
Pin Number
Module
Pin Name
Function
LQFP
LQFP
LQFP
LBE
216
176
144
192
80
65
55
L6
87
72
-
N9
INT06_2
103
-
-
-
INT07_0
82
67
57
L8
88
73
-
P9
102
-
-
-
INT06_0
INT06_1
INT07_1
External interrupt request 06 input pin
External interrupt request 07 input pin
INT07_2
INT08_0
114
94
78
L11
127
103
-
J9
INT08_2
119
-
-
-
INT09_0
123
99
83
J13
128
104
-
H10
INT09_2
120
-
-
-
INT10_0
130
106
86
H9
138
112
-
G13
INT08_1
INT09_1
INT10_1
External interrupt request 08 input pin
External interrupt request 09 input pin
External interrupt request 10 input pin
INT10_2
149
-
-
-
INT11_0
133
109
89
G14
139
113
-
F14
INT11_2
151
-
-
-
INT12_0
194
162
132
E7
169
139
-
C11
INT11_1
External interrupt request 11 input pin
External
INT12_1
interrupt
INT12_2
175
-
-
-
INT13_0
184
152
122
E8
INT13_1
External interrupt request 12 input pin
170
140
-
D11
INT13_2
176
-
-
-
INT14_0
192
160
130
A6
171
141
-
B10
INT14_2
201
-
-
-
INT15_0
193
161
131
D7
172
142
-
C10
206
-
-
-
25
20
17
G2
45
35
30
J2
30
21
18
G3
46
36
31
K1
31
22
19
G4
47
37
32
K2
36
26
21
H2
48
38
33
K3
91
76
60
K9
89
74
-
M9
INT14_1
INT15_1
External interrupt request 13 input pin
External interrupt request 14 input pin
External interrupt request 15 input pin
INT15_2
INT16_0
External interrupt request 16 input pin
INT16_1
INT17_0
External interrupt request 17 input pin
INT17_1
INT18_0
External interrupt request 18 input pin
INT18_1
INT19_0
External interrupt request 19 input pin
INT19_1
INT20_0
External interrupt request 20 input pin
INT20_1
52
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Pin Number
Module
Pin Name
Function
INT21_0
LQFP
LQFP
LQFP
LBE
216
176
144
192
96
79
63
L10
90
75
-
L9
99
82
66
N11
78
63
-
K5
56
46
38
N2
External interrupt request 21 input pin
INT21_1
INT22_0
External interrupt request 22 input pin
INT22_1
INT23_0
External interrupt request 23 input pin
INT23_1
79
64
-
K6
INT24_0
147
121
97
F13
131
107
87
H12
153
123
99
E11
117
97
81
K14
156
126
102
D12
142
116
92
G10
157
127
103
D13
External interrupt request 24 input pin
INT24_1
INT25_0
External interrupt request 25 input pin
INT25_1
INT26_0
External
interrupt
External interrupt request 26 input pin
INT26_1
INT27_0
External interrupt request 27 input pin
INT27_1
143
117
93
G9
INT28_0
190
158
128
A7
207
167
-
E6
198
166
136
D6
208
168
-
B5
209
169
137
C5
195
163
133
F7
212
172
140
B3
196
164
134
B6
158
128
104
C13
External interrupt request 28 input pin
INT28_1
INT29_0
External interrupt request 29 input pin
INT29_1
INT30_0
External interrupt request 30 input pin
INT30_1
INT31_0
External interrupt request 31 input pin
INT31_1
NMIX
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
Non-maskable interrupt input pin
53
D a t a S h e e t
Pin Number
Module
Pin Name
Function
LQFP
LQFP
LQFP
LBE
216
176
144
192
P00
164
134
110
B13
P01
165
135
111
A12
P02
166
136
112
C12
167
137
113
B12
P04
168
138
114
B11
P08
30
21
18
G3
P03
General-purpose I/O port 0
P09
31
22
19
G4
P0A
32
23
20
G5
P10
114
94
78
L11
P11
115
95
79
K13
P12
116
96
80
K12
P13
117
97
81
K14
P14
118
98
82
K11
P15
123
99
83
J13
P16
124
100
84
J12
P17
125
101
85
J11
P18
130
106
86
H9
P19
131
107
87
H12
P1A
132
108
88
H14
P1B
133
109
89
G14
P1C
134
110
90
H13
P1D
135
111
91
H11
P1E
142
116
92
G10
P1F
143
117
93
G9
P20
158
128
104
C13
P21
157
127
103
D13
P22
156
126
102
D12
P23
155
125
101
E13
P24
154
124
100
E12
153
123
99
E11
P26
152
122
98
E10
P27
147
121
97
F13
P28
146
120
96
F12
P29
145
119
95
F11
P2A
144
118
94
F10
General-purpose I/O port 1
GPIO
P25
54
CONFIDENTIAL
General-purpose I/O port 2
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Pin Number
Module
Pin Name
Function
LQFP
LQFP
LQFP
LBE
216
176
144
192
P30
34
24
-
G6
P31
35
25
-
H4
P32
36
26
21
H2
P33
37
27
22
J1
P34
38
28
23
H3
P35
41
31
26
H6
P36
42
32
27
J5
43
33
28
J4
P38
44
34
29
J3
P39
45
35
30
J2
P3A
46
36
31
K1
P3B
47
37
32
K2
P3C
48
38
33
K3
P3D
49
39
34
K4
P3E
50
40
35
L1
P40
56
46
38
N2
P41
57
47
39
N3
P42
58
48
40
M3
P43
59
49
41
L4
P44
60
50
42
M4
P45
61
51
43
N4
73
58
50
P5
74
59
51
P6
P48
76
61
53
N6
P49
77
62
54
M6
P4A
65
-
-
-
P4B
66
-
-
-
P4C
67
-
-
-
P4D
68
-
-
-
P4E
69
-
-
-
P37
General-purpose I/O port 3
GPIO
P46
P47
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
General-purpose I/O port 4
55
D a t a S h e e t
Pin Number
Module
Pin Name
Function
LQFP
LQFP
LQFP
LBE
216
176
144
192
P50
10
10
-
E2
P51
11
11
-
E3
P52
12
12
-
E4
P53
13
-
-
-
P54
19
-
-
-
P55
20
-
-
-
P56
21
-
-
-
P57
22
-
-
-
P58
26
-
-
-
P59
27
-
-
-
P5A
28
-
-
-
P5B
29
-
-
-
P5C
33
-
-
-
P5D
51
41
-
L2
P5E
52
42
-
L3
P5F
53
43
-
M2
P60
212
172
140
B3
P61
211
171
139
C4
P62
210
170
138
B4
P63
209
169
137
C5
P64
208
168
-
B5
P65
207
167
-
E6
206
-
-
-
205
-
-
-
P68
204
-
-
-
P69
203
-
-
-
P6A
202
-
-
-
P6B
201
-
-
-
P6C
200
-
-
-
P6D
199
-
-
-
P6E
198
166
136
D6
General-purpose I/O port 5
GPIO
P66
P67
56
CONFIDENTIAL
General-purpose I/O port 6
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Pin Number
Module
Pin Name
LQFP
LQFP
LQFP
LBE
216
176
144
192
P70
80
65
55
L6
P71
81
66
56
J6
P72
82
67
57
L8
P73
83
68
58
K8
P74
84
69
59
J8
P75
91
76
60
K9
P76
92
77
61
P10
93
78
62
N10
P78
96
79
63
L10
P79
97
80
64
K10
P7A
98
81
65
M10
P7B
99
82
66
N11
P7C
100
83
67
M11
P7D
70
55
47
L5
P7E
71
56
48
M5
P80
214
174
142
A3
215
175
143
A2
P82
160
130
106
D14
P83
161
131
107
C14
P90
169
139
-
C11
P91
170
140
-
D11
P92
171
141
-
B10
P93
172
142
-
C10
P94
173
143
-
D10
P95
174
144
-
B9
P96
175
-
-
-
P97
176
-
-
-
P77
GPIO
Function
General-purpose I/O port 7
P81
General-purpose I/O port 8
General-purpose I/O port 9
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
57
D a t a S h e e t
Pin Number
Module
Pin Name
Function
LQFP
LQFP
LQFP
LBE
216
176
144
192
PA0
2
2
2
B2
PA1
3
3
3
C2
PA2
4
4
4
C3
PA3
5
5
5
D5
PA4
6
6
6
D2
PA5
7
7
7
D1
PA6
8
8
8
D3
PA7
9
9
9
D4
PA8
14
13
10
E5
PA9
15
14
11
F1
PAA
16
15
12
F2
PAB
17
16
13
F3
PAC
18
17
14
F4
PAD
23
18
15
F5
PAE
24
19
16
F6
PAF
25
20
17
G2
PB0
126
102
-
J10
PB1
127
103
-
J9
PB2
128
104
-
H10
PB3
129
105
-
J14
PB4
138
112
-
G13
PB5
139
113
-
F14
PB6
140
114
-
G12
PB7
141
115
-
G11
PB8
119
-
-
-
PB9
120
-
-
-
PBA
121
-
-
-
PBB
122
-
-
-
PBC
148
-
-
-
PBD
149
-
-
-
PBE
150
-
-
-
PBF
151
-
-
-
General-purpose I/O port A
GPIO
General-purpose I/O port B
58
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Pin Number
Module
Pin Name
Function
LQFP
LQFP
LQFP
LBE
216
176
144
192
PC0
177
145
115
C9
PC1
178
146
116
B8
PC2
179
147
117
D9
PC3
180
148
118
E9
PC4
181
149
119
F9
PC5
182
150
120
C8
PC6
183
151
121
D8
184
152
122
E8
PC8
185
153
123
A10
PC9
186
154
124
F8
PCA
187
155
125
B7
PCB
190
158
128
A7
PCC
191
159
129
C7
PCD
192
160
130
A6
PCE
193
161
131
D7
PCF
194
162
132
E7
PD0
195
163
133
F7
196
164
134
B6
PD2
197
165
135
C6
PE0
104
84
68
N13
106
86
70
P12
PE3
107
87
71
P13
PF0
78
63
-
K5
PF1
79
64
-
K6
PF2
85
70
-
N8
PF3
86
71
-
M8
PF4
87
72
-
N9
PF5
88
73
-
P9
89
74
-
M9
PF7
90
75
-
L9
PF8
94
-
-
-
PF9
95
-
-
-
PFA
101
-
-
-
PFB
102
-
-
-
PFC
103
-
-
-
PC7
General-purpose I/O port C
GPIO
PD1
PE2
PF6
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
General-purpose I/O port D
General-purpose I/O port E
General-purpose I/O port F
59
D a t a S h e e t
Pin Number
Module
Pin Name
Function
SIN0_0
LQFP
LQFP
LQFP
LBE
216
176
144
192
157
127
103
D13
151
-
-
-
156
126
102
D12
150
-
-
-
155
125
101
E13
149
-
-
-
7
7
7
D1
80
65
55
L6
8
8
8
D3
81
66
56
J6
9
9
9
D4
70
55
47
L5
130
106
86
H9
45
35
30
J2
131
107
87
H12
46
36
31
K1
132
108
88
H14
47
37
32
K2
Multi-function serial interface ch 0 input pin
SIN0_1
SOT0_0
(SDA0_0)
Multi-function serial interface ch 0 output
pin
This pin operates as SOT0 when it is used
Multi-
SOT0_1
Function
(SDA0_1)
Serial
0
in a UART/CSIO/LIN (operation modes 0 to
3) and as SDA0 when it is used in an I2C
(operation mode 4).
SCK0_0
Multi-function serial interface ch 0 clock I/O
(SCL0_0)
pin
This pin operates as SCK0 when it is used
SCK0_1
(SCL0_1)
in a CSIO (operation mode 2) and as SCL0
when it is used in an I2C (operation mode
4)
SIN1_0
Multi-function serial interface ch 1 input pin
SIN1_1
SOT1_0
(SDA1_0)
Multi-function serial interface ch 1 output
pin
This pin operates as SOT1 when it is used
Multi-
SOT1_1
Function
(SDA1_1)
Serial
1
in a UART/CSIO/LIN (operation modes 0 to
3) and as SDA1 when it is used in an I2C
(operation mode 4).
SCK1_0
Multi-function serial interface ch 1 clock I/O
(SCL1_0)
pin
This pin operates as SCK1 when it is used
SCK1_1
in a CSIO (operation mode 2) and as SCL1
(SCL1_1)
when it is used in an I2C
(operation mode 4).
SIN2_0
Multi-function serial interface ch 2 input pin
SIN2_1
SOT2_0
(SDA2_0)
Multi-function serial interface ch 2 output
pin
This pin operates as SOT2 when it is used
Multi-
SOT2_1
Function
(SDA2_1)
Serial
2
in a UART/CSIO/LIN (operation modes 0 to
3) and as SDA2 when it is used in an I2C
(operation mode 4).
SCK2_0
Multi-function serial interface ch 2 clock I/O
(SCL2_0)
pin
This pin operates as SCK2 when it is used
SCK2_1
in a CSIO (operation mode 2) and as SCL2
(SCL2_1)
when it is used in an I2C (operation mode
4).
60
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Pin Number
Module
Pin Name
Function
SIN3_0
LQFP
LQFP
LQFP
LBE
216
176
144
192
25
20
17
G2
56
46
38
N2
24
19
16
F6
57
47
39
N3
23
18
15
F5
58
48
40
M3
212
172
140
B3
193
161
131
D7
211
171
139
C4
192
160
130
A6
210
170
138
B4
198
166
136
D6
Multi-function serial interface ch 3 input pin
SIN3_1
SOT3_0
(SDA3_0)
Multi-function serial interface ch 3 output
pin
This pin operates as SOT3 when it is used
Multi-
SOT3_1
Function
(SDA3_1)
Serial
3
in a UART/CSIO/LIN (operation modes 0 to
3) and as SDA3 when it is used in an I2C
(operation mode 4).
SCK3_0
Multi-function serial interface ch 3 clock I/O
(SCL3_0)
pin
This pin operates as SCK3 when it is used
SCK3_1
in a CSIO (operation modes 2) and as
(SCL3_1)
SCL3 when it is used in an I2C (operation
mode 4).
SIN4_0
Multi-function serial interface ch 4 input pin
SIN4_1
SOT4_0
(SDA4_0)
Multi-function serial interface ch 4 output
pin
This pin operates as SOT4 when it is used
SOT4_1
(SDA4_1)
in a UART/CSIO/LIN (operation modes 0 to
3) and as SDA4 when it is used in an I2C
(operation mode 4).
MultiFunction
SCK4_0
Multi-function serial interface ch 4 clock I/O
Serial
(SCL4_0)
pin
This pin operates as SCK4 when it is used
4
SCK4_1
in a CSIO (operation mode 2) and as SCL4
(SCL4_1)
when it is used in an I2C (operation mode
4).
CTS4_0
Multi-function serial interface ch 4 CTS
208
168
-
B5
CTS4_1
input pin
197
165
135
C6
RTS4_0
Multi-function serial interface ch 4 RTS
209
169
137
C5
RTS4_1
output pin
194
162
132
E7
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
61
D a t a S h e e t
Pin Number
Module
Pin Name
Function
SIN5_0
LQFP
LQFP
LQFP
LBE
216
176
144
192
147
121
97
F13
170
140
-
D11
146
120
96
F12
171
141
-
B10
145
119
95
F11
172
142
-
C10
Multi-function serial interface ch 5 input pin
SIN5_1
SOT5_0
(SDA5_0)
Multi-function serial interface ch 5 output
pin
This pin operates as SOT5 when it is used
SOT5_1
(SDA5_1)
in a UART/CSIO/LIN (operation modes 0 to
3) and as SDA5 when it is used in an I2C
(operation mode 4).
MultiFunction
SCK5_0
Multi-function serial interface ch 5 clock I/O
Serial
(SCL5_0)
pin
This pin operates as SCK5 when it is
5
SCK5_1
used in a CSIO (operation mode 2)
(SCL5_1)
and as SCL5 when it is used in an I2C
(operation mode 4).
CTS5_0
Multi-function serial interface ch 5 CTS
144
118
94
F10
CTS5_1
input pin
173
143
-
D10
RTS5_0
Multi-function serial interface ch 5 RTS
143
117
93
G9
RTS5_1
output pin
174
144
-
B9
96
79
63
L10
117
97
81
K14
97
80
64
K10
118
98
82
K11
98
81
65
M10
126
102
-
J10
N11
SIN6_0
Multi-function serial interface ch 6 input pin
SIN6_1
SOT6_0
(SDA6_0)
Multi-function serial interface ch 6 output
pin
This pin operates as SOT6 when it is used
SOT6_1
(SDA6_1)
in a UART/CSIO/LIN (operation modes 0 to
3) and as SDA6 when it is used in an I2C
(operation mode 4).
Multi-
SCK6_0
Multi-function serial interface ch 6 clock I/O
(SCL6_0)
pin
This pin operates as SCK6 when it is used
Function
Serial
SCK6_1
in a CSIO (operation mode 2) and as SCL6
6
(SCL6_1)
when it is used in an I2C (operation mode
4).
62
CONFIDENTIAL
SCS60_0
Multi-function serial interface ch 6 chip
99
82
66
SCS60_1
select 0 input/output pin
127
103
-
J9
SCS61_0
Multi-function serial interface ch 6 chip
100
83
67
M11
SCS61_1
select1 input/output pin
128
104
-
H10
SCS62_0
Multi-function serial interface ch 6 chip
79
64
-
K6
SCS62_1
select2 input/output pin
129
105
-
J14
SCS63_0
Multi-function serial interface ch 6 chip
78
63
-
K5
SCS63_1
select3 input/output pin
119
-
-
-
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Pin Number
Module
Pin Name
SIN7_0
SIN7_1
SOT7_0
(SDA7_0)
Function
Multi-function serial interface ch 7 input pin
Multi-function serial interface ch 7 output
pin
LQFP
LQFP
LQFP
LBE
216
176
144
192
14
13
10
E5
103
-
-
-
15
14
11
F1
102
-
-
-
16
15
12
F2
101
-
-
-
This pin operates as SOT7 when it is used
SOT7_1
(SDA7_1)
in a UART/CSIO/LIN (operation modes 0 to
3) and as SDA7 when it is used in an I2C
(operation mode 4).
Multi-
SCK7_0
Multi-function serial interface ch 7
(SCL7_0)
clock I/O pin
This pin operates as SCK7 when it is used
Function
Serial
SCK7_1
in a CSIO (operation mode 2) and as SCL7
7
(SCL7_1)
when it is used in an I2C (operation mode
4).
SCS70_0
Multi-function serial interface ch 7 chip
17
16
13
F3
SCS70_1
select 0 input/output pin
94
-
-
-
SCS71_0
Multi-function serial interface ch 7 chip
18
17
14
F4
SCS71_1
select 1 input/output pin
95
-
-
-
SCS72_0
Multi-function serial interface ch 7 chip
10
10
-
E2
SCS72_1
select 2 input/output pin
68
-
-
-
SCS73_0
Multi-function serial interface ch 7 chip
11
11
-
E3
SCS73_1
select 3 input/output pin
69
-
-
-
91
76
60
K9
138
112
-
G13
92
77
61
P10
139
113
-
F14
93
78
62
N10
140
114
-
G12
SIN8_0
SIN8_1
SOT8_0
(SDA8_0)
Multi-function serial interface ch 8 input pin
Multi-function serial interface ch 8 output
pin
This pin operates as SOT8 when it is used
Multi-
SOT8_1
Function
(SDA8_1)
Serial
8
in a UART/CSIO/LIN (operation modes 0 to
3) and as SDA8 when it is used in an I2C
(operation mode 4).
SCK8_0
Multi-function serial interface ch 8 clock I/O
(SCL8_0)
pin
This pin operates as SCK8 when it is used
SCK8_1
in a CSIO (operation mode 2) and as SCL8
(SCL8_1)
when it is used in an I2C (operation mode
4).
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
63
D a t a S h e e t
Pin Number
Module
Pin Name
SIN9_0
SIN9_1
SOT9_0
(SDA9_0)
Function
Multi-function serial interface ch 9 input pin
Multi-function serial interface ch 9 output
pin
LQFP
LQFP
LQFP
LBE
216
176
144
192
82
67
57
L8
120
-
-
-
83
68
58
K8
121
-
-
-
84
69
59
J8
122
-
-
-
This pin operates as SOT9 when it is used
Multi-
SOT9_1
Function
(SDA9_1)
Serial
9
in a UART/CSIO/LIN (operation modes 0 to
3) and as SDA9 when it is used in an I2C
(operation mode 4).
SCK9_0
Multi-function serial interface ch 9 clock I/O
(SCL9_0)
pin
This pin operates as SCK9 when it is used
SCK9_1
in a CSIO (operation mode 2) and as SCL9
(SCL9_1)
when it is used in an I2C (operation mode
4).
SIN10_0
Multi-function serial interface ch 10 input
114
94
78
L11
SIN10_1
pin
51
41
-
L2
SOT10_0
Multi-function serial interface ch 10 output
115
95
79
K13
52
42
-
L3
116
96
80
K12
53
43
-
M2
(SDA10_0)
pin
This pin operates as SOT10 when it is
Multi-
SOT10_1
Function
(SDA10_1)
modes 0 to 3) and as SDA10 when it is
used in an I2C (operation mode 4).
Serial
10
used in a UART/CSIO/LIN (operation
SCK10_0
Multi-function serial interface ch 10 clock
(SCL10_0)
I/O pin
This pin operates as SCK10 when it is
SCK10_1
used in a CSIO (operation mode 2) and as
(SCL10_1)
SCL10 when it is used in an I2C (operation
mode 4).
SIN11_0
Multi-function serial interface ch 11 input
123
99
83
J13
SIN11_1
pin
26
-
-
-
SOT11_0
Multi-function serial interface ch 11 output
124
100
84
J12
27
-
-
-
125
101
85
J11
28
-
-
-
(SDA11_0)
pin
This pin operates as SOT11 when it is
Multi-
SOT11_1
Function
(SDA11_1)
modes 0 to 3) and as SDA11 when it is
used in an I2C (operation mode 4).
Serial
11
used in a UART/CSIO/LIN (operation
SCK11_0
Multi-function serial interface ch 11 clock
(SCL11_0)
I/O pin
This pin operates as SCK11 when it is
SCK11_1
used in a CSIO (operation mode 2) and as
(SCL11_1)
SCL11 when it is used in an I2C (operation
mode 4).
64
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Pin Number
Module
Pin Name
Function
LQFP
LQFP
LQFP
LBE
216
176
144
192
SIN12_0
Multi-function serial interface ch 12 input
133
109
89
G14
SIN12_1
pin
65
-
-
-
SOT12_0
Multi-function serial interface ch 12 output
134
110
90
H13
66
-
-
-
135
111
91
H11
67
-
-
-
(SDA12_0)
pin
This pin operates as SOT12 when it is
Multi-
SOT12_1
Function
(SDA12_1)
modes 0 to 3) and as SDA12 when it is
used in an I2C (operation mode 4).
Serial
12
used in a UART/CSIO/LIN (operation
SCK12_0
Multi-function serial interface ch 12 clock
(SCL12_0)
I/O pin
This pin operates as SCK12 when it is
SCK12_1
used in a CSIO (operation mode 2) and as
(SCL12_1)
SCL12 when it is used in an I2C (operation
mode 4).
SIN13_0
Multi-function serial interface ch 13 input
48
38
33
K3
SIN13_1
pin
206
-
-
-
SOT13_0
Multi-function serial interface ch 13 output
49
39
34
K4
205
-
-
-
50
40
35
L1
204
-
-
-
(SDA13_0)
pin
This pin operates as SOT13 when it is
Multi-
SOT13_1
Function
(SDA13_1)
modes 0 to 3) and as SDA13 when it is
used in an I2C (operation mode 4).
Serial
13
used in a UART/CSIO/LIN (operation
SCK13_0
Multi-function serial interface ch 13 clock
(SCL13_0)
I/O pin
This pin operates as SCK13 when it is
SCK13_1
used in a CSIO (operation mode 2) and as
(SCL13_1)
SCL13 when it is used in an I2C (operation
mode 4).
SIN14_0
Multi-function serial interface ch 14 input
30
21
18
G3
SIN14_1
pin
201
-
-
-
SOT14_0
Multi-function serial interface ch 14 output
31
22
19
G4
200
-
-
-
32
23
20
G5
199
-
-
-
(SDA14_0)
pin
This pin operates as SOT14 when it is
Multi-
SOT14_1
Function
(SDA14_1)
modes 0 to 3) and as SDA14 when it is
used in an I2C (operation mode 4).
Serial
14
used in a UART/CSIO/LIN (operation
SCK14_0
Multi-function serial interface ch 14 clock
(SCL14_0)
I/O pin
This pin operates as SCK14 when it is
SCK14_1
used in a CSIO (operation mode 2) and as
(SCL14_1)
SCL14 when it is used in an I2C (operation
mode 4).
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
65
D a t a S h e e t
Pin Number
Module
Pin Name
Function
LQFP
LQFP
LQFP
LBE
216
176
144
192
SIN15_0
Multi-function serial interface ch 15 input
59
49
41
L4
SIN15_1
pin
19
-
-
-
SOT15_0
Multi-function serial interface ch 15 output
60
50
42
M4
20
-
-
-
61
51
43
N4
21
-
-
-
(SDA15_0)
pin
This pin operates as SOT15 when it is
Multi-
SOT15_1
Function
(SDA15_1)
modes 0 to 3) and as SDA15 when it is
used in an I2C (operation mode 4).
Serial
15
used in a UART/CSIO/LIN (operation
SCK15_0
Multi-function serial interface ch 15 clock
(SCL15_0)
I/O pin
This pin operates as SCK15 when it is
SCK15_1
used in a CSIO (operation mode 2) and as
(SCL15_1)
SCL15 when it is used in an I2C (operation
mode 4).
66
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Pin Number
Module
Pin Name
DTTI0X_0
Function
Input signal controlling waveform
LQFP
LQFP
LQFP
LBE
216
176
144
192
44
34
29
J3
21
-
-
-
generator outputs RTO00 to RTO05 of
DTTI0X_1
Multi-Function Timer 0.
FRCK0_0
16-bit free-run timer ch 0 external
37
27
22
J1
FRCK0_1
clock input pin
29
-
-
-
IC00_0
43
33
28
J4
IC00_1
22
-
-
-
42
32
27
J5
26
-
-
-
41
31
26
H6
IC02_1
27
-
-
-
IC03_0
38
28
23
H3
IC03_1
28
-
-
-
45
35
30
J2
10
10
-
E2
46
36
31
K1
11
11
-
E3
47
37
32
K2
12
12
-
E4
48
38
33
K3
13
-
-
-
49
39
34
K4
19
-
-
-
50
40
35
L1
20
-
-
-
IC01_0
IC01_1
16-bit input capture input pin of
Multi-Function Timer 0.
IC02_0
RTO00_0
(PPG00_0)
RTO00_1
Multi-
(PPG00_1)
Function
RTO01_0
Timer 0
(PPG00_0)
RTO01_1
(PPG00_1)
RTO02_0
(PPG02_0)
RTO02_1
(PPG02_1)
RTO03_0
(PPG02_0)
RTO03_1
(PPG02_1)
RTO04_0
(PPG04_0)
RTO04_1
(PPG04_1)
RTO05_0
(PPG04_0)
RTO05_1
(PPG04_1)
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
ICxx describes channel number.
Waveform generator output pin of
Multi-Function Timer 0.
This pin operates as PPG00 when it is
used in PPG0 output modes.
Waveform generator output pin of
Multi-Function Timer 0.
This pin operates as PPG00 when it is
used in PPG0 output modes.
Waveform generator output pin of
Multi-Function Timer 0.
This pin operates as PPG02 when it is
used in PPG0 output modes.
Waveform generator output pin of
Multi-Function Timer 0.
This pin operates as PPG02 when it is
used in PPG0 output modes.
Waveform generator output pin of
Multi-Function Timer 0.
This pin operates as PPG04 when it is
used in PPG0 output modes.
Waveform generator output pin of
Multi-Function Timer 0.
This pin operates as PPG04 when it is
used in PPG0 output modes.
67
D a t a S h e e t
Pin Number
Module
Pin Name
DTTI1X_0
Function
Input signal controlling waveform
LQFP
LQFP
LQFP
LBE
216
176
144
192
70
55
47
L5
94
-
-
-
generator outputs RTO10 to RTO15 of
DTTI1X_1
Multi-Function Timer 1.
FRCK1_0
16-bit free-run timer ch 1 external
71
56
48
M5
FRCK1_1
clock input pin
78
63
-
K5
IC10_0
96
79
63
L10
IC10_1
95
-
-
-
97
80
64
K10
IC11_0
IC11_1
16-bit input capture input pin of
101
-
-
-
98
81
65
M10
IC12_1
102
-
-
-
IC13_0
99
82
66
N11
IC13_1
103
-
-
-
56
46
38
N2
85
70
-
N8
57
47
39
N3
86
71
-
M8
58
48
40
M3
87
72
-
N9
59
49
41
L4
88
73
-
P9
60
50
42
M4
89
74
-
M9
61
51
43
N4
90
75
-
L9
Multi-Function Timer 1.
IC12_0
RTO10_0
(PPG10_0)
RTO10_1
MultiFunction
Timer 1
(PPG10_1)
RTO11_0
(PPG10_0)
RTO11_1
(PPG10_1)
RTO12_0
(PPG12_0)
RTO12_1
(PPG12_1)
RTO13_0
(PPG12_0)
RTO13_1
(PPG12_1)
RTO14_0
(PPG14_0)
RTO14_1
(PPG14_1)
RTO15_0
(PPG14_0)
RTO15_1
(PPG14_1)
68
CONFIDENTIAL
ICxx describes channel number.
Waveform generator output pin of
Multi-Function Timer 1.
This pin operates as PPG10 when it is
used in PPG1 output modes.
Waveform generator output pin of
Multi-Function Timer 1.
This pin operates as PPG10 when it is
used in PPG1 output modes.
Waveform generator output pin of
Multi-Function Timer 1.
This pin operates as PPG12 when it is
used in PPG1 output modes.
Waveform generator output pin of
Multi-Function Timer 1.
This pin operates as PPG12 when it is
used in PPG1 output modes.
Waveform generator output pin of
Multi-Function Timer 1.
This pin operates as PPG14 when it is
used in PPG1 output modes.
Waveform generator output pin of
Multi-Function Timer 1.
This pin operates as PPG14 when it is
used in PPG1 output modes.
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Pin Number
Module
Pin Name
DTTI2X_0
Function
Input signal controlling waveform
LQFP
LQFP
LQFP
LBE
216
176
144
192
8
8
8
D3
202
-
-
-
generator outputs RTO20 to RTO25 of
DTTI2X_1
Multi-Function Timer 1.
FRCK2_0
16-bit free-run timer ch 2 external
17
16
13
F3
FRCK2_1
clock input pin
197
165
135
C6
IC20_0
9
9
9
D4
IC20_1
201
-
-
-
IC21_0
14
13
10
E5
200
-
-
-
15
14
11
F1
IC22_1
199
-
-
-
IC23_0
16
15
12
F2
IC23_1
198
166
136
D6
2
2
2
B2
203
-
-
-
3
3
3
C2
204
-
-
-
4
4
4
C3
205
-
-
-
5
5
5
D5
206
-
-
-
6
6
6
D2
207
167
-
E6
7
7
7
D1
208
168
-
B5
IC21_1
16-bit input capture input pin of
Multi-Function Timer 2.
IC22_0
RTO20_0
(PPG20_0)
RTO20_1
MultiFunction
Timer 2
(PPG20_1)
RTO21_0
(PPG20_0)
RTO21_1
(PPG20_1)
RTO22_0
(PPG22_0)
RTO22_1
(PPG22_1)
RTO23_0
(PPG22_0)
RTO23_1
(PPG22_1)
RTO24_0
(PPG24_0)
RTO24_1
(PPG24_1)
RTO25_0
(PPG24_0)
RTO25_1
(PPG24_1)
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
ICxx describes channel number.
Waveform generator output pin of
Multi-Function Timer 2.
This pin operates as PPG20 when it is
used in PPG2 output modes.
Waveform generator output pin of
Multi-Function Timer 2.
This pin operates as PPG20 when it is
used in PPG2 output modes.
Waveform generator output pin of
Multi-Function Timer 2.
This pin operates as PPG22 when it is
used in PPG2 output modes.
Waveform generator output pin of
Multi-Function Timer 2.
This pin operates as PPG22 when it is
used in PPG2 output modes.
Waveform generator output pin of
Multi-Function Timer 2.
This pin operates as PPG24 when it is
used in PPG2 output modes.
Waveform generator output pin of
Multi-Function Timer 2.
This pin operates as PPG24 when it is
used in PPG2 output modes.
69
D a t a S h e e t
Pin Number
Module
Pin Name
Function
LQFP
LQFP
LQFP
LBE
216
176
144
192
56
46
38
N2
65
-
-
-
AIN0_2
114
94
78
L11
Position/
BIN0_0
57
47
39
N3
Revolution
BIN0_1
66
-
-
-
Counter
BIN0_2
115
95
79
K13
58
48
40
M3
67
-
-
-
ZIN0_2
116
96
80
K12
AIN1_0
91
76
60
K9
94
-
-
-
AIN1_2
123
99
83
J13
Position/
BIN1_0
92
77
61
P10
Revolution
BIN1_1
45
-
-
-
Counter
BIN1_2
124
100
84
J12
ZIN1_0
93
78
62
N10
101
-
-
-
ZIN1_2
125
101
85
J11
AIN2_0
2
2
2
B2
32
23
20
G5
AIN2_2
120
-
-
-
Position/
BIN2_0
3
3
3
C2
Revolution
BIN2_1
36
26
21
H2
Counter
BIN2_2
121
-
-
-
ZIN2_0
4
4
4
C3
37
27
22
J1
ZIN2_2
122
-
-
-
AIN3_0
18
17
14
F4
45
35
30
J2
149
-
-
-
23
18
15
F5
46
36
31
K1
AIN0_0
AIN0_1
Quadrature
0
AIN1_1
1
ZIN1_1
AIN2_1
Quadrature
2
ZIN2_1
AIN3_1
Quadrature
QPRC ch 0 BIN input pin
ZIN0_0
ZIN0_1
Quadrature
QPRC ch 0 AIN input pin
QPRC ch 0 ZIN input pin
QPRC ch 1 AIN input pin
QPRC ch 1 BIN input pin
QPRC ch 1 ZIN input pin
QPRC ch 2 AIN input pin
QPRC ch 2 BIN input pin
QPRC ch 2 ZIN input pin
QPRC ch 3 AIN input pin
AIN3_2
Position/
BIN3_0
Revolution
BIN3_1
Counter
BIN3_2
150
-
-
-
ZIN3_0
24
19
16
F6
47
37
32
K2
151
-
-
-
3
ZIN3_1
QPRC ch 3 BIN input pin
QPRC ch 3 ZIN input pin
ZIN3_2
RTCCO_0
0.5 seconds pulse output pin of
211
171
139
C4
Real-time
RTCCO_1
real-time clock
33
-
-
-
clock
SUBOUT_0
211
171
139
C4
33
-
-
-
Sub-clock output pin
SUBOUT_1
70
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Pin Number
Module
USB0
Pin Name
tion
mode
LBE
176
144
192
214
174
142
A3
UDP0
USB ch 0 function/host D + pin
215
175
143
A2
USB ch 0 external pull-up control pin
211
171
139
C4
UDM1
USB ch 1 function/host D – pin
160
130
106
D14
UDP1
USB ch 1 function/host D + pin
161
131
107
C14
USB ch 1 external pull-up control pin
155
125
101
E13
158
128
104
C13
14
13
10
E5
70
55
47
L5
212
172
140
B3
WKUP1
WKUP2
WKUP3
Deep Standby mode return signal input
pin 0
Deep Standby mode return signal input
pin 1
Deep Standby mode return signal input
pin 2
Deep Standby mode return signal input
pin 3
D/A
DA0
D/A converter ch 0 analog output pin
100
83
67
M11
converter
DA1
D/A converter ch 1 analog output pin
99
82
66
N11
On-board regulator control pin
76
61
53
N6
77
62
54
M6
38
28
23
H3
41
31
26
H6
36
26
21
H2
VREGCTL
VBAT
VWAKEUP
S_CLK_0
S_CMD_0
The return signal input pin from a
hibernation state
SD memory card interface
SD memory card clock output pin
SD memory card interface
SD memory card command output
S_DATA1_0
S_DATA0_0
SD memory card interface
37
27
22
J1
S_DATA3_0
SD memory card data bus
42
32
27
J5
43
33
28
J4
45
35
30
J2
44
34
29
J3
SD I/F
S_DATA2_0
S_CD_0
S_WP_0
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
LQFP
216
WKUP0
Consump-
LQFP
USB ch 0 function/host D – pin
UHCONX1
Low power
LQFP
UDM0
UHCONX0
USB1
Function
SD memory card interface
SD memory card detection pin
SD memory card interface
SD memory card write protection
71
D a t a S h e e t
Pin Number
Module
Pin Name
LQFP
LBE
176
144
192
186
154
124
F8
Clock output for Ethernet PHY
190
158
128
A7
E_CRS
Carrier detection
187
155
125
B7
E_MDC
Management clock
184
152
122
E8
E_MDIO
Management data I/O
183
151
121
D8
E_PPS
PTP counter monitor
198
166
136
D6
E_RX00
Received data0
181
149
119
F9
E_RX01
Received data1
180
148
118
E9
E_RX02
Received data2
179
147
117
D9
E_RX03
Received data3
178
146
116
B8
185
153
123
A10
120
C8
E_RXCK_RE
FCK
Received clock input/
Reference clock
E_RXDV
Received data enable
182
150
E_RXER
Received data error detection
177
145
115
C9
E_TCK
Transition clock input
191
159
129
C7
E_TX00
Transition data0
196
164
134
B6
E_TX01
Transition data1
195
163
133
F7
E_TX02
Transition data2
194
162
132
E7
E_TX03
Transition data3
193
161
131
D7
E_TXEN
Transition data enable
197
165
135
C6
E_TXER
Transition data error detection
192
160
130
A6
I S external clock pin
51
41
-
L2
I2S serial transition data output pin
52
42
-
L3
2
53
43
-
M2
2
34
24
-
G6
2
I2SMCLK0_0
I2SDO0_0
IS
LQFP
216
E_COUT
2
LQFP
Collision detection
E_COL
Ethernet
Function
I2SWS0_0
I2SDI0_0
2
I S frame synchronization signal pin
I S serial received data input pin
I2SCK0_0
I S bit clock pin
35
25
-
H4
Q_SCK_0
SPI clock output pin
173
143
-
D10
172
142
-
C10
171
141
-
B10
Q_IO0_0
Q_IO1_0
SPI data input/output pin
High-speed
Q_IO2_0
170
140
-
D11
quad SPI
Q_IO3_0
169
139
-
C11
Q_CS0_0
174
144
-
B9
175
-
-
-
176
-
-
-
Q_CS1_0
Q_CS2_0
72
CONFIDENTIAL
SPI chip select output pin
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Pin Number
Module
Reset
Pin Name
INITX
Function
External reset Input pin
A reset is valid when INITX = L.
LQFP
LQFP
LQFP
LBE
216
176
144
192
72
57
49
N5
104
84
68
N13
105
85
69
N12
1
1
1
C1
39
29
24
H1
55
45
37
N1
64
54
46
P4
109
89
73
M14
137
-
-
-
163
133
109
A13
213
173
141
A4
159
129
105
E14
188
156
126
A9
40
30
25
H5
54
44
36
M1
63
53
45
P3
108
88
72
N14
136
-
-
-
162
132
108
B14
189
157
127
A8
216
176
144
B1
-
-
-
E1
-
-
-
G1
-
-
-
P7
-
-
-
P11
-
-
-
L14
-
-
-
A11
-
-
-
A5
-
-
-
N7
-
-
-
M7
-
-
-
K7
-
-
-
J7
-
-
-
G7
-
-
-
H7
-
-
-
H8
-
-
-
G8
Mode 1 pin
MD1
During serial programming to flash
memory, MD1 = L must be input.
Mode
Mode 0 pin
MD0
During normal operation, MD0 = L must be
input. During serial programming to flash
memory, MD0 = H must be input.
VCC
Power supply pin
Power
USBVCC0
3.3V power supply port for USB I/O
USBVCC1
ETHVCC
GND
VSS
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
Power supply pin for Ethernet I/O
GND pin
73
D a t a S h e e t
Pin Number
Module
Clock
Pin Name
power
power
Analog
GND
C pin
74
CONFIDENTIAL
LQFP
LQFP
LBE
216
176
144
192
Main clock (oscillation) input pin
106
86
70
P12
X1
Main clock (oscillation) I/O pin
107
87
71
P13
X0A
Sub clock (oscillation) input pin
73
58
50
P5
X1A
Sub clock (oscillation) I/O pin
74
59
51
P6
CROUT_0
Built-in High-speed CR-oscillation clock
157
127
103
D13
CROUT_1
output port
184
152
122
E8
110
90
74
M13
112
92
76
L13
113
93
77
L12
75
60
52
P8
111
91
75
M12
62
52
44
P2
AVRL
AVRH
VBAT
LQFP
X0
AVCC
Analog
Function
A/D converter and D/A converter
analog power-supply pin
A/D converter analog reference voltage
input pin
A/D converter analog reference voltage
input pin
VBAT power supply pin
VBAT
Backup power supply (battery etc.) and
system power supply
AVSS
C
A/D converter and D/A converter
GND pin
Power supply stabilization capacity pin
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
7.
I/O Circuit Type
Type
Circuit
Remarks
A
P-ch
P-ch
Digital output
X1
N-ch
Digital output
R
It is possible to select the main
oscillation/GPIO function.
Pull-up resistor control
Digital input
Standby mode control
Clock input
Standby mode control
Digital input
Standby mode control
When the main oscillation
is selected:
・ Oscillation feedback resistor:
approximately 1 MΩ
・ Standby mode control
When the GPIO is selected:
・ CMOS level output.
・ CMOS level hysteresis input
・ Pull-up resistor control
・ Standby mode control
・ Pull-up resistor:
approximately 50 kΩ
・ IOH = -4 mA, IOL = 4 mA
R
P-ch
P-ch
Digital output
N-ch
Digital output
X0
Pull-up resistor control
B
・ CMOS level hysteresis input
・ Pull-up resistor:
approximately 50 kΩ
Pull-up resistor
Digital input
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
75
D a t a S h e e t
Type
Circuit
Remarks
C
Digital input
Digital output
N-ch
・ Open drain output
・ CMOS level hysteresis input
E
P-ch
P-ch
N-ch
Digital output
Digital output
R
Pull-up resistor control
・
・
・
・
・
CMOS level output
CMOS level hysteresis input
Pull-up resistor control
Standby mode control
Pull-up resistor:
approximately 50 kΩ
・ IOH = -4 mA, IOL = 4 mA
・ When this pin is used as an I2C
pin, the digital output P-ch
transistor is always off.
Digital input
Standby mode control
F
P-ch
P-ch
N-ch
Digital output
Digital output
Pull-up resistor control
R
Digital input
Standby mode control
・
・
・
・
・
・
・
CMOS level output
CMOS level hysteresis input
Input control
Analog input
Pull-up resistor control
Standby mode control
Pull-up resistor:
approximately 50 kΩ
・ IOH = -4 mA, IOL = 4 mA
・ When this pin is used as an I2C
pin, the digital output P-ch
transistor is always off.
Analog input
Input control
76
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Type
Circuit
Remarks
G
P-ch
P-ch
Digital output
N-ch
Digital output
R
Pull-up resistor
control
Digital input
・
・
・
・
・
CMOS level output
CMOS level hysteresis input
Pull-up resistor control
Standby mode control
Pull-up resistor:
approximately 50 kΩ
・ IOH = -12 mA, IOL = 12 mA
・ When this pin is used as an I2C
pin, the digital output P-ch
transistor is always off.
Standby mode
control
H
GPIO Digital output
GPIO Digital input/output direction
GPIO Digital input
GPIO Digital input circuit control
UDP output
UDP/Pxx
USB Full-speed/Low-speed control
UDP input
Differential
UDM/Pxx
It is possible to select either USB
I/O or GPIO function.
When the USB I/O is selected:
・ Full-speed, low-speed control
Differential input
USB/GPIO select
UDM input
UDM output
When the GPIO is selected:
・ CMOS level output
・ CMOS level hysteresis input
・ Standby mode control
・ IOH = -20.5 mA, IOL = 18.5 mA
USB Digital input/output direction
GPIO Digital output
GPIO Digital input/output direction
GPIO Digital input
GPIO Digital input circuit control
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
77
D a t a S h e e t
Type
Circuit
Remarks
I
P-ch
P-ch
N-ch
Digital output
Digital output
R
Pull-up resistor
control
Digital input
・
・
・
・
・
・
CMOS level output
CMOS level hysteresis input
5 V tolerant
Pull-up resistor control
Standby mode control
Pull-up resistor:
approximately 50 kΩ
・ IOH = -4 mA, IOL = 4 mA
・ Available to control of PZR
registers (pseudo-open drain
control)
・ For PZR registers, refer to GPIO
in the FM4 Family Peripheral
Manual Main Part
(MN709-00001).
Standby mode control
J
Mode input
CMOS level hysteresis input
K
P-ch
P-ch
N-ch
Digital output
Digital output
R
・ CMOS level output
・ TTL level hysteresis input
・ Pull-up resistor control
・Standby mode control
・ Pull-up resistor:
approximately 50 kΩ
・ IOH = -4 mA, IOL = 4 mA
Pull-up resistor control
Digital input
Standby mode control
78
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Type
Circuit
Remarks
L
P-ch
P-ch
N-ch
Digital output
Digital output
Pull-up resistor
control
R
・
・
・
・
・
CMOS level output
CMOS level hysteresis input
Pull-up resistor control
Standby mode control
Pull-up resistor:
approximately 50 kΩ
・ IOH = -8 mA, IOL = 8 mA
・ When this pin is used as an I2C
pin, the digital output P-ch
transistor is always off.
Digital input
Standby mode
control
N
Pull-up resistor
control
P-ch
P-ch
N-ch
R
N-ch
Digital output
Digital output
Fast mode
control
Digital input
Standby mode
control
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
・ CMOS level output
・ CMOS level hysteresis input
・ 5V tolerant
・ Pull-up resistor control
・ Standby mode control
・ Pull-up resistor:
approximately 50 kΩ
・ IOH = -4 mA, IOL = 4 mA (GPIO)
・ IOL = 20mA (Fast mode Plus)
・ Available to control of PZR
register (pseudo-open drain
control)
・ For PZR registers, refer to GPIO
in the FM4 Family Peripheral
Manual Main Part
(MN709-00001).
・ When this pin is used as an I2C
pin, the digital output P-ch
transistor is always off.
79
D a t a S h e e t
Type
Circuit
Remarks
O
Pull-up resistor
control
P-ch
P-ch
N-ch
Digital output
Digital output
R
Digital input
・ CMOS level output
・ CMOS level hysteresis input
・ 5 V tolerant
・ Pull-up resistor control
・ Pull-up resistor:
approximately 50 kΩ
・ IOH = -4 mA, IOL = 4 mA
・ Available to control of PZR
register (pseudo-open drain
control)
・ For PZR registers, refer to GPIO
in the “FM4 Family Peripheral
Manual Main Part
(MN709-00001)”.
・ For I/O setting, refer to VBAT
Domain in the FM4 Family
Peripheral Manual Main Part
(MN709-00001).
P
P-ch
P-ch
X0A
N-ch
Pull-up resistor
control
Digital output
Digital output
R
・ CMOS level output
・ CMOS level hysteresis input
・ Pull-up resistor control
・ Pull-up resistor:
approximately 50 kΩ
・ IOH = -4 mA, IOL = 4 mA
・ For I/O setting, refer to VBAT
Domain in the FM4 Family
Peripheral Manual Main Part
(MN709-00001).
Digital input
Standby mode
control
OSC
80
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Type
Circuit
Remarks
Q
Pull-up resistor
control
Digital output
P-ch
P-ch
X1A
Digital output
N-ch
R
Digital input
Standby mode
control
OSC
RX
It is possible to select the sub
oscillation/GPIO function.
When the sub oscillation
is selected:
・ Oscillation feedback resistor:
approximately 10 MΩ
When the GPIO is selected:
・ CMOS level output.
・ CMOS level hysteresis input
・ Pull-up resistor control
・ Pull-up resistor:
approximately 50 kΩ
・ IOH = -4 mA, IOL = 4 mA
・ For I/O setting, refer to VBAT
Domain in the FM4 Family
Peripheral Manual Main Part
(MN709-00001).
Standby mode
control
Clock input
R
P-ch
P-ch
N-ch
Pull-up resistor
control
Digital output
Digital output
R
Digital input
・ CMOS level output
・ CMOS level hysteresis input
・ Analog output
・ Pull-up resistor control
・ Standby mode control
・ Pull-up resistor:
approximately 50 kΩ
・ IOH = -4 mA, IOL = 4 mA
(4.5V to 5.5V)
・ IOH = -2 mA, IOL = 2 mA
(2.7V to 4.5V)
Standby mode
control
Analog output
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
81
D a t a S h e e t
Type
Circuit
Remarks
S
P-ch
Pull-up resistor control
P-ch
Digital output
N-ch
Port Drive Select
R
Digital input
・ CMOS level output
・ (It is possible to select by port
drive capability. Select register
[PDSR])
・ CMOS level hysteresis input
・ Pull-up resistor control
・ Standby mode control
・ Pull-up resistor:
approximately 50 kΩ
・ IOH = -10 mA, IOL = 10 mA (PDSR
= 1)
・ IOH = -4 mA, IOL = 4 mA (PDSR =
0)
・ When this pin is used as an I2C
pin, the digital output P-ch
transistor is always off.
Standby mode Control
82
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
8.
Handling Precautions
Every semiconductor device has a characteristic, inherent rate of failure. The possibility of failure is greatly
affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This
page describes precautions that must be observed to minimize the chance of failure and to obtain higher
reliability from your Spansion semiconductor devices.
8.1
Precautions for Product Design
This section describes precautions when designing electronic equipment using semiconductor devices.
Absolute Maximum Ratings
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature,
etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.
Recommended Operating Conditions
Recommended operating conditions are normal operating ranges for the semiconductor device. All the
device's electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these
ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data
sheet. Users considering application outside the listed conditions are advised to contact their sales
representative beforehand.
Processing and Protection of Pins
These precautions must be followed when handling the pins that connect semiconductor devices to power
supply and I/O functions.
1. Preventing Over-Voltage and Over-Current Conditions
Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause
deterioration within the device, and in extreme cases leads to permanent damage of the device. Try
to prevent such overvoltage or over-current conditions at the design stage.
2. Protection of Output Pins
Shorting of output pins to supply pins or other output pins, or connection to large capacitance can
cause large current flows. Such conditions, if present for extended periods of time, can damage the
device; therefore, avoid this type of connection.
3. Handling of Unused Input Pins
Unconnected input pins with very high impedance levels can adversely affect stability of operation.
Such pins should be connected through an appropriate resistance to a power-supply pin or ground
pin.
Code: DS00-00004-3E
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
83
D a t a S h e e t
Latch-Up
Semiconductor devices are constructed by the formation of p-type and n-type areas on a substrate. When
subjected to abnormally high voltages, internal parasitic pnpn junctions (called thyristor structures) may be
formed, causing large current levels in excess of several hundred milliamps to flow continuously at the
power supply pin. This condition is called latch-up.
CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but
can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the
following:
1.
2.
Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should
include attention to abnormal noise, surge levels, etc.
Be sure that abnormal current flows do not occur during the power-on sequence.
Observance of Safety Regulations and Standards
Most countries in the world have established standards and regulations regarding safety, protection from
electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards
in the design of products.
Fail-Safe Design
As previously mentioned, all semiconductor devices have inherent rates of failure. You must protect against
injury, damage or loss from such failures by incorporating safety design measures into your facility and
equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal
operating conditions.
Precautions Related to Usage of Devices
Spansion semiconductor devices are intended for use in standard applications (computers, office
automation and other office equipment, industrial, communications, and measurement equipment, personal
or household devices, etc.).
CAUTION: Customers considering the use of our products in special applications where failure or abnormal
operation may directly affect human lives or cause physical injury or property damage, or where extremely
high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor
repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with
sales representatives before such use. The company will not be responsible for damages arising from such
use without prior approval.
8.2
Precautions for Package Mounting
Package mounting may be either lead insertion type or surface mount type. In either case, for heat
resistance during soldering, you should only mount under Spansion's recommended conditions. For detailed
information about mount conditions, contact your sales representative.
Lead Insertion Type
Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct
soldering on the board, or mounting by using a socket.
Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board
and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering
process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage
temperature. Mounting processes should conform to Spansion recommended mounting conditions.
If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can
lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment
of socket contacts and IC leads be verified before mounting.
84
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Surface Mount Type
Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads
are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results
in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.
You must use appropriate mounting techniques. Spansion recommends the solder reflow method, and has
established a ranking of mounting conditions for each product. Users are advised to mount packages in
accordance with Spansion ranking of recommended conditions.
Lead-Free Packaging
CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic
soldering, junction strength may be reduced under some conditions of use.
Storage of Semiconductor Devices
Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions
will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed
moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To
prevent this, do the following:
1.
2.
3.
4.
5.
Avoid exposure to rapid temperature changes, which can cause moisture to condense inside the
product. Store products in locations where temperature changes are slight.
Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at
temperatures between 5°C and 30°C.
When Dry Packages are opened, it is recommended to have humidity between 40% and 70%.
When necessary, Spansion packages semiconductor devices in highly moisture-resistant aluminum
laminate bags, with a silica gel desiccant. Devices should be sealed in these aluminum laminate
bags for storage.
Avoid storing packages where they are exposed to corrosive gases or high levels of dust.
Baking
Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Spansion
recommended conditions for baking.
Condition: 125°C/24 h
Static Electricity
Because semiconductor devices are particularly susceptible to damage by static electricity, you must take
the following precautions:
1.
2.
3.
4.
5.
Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus
for ion generation may be needed to remove electricity.
Electrically ground all conveyors, solder vessels, soldering irons, and peripheral equipment.
Eliminate static body electricity by the use of rings or bracelets connected to ground through high
resistance (on the level of 1 MΩ). Wearing of conductive clothing and shoes, and the use of
conductive floor mats and other measures to minimize shock loads is recommended.
Ground all fixtures and instruments, or protect with anti-static measures.
Avoid the use of Styrofoam or other highly static-prone materials for storage of completed board
assemblies.
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
85
D a t a S h e e t
8.3
Precautions for Use Environment
Reliability of semiconductor devices depends on ambient temperature and other conditions as described
above.
For reliable performance, do the following:
1.
Humidity
Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If
high humidity levels are anticipated, consider anti-humidity processing.
2.
Discharge of static electricity
When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal
operation. In such cases, use anti-static measures or processing to prevent discharges.
3.
Corrosive gases, dust, or oil
Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will
adversely affect the device. If you use devices in such conditions, consider ways to prevent such
exposure or to protect the devices.
4.
Radiation, including cosmic radiation
Most devices are not designed for environments involving exposure to radiation or cosmic radiation.
Users should provide shielding as appropriate.
5.
Smoke, flame
CAUTION: Plastic molded devices are flammable and therefore should not be used near
combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic
gases.
Customers considering the use of Spansion products in other special environmental conditions should
consult with sales representatives.
Please check the latest handling precautions at the following URL.
http://www.spansion.com/fjdocuments/fj/datasheet/e-ds/DS00-00004.pdf
86
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
9.
Handling Devices
Power-Supply Pins
In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within
the device in order to prevent malfunctions such as latch-up. All of these pins should be connected
externally to the power supply or ground lines, however, in order to reduce electromagnetic emission levels,
to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the
total output current rating.
Be sure to connect the current-supply source with the power pins and GND pins of this device at low
impedance. It is also advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass
capacitor between VCC and VSS near this device.
A malfunction may occur when the power-supply voltage fluctuates rapidly even though the fluctuation is
within the guaranteed operating range of the VCC power supply voltage. As a rule of voltage stabilization,
suppress voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial
frequency (50 Hz/60 Hz) does not exceed 10% of the standard VCC value, and the transient fluctuation rate
does not exceed 0.1V/μs at a momentary fluctuation such as switching the power supply.
Crystal Oscillator Circuit
Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit
board so that X0/X1, X0A/X1A pins, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to
ground are located as close to the device as possible.
It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins
are surrounded by ground plane, as this is expected to produce stable operation.
Evaluate the oscillation introduced by the use of the crystal oscillator by your mount board.
Sub Crystal Oscillator
The sub-oscillator circuit for devices in this family is low gain to keep current consumption low. To stabilize
the oscillation, Spansion recommends a crystal oscillator that meets the following conditions:
 Surface mount type
Size: More than 3.2 mm × 1.5 mm
Load capacitance: approximately 6 pF to 7 pF
 Lead type
Load capacitance: approximately 6 pF to 7 pF
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
87
D a t a S h e e t
Using an External Clock
When using an external clock as an input of the main clock, set X0/X1 to the external clock input, and input
the clock to X0. X1(PE3) can be used as a general-purpose I/O port. Similarly, when using an external clock
as an input of the sub clock, set X0A/X1A to the external clock input and input the clock to X0A. X1A (P47)
can be used as a general-purpose I/O port.
 Example of Using an External Clock
Device
X0(X0A)
Set as external clock
input
Can be used as
general-purpose
I/O ports.
X1(PE3), X1A (P47)
2
Handling When Using Multi-Function Serial Pin As I C Pin
2
If the application uses the multi-function serial pin as an I C pin, the P-channel transistor of the digital output
2
must be disabled. I C pins need to conform to electrical limitations like other pins, however, and avoid
connecting to live external systems with the MCU power off.
C Pin
Devices in this series contain a regulator. Be sure to connect a smoothing capacitor (CS) for the regulator
between the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency
characteristics as a smoothing capacitor. Some laminated ceramic capacitors have a large capacitance
variation due to thermal fluctuation. Please select a capacitor that meets the specifications in the operating
conditions to use by evaluating the temperature characteristics of the device. A smoothing capacitor of about
4.7 μF would be recommended for this series.
C
Device
CS
VSS
GND
Mode Pins (MD0)
Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the
pull-up/down resistance stays low, the distance between the mode pins and VCC pins or VSS pins is as
short as possible, and the connection impedance is low when the pins are pulled up/down such as for
switching the pin level and rewriting the flash memory data. This is important to prevent the device from
erroneously switching to test mode as a result of noise.
88
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Notes on Power-On
Turn power on/off in the sequence shown below or at the same time. If not using the A/D converter and D/A
converter, connect AVCC = VCC and AVSS = VSS.
Turning on:
VBAT → VCC → USBVCC0
VBAT → VCC → USBVCC1
VBAT →VCC →ETHVCC
VCC → AVCC → AVRH
Turning off:
USBVCC0 → VCC → VBAT
USBVCC1 → VCC → VBAT
ETHVCC → VCC → VBAT
AVRH → AVCC → VCC
Serial Communication
There is a possibility of receiving incorrect data as a result of noise or other issues introduced by the serial
communication. Take care to design the printed circuit board to minimize noise.
Consider the case of introducing error as a result of noise, perform error detection such as by applying a
checksum of data at the end. If an error is detected, retransmit the data.
Differences in Characteristics Within the Product Line
The electric characteristics including power consumption, ESD, latch-up, noise, and oscillation differ among
members of the product line because chip layout and memory structures are not the same; for example,
different sizes, flash versus ROM, etc. If you are switching to a different product of the same series, please
make sure to evaluate the electric characteristics.
Pull-Up Function of 5 V Tolerant I/O
Please do not input the signal more than VCC voltage at the time of Pull-Up function use of 5 V tolerant I/O.
Pin Doubled as Debug Function
The pin doubled as TDO/TMS/TDI/TCK/TRSTX, SWO/SWDIO/SWCLK should be used as output only. Do
not use as input.
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
89
D a t a S h e e t
10. Block Diagram
S6E2CCAH/J/L, S6E2CC9H/J/L, S6E2CC8H/J/L
TRSTX,TCK,
TDI,TMS
TDO
SWJ-DP
ETM/HTM*
TRACEDx,
TRACECLK
TPIU/ETB*
ROM
Table
SRAM0
96/144/192 Kbytes
SRAM1
32 Kbytes
Cortex-M4 Core I
@200 MHz(Max)
D
FPU
SRAM2
32 Kbytes
MPU NVIC
Multi-layer AHB (Max 200 MHz)
Sys
AHB-APB Bridge:
APB0(Max 100 MHz)
Dual-Timer
Watchdog Timer
(Software)
Clock Reset
Generator
INITX
Watchdog Timer
(Hardware)
CSV
MainFlash I/F
MainFlash/DualFlash
2 Mbytes(1M+1M)/
1.5 Mbytes(1M+0.5M)/
1 Mbytes(MainOnly)
Trace Buffer
(16 Kbytes)
Security
DualFlash I/F
USB2.0
(Host/
Func)
PHY
USB2.0
(Host/
Func)
PHY
USBVCC0
UDP0,UDM0
UHCONX0
USBVCC1
UDP1,UDM1
UHCONX1
DMAC
8ch.
CLK
DSTC
CR
100 kHz
CR
4 MHz
PLL
TX1,RX1
CAN ch.2
TX2,RX2
VBAT Domain
Sub
Osc
I2S
1unit
AHB-AHB
Bridge
(Slave)
X0A
X1A
Main
Osc
TX0,RX0
CAN ch.1
PRG-CRC
Accelerator
Source Clock
X0
X1
CAN ch.0
GPIO
MODE-Ctrl
Unit 2
TIOBx
AINx
BINx
ZINx
FRCK0
QPRC
4ch.
16-bit Input Capture
4ch.
16-bit Free-run Timer
3ch.
DTTI0X
Waveform Generator
3ch.
16-bit PPG
3ch.
Multi-function Timer × 3
VBAT
VWAKEUP
VREGCTL
RTCCO,
SUBOUT
DAx
90
CONFIDENTIAL
S_DATAx
S_CD,S_WP
Q_IOx
16-bit Output Compare
6ch.
RTO0x
SD-CARD I/F
ETHVCC
E_TXx,
E_RXx,
E_MDx
S_CLK,S_CMD
Hi-Speed Quad SPI
A/D Activation Compare
6ch.
IC0x
.
.
.
PFx
MD0,
MD1
Q_SCK, Q_CSx
Base Timer
16-bit 32ch./
32-bit 16ch.
VBAT Domain
Real-Time Clock
Port Ctrl.
12-bit D/A Converter
2units
MADx
External Bus I/F
MADATAx
MCSXx,MDQMx,
MOEX,MWEX,
MALE,MRDY,
MNALE,MNCLE,
MNWEX,MNREX,
MCLKOUT,MSDWEX,
MSDCLK,MSDCKE,
MRASX,MCASX
CAN Prescaler
AHB-APB Bridge : APB2 (Max 100 MHz)
Unit 1
AHB-APB Bridge : APB1 (Max 200 MHz)
ANxx
Ethernet-MAC
ch.0
AHB-AHB
Bridge
(Master)
12-bit A/D Converter
Unit 0
ADTGx
TIOAx
P0x,
P1x,
PIN-Function-Ctrl
CROUT
AVCC,
AVSS,
AVRH,
AVRL
I2SMCLK,
I2SWS,
I2SCK
I2SDI
I2SDO
USB Clock Ctrl
PLL
I2S Clock Ctrl
PLL
Power-On
Reset
LVD Ctrl
LVD
IRQ-Monitor
Regulator
C
CRC Accelerator
Watch Counter
Deep Standby Ctrl
WKUPx
Peripheral Clock Gating
Low-speed CR Prescaler
External Interrupt
Controller
32-pin + NMI
INTx
NMIX
Multi-function Serial I/F
16ch.
(with FIFO ch.0 to ch.7)
HW flow control(ch.4,5)
SCKx
SINx
SOTx
CTSx
RTSx
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
11. Memory Size
See Memory size in 3. Product Lineup to confirm the memory size.
12. Memory Map
Memory Map (1)
Peripherals Area
0x41FF_FFFF
Reserved
0x4008_1000
0x4008_0000
0x4007_0000
0x4006_F000
0x4006_E000
0xFFFF_FFFF
0x4006_D000
Reserved
0x4006_C000
Programmable-CRC
CAN ch.3
GPIO
SD-Card I/F
Reserved
I2S
0xE010_0000
0xE000_0000
0xD000_0000
Cortex-M4 Private
Peripherals
Reg. Area
Reserved
0x4006_7000
0x4006_6000
0x4006_4000
0x4006_3000
External Device
Area
0x4006_2000
0x4006_1000
0x4006_0000
0x6000_0000
0x4005_0000
0x4004_0000
Reserved
0x4400_0000
0x4200_0000
0x4003_F000
0x4003_E000
32 Mbytes
Bit band alias
0x4003_D000
0x4003_C800
Ether-Control-Reg.
Ether-MAC ch.0
CAN ch.1
CAN ch.0
DSTC
DMAC
USB ch.1
USB ch.0
EXT-bus I/F
Reserved
I2S prescaler
Reserved
Peripheral Clock Gating
0x4003_C000 Low Speed CR Prescaler
0x4003_C100
Peripherals
0x4000_0000
0x4003_B000
0x4003_A000
Reserved
0x2400_0000
0x2200_0000
0x4003_9000
0x4003_8000
32 Mbytes
Bit band alias
0x4003_7000
0x4003_6000
0x4003_5000
DualFlash
0x200F_0000
0x4003_4000
0x4003_3000
0x4003_2000
Reserved
See "Memory Map
メモリサイズの 詳細は
次項の「●メモリマップ(2)」
(2) and (3)" for
を参照してください。
memory size
details.
0x2004_8000
0x2004_0000
0x2003_8000
0x2000_0000
0x1FFF_0000
0x0050_0000
0x0040_0000
0x4003_1000
0x4003_0000
0x4002_F000
SRAM2
SRAM1
Reserved
SRAM0
Reserved
Security/CR Trim
MainFlash
0x0000_0000
0x4002_E000
Reserved
0x4002_8000
0x4002_7000
0x4002_6000
0x4002_5000
0x4002_4000
0x4002_3000
0x4002_2000
0x4002_1000
0x4002_0000
0x4001_6000
0x4001_5000
0x4001_3000
0x4001_2000
0x4001_1000
0x4001_0000
0x4000_1000
0x4000_0000
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
RTC/Port Ctrl
Watch Counter
CRC
MFS
CAN prescaler
USB Clock ctrl
LVD/DS mode
Reserved
D/AC
Reserved
Int-Req.Read
EXTI
Reserved
CR Trim
A/DC
QPRC
Base Timer
PPG
Reserved
MFT Unit2
MFT Unit1
MFT Unit0
Reserved
Dual Timer
Reserved
SW WDT
HW WDT
Clock/Reset
Reserved
MainFlash I/F
91
D a t a S h e e t
Memory Map (2)
S6E2CCAH/J/L
S6E2CC9H/J/L
0x2020_0000
S6E2CC8H/J/L
0x2020_0000
Reserved
0x2020_0000
Reserved
0x2004_8000
Reserved
0x2004_8000
SRAM2
32 Kbytes
SRAM1
32 Kbytes
0x2004_0000
0x2003_8000
0x2004_0000
0x2003_8000
Reserved
0x2004_8000
SRAM2
32 Kbytes
SRAM1
32 Kbytes
0x2004_0000
0x2003_8000
Reserved
0x2000_0000
Reserved
0x2000_0000
0x2000_0000
SRAM0
128 Kbytes
SRAM0
192 Kbytes
SRAM2
32 Kbytes
SRAM1
32 Kbytes
0x1FFF_0000
SRAM0
64 Kbytes
0x1FFE_0000
0x1FFD_0000
Reserved
Reserved
Reserved
0x0041_0000
0x0041_0000
0x0040_4000
0x0040_2000
0x0040_0000
0x0040_6000
0x0040_4000
0x0040_2000
0x0040_0000
SA3(#0) (8KB)
General purpose
CR trimming
Security
0x0040_8000
0x0040_6000
0x0040_4000
0x0040_2000
0x0040_0000
SA0-3(#1) (8KBx4)
SA3(#0) (8KB)
General purpose
CR trimming
Security
MainFlash
40 Kbytes
SA3(#0) (8KB)
General purpose
CR trimming
Security
0x0040_6000
0x0040_8000
0x0041_0000
SA0-3(#1) (8KBx4)
MainFlash
40 Kbytes
0x0040_8000
MainFlash
40 Kbytes
SA0-3(#1) (8KBx4)
Reserved
Reserved
0x0020_0000
Reserved
SA9-23(#1) (64KBx15)
SA9-15(#1) (64KBx7)
SA8(#1) (32KB)
SA4-7(#1) (8KBx4)
0x0010_0000
0x0000_0000
SA8(#0) (32KB)
SA4-7(#0) (8KBx4)
SA9-23(#0) (64KBx15)
0x0000_0000
SA8(#0) (32KB)
SA4-7(#0) (8KBx4)
0x0010_0000
SA9-23(#0) (64KBx15)
0x0000_0000
SA8(#0) (32KB)
SA4-7(#0) (8KBx4)
MainFlash
1 Mbytes
SA9-23(#0) (64KBx15)
MainFlash
1.5 Mbytes
0x0010_0000
MainFlash
2 Mbytes
SA8(#1) (32KB)
SA4-7(#1) (8KBx4)
0x0018_0000
*: See S6E2CC/S6E2C5/S6E2C4/S6E2C3/S6E2C2/S6E2C1 Series Flash Programming Manual to confirm
the detail of flash Memory.
92
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Memory Map (2) During Dual Flash mode
S6E2CCAH/J/L
0x200F_8000
0x2018_0000
0x2010_0000
0x200F_8000
Reserved
Reserved
SA9-15(#1) (64KBx7)
SA8(#1) (32KB)
SA4-7(#1) (8KBx4)
SA0-3(#1) (8KBx4)
0x2010_0000
0x200F_8000
0x2004_0000
0x2003_8000
Reserved
0x2004_8000
SRAM2
32 Kbytes
SRAM1
32 Kbytes
0x2004_0000
0x2003_8000
Reserved
0x2000_0000
SRAM2
32 Kbytes
SRAM1
32 Kbytes
Reserved
0x2000_0000
0x2000_0000
SRAM0
128 Kbytes
SRAM0
192 Kbytes
SA0-3(#1) (8KBx4)
Reserved
0x2004_8000
SRAM2
32 Kbytes
SRAM1
32 Kbytes
0x2003_8000
Reserved
Reserved
0x2004_8000
0x2004_0000
0x2020_0000
DualFlash
32 Kbytes
SA8(#1) (32KB)
SA4-7(#1) (8KBx4)
SA0-3(#1) (8KBx4)
0x2010_0000
0x2020_0000
S6E2CC8H/J/L
DualFlash
512 Kbytes +32 Kbytes
SA9-23(#1) (64KBx15)
DualFlash
1 Mbytes +32 Kbytes
0x2020_0000
S6E2CC9H/J/L
0x1FFF_0000
SRAM0
64 Kbytes
0x1FFE_0000
0x1FFD_0000
Reserved
Reserved
Reserved
0x0041_0000
0x0041_0000
0x0040_4000
0x0040_2000
0x0040_0000
0x0040_6000
0x0040_4000
0x0040_2000
0x0040_0000
Reserved
SA3(#0) (8KB)
General purpose
CR trimming / HTM
Security
0x0040_0000
CONFIDENTIAL
SA8(#0) (32KB)
SA4-7(#0) (8KBx4)
SA9-23(#0) (64KBx15)
0x0000_0000
SA8(#0) (32KB)
SA4-7(#0) (8KBx4)
MainFlash
1 Mbytes
March 25, 2015, S6E2CC_DS709-00009-1v0-E
SA3(#0) (8KB)
General purpose
CR trimming / HTM
Security
0x0010_0000
SA9-23(#0) (64KBx15)
0x0000_0000
Reserved
Reserved
MainFlash
1 Mbytes
MainFlash
1 Mbytes
SA8(#0) (32KB)
SA4-7(#0) (8KBx4)
0x0040_4000
0x0040_2000
0x0010_0000
0x0000_0000
0x0040_6000
Reserved
0x0010_0000
SA9-23(#0) (64KBx15)
0x0040_8000
MainFlash
8 Kbytes
SA3(#0) (8KB)
General purpose
CR trimming / HTM
Security
0x0040_6000
0x0040_8000
0x0041_0000
Reserved
MainFlash
8 Kbytes
0x0040_8000
MainFlash
8 Kbytes
Reserved
93
D a t a S h e e t
Memory Map (3)
S6E2CCAH
0xD000_0000
S6E2CCAJ
0xD000_0000
S6E2CCAL
0xD000_0000
Hi-Speed Quad SPI
256 Mbytes
0xC000_0000
0xC000_0000
Reserved
0x8000_0000
Hi-Speed Quad SPI
256 Mbytes
0xC000_0000
Reserved
0x8000_0000
Reserved
0x8000_0000
SDRAM
256 Mbytes
0x7000_0000
0x7000_0000
SRAM
/NOR Flash Memory
/NAND Flash Memory
256 Mbytes
0x6000_0000
94
CONFIDENTIAL
SDRAM
256 Mbytes
0x7000_0000
SRAM
/NOR Flash Memory
/NAND Flash Memory
256 Mbytes
0x6000_0000
SRAM
/NOR Flash Memory
/NAND Flash Memory
256 Mbytes
0x6000_0000
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Peripheral Address Map
Start Address
Bus
Peripherals
0x4000_0000
0x4000_0FFF
0x4000_1000
0x4000_FFFF
0x4001_0000
0x4001_0FFF
Clock/reset control
0x4001_1000
0x4001_1FFF
Hardware watchdog timer
0x4001_2000
0x4001_2FFF
0x4001_3000
0x4001_4FFF
0x4001_5000
0x4001_5FFF
Dual-timer
0x4001_6000
0x4001_FFFF
Reserved
0x4002_0000
0x4002_0FFF
Multi-Function Timer unit 0
0x4002_1000
0x4002_1FFF
Multi-Function Timer unit 1
0x4002_2000
0x4002_2FFF
Multi-Function Timer unit 1
0x4002_3000
0x4002_3FFF
Reserved
0x4002_4000
0x4002_4FFF
0x4002_5000
0x4002_5FFF
0x4002_6000
0x4002_6FFF
Quadrature position/revolution counter
0x4002_7000
0x4002_7FFF
A/D converter
0x4002_8000
0x4002_DFFF
Reserved
0x4002_E000
0x4002_EFFF
Internal CR trimming
0x4002_F000
0x4002_FFFF
Reserved
0x4003_0000
0x4003_0FFF
External interrupt controller
0x4003_1000
0x4003_1FFF
Interrupt request batch-read function
0x4003_2000
0x4003_2FFF
Reserved
0x4003_3000
0x4003_3FFF
D/A converter
0x4003_4000
0x4003_4FFF
Reserved
0x4003_5000
0x4003_57FF
Low voltage detector
0x4003_5800
0x4003_5FFF
Deep standby mode Controller
0x4003_6000
0x4003_6FFF
USB clock generator
0x4003_7000
0x4003_7FFF
CAN prescaler
0x4003_8000
0x4003_8FFF
0x4003_9000
0x4003_9FFF
CRC
0x4003_A000
0x4003_AFFF
Watch counter
0x4003_B000
0x4003_BFFF
RTC/port control
0x4003_C000
0x4003_C0FF
Low-speed CR prescaler
0x4003_C100
0x4003_C7FF
Peripheral clock gating
0x4003_C800
0x4003_CFFF
Reserved
0x4003_D000
0x4003_DFFF
I2S prescaler
0x4003_E000
0x4003_EFFF
Reserved
0x4003_F000
0x4003_FFFF
External memory interface
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
End Address
AHB
APB0
MainFlash I/F register
Reserved
Software watchdog timer
Reserved
PPG
APB1
APB2
Base timer
Multi-function serial interface
95
D a t a S h e e t
Start Address
96
CONFIDENTIAL
End Address
Bus
Peripherals
0x4004_0000
0x4004_FFFF
USB ch 0
0x4005_0000
0x4005_FFFF
USB ch 1
0x4006_0000
0x4006_0FFF
DMAC register
0x4006_1000
0x4006_1FFF
DSTC register
0x4006_2000
0x4006_2FFF
CAN ch 0
0x4006_3000
0x4006_3FFF
CAN ch 1
0x4006_4000
0x4006_5FFF
Ethernet-MAC ch 0
0x4006_6000
0x4006_6FFF
Ethernet-MAC setting register
0x4006_7000
0x4006_BFFF
0x4006_C000
0x4006_CFFF
0x4006_D000
0x4006_DFFF
Reserved
0x4006_E000
0x4006_EFFF
SD card I/F
0x4006_F000
0x4006_FFFF
GPIO
0x4007_0000
0x4007_FFFF
CAN-FD (CAN ch 2)
0x4008_0000
0x4008_0FFF
Programmable-CRC
0x4008_1000
0x41FF_FFFF
Reserved
0x200E_0000
0x200E_FFFF
Workflash I/F register
0xD000_0000
0xDFFF_FFFF
High-speed quad SPI control register
AHB
Reserved
I2S
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
13. Pin Status In Each CPU State
The terms used for pin status have the following meanings:
 INITX = 0
This is the period when the INITX pin is at the L level.
 INITX = 1
This is the period when the INITX pin is at the H level.
 SPL = 0
This is the status that the standby pin level setting bit (SPL) in the standby mode control register
(STB_CTL) is set to 0.
 SPL = 1
This is the status that the standby pin level setting bit (SPL) in the standby mode control register
(STB_CTL) is set to 1.
 Input enabled
Indicates that the input function can be used.
 Internal input fixed at 0
This is the status that the input function cannot be used. Internal input is fixed at L.
 Hi-Z
Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state.
 Setting disabled
Indicates that the setting is disabled.
 Maintain previous state
Maintains the state that was immediately prior to entering the current mode.
If a built-in peripheral function is operating, the output follows the peripheral function.
If the pin is being used as a port, that output is maintained.
 Analog input is enabled
Indicates that the analog input is enabled.
 Trace output
Indicates that the trace function can be used.
 GPIO selected
In Deep standby mode, pins switch to the general-purpose I/O port.
 Setting prohibition
Prohibition of a setting by specification limitation
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
97
D a t a S h e e t
List of Pin Behavior By Mode State
Power-On
Reset or
Pin Status Type
LowVoltage
Function
Group
Detection
INITX
Input
State
Device
Internal
Reset
State
Run mode
Timer mode,
Deep Standby RTC
or Sleep
RTC mode, or
mode or Deep Standby
mode State
Stop mode State
Stop mode State
Power Supply
Power Supply
Stable
Stable
INITX=1
INITX=1
Return from
Deep
Standby
mode State
State
Power
Supply
Power Supply
Stable
Unstable
‐
‐
Stable
INITX=0 INITX=1
‐
Power
Supply
‐
INITX=1
‐
SPL=0
SPL=1
SPL=0
Power
Supply
Stable
INITX=1
SPL=1
-
GPIO
GPIO
Setting
Setting
Setting
selected
disabled
disabled disabled
Maintain
Maintain
Hi-Z/internal
selected,
Hi-Z/internal
previous
previous
input fixed
internal
input fixed
state
state
at 0
input fixed
at 0
GPIO
selected
at 0
A
Main crystal
oscillator
input pin/
Input
external main
enabled
Input
Input
enabled enabled
Input
Input
Input
Input
Input
Input
enabled
enabled
enabled
enabled
enabled
Enabled
Maintain
Maintain
Hi-Z/internal
selected,
Hi-Z/internal
previous
previous
input fixed
internal
input fixed
state
state
at 0
input fixed
at 0
clock input
selected
GPIO
GPIO
Setting
Setting
Setting
selected
disabled
disabled disabled
GPIO
selected
at 0
External main
B
clock input
selected
Setting
Setting
disabled
disabled disabled
Hi-Z/
Main crystal
oscillator
output pin
D
E
INITX
input pin
Hi-Z/internal
Maintain
Hi-Z/internal
Maintain
previous
input fixed
previous
input fixed
previous
state
state
at 0
state
at 0
State
Hi-Z/
internal
Maintain previous state while oscillator active/
input
input
When oscillation stops*1, it will be Hi-Z/
fixed
fixed
Internal input fixed at 0
at 0
at 0
Pull-up/
Pull-up/
Pull-up/
Pull-up/
Pull-up/
Pull-up/
Pull-up/
Pull-up/
input
Input
Input
Input
Input
Input
Input
Input
Input
enabled
enabled
enabled
enabled
enabled
enabled
input fixed
at 0/
or input
enabled
Mode
Input
enabled
Mode
Input
input pin
enabled
enabled enabled
Input
Input
enabled enabled
Input
Input
enabled enabled
GPIO
Setting
Setting
selected
disabled
disabled disabled
CONFIDENTIAL
Maintain
previous
Hi-Z/
input pin
98
Maintain
internal
internal
enable
C
Setting
Setting
Pull-up/
Input
Input
Input
Input
Input
Input
enabled
enabled
enabled
enabled
enabled
enabled
Input
Input
Input
Input
Input
Input
enabled
enabled
enabled
enabled
enabled
enabled
Maintain
Maintain
Hi-Z/
previous
previous
input
state
state
enabled
GPIO
selected
Hi-Z/
input
enabled
GPIO
selected
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Power-On
Reset or
Pin Status Type
LowVoltage
Function
Group
Detection
INITX
Input
State
Internal
Reset
State
Run mode
Timer mode,
Deep Standby RTC
or Sleep
RTC mode, or
mode or Deep Standby
mode State
Stop mode State
Stop mode State
Power Supply
Power Supply
Stable
Stable
INITX=1
INITX=1
Power
Supply
‐
Power Supply
Stable
Power
Supply
Stable
INITX=0 INITX=1
‐
‐
‐
NMIX
Setting
Setting
Setting
selected
disabled
disabled disabled
INITX=1
‐
SPL=0
Resource
Maintain
Maintain
other than
previous
previous
state
state
above
selected
Return from
Deep
Standby
mode State
State
Unstable
F
Device
Hi-Z
Hi-Z/
Hi-Z/
input
input
SPL=0
Stable
INITX=1
SPL=1
-
Maintain
Maintain
previous
previous
state
state
WKUP
Hi-Z/
Hi-Z/
input
WKUP
internal
enabled
input enabled
input fixed
enabled enabled
GPIO
SPL=1
Power
Supply
GPIO
selected
at 0
selected
JTAG
selected
Hi-Z
Pull-up/
Pull-up/
Maintain
Maintain
Maintain
Maintain
input
input
previous
previous
previous
previous
state
state
state
state
enabled enabled
G
GPIO
Setting
Setting
Setting
selected
disabled
disabled disabled
Maintain
Maintain
previous
previous
state
state
Hi-Z/
internal
input fixed
at 0
JTAG
selected
H
Hi-Z
selected
at 0
Maintain
Maintain
Maintain
input
input
previous
previous
previous
previous
state
state
state
state
Hi-Z/Internal
selected,
Hi-Z/Internal
input fixed
internal
input fixed
at 0
input fixed
at 0
enabled enabled
Maintain
other than
previous
previous
state
state
above
Setting
Setting
selected
disabled
disabled disabled
Setting
GPIO
GPIO
selected
at 0
selected
Resource
GPIO
selected
Hi-Z
Hi-Z/
Hi-Z/
Maintain
Maintain
Hi-Z/Internal
selected,
Hi-Z/internal
input
input
previous
previous
input fixed
internal
input fixed
state
state
at 0
input fixed
at 0
enabled enabled
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
at 0
fixed
Maintain
Maintain
selected
input fixed
GPIO
Pull-up/
Resource
GPIO
internal
Hi-Z/
internal input
Pull-up/
GPIO
I
GPIO
selected,
GPIO
selected
at 0
99
D a t a S h e e t
Power-On
Reset or
Pin Status Type
LowVoltage
Function
Group
Detection
INITX
Input
State
Device
Internal
Reset
State
Run mode
Timer mode,
Deep Standby RTC
or Sleep
RTC mode, or
mode or Deep Standby
mode State
Stop mode State
Stop mode State
Power Supply
Power Supply
Stable
Stable
INITX=1
INITX=1
Return from
Deep
Standby
mode State
State
Power
Supply
Power Supply
Stable
Unstable
‐
‐
Supply
Stable
INITX=0 INITX=1
‐
Power
‐
INITX=1
‐
SPL=0
SPL=1
*2
*3
SPL=0
Power
Supply
Stable
INITX=1
SPL=1
-
Analog
output
selected
External
Maintain
interrupt
enable
J
selected
Resource
Hi-Z
Hi-Z/
Hi-Z/
input
input
enabled enabled
other than
previous
state
state
Maintain
previous
state
above
GPIO
previous
Maintain
Hi-Z/internal
selected,
Hi-Z/internal
internal
input fixed
input fixed
at 0
GPIO
selected
at 0
input fixed
selected
at 0
GPIO
selected
External
interrupt
Setting
Setting
enable
disabled
disabled disabled
selected
K
Resource
other than
above
selected
Hi-Z
Maintain
Setting
Hi-Z/
Hi-Z/
input
input
previous
state
Maintain
selected,
Hi-Z/internal
previous
previous
internal
input fixed
state
state
Hi-Z/internal
input fixed
at 0
input fixed
at 0
enabled enabled
GPIO
GPIO
Maintain
GPIO
selected
at 0
selected
Analog input
selected
Hi-Z
L
Hi-Z/
Hi-Z/
internal
internal
Hi-Z/
input
input
internal input
fixed at
fixed at
fixed
0/
0/
at 0/
analog
analog
analog
input
input
input enabled
enabled enabled
Hi-Z/
internal
input fixed
at 0/
analog
input
enabled
Hi-Z/
Hi-Z/
internal input
fixed
at 0/
analog
analog
input enabled
Setting
Setting
selected
disabled
disabled disabled
100
CONFIDENTIAL
input
enabled
Hi-Z/
internal input
fixed
at 0/
analog
input enabled
Hi-Z/
internal input
fixed
at 0/
analog
input
enabled
GPIO
above
selected
input fixed
at 0/
Resource
other than
GPIO
internal
Setting
Maintain
Maintain
Hi-Z/internal
selected,
Hi-Z/internal
previous
previous
input fixed
internal
input fixed
state
state
at 0
input fixed
at 0
GPIO
selected
at 0
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Power-On
Reset or
Pin Status Type
LowVoltage
Function
Group
Detection
INITX
Input
State
Power
Reset
State
Power Supply
Stable
Unstable
‐
‐
selected
Internal
Run mode
Timer mode,
Deep Standby RTC
or Sleep
RTC mode, or
mode or Deep Standby
mode State
Stop mode State
Stop mode State
Power Supply
Power Supply
Stable
Stable
INITX=1
INITX=1
Hi-Z
Stable
INITX=0 INITX=1
‐
Power
Supply
‐
INITX=1
‐
Hi-Z/
Hi-Z/
internal
internal
Hi-Z/
input
input
internal input
fixed
fixed
fixed
at 0/
at 0/
at 0/
analog
analog
analog
input
input
input enabled
enabled enabled
M
Return from
Deep
Standby
mode State
State
Supply
Analog input
Device
SPL=0
Hi-Z/
internal
input fixed
at 0/
analog
input
enabled
External
SPL=1
Hi-Z/
internal input
fixed
at 0/
analog
input enabled
SPL=0
Hi-Z/
internal
input fixed
at 0/
analog
input
enabled
Power
Supply
Stable
INITX=1
SPL=1
Hi-Z/
internal input
fixed
at 0/
analog
input enabled
Hi-Z/
internal input
fixed
at 0/
analog
input
enabled
Maintain
interrupt
previous
enable
state
selected
Resource
Setting
Setting
Setting
other than
disabled
disabled disabled
above
GPIO
Maintain
Maintain
selected,
Hi-Z/internal
previous
previous
internal
input fixed
state
state
Hi-Z/internal
input fixed
at 0
input fixed
at 0
selected
GPIO
selected
at 0
GPIO
selected
Analog input
selected
N
Hi-Z
Hi-Z/
Hi-Z/
internal
internal
Hi-Z/
input
input
internal input
fixed
fixed
fixed
at0/
at 0/
at 0/
analog
analog
analog
input
input
input enabled
enabled enabled
Hi-Z/
internal
input fixed
at 0/
analog
input
enabled
Hi-Z/
internal input
fixed
at 0/
analog
input enabled
Trace
Trace
selected
output
Resource
other than
Setting
Setting
Setting
above
disabled
disabled disabled
selected
GPIO
Maintain
Maintain
previous
previous
state
state
Hi-Z/
internal
input fixed
at 0/
analog
input
enabled
Hi-Z/
internal input
fixed
at 0/
analog
input enabled
Hi-Z/
internal input
fixed
at 0/
analog
input
enabled
GPIO
selected,
Hi-Z/internal
Hi-Z/internal
internal
input fixed
input fixed
input fixed
at 0
at 0
at 0
GPIO
selected
selected
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
101
D a t a S h e e t
Power-On
Reset or
Pin Status Type
LowVoltage
Function
Group
Detection
INITX
Input
State
State
Supply
Power Supply
Stable
Unstable
‐
‐
selected
Reset
Run mode
Timer mode,
Deep Standby RTC
or Sleep
RTC mode, or
mode or Deep Standby
mode State
Stop mode State
Stop mode State
Power Supply
Power Supply
Stable
Stable
INITX=1
INITX=1
Hi-Z
Power
Supply
Stable
INITX=0 INITX=1
INITX=1
‐
‐
Hi-Z/
Hi-Z/
‐
internal
internal
Hi-Z/
input
input
internal input
fixed
fixed
fixed
at 0/
at 0/
at 0/
analog
analog
analog
input
input
input enabled
enabled enabled
O
Return from
Deep
Standby
mode State
State
Power
Analog input
Device
Internal
SPL=0
Hi-Z/
internal
input fixed
at 0/
analog
input
enabled
SPL=1
Hi-Z/
Hi-Z/
internal input
fixed
input enabled
Trace
output
input fixed
analog
analog
selected
internal
at 0/
at 0/
Trace
External
SPL=0
input
enabled
Power
Supply
Stable
INITX=1
SPL=1
Hi-Z/
internal input
fixed
at 0/
analog
input enabled
Hi-Z/
internal input
fixed
at 0/
analog
input
enabled
Maintain
interrupt
enable
selected
Setting
Setting
Resource
disabled
disabled disabled
Setting
other than
previous
GPIO
state
selected,
Hi-Z/internal
previous
internal
input fixed
state
input fixed
at 0
Maintain
Maintain
previous
state
Hi-Z/internal
above
GPIO
selected
at 0
input fixed
selected
at 0
GPIO
selected
Analog input
selected
Hi-Z
Hi-Z/
Hi-Z/
internal
internal
Hi-Z/
input
input
internal input
fixed at
fixed at
fixed
0/
0/
at 0/
analog
analog
analog
input
input
input enabled
enabled enabled
P
Hi-Z/
internal
input fixed
at 0/
analog
input
enabled
WKUP
enabled
Resource
other than
above
selected
GPIO
selected
102
CONFIDENTIAL
Setting
Setting
Setting
disabled
disabled disabled
Maintain
Maintain
previous
previous
state
state
Hi-Z/
Hi-Z/
internal input
fixed
internal
input fixed
at 0/
at 0/
analog
analog
input enabled
input
enabled
Hi-Z/
internal input
fixed
at 0/
analog
input enabled
Maintain
WKUP
Hi-Z/
previous
input
WKUP input
state
enabled
enabled
Hi-Z/internal
selected,
Hi-Z/internal
input fixed
internal
input fixed
at 0
input fixed
at 0
Hi-Z/
internal input
fixed
at 0/
analog
input
enabled
GPIO
GPIO
selected
at 0
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Power-On
Reset or
Pin Status Type
LowVoltage
Function
Group
Detection
INITX
Input
State
Device
Internal
Reset
State
Run mode
Timer mode,
Deep Standby RTC
or Sleep
RTC mode, or
mode or Deep Standby
mode State
Stop mode State
Stop mode State
Power Supply
Power Supply
Stable
Stable
INITX=1
INITX=1
Power
Power Supply
Stable
Unstable
‐
‐
Stable
INITX=0 INITX=1
‐
Power
Supply
‐
INITX=1
‐
SPL=0
SPL=1
WKUP
Q
Setting
Setting
disabled
disabled disabled
Maintain
Setting
Maintain
selected
previous
previous
Resource
state
state
other than
Hi-Z
Stable
INITX=1
SPL=1
Hi-Z/
WKUP
input enabled
WKUP input
enabled
GPIO
selected,
Hi-Z/internal
internal
input fixed
at 0
Hi-Z/
Hi-Z/
Hi-Z/internal
input fixed
input
input
input fixed
at 0
enabled enabled
GPIO
enabled
Power
Supply
state
Maintain
selected
mode State
previous
enable
above
SPL=0
WKUP input
enabled
External
Deep
Standby
State
Supply
interrupt
Return from
GPIO
selected
at 0
selected
GPIO
GPIO
selected
Hi-Z
Hi-Z/
Hi-Z/
Maintain
Maintain
Hi-Z/internal
selected,
Hi-Z/internal
input
input
previous
previous
input fixed
internal
input fixed
state
state
at 0
input fixed
at 0
enabled enabled
GPIO
selected
at 0
R
USB I/O pin
Ethernet I/O
selected
*4
V
Setting
Setting
Setting
disabled
disabled disabled
Setting
Setting
disabled
disabled disabled
Hi-Z at
Hi-Z at
trans-
trans-
Hi-Z at
trans-
mission/
mission/
mission/
input
input
input
Hi-Z/
enabled/
enabled/
enabled/
input
internal input
internal
internal input
enabled
fixed
input fixed
fixed
at 0 at
at 0 at
at 0 at
reception
reception
reception
Hi-Z/
Hi-Z/
input enabled
input enabled
Maintain
Setting
previous
state
GPIO
Resource
Maintain
Maintain
selected,
Hi-Z/internal
other than
previous
previous
internal
input fixed
state
state
Hi-Z/internal
input fixed
at "0
input fixed
at 0
above
selected
Hi-Z
Hi-Z/
Hi-Z/
input
input
enabled enabled
GPIO
selected
at 0
GPIO
selected
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
103
D a t a S h e e t
Power-On
Reset or
Pin Status Type
LowVoltage
Function
Group
Detection
INITX
Input
State
Device
Internal
Reset
State
Run mode
Timer mode,
Deep Standby RTC
or Sleep
RTC mode, or
mode or Deep Standby
mode State
Stop mode State
Stop mode State
Power Supply
Power Supply
Stable
Stable
INITX=1
INITX=1
Return from
Deep
Standby
mode State
State
Power
Supply
Power Supply
Stable
Unstable
‐
Power
Supply
Stable
INITX=0 INITX=1
‐
‐
‐
Setting
Setting
Setting
disabled
disabled disabled
INITX=1
‐
SPL=0
SPL=1
SPL=0
Power
Supply
Stable
INITX=1
SPL=1
-
Ethernet
input/output
selected*4
External
interrupt
W
enable
selected
Resource
above
GPIO
previous
state
GPIO
Maintain
Maintain
selected,
Hi-Z/internal
previous
previous
internal
input fixed
state
state
input fixed
at 0
GPIO
selected
at 0
other than
selected
Maintain
Hi-Z
Hi-Z/
Hi-Z/
Hi-Z/internal
input
input
input fixed
enabled enabled
at 0
selected
1: Oscillation is stopped at Sub Timer mode, sub CR Timer mode, RTC mode, Stop mode, Deep Standby RTC mode,
and Deep Standby Stop mode.
2: Maintain previous state at Timer mode. GPIO selected internal input fixed at 0 at RTC mode, Stop mode.
3: Maintain previous state at Timer mode. Hi-Z/internal input fixed at 0 at RTC mode, Stop mode.
4: It shows the case selected by EPFR14.E_SPLC register.
104
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
List of VBAT Domain Pin Status
VBAT Pin Status Type
VBAT
PowerOn
Function
Reset
INITX
Input
State
Device
Internal
Reset
State
Return
Run
mode or
Timer mode,
Sleep
RTC mode, or
mode
Stop mode State
Deep Standby
from
VBAT
from
RTC mode or Deep
Deep
RTC
VBAT
Standby Stop mode Standby
mode
RTC
State
mode
Power
Power
Power
Supply Power Supply Stable Power Supply Stable Supply
Supply
Supply
Stable
Stable
Stable
Stable
INITX=1
-
-
-
-
state
State
mode
State
Group
Power
Supply
Power Supply
Stable
Unstable
‐
‐
GPIO
Setting
selected
disabled
Return
Power
INITX=0
INITX=1
INITX=1
‐
‐
‐
INITX=1
INITX=1
SPL=0
SPL=1
SPL=0
SPL=1
-
Maintain Maintain Maintain
Maintain
Maintain
Maintain
Maintain
Maintain
previous previous previous
previous
previous
previous
previous
previous
state
state
state
state
state
state
state
state
State
Setting
prohibition
-
Sub
crystal
S
oscillator
Maintain Maintain
input pin/
Input
Input
Input
Input
Input
Input
Input
Input
Input
external
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
Maintain Maintain Maintain
Maintain
Maintain
Maintain
Maintain
Maintain
previous previous previous
previous
previous
previous
previous
previous
state
state
state
state
state
Maintain Maintain Maintain
Maintain
Maintain
Maintain
Maintain
Maintain
Maintain Maintain
previous previous previous
previous
previous
previous
previous
previous
previous previous
state
state
state
state
state
Maintain
Maintain
Maintain
Maintain
previous
previous
previous
previous
sub clock
previous previous
state
state
input
selected
GPIO
Setting
selected
disabled
External
T
sub clock
Setting
input
disabled
selected
state
state
state
state
state
state
Hi-Z/
Sub
internal
crystal
input
oscillator fixed at 0/
output pin or input
Setting
prohibition
state
-
state
Maintain Maintain Maintain
state/
state/
state/
state/
Maintain
Maintain Maintain
previous previous previous
When
When
When
When
previous
previous previous
state
state
state
oscillation oscillation oscillation oscillation
state
state
state
stops,
stops,
stops,
stops,
Hi-Z*
Hi-Z*
Hi-Z*
Hi-Z*
Maintain Maintain Maintain
Maintain
Maintain
Maintain
Maintain
Maintain
Maintain Maintain
previous previous previous
previous
previous
previous
previous
previous
previous previous
state
state
state
state
state
enable
Resource
selected
U
Hi-Z
GPIO
state
state
state
state
state
selected
*: When the SOSCNTL bit in the WTOSCCNT register is 0, the sub crystal oscillator output pin is maintained in the
previous state. When the SOSCNTL bit in the WTOSCCNT register is 1, oscillation is stopped at Stop mode and Deep
Standby Stop mode
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
105
D a t a S h e e t
14. Electrical Characteristics
14.1 Absolute Maximum Ratings
Parameter
Power supply voltage
Symbol
*1,*2
Power supply voltage (for USB)
Power supply voltage (for USB)
*1,*3
*1,*3
Analog power supply voltage
Analog reference voltage
Max
VCC
VSS - 0.5
VSS + 6.5
V
USBVCC0
VSS - 0.5
VSS + 6.5
V
USBVCC1
VSS - 0.5
VSS + 6.5
V
ETHVCC
VSS - 0.5
VSS + 6.5
V
VBAT
VSS - 0.5
VSS + 6.5
V
*1 ,*6
AVCC
VSS - 0.5
VSS + 6.5
V
AVRH
VSS - 0.5
VSS + 6.5
V
*1 ,*6
VSS - 0.5
VSS - 0.5
Input voltage
*1
VI
VSS - 0.5
VSS - 0.5
VSS - 0.5
Analog pin input voltage
Output voltage
Unit
*1 ,*5
Power supply voltage (for Ethernet-MAC)
Power supply voltage (VBAT)
*1, *4
Rating
Min
*1
*1
L level maximum output current *7
VIA
VSS - 0.5
VO
VSS - 0.5
IOL
L level average output current *8
IOLAV
L level total maximum output current
L level total maximum output current
*9
H level maximum output current *7
-
∑IOL
-
∑IOLAV
-
IOH
H level average output current *8
-
IOHAV
-
-
VCC + 0.5
(≤ 6.5 V)
USBVCC0 + 0.5
(≤ 6.5 V)
USBVCC1 + 0.5
(≤ 6.5 V)
ETHVCC + 0.5
(≤ 6.5 V)
VSS + 6.5
AVCC + 0.5
(≤ 6.5 V)
VCC + 0.5
(≤ 6.5 V)
V
V
USB ch 1 pin
V
Ethernet-MAC Pin
V
5V tolerant
V
V
10
mA
4 mA type
20
mA
8 mA type
20
mA
10 mA type
20
mA
12 mA type
22.4
mA
I2C Fm+
4
mA
4 mA type
8
mA
8 mA type
10
mA
10 mA type
12
mA
12 mA type
20
mA
I2C Fm+
100
mA
50
mA
- 10
mA
4 mA type
-20
mA
8 mA type
- 20
mA
10 mA type
- 20
mA
12 mA type
-4
mA
4 mA type
-8
mA
8 mA type
- 10
mA
10 mA type
- 12
mA
12 mA type
mA
-
- 100
-
- 50
mA
Power consumption
PD
-
200
mW
Storage temperature
TSTG
- 55
+ 150
°C
106
CONFIDENTIAL
*9
Ethernet-MAC pin
USB ch 0 pin
∑IOH
H level total average output current
Except for USB and
V
∑IOHAV
H level total maximum output current
Remarks
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
1: These parameters are based on the condition that VSS = AVSS = 0.0 V.
2: VCC must not drop below VSS - 0.5 V.
3: USBVCC0, USBVCC1 must not drop below VSS - 0.5 V.
4: ETHVCC must not drop below VSS - 0.5 V.
5: VBAT must not drop below VSS - 0.5 V.
6: Ensure that the voltage does not exceed VCC + 0.5V, for example, when the power is turned on.
7: The maximum output current is defined as the value of the peak current flowing through any one of the corresponding
pins.
8: The average output current is defined as the average current value flowing through any one of the corresponding pins
for a 100-ms period.
9: The total average output current is defined as the average current value flowing through all of corresponding pins for a
100 ms period.
WARNING:
−
Semiconductor devices may be permanently damaged by application of stress (including, without
limitation, voltage, current or temperature) in excess of absolute maximum ratings. Do not exceed
any of these ratings.
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
107
D a t a S h e e t
14.2 Recommended Operating Conditions
Parameter
Power supply voltage
Symbol
Conditions
VCC
-
Value
Min
Max
2.7 *9
5.5
3.0
Power supply voltage (for USB ch 0)
USBVCC0
2.7
3.0
Power supply voltage (for USB ch 1)
USBVCC1
2.7
3.0
Power supply voltage (for Ethernet-MAC)
ETHVCC
-
4.5
2.7
Power supply voltage (VBAT)
Analog power supply voltage
Analog reference voltage
VBAT
-
1.65
Unit
V
3.6
(≤VCC)
*1
V
5.5
*2
(≤VCC)
3.6
(≤VCC)
*3
V
5.5
*4
(≤VCC)
3.6
*5
(≤VCC)
5.5
(≤VCC)
Remarks
V
5.5
*5
*6
(≤VCC)
5.5
V
AVCC
-
2.7
5.5
V
AVRH
-
*8
AVCC
V
AVRL
-
AVSS
AVSS
V
Operating
Junction temperature
TJ
-
- 40
+ 125
°C
temperature
Ambient temperature
TA
-
-40
*7
°C
AVCC = VCC
1: When P81/UDP0 and P80/UDM0 pins are used as USB (UDP0, UDM0)
2: When P81/UDP0 and P80/UDM0 pins are used as GPIO (P81, P80)
3: When P83/UDP1 and P82/UDM1 pins are used as USB (UDP1, UDM1)
4: When P83/UDP1 and P82/UDM1 pins are used as GPIO (P83, P82)
5: When the pins in Ethernet-MAC Pins, except P6E/ADTG_5/SCK4_1/IC23_1/INT29_0/E_PPS pin, are used
as Ethernet-MAC pin
6: When the pins in Ethernet-MAC Pins, except P6E/ADTG_5/SCK4_1/IC23_1/INT29_0/E_PPS pin, are used
as Ethernet-MAC pin
7: The maximum temperature of the ambient temperature (TA) can guarantee a range that does not exceed the
junction temperature (TJ).
The calculation formula of the ambient temperature (TA) is:
TA (Max) = TJ(Max) - Pd(Max) × θJA
Pd:
Power dissipation (W)
θJA:
Package thermal resistance (°C/W)
Pd (Max) = VCC × ICC (Max) + Σ (IOL×VOL) + Σ ((VCC-VOH) × (- IOH))
IOL:
L level output current
IOH:
H level output current
VOL:
L level output voltage
VOH:
H level output voltage
8: The minimum value of analog reference voltage depends on the value of compare clock cycle (Tcck). See 14.5.
12-bit A/D Converter for the details.
9: For the voltage range between VCC(min) and the low voltage detection reset (VDH), the MCU must be clocked from
either the High-speed CR or the low-speed CR.
108
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Package thermal resistance and maximum permissible power for each package are shown below.
The operation is guaranteed maximum permissible power or less for semiconductor devices.
Table 14-1 Table for Package Thermal Resistance and Maximum Permissible Power
Package
Thermal
Maximum Permissible Power
Printed
Resistance
(mW)
Circuit Board
θja
TA = +85 °C
TA = +105 °C
48
833
417
33
1212
606
45
889
444
31
1290
645
46
870
435
32
1250
625
-
-
-
35
1143
571
(°C/W)
FPT-144P-M08
(0.5-mm pitch)
FPT-176P-M07
(0.5-mm pitch)
FPT-216P-M01
(0.4-mm pitch)
LBE192
(0.8-mm pitch)
Single-layered
both sides
4 layers
Single-layered
both sides
4 layers
Single-layered
both sides
4 layers
Single-layered
both sides
4 layers
WARNING:
−
The recommended operating conditions are required in order to ensure the normal operation of the
semiconductor device. All of the device's electrical characteristics are warranted when the device is
operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation
outside these ranges may adversely affect reliability and could result in device failure.
−
No warranty is made with respect to uses, operating conditions, or combinations not represented on
the data sheet.
Users considering application outside the listed conditions are advised to contact their
representatives beforehand.
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
109
D a t a S h e e t
Ethernet-MAC Pins
Pin Name
Ethernet-MAC
Function
Except For
Power
Ethernet-MAC
Supply
Function
Type
VCC
P6E/ADTG_5/SCK4_1/IC23_1/INT29_0/E_PPS
E_PPS *
P6E/ADTG_5/SCK4_1/IC23_1/INT29_0
PC0/E_RXER
E_RXER
PC0
PC1/TIOB6_0/E_RX03
E_RX03
PC1/TIOB6_0
PC2/TIOA6_0/E_RX02
E_RX02
PC2/TIOA6_0
PC3/TIOB7_0/E_RX01
E_RX01
PC3/TIOB7_0
PC4/TIOA7_0/E_RX00
E_RX00
PC4/TIOA7_0
PC5/TIOB14_0/E_RXDV
E_RXDV
PC5/TIOB14_0
PC6/TIOA14_0/E_MDIO
E_MDIO
PC6/TIOA14_0
PC7/INT13_0/E_MDC/CROUT_1
E_MDC
PC7/INT13_0/CROUT_1
PC8/E_RXCK_REFCK
E_RXCK_REFCK
PC8
PC9/TIOB15_0/E_COL
E_COL
PC9/TIOB15_0
PCA/TIOA15_0/E_CRS
E_CRS
PCA/TIOA15_0
PCB/INT28_0/E_COUT
E_COUT
PCB/INT28_0
PCC/E_TCK
E_TCK
PCC
PCD/SOT4_1/INT14_0/E_TXER
E_TXER
PCD/SOT4_1/INT14_0
PCE/SIN4_1/INT15_0/E_TX03
E_TX03
PCE/SIN4_1/INT15_0
PCF/RTS4_1/INT12_0/E_TX02
E_TX02
PCF/RTS4_1/INT12_0
PD0/INT30_1/E_TX01
E_TX01
PD0/INT30_1
PD1/INT31_1/E_TX00
E_TX00
PD1/INT31_1
PD2/CTS4_1/FRCK2_1/E_TXEN
E_TXEN
PD2/CTS4_1/FRCK2_1
ETHVCC
*: It is used to confirm the PTP counter cycle in Ethernet-MAC by waveforms.
110
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Calculation Method of Power Dissipation (Pd)
The power dissipation is shown in the following formula.
Pd = VCC × ICC + Σ (IOL × VOL) + Σ ((VCC-VOH) × (-IOH))
IOL:
IOH:
VOL:
VOH:
L level output current
H level output current
L level output voltage
H level output voltage
ICC is the current drawn by the device.
It can be analyzed as follows.
ICC = ICC (INT) + ΣICC (IO)
ICC (INT): Current drawn by internal logic and memory, etc. through the regulator
ΣICC (IO): Sum of current (I/O switching current) drawn by the output pin
For ICC (INT), it can be anticipated by "(1) Current Rating" in "14.3. DC Characteristics" (This rating value
does not include ICC (IO) for a value at pin fixed).
For ICC (IO), it depends on system used by customers.
The calculation formula is shown below.
ICC (IO) = (CINT + CEXT) × VCC × fSW
CINT:
Pin internal load capacitance
CEXT:
External load capacitance of output pin
fSW:
Pin switching frequency
Parameter
Symbol
Pin internal load capacitance
CINT
Conditions
Capacitance Value
4 mA type
1.93 pF
8 mA type
3.45 pF
12 mA type
3.42 pF
Calculate ICC (Max) as follows when the power dissipation can be evaluated by yourself:
Measure current value ICC (Typ) at normal temperature (+25°C).
Add maximum leakage current value ICC (leak_max) at operating on a value in (1).
ICC(Max) = ICC (Typ) + ICC (leak_max)
Parameter
Maximum leakage current at
operating
Symbol
ICC (leak_max)
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
Conditions
Current Value
TJ = +125 °C
79.2 mA
TJ = +105 °C
39.4 mA
TJ = +85 °C
26.5 mA
111
D a t a S h e e t
Current Explanation Diagram
Pd=VCC×ICC + Σ(IOL×VOL)+Σ((VCC-VOH)×(-IOH))
ICC=ICC (INT)+ΣICC (IO)
VCC
A
ICC
Chip
ICC (INT)
ΣICC (IO)
A
Regulator
VOL
V
A
・・・
V
IOL
Flash
VOH
・・・
Logic
IOH
RAM
ICC (IO)
CEXT
・・・
112
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
14.3 DC Characteristics
14.3.1 Current Rating
Table 14-2 Typical and Maximum Current Consumption in Normal Operation (PLL), Code Running from Flash Memory
(Flash Accelerator Mode and Trace Buffer Function Enabled)
Parameter
Symbol
Pin
Name
Frequency*
Conditions
current
Remarks
224
mA
192 MHz
113
219
mA
180 MHz
106
211
mA
160 MHz
95
197
mA
144 MHz
86
186
mA
120 MHz
73
169
mA
*3
100 MHz
61
155
mA
When all peripheral
80 MHz
50
140
mA
clocks are on
60 MHz
39
126
mA
40 MHz
27
112
mA
20 MHz
16
97
mA
8 MHz
8.7
88.9
mA
operation
4 MHz
6.4
86.1
mA
*7,*8
200 MHz
71
168
mA
192 MHz
68
165
mA
180 MHz
64
159
mA
160 MHz
58
151
mA
144 MHz
52
144
mA
120 MHz
44
134
mA
*3
100 MHz
38
126
mA
When all peripheral
80 MHz
31
117
mA
clocks are off
60 MHz
24
109
mA
40 MHz
17
100
mA
20 MHz
10
91
mA
8 MHz
6.3
86.1
mA
4 MHz
5.0
84.5
mA
Normal
VCC
Unit
117
*6
ICC
2
Max*
*5
supply
1
Typ*
200 MHz
Power
Value
4
(PLL)
*5
*6
1: TA = +25 °C, VCC = 3.3 V
2: TJ = +125 °C, VCC = 5.5 V
3: When all ports are fixed
4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK/2
5: When stopping flash accelerator mode and trace buffer function (FRWTR.RWT = 11, FBFCR.BE = 1)
6: When stopping flash accelerator mode and trace buffer function (FRWTR.RWT = 10, FBFCR.BE = 1)
7: Firmware being executed during data collection for this table is not being accessed from the MainFlash memory.”
8: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
113
D a t a S h e e t
Table 14-2 Typical and Maximum Current Consumption in Normal Operation (PLL), Code with Data Accessing Running
from Flash Memory (Flash Accelerator Mode and Trace Buffer Function Disabled)
Parameter
Symbol
Pin
Name
Frequency*
Conditions
*5
*6
supply
current
ICC
VCC
1
2
Unit
Remarks
Typ*
Max*
200 MHz
128
236
mA
192 MHz
123
230
mA
180 MHz
116
221
mA
160 MHz
102
205
mA
144 MHz
93
193
mA
120 MHz
79
175
mA
*3
100 MHz
67
161
mA
When all peripheral
80 MHz
54
145
mA
clocks are on
60 MHz
42
130
mA
40 MHz
30
115
mA
20 MHz
17
99
mA
8 MHz
9.2
90.0
mA
operation
4 MHz
6.7
86.9
mA
*7,*8
200 MHz
74
170
mA
192 MHz
71
167
mA
180 MHz
67
162
mA
160 MHz
59
152
mA
144 MHz
53
145
mA
120 MHz
45
135
mA
*3
100 MHz
39
127
mA
When all peripheral
80 MHz
32
118
mA
clocks are off
60 MHz
25
110
mA
40 MHz
18
101
mA
Normal
Power
Value
4
(PLL)
*5
*6
20 MHz
11
92
mA
8 MHz
6.5
86.8
mA
4 MHz
5.1
85.0
mA
1: TA = +25 °C, VCC = 3.3 V
2: TJ = +125 °C, VCC = 5.5 V
3: When all ports are fixed
4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK
5: When stopping flash accelerator mode and trace buffer function (FRWTR.RWT = 11, FBFCR.BE = 0)
6: When stopping flash accelerator mode and trace buffer function (FRWTR.RWT = 10, FBFCR.BE = 0)
7: With data access to a MainFlash memory.
8: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)
114
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Table 14-3 Typical and Maximum Current Consumption in Normal Operation (PLL), Code with Data Accessing Running
from Flash Memory (Flash 0 Wait-Cycle Mode and Read Access 0 Wait)
Parameter
Symbol
Pin
Name
Frequency*
Conditions
current
ICC
VCC
2
Unit
Max*
72 MHz
71
161
mA
60 MHz
62
150
mA
48 MHz
51
138
mA
36 MHz
40
125
mA
24 MHz
29
112
mA
12 MHz
17
98
mA
8 MHz
13
93
mA
operation
4 MHz
8.4
88.5
mA
*6,*7
72 MHz
46
132
mA
(PLL)
60 MHz
41
125
mA
48 MHz
34
118
mA
36 MHz
27
110
mA
24 MHz
20
102
mA
12 MHz
12
93
mA
8 MHz
9.4
89.7
mA
4 MHz
6.5
86.4
mA
Normal
supply
1
Typ*
*5
Power
Value
4
*5
Remarks
*3
When all peripheral
clocks are on
*3
When all peripheral
clocks are off
1: TA = +25 °C, VCC = 3.3 V
2: TJ = +125 °C, VCC = 5.5 V
3: When all ports are fixed
4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK
5: When operating flash 0 wait-cycle mode and read access 0 wait (FRWTR.RWT = 00, FBFCR.SD = 000)
6: With data access to a MainFlash memory.
7: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
115
D a t a S h e e t
Table 14-4 Typical and Maximum Current Consumption in Normal Operation (Other than PLL), Code with Data
Accessing Running from Flash Memory (Flash 0 Wait-Cycle Mode and Read Access 0 Wait)
Parameter
Symbol
Pin
Name
Frequency*
Conditions
Value
4
1
Typ*
2
Max*
Unit
Remarks
*3
Normal
4.7
84.9
mA
operation
*6, *7
When all peripheral
clocks are on
*5
4 MHz
*3
(main
3.9
oscillation)
83.8
mA
When all peripheral
clocks are off
*3
Normal
3.0
operation
*6
(built-in
*5
ICC
When all peripheral
clocks are on
*3
2.1
82.0
mA
CR)
Power
current
mA
4 MHz
High-speed
supply
83.2
When all peripheral
clocks are off
VCC
*3
Normal
0.78
80.37
mA
operation
*6, *8
*5
clocks are on
32 kHz
*3
(sub
0.77
oscillation)
When all peripheral
80.36
mA
When all peripheral
clocks are off
*3
Normal
0.81
operation
*6
(built-in
low-speed
CR)
*5
80.39
mA
When all peripheral
clocks are on
100 kHz
*3
0.78
80.38
mA
When all peripheral
clocks are off
1: TA = +25 °C, VCC = 3.3 V
2: TJ = +125 °C, VCC = 5.5 V
3: When all ports are fixed
4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK/2
5: When operating flash 0 wait-cycle mode and read access 0 wait (FRWTR.RWT = 00, FBFCR.SD = 000)
6: With data access to a MainFlash memory.
7: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)
8: When using the crystal oscillator of 32 kHz (including the current consumption of the oscillation circuit)
116
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Table 14-5 Typical and Maximum Current Consumption in Sleep Operation (PLL), when PCLK0 = PCLK1 = PCLK2 =
HCLK/2
Parameter
Symbol
Pin
Name
Power
supply
current
Conditions
Sleep
ICCS
VCC
*5
operation
(PLL)
Value
4
Frequency*
1
2
Unit
Remarks
Typ*
Max*
200 MHz
88
188
mA
192 MHz
85
184
mA
180 MHz
80
178
mA
160 MHz
72
164
mA
144 MHz
65
156
mA
120 MHz
55
144
mA
*3
100 MHz
47
134
mA
When all peripheral clocks
80 MHz
38
124
mA
are on
60 MHz
30
114
mA
40 MHz
21
104
mA
20 MHz
12
93
mA
8 MHz
7.4
87.2
mA
4 MHz
5.8
85.2
mA
200 MHz
44
134
mA
192 MHz
42
132
mA
180 MHz
40
129
mA
160 MHz
36
123
mA
144 MHz
33
119
mA
120 MHz
28
113
mA
*3
100 MHz
24
108
mA
When all peripheral clocks
80 MHz
20
103
mA
are off
60 MHz
16
98
mA
40 MHz
12
93
mA
20 MHz
7.6
87.6
mA
8 MHz
5.2
84.7
mA
4 MHz
4.4
83.7
mA
1: TA = +25 °C, VCC = 3.3 V
2: TJ = +125 °C, VCC = 5.5 V
3: When all ports are fixed
4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK/2
5: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
117
D a t a S h e e t
Table 14-6 Typical and Maximum Current Consumption in Sleep Operation (PLL), when PCLK0 = PCLK1 = PCLK2 =
HCLK
Parameter
Symbol
Pin
Name
Power
supply
current
Conditions
Sleep
ICCS
VCC
*5
operation
(PLL)
Value
4
Frequency*
1
2
Unit
Typ*
Max*
72 MHz
45
130
mA
60 MHz
38
122
mA
48 MHz
31
114
mA
36 MHz
24
106
mA
24 MHz
18
99
mA
12 MHz
11
91
mA
8 MHz
8.6
88.3
mA
4 MHz
6.3
85.7
mA
72 MHz
20
103
mA
60 MHz
18
99
mA
48 MHz
15
96
mA
36 MHz
12
93
mA
24 MHz
9.1
89.3
mA
12 MHz
6.5
86.1
mA
8 MHz
5.5
84.9
mA
4 MHz
4.6
83.8
mA
Remarks
*3
When all peripheral clocks
are on
*3
When all peripheral clocks
are off
1: TA = +25 °C, VCC = 3.3 V
2: TJ = +125 °C, VCC = 5.5 V
3: When all ports are fixed
4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK
5: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)
118
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Table 14-7 Typical and Maximum Current Consumption in Sleep Operation (Other than PLL), when PCLK0 = PCLK1 =
PCLK2 = HCLK/2
Parameter
Symbol
Pin
Name
Conditions
Value
4
Frequency*
1
2
Typ*
Max*
3.4
82.6
Unit
Remarks
*3
Sleep
*5
operation
mA
are on
4 MHz
(main oscillation)
When all peripheral clocks
*3
2.5
81.7
mA
When all peripheral clocks
are off
*3
2.5
Sleep
operation
(built-in
supply
ICCS
mA
When all peripheral clocks
are on
4 MHz
High-speed CR)
Power
81.7
*3
1.7
80.9
mA
When all peripheral clocks
are off
VCC
*3
current
0.75
Sleep
*6
operation
79.97
mA
are on
32 kHz
(sub oscillation)
When all peripheral clocks
*3
0.74
79.96
mA
When all peripheral clocks
are off
*3
0.79
Sleep
operation
(built-in
low-speed CR)
80.01
mA
When all peripheral clocks
are on
100 kHz
*3
0.76
79.98
mA
When all peripheral clocks
are off
1: TA = +25 °C, VCC = 3.3 V
2: TJ = +125 °C, VCC = 5.5 V
3: When all ports are fixed.
4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK/2
5: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)
6: When using the crystal oscillator of 32 kHz (including the current consumption of the oscillation circuit)
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
119
D a t a S h e e t
Table 14-8 Typical and Maximum Current Consumption in Stop Mode, TIMER Mode and RTC Mode
Parameter
Symbol
Pin
Name
Conditions
Stop mode
ICCH
Frequency
-
Value
1
2
Unit
Typ*
Max*
0.56
3.01
mA
-
27.03
mA
-
39.92
mA
1.40
3.85
mA
-
27.87
mA
-
40.76
mA
0.95
3.40
mA
-
27.42
mA
-
40.31
mA
0.57
3.02
mA
-
27.04
mA
-
39.93
mA
0.58
3.03
mA
-
27.05
mA
-
39.94
mA
0.57
3.02
mA
-
27.04
mA
-
39.93
mA
*5
Timer mode
(main oscillation)
4 MHz
Timer mode
(built-in
Power
supply
4 MHz
High-speed CR)
ICCT
VCC
current
*6
Timer mode
(sub oscillation)
32 kHz
Timer mode
(built-in
100 kHz
low-speed CR)
*5
ICCR
RTC mode
(sub oscillation)
32 kHz
Remarks
*3, *4
Ta = +25°C
*3, *4
Ta = +85°C
*3, *4
Ta = +105°C
*3, *4
Ta = +25°C
*3, *4
Ta = +85°C
*3, *4
Ta = +105°C
*3, *4
Ta = +25°C
*3, *4
Ta = +85°C
*3, *4
Ta = +105°C
*3, *4
Ta = +25°C
*3, *4
Ta = +85°C
*3, *4
Ta = +105°C
*3, *4
Ta = +25°C
*3, *4
Ta = +85°C
*3, *4
Ta = +105°C
*3, *4
Ta = +25°C
*3, *4
Ta = +85°C
*3, *4
Ta = +105°C
1: VCC = 3.3 V
2: VCC = 5.5 V
3: When all ports are fixed
4: When LVD is off
5: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)
6: When using the crystal oscillator of 32 kHz (including the current consumption of the oscillation circuit)
120
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Table 14-9 Typical and Maximum Current Consumption in Deep Standby Stop Mode, Deep Standby RTC Mode and
VBAT
Parameter
Symbol
Pin
Name
Conditions
Frequency
Value
1
2
Unit
Typ*
Max*
96
248
μA
-
3009
μA
-
3889
μA
106
259
μA
-
3020
μA
-
3900
μA
96
248
μA
-
3009
μA
-
3889
μA
106
259
μA
-
3020
μA
-
3900
μA
0.0058
0.1
μA
-
1.4
μA
-
3.3
μA
1.0
1.8
μA
-
3.2
μA
-
5.1
μA
Deep standby
Stop mode
(When RAM
-
is off)
ICCHD
Deep standby
Stop mode
(When RAM
-
is on)
VCC
Remarks
*3, *4
Ta = +25°C
*3, *4
Ta = +85°C
*3, *4
Ta = +105°C
*3, *4
Ta = +25°C
*3, *4
Ta = +85°C
*3, *4
Ta = +105°C
*3, *4
Ta = +25°C
Deep standby
*6
RTC mode
(When RAM
Ta = +85°C
is off)
Power
supply
*3, *4
32 kHz
ICCRD
*3, *4
Ta = +105°C
current
Deep standby
*6
RTC mode
(When RAM
is on)
RTC stop
ICCVBAT
VBAT
-
RTC
operation*6
*3, *4
Ta = +25°C
*3, *4
Ta = +85°C
*3, *4
Ta = +105°C
*3, *4, *5
Ta = +25°C
*3, *4, *5
Ta = +85°C
*3, *4, *5
Ta = +105°C
*3, *4
Ta = +25°C
*3, *4
Ta = +85°C
*3, *4
Ta = +105°C
1: VCC = 3.3 V
2: VCC = 5.5 V
3: When all ports are fixed
4: When LVD is off
5: When sub oscillation is off
6: When using the crystal oscillator of 32 kHz (including the current consumption of the oscillation circuit)
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
121
D a t a S h e e t
Table 14-10 Typical and Maximum Current Consumption in Low-voltage Detection Circuit, Main Flash Memory
Write/Erase
Parameter
Pin
Symbol
Name
Conditions
Value
Unit
Min
Typ
Max
-
4
7
μA
-
13.4
15.9
mA
Remarks
Low-voltage
detection
circuit (LVD)
ICCLVD
At operation
power supply
current
For occurrence of
interrupt
VCC
MainFlash
memory
write/erase
At
ICCFLASH
write/erase
*1
current
1: When programming or erase in flash memory, Flash Memory Write/Erase current (I CCFLASH) is added to the Power
supply current (ICC).
Peripheral Current Dissipation
Clock
System
Peripheral
Unit
GPIO
Frequency (MHz)
50
100
200
All ports
0.39
0.81
1.56
DMAC
-
0.99
1.97
3.82
DSTC
-
0.73
1.49
2.86
External bus I/F
-
0.25
0.48
0.97
SD card I/F
-
0.74
1.47
2.90
CAN
1 ch
0.06
0.08
0.16
CAN-FD
1 ch
0.77
1.50
2.95
USB
1 ch
0.48
0.95
1.89
Ethernet-MAC
HCLK
Remarks
mA
-
1.85
3.63
7.20
2
IS
-
0.51
1.02
1.99
High-speed Quad SPI
-
0.48
0.97
1.49
Programmable CRC
-
0.05
0.10
0.22
Base timer
4 ch
0.21
0.42
0.83
1 unit/4 ch
0.83
1.65
3.25
1 unit
0.07
0.13
0.27
A/D converter
1 unit
0.31
0.60
1.17
Multi-function serial
1 ch
0.41
0.81
-
Multi-functional
timer/PPG
PCLK1
Unit
mA
Quadrature
position/revolution
counter
PCLK2
122
CONFIDENTIAL
mA
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
14.3.2
Pin Characteristics
(VCC = USBVCC0
Parameter
Symbol
Pin Name
Conditions
CMOS hysteresis input
pin, MD0, MD1
H level input
voltage
(hysteresis
MADATAxx
VIHS
= USBVCC1
5V tolerant input pin
Input pin doubled as I C
Fm+
TTL Schmitt
input pin
CMOS hysteresis input
pin, MD0, MD1
5V tolerant input pin
VILS
Input pin doubled as I C
TTL Schmitt
input pin
Max
VCC×0.8
-
VCC + 0.3
V
ETHVCC×0.8
-
ETHVCC + 0.3
V
VCC > 3.0 V,
VCC ≤ 3.6 V,
2.4
-
VCC + 0.3
V
-
VCC×0.8
-
VSS + 5.5
V
-
VCC×0.7
-
VSS + 5.5
V
-
2.0
-
ETHVCC+0.3
V
VSS - 0.3
-
VCC×0.2
V
VSS - 0.3
-
ETHVCC×0.2
V
-
VSS - 0.3
-
VCC×0.2
V
-
VSS
-
VCC×0.3
V
-
VSS - 0.3
-
0.8
V
VCC - 0.5
-
VCC
V
VCC - 0.5
-
ETHVCC
V
VCC - 0.5
-
VCC
V
-
ETHVCC
V
VCC - 0.5
-
VCC
V
VCC - 0.5
-
VCC
V
-
USBVCC
V
*1
-
VCC
V
At GPIO
-
-
VCC ≥ 4.5 V,
IOH = - 4 mA
4 mA type
8 mA type
voltage
VOH
10 mA type
12 mA type
The pin
doubled as USB I/O
The pin
doubled as I2C Fm+
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
Remarks
Typ
At External
Bus
2
Fm+
input)
H level output
Unit
Min
L level input
(hysteresis
Value
2
input)
voltage
= ETHVCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V)
VCC < 4.5 V,
IOH = - 2 mA
ETHVCC ≥ 4.5 V,
IOH = - 4 mA
ETHVCC < 4.5 V,
IOH = - 2 mA
VCC ≥ 4.5 V,
IOH = - 8 mA
VCC < 4.5 V,
IOH = - 4 mA
ETHVCC ≥ 4.5 V,
IOH = - 8 mA
ETHVCC < 4.5 V,
IOH = - 4 mA
VCC ≥ 4.5 V,
IOH = - 10 mA
VCC < 4.5 V,
IOH = - 8 mA
VCC ≥ 4.5 V,
IOH = - 12 mA
VCC < 4.5 V,
IOH = - 8 mA
USBVCC ≥ 4.5 V,
IOH = - 20.5 mA
USBVCC < 4.5 V,
IOH = - 13.0 mA
VCC ≥ 4.5 V,
IOH = - 4 mA
VCC < 4.5V,
IOH = - 3 mA
ETHVCC 0.5
USBVCC 0.4
VCC - 0.5
123
D a t a S h e e t
Parameter
Symbol
Pin Name
VCC ≥ 4.5 V,
IOL = 4 mA
4 mA type
8 mA type
L level output
voltage
VOL
10 mA type
12 mA type
The pin doubled
as USB I/O
The pin doubled
as I2C Fm+
Value
Conditions
VCC < 4.5 V,
IOL = 2 mA
ETHVCC ≥ 4.5 V,
IOL = 4 mA
RTHVCC < 4.5 V,
IOL = 2 mA
VCC ≥ 4.5 V,
IOL = 8 mA
VCC < 4.5 V,
IOL = 4 mA
ETHVCC ≥ 4.5 V,
IOL = 8 mA
RTHVCC < 4.5 V,
IOL = 4 mA
VCC ≥ 4.5 V,
IOL = 10 mA
VCC < 4.5 V,
IOL = 8 mA
VCC ≥ 4.5 V,
IOL = 12 mA
VCC < 4.5 V,
IOL = 8 mA
USBVCC ≥ 4.5 V,
IOL = 18.5 mA
USBVCC < 4.5 V,
IOL = 10.5 mA
VCC ≥ 4.5 V,
IOL = 4 mA
VCC < 4.5 V,
IOL = 3 mA
Unit
Min
Typ
Max
VSS
-
0.4
V
VSS
-
0.4
V
VSS
-
0.4
V
VSS
-
0.4
V
VSS
-
0.4
V
VSS
-
0.4
V
VSS
-
0.4
V
VSS
-
0.4
V
current
Pull-up
resistor value
IIL
-
RPU
Pull-up pin
*1
At GPIO
At I2C
VCC ≤ 4.5 V,
IOL = 20 mA
Input leak
Remarks
Fm+
-
-5
-
+5
VCC ≥ 4.5 V
25
50
100
VCC < 4.5 V
30
80
200
-
-
5
15
μA
kΩ
Other than
VCC,
USBVCC0,
Input
capacitance
CIN
USBVCC1,
ETHVCC,
pF
VBAT, VSS,
AVCC, AVSS,
AVRH
1: USBVCC0 and USBVCC1 are described as USBVCC.
124
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
14.4 AC Characteristics
14.4.1 Main Clock Input Characteristics
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = -40C to +105C)
Parameter
Symbol
Input frequency
tCYLH
Input clock pulse width
tCF,
time
tCR
*1
frequency
Internal operating clock
cycle time
*1
Value
Min
Max
VCC ≥4.5 V
4
48
4
20
VCC ≥4.5 V
4
48
VCC < 4.5 V
4
20
X0,
VCC ≥4.5 V
20.83
250
X1
VCC < 4.5 V
50
250
45
-
PWH/tCYLH,
-
Input clock rise time and fall
Conditions
VCC < 4.5 V
fCH
Input clock cycle
Internal operating clock
Pin
Name
PWL/tCYLH
Unit
MHz
Remarks
When crystal oscillator is
connected
MHz
When using external clock
ns
When using external clock
55
%
When using external clock
-
5
ns
When using external clock
fCC
-
-
-
200
MHz
Base clock (HCLK/FCLK)
fCP0
-
-
-
100
MHz
APB0bus clock *2
fCP1
-
-
-
200
MHz
APB1bus clock *2
fCP2
-
-
-
100
MHz
APB2bus clock *2
tCYCC
-
-
5
-
ns
Base clock (HCLK/FCLK)
tCYCP0
-
-
10
-
ns
APB0bus clock *2
tCYCP1
-
-
5
-
ns
APB1bus clock *2
tCYCP2
-
-
10
-
ns
APB2bus clock *2
1: For more information about each internal operating clock, see Chapter 2-1: Clock in FM4 Family Peripheral Manual
Main Part (MN709-00001).
2: For more about each APB bus to which each peripheral is connected, see 10. Block Diagram in this data sheet.
X0
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
125
D a t a S h e e t
14.4.2
Sub Clock Input Characteristics
(VBAT = 1.65V to 5.5V, VSS = 0V)
Parameter
Symbol
Input frequency
Pin
Name
Value
Conditions
Unit
Min
Typ
Max
-
-
32.768
-
kHz
-
32
-
100
kHz
-
10
-
31.25
μs
45
-
55
%
1/tCYLL
X0A,
Input clock cycle
tCYLL
Input clock pulse width
X1A
PWH/tCYLL,
-
PWL/tCYLL
Remarks
When crystal oscillator
is connected *
When using external
clock
When using external
clock
When using external
clock
*: For more information about crystal oscillator, see Sub crystal oscillator in 9. Handling Devices.
tCYLL
0.8 × VBAT
0.8 × VBAT
0.2 × VBAT
X0A
PWH
14.4.3
0.8 × VBAT
0.2 × VBAT
PWL
Built-In CR Oscillation Characteristics
Built-In High-speed CR
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Value
Conditions
TJ = - 20°C to + 105°C
Min
Typ
Max
3.92
4
4.08
Unit
Remarks
When trimming
Clock frequency
fCRH
TJ = - 40°C to + 125°C
3.88
4
4.12
TJ = - 40°C to + 125°C
3
4
5
-
-
-
30
*1
MHz
When not trimming
Frequency
stabilization
tCRWT
μs
*2
time
1: In the case of using the values in CR trimming area of flash memory at shipment for frequency/temperature trimming
2: This is the time to stabilize the frequency of the High-speed CR clock after setting trimming value. During this period, it
is able to use the High-speed CR clock as a source clock.
Built-In Low-speed CR
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Condition
Clock frequency
fCRL
-
126
CONFIDENTIAL
Value
Min
Typ
Max
50
100
150
Unit
Remarks
kHz
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
14.4.4
Operating Conditions of Main PLL (in the Case of Using Main Clock
for Input Clock of PLL)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
PLL oscillation stabilization wait time*1
(lock up time)
PLL input clock frequency
PLL multiplication rate
PLL macro oscillation clock frequency
Main PLL clock frequency*2
Value
Unit
Min
Typ
Max
tLOCK
100
-
-
μs
fPLLI
4
-
16
MHz
-
13
-
100
multiplier
fPLLO
200
-
400
MHz
fCLKPLL
-
-
200
MHz
Remarks
1: Time from when the PLL starts operating until the oscillation stabilizes
2: For more information about Main PLL clock (CLKPLL), see Chapter 2-1: Clock in FM4 Family Peripheral Manual
Main Part (MN709-00001).
Operating Conditions of USB/Ethernet PLL・I2S PLL (in the Case of
Using Main Clock for Input Clock of PLL)
14.4.5
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
PLL oscillation stabilization wait time
PLL input clock frequency
PLL multiplication rate
PLL macro oscillation clock frequency
I2S clock frequency
Unit
Remarks
Typ
Max
tLOCK
100
-
-
μs
fPLLI
4
-
16
MHz
-
13
-
100
multiplier
400
MHz
USB/Ethernet
384
MHz
I2S
*1
(lock up time)
USB/Ethernet clock frequency
Value
Min
*2
*3
fPLLO
200
-
fCLKPLL
-
-
50
MHz
fCLKPLL
-
-
12.288
MHz
After the M
frequency division
After the M
frequency division
1: Time from when the PLL starts operating until the oscillation stabilizes
2: For more information about USB/Ethernet clock, see Chapter 2-2: USB/Ethernet Clock Generation in FM4 Family
Peripheral Manual Communication Macro Part (MN709-00004).
2
2
3: For more information about I S clock, see Chapter 7-1: I S Clock Generation in FM4 Family Peripheral Manual
Communication Macro Part (MN709-00004).
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
127
D a t a S h e e t
14.4.6
Operating Conditions of Main PLL (in the Case of Using Built-in
High-Speed CR Clock for Input Clock of Main PLL)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
PLL oscillation stabilization wait time
Unit
Typ
Max
tLOCK
100
-
-
fPLLI
3.8
4
4.2
MHz
-
50
-
95
multiplier
fPLLO
190
-
400
MHz
fCLKPLL
-
-
200
MHz
Remarks
*1
(lock up time)
PLL input clock frequency
PLL multiplication rate
PLL macro oscillation clock frequency
Main PLL clock frequency
Value
Min
*2
μs
1: Time from when the PLL starts operating until the oscillation stabilizes
2: For more information about Main PLL clock (CLKPLL), see Chapter 2-1: Clock in FM4 Family Peripheral
Manual Main Part (MN709-00001).
Note:
−
14.4.7
The High-speed CR clock (CLKHC) should be set with frequency/temperature trimming to act as the
source clock of the Main PLL.
Reset Input Characteristics
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Reset input time
128
CONFIDENTIAL
Symbol
tINITX
Pin
Name
INITX
Value
Conditions
-
Unit
Min
Typ
500
-
Remarks
ns
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
14.4.8
Power-On Reset Timing
(VCC = 2.7V to 5.5V, VSS = 0V)
Value
Parameter
Symbol
Power supply rise time
tVCCR
Power supply shut down time
tOFF
Time until releasing Power-on reset
tPRT
Pin Name
Unit
VCC
Min
Typ
0
-
ms
1
-
ms
0.33
0.60
ms
Remarks
VCC_minimum
VCC
VDH_minimum
0.2V
0.2V
0.2V
tVCCR
tPRT
Internal RST
RST Active
tOFF
Release
CPU Operation
start
Glossary
− VCC_minimum: minimum VCC of recommended operating conditions
− VDH_minimum: minimum release voltage of low-voltage detection reset
See 14.8. Low-Voltage Detection Characteristics.
14.4.9
GPIO Output Characteristics
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Output frequency
Symbol
tPCYCLE
Pin
Name
Value
Conditions
Unit
Min
Typ
VCC ≥ 4.5V
-
50
MHz
VCC < 4.5V
-
32
MHz
Remarks
Pxx*
*: GPIO is a target.
Pxx
tPCYCLE
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
129
D a t a S h e e t
14.4.10 External Bus Timing
External Bus Clock Output Characteristics
Parameter
Symbol
Pin Name
Value
Conditions
Min
Output frequency
tCYCLE
MCLKOUT
*1
-
Unit
Remarks
Typ
50
*2
MHz
1: The external bus clock (MCLKOUT) is a divided clock of HCLK.
For more information about setting of clock divider, see Chapter 14: External Bus Interface in FM4 Family
Peripheral Manual Main Part (MN709-00001).
2: Generate MCLKOUT at setting more than four divisions when the AHB bus clock exceeds 100 MHz.
0.8 0.8
× ×VVcc
CC
0.8
VCC
0.8 ×
× Vcc
MCLK
tCYCLE
External Bus Signal I/O Characteristics
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Conditions
Value
Unit
0.8 × VCC
V
0.2 × VCC
V
VOH
0.8 × VCC
V
VOL
0.2 × VCC
V
VIH
Remarks
Signal input characteristics
VIL
Signal output characteristics
Input signal
130
CONFIDENTIAL
VIH
VIL
VIH
VIL
VOH
VOL
VOH
VOL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Separate Bus Access Asynchronous SRAM Mode
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
MOEX
Minimum pulse width
MCSX↓→Address output
delay time
MOEX↑→Address
MCSX↓→
MOEX↑→
MCSX↓→
MCLK×n-3
-
ns
tCSL – AV
MCSX[7: 0],
MAD[24: 0]
-
-9
+9
ns
-
0
MCLK×m+9
ns
-
MCLK×m-9
MCLK×m+9
ns
-
0
MCLK×m+9
ns
-
MCLK×m-9
MCLK×m+9
ns
-
20
-
ns
-
0
-
ns
-
MCLK×n-3
-
ns
-
0
MCLK×m+9
ns
-
MCLK×n-9
MCLK×n+9
ns
-
0
MCLK×m+9
ns
-
MCLK×n-9
MCLK×n+9
ns
-
MCLK-9
MCLK+9
ns
-
0
MCLK×m+9
ns
tCSL - RDQML
MDQM↓delay time
Data set up→MOEX↑
tDS - OE
time
MOEX↑→
tDH - OE
Data hold time
MWEX
tWEW
Minimum pulse width
MWEX↑→Address
tWEH - AX
output delay time
MCSX↓→
tCSL - WEL
MWEX↓delay time
MWEX↑→
tWEH - CSH
MCSX↑delay time
MCSX↓→
tCSL-WDQML
MDQM↓delay time
MCSX↓→
tCSL-DX
Data output time
MWEX↑→
tWEH - DX
Data hold time
Max
-
tOEH - CSH
MCSX↑time
Unit
Min
MOEX
tCSL - OEL
MOEX↓delay time
Value
Conditions
tOEW
tOEH - AX
hold time
Pin Name
MOEX,
MAD[24: 0]
MOEX,
MCSX[7: 0]
MCSX,
MDQM[3: 0]
MOEX,
MADATA[31: 0]
MOEX,
MADATA[31: 0]
MWEX
MWEX,
MAD[24: 0]
MWEX,
MCSX[7: 0]
MCSX,
MDQM[3: 0]
MCSX,
MADATA[31: 0]
MWEX,
MADATA[31: 0]
Remarks
Note:
−
When the external load capacitance CL = 30 pF (m = 0 to 15, n = 1 to 16)
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
131
D a t a S h e e t
tCYCLE
MCLK
tOEH-CSH
tWEH-CSH
MCSX[7: 0]
tCSL-AV
MAD[24: 0]
tOEH-AX
Address
tWEH-AX
tCSL-AV
Address
tCSL-OEL
MOEX
tOEW
tCSL-WDQML
tCSL-RDQML
MDQM[1: 0]
tCSL-WEL
tWEW
MWEX
tDS-OE
MADATA[15: 0]
tDH-OE
RD
tWEH-DX
WD
Invalid
tCSL-DX
132
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Separate Bus Access Synchronous SRAM Mode
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Address delay time
Pin Name
MCLK,
tAV
Value
Conditions
MAD[24: 0]
Unit
Min
Max
-
1
9
ns
tCSL
MCLK,
-
1
9
ns
tCSH
MCSX[7: 0]
-
1
9
ns
tREL
MCLK,
-
1
9
ns
tREH
MOEX
-
1
9
ns
-
19
-
ns
-
0
-
ns
MCSX delay time
MOEX delay time
Data set up
MCLK,
tDS
→MCLK↑ time
MCLK↑→
MADATA[31: 0]
MCLK,
tDH
Data hold time
MADATA[31: 0]
tWEL
MCLK,
-
1
9
ns
tWEH
MWEX
-
1
9
ns
MDQM[1: 0]
tDQML
MCLK,
-
1
9
ns
delay time
tDQMH
MDQM[3: 0]
-
1
9
ns
-
MCLK+1
MCLK+18
ns
-
1
18
ns
MWEX delay time
MCLK↑→
MCLK,
tODS
Data output time
MCLK↑→
MADATA[31: 0]
MCLK,
tOD
Data hold time
MADATA[31: 0]
Remarks
Note:
−
When the external load capacitance CL = 30 pF
tCYCLE
MCLK
tCSL
tCSH
MCSX[7: 0]
tAV
tAV
Address
MAD[24: 0]
Address
tREL
tREH
tDQML
tDQMH
MOEX
tDQML
tDQMH
tWEL
tWEH
MDQM[3: 0]
MWEX
MADATA[31: 0]
tDS
tDH
RD
tOD
WD
Invalid
tODS
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
133
D a t a S h e e t
Multiplexed Bus Access Asynchronous SRAM Mode
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Multiplexed
tALE-CHMADV
address delay time
Multiplexed address hold
time
tCHMADH
Pin Name
MALE,
MAD[24: 0]
Value
Conditions
Unit
Min
Max
-
0
10
ns
-
MCLK×n+0
MCLK×n+10
ns
Remarks
Note:
−
When the external load capacitance CL = 30 pF (m = 0 to 15, n = 1 to 16)
MCLK
MCSX[7: 0]
MALE
MAD [24: 0]
MOEX
MDQM [3: 0]
MWEX
MADATA[31: 0]
134
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Multiplexed Bus Access Synchronous SRAM Mode
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
MCLK↑→Multiplexed
Max
-
1
9
tCHAH
MALE
-
1
9
-
1
tOD
ns
-
1
tOD
ns
tCHMADX
data output time
Unit
Min
MCLK,
tCHMADV
address delay time
Value
Conditions
tCHAL
MALE delay time
MCLK↑→Multiplexed
Pin Name
MCLK,
MADATA[31: 0]
Remarks
Note:
−
When the external load capacitance CL = 30 pF
MCLK
MCSX[7: 0]
MALE
MAD [24: 0]
MOEX
MDQM [3: 0]
MWEX
MADATA[31: 0]
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
135
D a t a S h e e t
NAND Flash Mode
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
MNREX
tNREW
Min pulse width
Data set up
tDS – NRE
→MNREX↑time
MNREX↑→
tDH – NRE
Data hold time
MNALE↑→
tALEH - NWEL
MNWEX delay time
MNALE↓→
tALEL - NWEL
MNWEX delay time
MNCLE↑→
tCLEH - NWEL
MNWEX delay time
MNWEX↑→
tNWEH - CLEL
MNCLE delay time
MNWEX
tNWEW
Min pulse width
MNWEX↓→
tNWEL – DV
Data output time
MNWEX↑→
tNWEH – DX
Data hold time
Pin Name
MNREX
MNREX,
MADATA[31: 0]
MNREX,
MADATA[31: 0]
MNALE,
MNWEX
MNALE,
MNWEX
MNCLE,
MNWEX
MNCLE,
MNWEX
MNWEX
MNWEX,
MADATA[31: 0]
MNWEX,
MADATA[31: 0]
Value
Conditions
Unit
Min
Max
-
MCLK×n-3
-
ns
-
20
-
ns
-
0
-
ns
-
MCLK×m-9
MCLK×m+9
ns
-
MCLK×m-9
MCLK×m+9
ns
-
MCLK×m-9
MCLK×m+9
ns
-
0
MCLK×m+9
ns
-
MCLK×n-3
-
ns
-
-9
9
ns
-
0
MCLK×m+9
ns
Remarks
Note:
−
When the external load capacitance CL = 30 pF (m = 0 to 15, n = 1 to 16)
NAND Flash Read
MCLK
MNREX
MADATA[31: 0]
Read
136
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
NAND Flash Address Write
MCLK
MNALE
MNCLE
MNWEX
MADATA[31: 0]
Write
NAND Flash Command Write
MCLK
MNALE
MNCLE
MNWEX
MADATA[31: 0]
Write
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
137
D a t a S h e e t
External Ready Input Timing
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
MCLK↑
MRDY input
Pin Name
MCLK,
tRDYI
MRDY
setup time
Value
Conditions
-
Unit
Min
Max
19
-
Remarks
ns
 When RDY is input
···
MCLK
Over 2cycle
Original
MOEX
MWEX
tRDYI
MRDY
 When RDY is released
MCLK
··· ···
2 cycles
Extended
MOEX
MWEX
tRDYI
0.5×VCC
MRDY
138
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
SDRAM Mode
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Symbol
Output frequency
tCYCSD
Address delay time
tAOSD
MSDCLK↑→
tDOSD
Data output delay time
MSDCLK↑→
tDOZSD
Data output Hi-Z time
MDQM[3: 0] delay time
tWROSD
MCSX delay time
tMCSSD
MRASX delay time
tRASSD
MCASX delay time
tCASSD
MSDWEX delay time
tMWESD
MSDCKE delay time
tCKESD
Data set up time
tDSSD
Data hold time
tDHSD
Pin Name
MSDCLK
MSDCLK,
MAD[15: 0]
MSDCLK,
MADATA[31: 0]
MSDCLK,
MADATA[31: 0]
MSDCLK,
MDQM[1: 0]
MSDCLK,
MCSX8
MSDCLK,
MRASX
MSDCLK,
MCASX
MSDCLK,
MSDWEX
MSDCLK,
MSDCKE
MSDCLK,
MADATA[31: 0]
MSDCLK,
MADATA[31: 0]
Unit
Value
Unit
Min
Max
-
-
50
MHz
-
2
12
ns
-
2
12
ns
-
2
19.5
ns
-
1
12
ns
-
2
12
ns
-
2
12
ns
-
2
12
ns
-
2
12
ns
-
2
12
ns
-
19
-
ns
-
0
-
ns
Remarks
Note:
−
When the external load capacitance CL = 30 pF
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
139
D a t a S h e e t
tCYCSD
SDRAM Access
MSDCLK
tAOSD
MAD[24:0]
MDQM[1:0]
MCSX
MRASX
MCASX
MSDWEX
MSDCKE
Address
tWROSD
tMCSSD
tRASSD
tCASSD
tMWESD
tCKESD
tDSSD
MADATA[15:0]
RD
tDOSD
MADATA[15:0]
140
CONFIDENTIAL
tDHSD
tDOZSD
WD
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
14.4.11 Base Timer Input Timing
Timer Input Timing
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Input pulse width
TIOAn/TIOBn
tTIWH, tTIWL
Value
Condi
Pin Name
(when using as ECK, TIN)
tTIWH
tions
Min
Max
-
2tCYCP
-
Unit
Remarks
ns
tTIWL
ECK
VIHS
TIN
VIHS
VILS
VILS
Trigger Input Timing
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Input pulse width
TIOAn/TIOBn
tTRGH, tTRGL
(when using as TGIN)
tTRGH
TGIN
VIHS
Value
Condi
Pin Name
tions
Min
Max
-
2tCYCP
-
Unit
Remarks
ns
tTRGL
VIHS
VILS
VILS
Note:
−
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to
which the base timer is connected, see 10. Block Diagram in this data sheet.
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
141
D a t a S h e e t
14.4.12 CSIO (SPI) Timing
Synchronous Serial (SPI = 0, SCINV = 0)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Baud rate
Pin
Name
Conditions
VCC ≥ 4.5 V
VCC < 4.5 V
Min
Max
Min
Max
Unit
-
-
-
8
-
8
Mbps
Serial clock cycle time
tSCYC
SCKx
4tCYCP
-
4tCYCP
-
ns
SCK↓→SOT delay time
tSLOVI
- 30
+ 30
- 20
+ 20
ns
50
-
30
-
ns
0
-
0
-
ns
SIN→SCK↑
tIVSHI
setup time
SCKx,
SOTx
SCKx,
SINx
Internal shift
clock operation
SCKx,
SCK↑→SIN hold time
tSHIXI
Serial clock L pulse width
tSLSH
SCKx
2tCYCP - 10
-
2tCYCP - 10
-
ns
Serial clock H pulse width
tSHSL
SCKx
tCYCP + 10
-
tCYCP + 10
-
ns
-
50
-
30
ns
10
-
10
-
ns
20
-
20
-
ns
SCK↓→SOT delay time
tSLOVE
SIN→SCK↑
tIVSHE
setup time
SCK↑→SIN hold time
tSHIXE
SINx
SCKx,
SOTx
SCKx,
SINx
SCKx,
External shift
clock
operation
SINx
SCK fall time
tF
SCKx
-
5
-
5
ns
SCK rise time
tR
SCKx
-
5
-
5
ns
Notes:
142
CONFIDENTIAL

−
The above characteristics apply to CLK synchronous mode.
−
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to
which the multi-function serial is connected, see 10. Block Diagram in this data sheet.
−
These characteristics only guarantee the same relocate port number; for example, the combination
of SCLKx_0 and SOTx_1 is not guaranteed.
−
When the external load capacitance CL = 30 pF.
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
tSCYC
VOH
SCK
VOL
VOL
tSLOVI
VOH
VOL
SOT
tIVSHI
VIH
VIL
SIN
tSHIXI
VIH
VIL
MS bit = 0
tSLSH
SCK
VIH
tF
SOT
VIL
tSHSL
VIL
VIH
VIH
tR
tSLOVE
VOH
VOL
SIN
tIVSHE
VIH
VIL
tSHIXE
VIH
VIL
MS bit = 1
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
143
D a t a S h e e t
Synchronous Serial (SPI = 0, SCINV = 1)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Baud rate
-
Serial clock cycle time
tSCYC
SCK↑→SOT delay time
tSHOVI
Pin
Name
-
Max
Min
Max
-
8
-
8
Mbps
4tCYCP
-
4tCYCP
-
ns
- 30
+ 30
- 20
+ 20
ns
50
-
30
-
ns
0
-
0
-
ns
SCKx,
SOTx
SCKx,
Unit
Min
-
SCKx
VCC ≥ 4.5 V
VCC < 4.5 V
Conditions
Internal shift
SIN→SCK↓ setup time
tIVSLI
SCK↓→SIN hold time
tSLIXI
Serial clock L pulse width
tSLSH
SCKx
2tCYCP - 10
-
2tCYCP - 10
-
ns
Serial clock H pulse width
tSHSL
SCKx
tCYCP + 10
-
tCYCP + 10
-
ns
SCK↑→SOT delay time
tSHOVE
-
50
-
30
ns
SIN→SCK↓ setup time
tIVSLE
10
-
10
-
ns
SCK↓→SIN hold time
tSLIXE
20
-
20
-
ns
SINx
clock operation
SCKx,
SINx
SCKx,
SOTx
SCKx,
External shift
SINx
clock operation
SCKx,
SINx
SCK fall time
tF
SCKx
-
5
-
5
ns
SCK rise time
tR
SCKx
-
5
-
5
ns
Notes:
144
CONFIDENTIAL

−
The above characteristics apply to CLK synchronous mode.
−
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to
which the multi-function serial is connected, see 10. Block Diagram in this data sheet.
−
These characteristics only guarantee the same relocate port number; for example, the combination
of SCLKx_0 and SOTx_1 is not guaranteed.
−
When the external load capacitance CL = 30 pF.
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
tSCYC
VOH
SCK
VOH
VOL
tSHOVI
VOH
VOL
SOT
tIVSLI
VIH
VIL
SIN
tSLIXI
VIH
VIL
MS bit = 0
tSHSL
SCK
VIL
tR
SOT
tSLSH
VIH
VIH
VIL
VIL
tF
tSHOVE
VOH
VOL
SIN
tIVSLE
VIH
VIL
tSLIXE
VIH
VIL
MS bit = 1
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
145
D a t a S h e e t
Synchronous Serial (SPI = 1, SCINV = 0)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Baud rate
-
Serial clock cycle time
tSCYC
SCK↑→SOT delay time
tSHOVI
SIN→SCK↓
tIVSLI
setup time
Pin
Name
-
Max
Min
Max
-
8
-
8
Mbps
4tCYCP
-
4tCYCP
-
ns
- 30
+ 30
- 20
+ 20
ns
50
-
30
-
ns
0
-
0
-
ns
2tCYCP - 30
-
2tCYCP - 30
-
ns
SCKx,
SOTx
SCKx,
SINx
SCKx,
Unit
Min
-
SCKx
VCC ≥ 4.5 V
VCC < 4.5 V
Conditions
Internal shift
clock operation
SCK↓→SIN hold time
tSLIXI
SOT→SCK↓ delay time
tSOVLI
Serial clock L pulse width
tSLSH
SCKx
2tCYCP - 10
-
2tCYCP - 10
-
ns
Serial clock H pulse width
tSHSL
SCKx
tCYCP + 10
-
tCYCP + 10
-
ns
-
50
-
30
ns
10
-
10
-
ns
20
-
20
-
ns
SCK↑→SOT delay time
tSHOVE
SIN→SCK↓
tIVSLE
setup time
SCK↓→SIN hold time
tSLIXE
SINx
SCKx,
SOTx
SCKx,
SOTx
SCKx,
External shift
SINx
clock operation
SCKx,
SINx
SCK fall time
tF
SCKx
-
5
-
5
ns
SCK rise time
tR
SCKx
-
5
-
5
ns
Notes:
146
CONFIDENTIAL

−
The above characteristics apply to CLK synchronous mode.
−
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to
which the multi-function serial is connected, see 10. Block Diagram in this data sheet.
−
These characteristics only guarantee the same relocate port number; for example, the combination
of SCLKx_0 and SOTx_1 is not guaranteed.
−
When the external load capacitance CL = 30 pF.
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
tSCYC
VOH
VOL
SCK
SOT
VOH
VOL
VOH
VOL
tIVSLI
tSLIXI
VIH
VIL
SIN
VOL
tSHOVI
tSOVLI
VIH
VIL
MS bit = 0
tSLSH
SCK
SOT
VIH
VIH
VIL
VIL
tF
*V
tR
VIH
tSHOVE
VOH
VOL
OH
VOL
tIVSLE
SIN
tSHSL
tSLIXE
VIH
VIL
VIH
VIL
MS bit = 1
*: Changes when writing to TDR register
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
147
D a t a S h e e t
Synchronous Serial (SPI = 1, SCINV = 1)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Baud rate
-
Serial clock cycle time
tSCYC
Pin
Name
-
Unit
Min
Max
Min
Max
-
8
-
8
Mbps
4tCYCP
-
4tCYCP
-
ns
- 30
+ 30
- 20
+ 20
ns
50
-
30
-
ns
0
-
0
-
ns
2tCYCP - 30
-
2tCYCP - 30
-
ns
-
SCKx
VCC ≥ 4.5 V
VCC < 4.5 V
Conditions
SCKx,
SCK↓→SOT delay time
tSLOVI
SIN→SCK↑ setup time
tIVSHI
SCK↑→SIN hold time
tSHIXI
SOT→SCK↑ delay time
tSOVHI
Serial clock L pulse width
tSLSH
SCKx
2tCYCP - 10
-
2tCYCP - 10
-
ns
Serial clock H pulse width
tSHSL
SCKx
tCYCP + 10
-
tCYCP + 10
-
ns
-
50
-
30
ns
10
-
10
-
ns
20
-
20
-
ns
SCK↓→SOT delay time
tSLOVE
SIN→SCK↑ setup time
tIVSHE
SCK↑→SIN hold time
tSHIXE
SOTx
SCKx,
SINx
SCKx,
Internal shift
clock operation
SINx
SCKx,
SOTx
SCKx,
SOTx
SCKx,
External shift
SINx
clock operation
SCKx,
SINx
SCK fall time
tF
SCKx
-
5
-
5
ns
SCK rise time
tR
SCKx
-
5
-
5
ns
Notes:
148
CONFIDENTIAL

−
The above characteristics apply to CLK synchronous mode.
−
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to
which the multi-function serial is connected, see 10. Block Diagram in this data sheet.
−
These characteristics only guarantee the same relocate port number; for example, the combination
of SCLKx_0 and SOTx_1 is not guaranteed.
−
When the external load capacitance CL = 30 pF.
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
tSCYC
VOH
SCK
tSOVHI
SOT
tSLOVI
VOH
VOL
VOH
VOL
tSHIXI
tIVSHI
VIH
VIL
SIN
VOH
VOL
VIH
VIL
MS bit = 0
tSHSL
tR
SCK
VIL
tSLSH
VIH
VIH
VIL
tF
VIL
VIH
tSLOVE
SOT
VOH
VOL
VOH
VOL
tIVSHE
SIN
tSHIXE
VIH
VIL
VIH
VIL
MS bit = 1
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
149
D a t a S h e e t
When Using Synchronous Serial Chip Select (SPI = 1, SCINV = 0, MS = 0, CSLVL = 1)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
SCS↓→SCK↓ setup time
tCSSI
SCK↑→SCS↑ hold time
tCSHI
SCS deselect time
tCSDI
SCS↓→SCK↓ setup time
tCSSE
SCK↑→SCS↑ hold time
tCSHE
SCS deselect time
Internal shift
clock
VCC ≥ 4.5 V
VCC < 4.5 V
Conditions
Unit
Min
Max
Min
Max
(*1)-50
(*1)+0
(*1)-50
(*1)+0
ns
(*2)+0
(*2)+50
(*2)+0
(*2)+50
ns
(*3)-50
(*3)+50
(*3)-50
(*3)+50
+5tCYCP
+5tCYCP
+5tCYCP
+5tCYCP
3tCYCP+30
-
3tCYCP+30
-
ns
External shift
0
-
0
-
ns
tCSDE
clock
3tCYCP+30
-
3tCYCP+30
-
ns
SCS↓→SOT delay time
tDSE
operation
-
40
-
40
ns
SCS↑→SOT delay time
tDEE
0
-
0
-
ns
operation
ns
(*1): CSSU bit value×serial chip select timing operating clock cycle [ns]
(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]
(*3): CSDS bit value×serial chip select timing operating clock cycle [ns]
Notes:
150
CONFIDENTIAL

−
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to
which the multi-function serial is connected, see 10. Block Diagram in this data sheet.
−
For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating
clock, see FM4 Family Peripheral Manual Main Part (MN709-00001).
−
When the external load capacitance CL = 30 pF.
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
SCS
output
tCSDI
tCSSI
tCSHI
SCK
output
SOT
(SPI=0)
SOT
(SPI=1)
SCS input
tCSDE
tCSSE
tCSHE
SCK input
tDEE
SOT
(SPI=0)
tDSE
SOT
(SPI=1)
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
151
D a t a S h e e t
When Using Synchronous Serial Chip Select (SPI = 1, SCINV = 1, MS = 0, CSLVL = 1)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
SCS↓→SCK↓ setup time
tCSSI
SCK↑→SCS↑ hold time
tCSHI
SCS deselect time
tCSDI
SCS↓→SCK↓ setup time
tCSSE
SCK↑→SCS↑ hold time
tCSHE
SCS deselect time
Internal shift
clock
VCC ≥ 4.5 V
VCC < 4.5 V
Conditions
Unit
Min
Max
Min
Max
(*1)-50
(*1)+0
(*1)-50
(*1)+0
ns
(*2)+0
(*2)+50
(*2)+0
(*2)+50
ns
(*3)-50
(*3)+50
(*3)-50
(*3)+50
+5tCYCP
+5tCYCP
+5tCYCP
+5tCYCP
3tCYCP+30
-
3tCYCP+30
-
ns
External shift
0
-
0
-
ns
tCSDE
clock
3tCYCP+30
-
3tCYCP+30
-
ns
SCS↓→SOT delay time
tDSE
operation
-
40
-
40
ns
SCS↑→SOT delay time
tDEE
0
-
0
-
ns
operation
ns
(*1): CSSU bit value×serial chip select timing operating clock cycle [ns]
(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]
(*3): CSDS bit value×serial chip select timing operating clock cycle [ns]
Notes:
152
CONFIDENTIAL

−
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to
which the multi-function serial is connected, see 10. Block Diagram in this data sheet.
−
For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating
clock, see FM4 Family Peripheral Manual Main Part (MN709-00001).
−
When the external load capacitance CL = 30 pF.
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
SCS
output
tCSDI
tCSSI
tCSHI
SCK
output
SOT
(SPI=0)
SOT
(SPI=1)
SCS
input
tCSDE
tCSSE
tCSHE
SCK
input
tDEE
SOT
(SPI=0)
tDSE
SOT
(SPI=1)
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
153
D a t a S h e e t
When Using Synchronous Serial Chip Select (SPI = 1, SCINV = 0, MS = 0, CSLVL = 0)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
SCS↑→SCK↓ setup time
tCSSI
SCK↑→SCS↓ hold time
tCSHI
Conditions
Internal shift
clock
operation
VCC ≥ 4.5 V
VCC < 4.5 V
Unit
Min
Max
Min
Max
(*1)-50
(*1)+0
(*1)-50
(*1)+0
ns
ns
(*2)+0
(*2)+50
(*2)+0
(*2)+50
(*3)-50
(*3)+50
(*3)-50
(*3)+50
+5tCYCP
+5tCYCP
+5tCYCP
+5tCYCP
3tCYCP+30
-
3tCYCP+30
-
ns
SCS deselect time
tCSDI
ns
SCS↑→SCK↓ setup time
tCSSE
SCK↑→SCS↓ hold time
tCSHE
External shift
0
-
0
-
ns
SCS deselect time
tCSDE
clock
3tCYCP+30
-
3tCYCP+30
-
ns
SCS↑→SOT delay time
tDSE
operation
-
40
-
40
ns
SCS↓→SOT delay time
tDEE
0
-
0
-
ns
(*1): CSSU bit value×serial chip select timing operating clock cycle [ns]
(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]
(*3): CSDS bit value×serial chip select timing operating clock cycle [ns]
Notes:
154
CONFIDENTIAL

−
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to
which the multi-function serial is connected, see 10. Block Diagram in this data sheet.
−
For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating
clock, see FM4 Family Peripheral Manual Main Part (MN709-00001).
−
When the external load capacitance CL = 30 pF.
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
tCSDI
SCS
output
tCSSI
tCSHI
SCK
output
SOT
(SPI=0)
SOT
(SPI=1)
tCSDE
SCS
input
tCSSE
tCSHE
SCK
input
tDEE
SOT
(SPI=0)
SOT
tDSE
(SPI=1)
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
155
D a t a S h e e t
When Using Synchronous Serial Chip Select (SPI = 1, SCINV = 1, MS = 0, CSLVL = 0)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Min
SCS↑→SCK↑setup time
tCSSI
SCK↓→SCS↓hold time
tCSHI
SCS deselect time
tCSDI
Internal shift
clock
operation
VCC ≥ 4.5 V
VCC < 4.5 V
Conditions
Units
Max
Min
Max
(*1)-50
(*1)+0
(*1)-50
(*1)+0
ns
(*2)+0
(*2)+50
(*2)+0
(*2)+50
ns
(*3)-50
(*3)+50
(*3)-50
(*3)+50
+5tCYCP
+5tCYCP
+5tCYCP
+5tCYCP
ns
SCS↑→SCK↑setup time
tCSSE
3tCYCP+30
-
3tCYCP+30
-
ns
SCK↓→SCS↓hold time
tCSHE
External
0
-
0
-
ns
SCS deselect time
tCSDE
shift clock
3tCYCP+30
-
3tCYCP+30
-
ns
SCS↑→SOT delay time
tDSE
operation
-
40
-
40
ns
SCS↓→SOT delay time
tDEE
0
-
0
-
ns
(*1): CSSU bit value×serial chip select timing operating clock cycle [ns]
(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]
(*3): CSDS bit value×serial chip select timing operating clock cycle [ns]
Notes:
156
CONFIDENTIAL

−
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to
which the multi-function serial is connected, see 10. Block Diagram in this data sheet.
−
For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating
clock, see FM4 Family Peripheral Manual Main Part (MN709-00001).
−
When the external load capacitance CL = 30 pF.
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
tCSDI
SCS output
tCSSI
tCSHI
SCK output
SOT
(SPI=0)
SOT
(SPI=1)
tCSDE
SCS input
tCSSE
tCSHE
SCK input
tDEE
SOT
(SPI=0)
SOT
tDSE
(SPI=1)
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
157
D a t a S h e e t
High-Speed Synchronous Serial (SPI = 0, SCINV = 0)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Baud rate
-
Serial clock cycle time
tSCYC
SCK↓→SOT delay time
tSLOVI
SIN→SCK↑ setup time
tIVSHI
Pin
Name
-
Conditions
-
SCKx
SCKx,
SOTx
SCKx,
SINx
Internal shift
clock operation
VCC ≥ 4.5V
VCC < 4.5V
Unit
Min
Max
Min
Max
-
25
-
25
Mbps
4tCYCP
-
4tCYCP
-
ns
- 10
+ 10
- 10
+ 10
ns
-
12.5
-
ns
5
-
5
-
ns
14
12.5*
SCKx,
SCK↑→SIN hold time
tSHIXI
Serial clock L pulse width
tSLSH
SCKx
2tCYCP - 5
-
2tCYCP - 5
-
ns
Serial clock H pulse width
tSHSL
SCKx
tCYCP + 10
-
tCYCP + 10
-
ns
-
15
-
15
ns
5
-
5
-
ns
5
-
5
-
ns
SCK↓→SOT delay time
tSLOVE
SIN→SCK↑ setup time
tIVSHE
SCK↑→SIN hold time
tSHIXE
SINx
SCKx,
SOTx
SCKx,
External shift
SINx
clock operation
SCKx,
SINx
SCK fall time
tF
SCKx
-
5
-
5
ns
SCK rise time
tR
SCKx
-
5
-
5
ns
Notes:

−
The above characteristics apply to CLK synchronous mode.
−
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to
which the multi-function serial is connected, see 10. Block Diagram in this data sheet.
−
These characteristics only guarantee the following pins:
No chip select: SIN4_0, SOT4_0, SCK4_0
Chip select: SIN6_0, SOT6_0, SCK6_0, SCS60_0, SCS61_0, SCS62_0, SCS63_0
−
158
CONFIDENTIAL
When the external load capacitance CL = 30 pF. (For *, when CL = 10 pF)
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
tSCYC
VOH
SCK
VOL
VOL
tSLOVI
VOH
VOL
SOT
tIVSHI
tSHIXI
VIH
VIL
VIH
VIL
SIN
MS bit = 0
tSLSH
SCK
VIH
tF
SOT
VIL
tSHSL
VIL
VIH
VIH
tR
tSLOVE
VOH
VOL
SIN
tIVSHE
VIH
VIL
tSHIXE
VIH
VIL
MS bit = 1
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
159
D a t a S h e e t
High-Speed Synchronous Serial (SPI = 0, SCINV = 1)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Baud rate
-
Serial clock cycle time
tSCYC
SCK↑→SOT delay time
SIN→SCK↓ setup time
tSHOVI
tIVSLI
SCK↓→SIN hold time
tSLIXI
Serial clock L pulse width
tSLSH
Serial clock H pulse width
tSHSL
SCK↑→SOT delay time
tSHOVE
SIN→SCK↓ setup time
tIVSLE
SCK↓→SIN hold time
tSLIXE
Pin
Name
Conditions
VCC ≥ 4.5 V
VCC < 4.5 V
Unit
Min
Max
Min
Max
-
25
-
25
Mbps
4tCYCP
-
4tCYCP
-
ns
- 10
+ 10
- 10
+ 10
ns
-
12.5
-
ns
5
-
5
-
ns
SCKx
2tCYCP - 5
-
2tCYCP - 5
-
ns
SCKx
tCYCP + 10
-
tCYCP + 10
-
ns
-
15
-
15
ns
5
-
5
-
ns
5
-
5
-
ns
-
-
SCKx
SCKx,
SOTx
SCKx,
SINx
Internal shift
clock operation
SCKx,
SINx
SCKx,
SOTx
SCKx,
External shift
SINx
clock operation
SCKx,
SINx
14
12.5*
SCK fall time
tF
SCKx
-
5
-
5
ns
SCK rise time
tR
SCKx
-
5
-
5
ns
Notes: 
−
The above characteristics apply to CLK synchronous mode.
−
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to
which the multi-function serial is connected, see 10. Block Diagram in this data sheet.
−
These characteristics only guarantee the following pins:
No chip select: SIN4_0, SOT4_0, SCK4_0
Chip select: SIN6_0, SOT6_0, SCK6_0, SCS60_0, SCS61_0, SCS62_0, SCS63_0
−
160
CONFIDENTIAL
When the external load capacitance CL = 30 pF. (For *, when CL = 10 pF)
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
tSCYC
VOH
SCK
VOH
VOL
tSHOVI
VOH
VOL
SOT
tIVSLI
VIH
VIL
SIN
tSLIXI
VIH
VIL
MS bit = 0
tSHSL
SCK
VIL
tR
SOT
tSLSH
VIH
VIH
VIL
VIL
tF
tSHOVE
VOH
VOL
SIN
tIVSLE
VIH
VIL
tSLIXE
VIH
VIL
MS bit = 1
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
161
D a t a S h e e t
High-Speed Synchronous Serial (SPI = 1, SCINV = 0)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Baud rate
-
Serial clock cycle time
tSCYC
SCK↑→SOT delay time
tSHOVI
SIN→SCK↓ setup time
tIVSLI
Pin
Name
-
Conditions
-
SCKx
SCKx,
SOTx
SCKx,
SINx
Internal shift
clock operation
SCKx,
VCC ≥ 4.5 V
VCC < 4.5 V
Unit
Min
Max
Min
Max
-
25
-
25
Mbps
4tCYCP
-
4tCYCP
-
ns
- 10
+ 10
- 10
+ 10
ns
-
12.5
-
ns
5
-
5
-
ns
2tCYCP - 10
-
2tCYCP - 10
-
ns
14
12.5*
SCK↓→SIN hold time
tSLIXI
SOT→SCK↓ delay time
tSOVLI
Serial clock L pulse width
tSLSH
SCKx
2tCYCP - 5
-
2tCYCP - 5
-
ns
Serial clock H pulse width
tSHSL
SCKx
tCYCP + 10
-
tCYCP + 10
-
ns
SCK↑→SOT delay time
tSHOVE
-
15
-
15
ns
SIN→SCK↓ setup time
tIVSLE
5
-
5
-
ns
SCK↓→SIN hold time
tSLIXE
5
-
5
-
ns
SINx
SCKx,
SOTx
SCKx,
SOTx
SCKx,
External shift
SINx
clock operation
SCKx,
SINx
SCK fall time
tF
SCKx
-
5
-
5
ns
SCK rise time
tR
SCKx
-
5
-
5
ns
Notes:

−
The above characteristics apply to CLK synchronous mode.
−
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to
which the multi-function serial is connected, see 10. Block Diagram in this data sheet.
−
These characteristics only guarantee the following pins:
No chip select: SIN4_0, SOT4_0, SCK4_0
Chip select: SIN6_0, SOT6_0, SCK6_0, SCS60_0, SCS61_0, SCS62_0, SCS63_0
−
162
CONFIDENTIAL
When the external load capacitance CL = 30 pF. (for *, when CL = 10 pF)
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
tSCYC
VOH
VOL
SCK
SOT
VOH
VOL
VOH
VOL
tIVSLI
tSLIXI
VIH
VIL
SIN
VOL
tSHOVI
tSOVLI
VIH
VIL
MS bit = 0
tSLSH
SCK
SOT
VIH
VIL
VIH
VIL
tF
*V
tR
VIH
tSHOVE
VOH
VOL
OH
VOL
tIVSLE
SIN
tSHSL
tSLIXE
VIH
VIL
VIH
VIL
MS bit = 1
*: Changes when writing to TDR register
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
163
D a t a S h e e t
High-Speed Synchronous Serial (SPI = 1, SCINV = 1)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Baud rate
-
Serial clock cycle time
tSCYC
SCK↓→SOT delay time
tSLOVI
SIN→SCK↑ setup time
tIVSHI
SCK↑→SIN hold time
tSHIXI
SOT→SCK↑ delay time
tSOVHI
Serial clock L pulse width
tSLSH
Serial clock H pulse width
tSHSL
SCK↓→SOT delay time
tSLOVE
SIN→SCK↑ setup time
tIVSHE
SCK↑→SIN hold time
tSHIXE
Pin
Name
Conditions
VCC ≥ 4.5 V
VCC < 4.5 V
Unit
Min
Max
Min
Max
-
25
-
25
Mbps
4tCYCP
-
4tCYCP
-
ns
- 10
+ 10
- 10
+ 10
ns
-
12.5
-
ns
5
-
5
-
ns
2tCYCP - 10
-
2tCYCP - 10
-
ns
SCKx
2tCYCP - 5
-
2tCYCP - 5
-
ns
SCKx
tCYCP + 10
-
tCYCP + 10
-
ns
-
15
-
15
ns
5
-
5
-
ns
5
-
5
-
ns
-
-
SCKx
SCKx,
SOTx
SCKx,
SINx
Internal shift
clock operation
SCKx,
SINx
SCKx,
SOTx
SCKx,
SOTx
SCKx,
External shift
SINx
clock operation
SCKx,
SINx
14
12.5*
SCK fall time
tF
SCKx
-
5
-
5
ns
SCK rise time
tR
SCKx
-
5
-
5
ns
Notes:

−
The above characteristics apply to CLK synchronous mode.
−
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to
which the multi-function serial is connected, see 10. Block Diagram in this data sheet.
−
These characteristics only guarantee the following pins:
No chip select: SIN4_0, SOT4_0, SCK4_0
Chip select: SIN6_0, SOT6_0, SCK6_0, SCS60_0, SCS61_0, SCS62_0, SCS63_0
−
164
CONFIDENTIAL
When the external load capacitance CL = 30 pF. (for *, when CL = 10 pF)
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
tSCYC
SCK
VOH
tSOVHI
SOT
tSLOVI
VOH
VOL
VOH
VOL
tSHIXI
tIVSHI
VIH
VIL
SIN
VOH
VOL
VIH
VIL
MS bit = 0
VIL
SOT
SIN
tSHSL
tR
SCK
VIH
tSLSH
VIH
VIL
tF
VIL
VIH
tSLOVE
VOH
VOL
VOH
VOL
tIVSHE
tSHIXE
VIH
VIL
VIH
VIL
MS bit = 1
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
165
D a t a S h e e t
When Using High-Speed Synchronous Serial Chip Select (SPI = 1, SCINV = 0, MS = 0,
CSLVL = 1)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
SCS↓→SCK↓ setup time
tCSSI
SCK↑→SCS↑ hold time
tCSHI
SCS deselect time
tCSDI
SCS↓→SCK↓ setup time
tCSSE
SCK↑→SCS↑ hold time
tCSHE
SCS deselect time
SCS↓→SOT delay time
SCS↑→SOT delay time
tDEE
Internal shift
clock
VCC ≥ 4.5 V
VCC < 4.5 V
Conditions
Unit
Min
Max
Min
Max
(*1)-20
(*1)+0
(*1)-20
(*1)+0
ns
(*2)+0
(*2)+20
(*2)+0
(*2)+20
ns
(*3)-20
(*3)+20
(*3)-20
(*3)+20
+5tCYCP
+5tCYCP
+5tCYCP
+5tCYCP
3tCYCP+15
-
3tCYCP+15
-
ns
External shift
0
-
0
-
ns
tCSDE
clock
3tCYCP+15
-
3tCYCP+15
-
ns
tDSE
operation
-
25
-
25
ns
0
-
0
-
ns
operation
ns
(*1): CSSU bit value×serial chip select timing operating clock cycle [ns]
(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]
(*3): CSDS bit value×serial chip select timing operating clock cycle [ns]
Notes:
166
CONFIDENTIAL

−
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to
which the multi-function serial is connected, see 10. Block Diagram in this data sheet.
−
For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating
clock, see FM4 Family Peripheral Manual Main Part (MN709-00001).
−
When the external load capacitance CL = 30 pF.
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
SCS
output
tCSDI
tCSSI
tCSHI
tCSSE
tCSHE
SCK
output
SOT
(SPI=0)
SOT
(SPI=1)
SCS
input
tCSDE
SCK
input
tDEE
SOT
(SPI=0)
tDSE
SOT
(SPI=1)
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
167
D a t a S h e e t
When Using High-Speed Synchronous Serial Chip Select (SPI = 1, SCINV = 1, MS = 0,
CSLVL = 1)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
SCS↓→SCK↓ setup time
tCSSI
SCK↑→SCS↑ hold time
tCSHI
SCS deselect time
tCSDI
SCS↓→SCK↑ setup time
tCSSE
SCK↑→SCS↑ hold time
tCSHE
SCS deselect time
SCS↓→SOT delay time
SCS↑→SOT delay time
tDEE
Internal shift
clock
VCC ≥ 4.5 V
VCC < 4.5 V
Conditions
Unit
Min
Min
Min
Max
(*1)-20
(*1)+0
(*1)-20
(*1)+0
ns
(*2)+0
(*2)+20
(*2)+0
(*2)+20
ns
(*3)-20
(*3)+20
(*3)-20
(*3)+20
+5tCYCP
+5tCYCP
+5tCYCP
+5tCYCP
3tCYCP+15
-
3tCYCP+15
-
ns
External shift
0
-
0
-
ns
tCSDE
clock
3tCYCP+15
-
3tCYCP+15
-
ns
tDSE
operation
-
25
-
25
ns
0
-
0
-
ns
operation
ns
(*1): CSSU bit value×serial chip select timing operating clock cycle [ns]
(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]
(*3): CSDS bit value×serial chip select timing operating clock cycle [ns]
Notes:
168
CONFIDENTIAL

−
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to
which the multi-function serial is connected, see 10. Block Diagram in this data sheet.
−
For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating
clock, see FM4 Family Peripheral Manual Main Part (MN709-00001).
−
When the external load capacitance CL = 30 pF.
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
SCS
output
tCSDI
tCSSI
tCSHI
SCK
output
SOT
(SPI=0)
SOT
(SPI=1)
SCS
intpu
tCSDE
tCSSE
tCSHE
SCK
input
tDEE
SOT
(SPI=0)
tDSE
SOT
(SPI=1)
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
169
D a t a S h e e t
When Using High-Speed Synchronous Serial Chip Select (SPI = 1, SCINV = 0, MS = 0,
CSLVL = 0)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
SCS↑→SCK↓ setup time
tCSSI
SCK↑→SCS↓ hold time
tCSHI
Conditions
Internal shift
clock
operation
VCC ≥ 4.5 V
VCC < 4.5 V
Unit
Min
Max
Min
Max
(*1)-20
(*1)+0
(*1)-20
(*1)+0
ns
ns
(*2)+0
(*2)+20
(*2)+0
(*2)+20
(*3)-20
(*3)+20
(*3)-20
(*3)+20
+5tCYCP
+5tCYCP
+5tCYCP
+5tCYCP
3tCYCP+15
-
3tCYCP+15
-
ns
SCS deselect time
tCSDI
ns
SCS↑→SCK↓ setup time
tCSSE
SCK↑→SCS↓ hold time
tCSHE
External shift
0
-
0
-
ns
SCS deselect time
tCSDE
clock
3tCYCP+15
-
3tCYCP+15
-
ns
SCS↑→SOT delay time
tDSE
operation
-
25
-
25
ns
SCS↓→SOT delay time
tDEE
0
-
0
-
ns
(*1): CSSU bit value×serial chip select timing operating clock cycle [ns]
(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]
(*3): CSDS bit value×serial chip select timing operating clock cycle [ns]
Notes:
170
CONFIDENTIAL

−
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to
which the multi-function serial is connected, see 10. Block Diagram in this data sheet.
−
For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating
clock, see FM4 Family Peripheral Manual Main Part (MN709-00001).
−
When the external load capacitance CL = 30 pF.
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
tCSDI
SCS
output
tCSSI
tCSHI
SCK
output
SOT
(SPI=0)
SOT
(SPI=1)
tCSDE
SCS
input
tCSSE
tCSHE
SCK
input
tDEE
SOT
(SPI=0)
SOT
tDSE
(SPI=1)
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
171
D a t a S h e e t
When Using High-Speed Synchronous Serial Chip Select (SPI = 1, SCINV = 1, MS = 0,
CSLVL = 0)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
SCS↓→SCK↓ setup time
tCSSI
SCK↑→SCS↓ hold time
tCSHI
Conditions
Internal shift
clock
operation
VCC ≥ 4.5 V
VCC < 4.5 V
Unit
Min
Max
Min
Max
(*1)-20
(*1)+0
(*1)-20
(*1)+0
ns
ns
(*2)+0
(*2)+20
(*2)+0
(*2)+20
(*3)-20
(*3)+20
(*3)-20
(*3)+20
+5tCYCP
+5tCYCP
+5tCYCP
+5tCYCP
3tCYCP+15
-
3tCYCP+15
-
ns
SCS deselect time
tCSDI
ns
SCS↑→SCK↑ setup time
tCSSE
SCK↓→SCS↓ hold time
tCSHE
External shift
0
-
0
-
ns
SCS deselect time
tCSDE
clock
3tCYCP+15
-
3tCYCP+15
-
ns
SCS↑→SOT delay time
tDSE
operation
-
40
-
40
ns
SCS↓→SOT delay time
tDEE
0
-
0
-
ns
(*1): CSSU bit value×serial chip select timing operating clock cycle [ns]
(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]
(*3): CSDS bit value×serial chip select timing operating clock cycle [ns]
Notes:
172
CONFIDENTIAL

−
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to
which the multi-function serial is connected, see 10. Block Diagram in this data sheet.
−
For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating
clock, see FM4 Family Peripheral Manual Main Part (MN709-00001).
−
When the external load capacitance CL = 30 pF.
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
tCSDI
SCS
output
tCSSI
tCSHI
SCK
output
SOT
(SPI=0)
SOT
(SPI=1)
SCS
tCSDE
input
tCSSE
tCSHE
SCK
input
tDEE
SOT
(SPI=0)
SOT
tDSE
(SPI=1)
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
173
D a t a S h e e t
External Clock (EXT = 1): When in Asynchronous Mode Only
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Serial clock L pulse width
tSLSH
Serial clock H pulse width
tSHSL
SCK fall time
tF
SCK rise time
tR
CL = 30 pF
tR
V IL
CONFIDENTIAL
VIH
Unit
Min
Max
tCYCP + 10
-
ns
tCYCP + 10
-
ns
-
5
ns
-
5
ns
tSHSL
SCK
174
Value
Condition
tF
tSLSH
VIH
V IL
Remarks
V IL
VIH
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
14.4.13 External Input Timing
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Pin Name
Conditions
Value
Min
Max
Unit
ADTGx
FRCKx
A/D converter trigger input
-
*1
-
2tCYCP
ns
ICxx
Input pulse
width
tINH, tINL
DTTIxX
NMIX
WKUPx
Free-run timer input clock
Input capture
-
*1
-
ns
-
ns
*2
-
ns
*3
-
ns
2tCYCP
*1
INT00 to INT31,
Remarks
2tCYCP + 100
500
-
500
Waveform generator
External interrupt,
NMI
Deep standby wake up
1: tCYCP indicates the APB bus clock cycle time except stop when in Stop mode, in Timer mode. For more information
about the APB bus number to which the A/D converter, multi-function timer, and external interrupt are connected, see
10. Block Diagram in this data sheet.
2: When in Stop mode, in Timer mode
3: When in Deep Standby RTC mode, in Deep Standby Stop mode
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
175
D a t a S h e e t
14.4.14 Quadrature Position/Revolution Counter Timing
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = -40°C to +105°C)
Parameter
Value
Symbol
Conditions
AIN pin H width
tAHL
-
AIN pin L width
tALL
-
BIN pin H width
tBHL
-
BIN pin L width
tBLL
-
tAUBU
PC_Mode2 or PC_Mode3
tBUAD
PC_Mode2 or PC_Mode3
tADBD
PC_Mode2 or PC_Mode3
tBDAU
PC_Mode2 or PC_Mode3
tBUAU
PC_Mode2 or PC_Mode3
tAUBD
PC_Mode2 or PC_Mode3
tBDAD
PC_Mode2 or PC_Mode3
tADBU
PC_Mode2 or PC_Mode3
ZIN pin H width
tZHL
QCR: CGSC = 0
ZIN pin L width
tZLL
QCR: CGSC = 0
tZABE
QCR: CGSC = 1
tABEZ
QCR: CGSC = 1
BIN rise time from
AIN pin H level
AIN fall time from
BIN pin H level
BIN fall time from
AIN pin L level
AIN rise time from
BIN pin L level
AIN rise time from
BIN pin H level
BIN fall time from
AIN pin H level
AIN fall time from
BIN pin L level
BIN rise time from
AIN pin L level
AIN/BIN rise and fall time from
determined ZIN level
Determined ZIN level from
AIN/BIN rise and fall time
Min
Max
2tCYCP*
-
Unit
ns
*: tCYCP indicates the APB bus clock cycle time except when in Stop mode, in Timer mode. For more information about
the APB bus number to which the quadrature position/revolution counter is connected, see 10. Block Diagram in this
data sheet.
tALL
tAHL
AIN
tAUBU
tADBD
tBUAD
tBDAU
BIN
tBHL
176
CONFIDENTIAL
tBLL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
tBLL
tBHL
BIN
tBUAU
tBDAD
tAUBD
tADBU
AIN
tAHL
tALL
ZIN
ZIN
AIN/BIN
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
177
D a t a S h e e t
14.4.15 I2C Timing
Standard-Mode, Fast-Mode
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Conditions
Standard-Mode
Fast-Mode
Unit
Min
Max
Min
Max
fSCL
0
100
0
400
kHz
tHDSTA
4.0
-
0.6
-
μs
SCL clock L width
tLOW
4.7
-
1.3
-
μs
SCL clock H width
tHIGH
4.0
-
0.6
-
μs
4.7
-
0.6
-
μs
SCL clock frequency
Remarks
(Repeated) START condition hold
time
SDA ↓ → SCL ↓
(Repeated) START condition
setup time
tSUSTA
SCL ↑ → SDA ↓
Data hold time
SCL ↓ → SDA ↓ ↑
Data setup time
SDA ↓ ↑ → SCL ↑
Stop condition setup time
SCL ↑ → SDA ↑
CL = 30 pF,
*1
tHDDAT
R = (Vp/IOL)
*2
0
3.45
*3
0
0.9
μs
tSUDAT
250
-
100
-
ns
tSUSTO
4.0
-
0.6
-
μs
tBUF
4.7
-
1.3
-
μs
*4
-
ns
*4
-
ns
*4
-
ns
*4
-
ns
Bus free time between
"Stop condition" and
"START condition"
2 MHz ≤
tCYCP<40 MHz
40 MHz ≤
Noise filter
tSP
tCYCP <60 MHz
60 MHz ≤
tCYCP <80 MHz
80 MHz ≤
tCYCP ≤100 MHz
*4
-
2 tCYCP
*4
-
4 tCYCP
*4
-
6 tCYCP
*4
-
8 tCYCP
2 tCYCP
4 tCYCP
*5
6 tCYCP
8 tCYCP
1: R and CL represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. V p indicates
the power supply voltage of the pull-up resistance and IOL indicates VOL guaranteed current.
2: The maximum tHDDT must not extend beyond the low period (tLOW) of the device’s SCL signal.
2
2
3: Fast-mode I C bus device can be used on a Standard-mode I C bus system as long as the device satisfies the
requirement of "tSUDAT ≥ 250 ns.
2
4: tCYCP is the APB bus clock cycle time. For more information about the APB bus number to which the I C is connected,
see 10.Block Diagram in this data sheet.
When using Standard-mode, the peripheral bus clock must be set more than 2 MHz.
When using Fast-mode, the peripheral bus clock must be set more than 8 MHz.
5: The noise filter time can be changed by register settings. Change the number of the noise filter steps according to the
APB bus clock frequency.
178
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Fast mode Plus (Fm+)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
SCL clock frequency
Symbol
Conditions
Fast mode Plus (Fm+)*6
Unit
Min
Max
fSCL
0
1000
kHz
tHDSTA
0.26
-
μs
Remarks
(Repeated) START condition hold
time
SDA ↓ → SCL ↓
SCL clock L width
tLOW
0.5
-
μs
SCL clock H width
tHIGH
0.26
-
μs
SCL clock frequency
tSUSTA
0.26
-
μs
(Repeated) START condition hold
time
0.45
*2, *3
μs
tSUDAT
50
-
ns
tSUSTO
0.26
-
μs
tBUF
0.5
-
μs
*4
-
ns
*4
-
ns
SDA ↓ → SCL ↓
Data setup time
SDA ↓ ↑ → SCL ↑
Stop condition setup time
SCL ↑ → SDA ↑
CL = 30 pF,
0
tHDDAT
*1
R = (Vp/IOL)
Bus free time between
"Stop condition" and
"START condition"
60 MHz ≤
Noise filter
tSP
tCYCP<80 MHz
80 MHz ≤
tCYCP ≤100 MHz
6 tCYCP
*5
8 tCYCP
1: R and CL represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. V p indicates
the power supply voltage of the pull-up resistance and IOL indicates VOL guaranteed current.
2: The maximum tHDDT must not extend beyond the low period (tLOW) of the device’s SCL signal.
2
2
3: The Fast mode I C bus device can be used on a Standard-mode I C bus system as long as the device satisfies the
requirement of "tSUDAT ≥ 250 ns.”
2
4: tCYCP is the APB bus clock cycle time. For more information about the APB bus number to which the I C is connected,
see 10.Block Diagram in this data sheet.
To use fast mode plus (Fm+), set the peripheral bus clock at 64 MHz or more.
5: The noise filter time can be changed by register settings. Change the number of the noise filter steps according to the
APB bus clock frequency.
2
6: When using fast mode plus (Fm+), set the I/O pin to the mode corresponding to I C Fm+ in the EPFR register.
See Chapter 12: I/O Port in FM4 Family Peripheral Manual Main Part (MN709-00001) for the details.
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
179
D a t a S h e e t
14.4.16 SD Card Interface Timing
Default-Speed mode
 Clock CLK (All values are referenced to VIH and VIL transition points)
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Symbol
Pin Name
fPP
S_CLK
fOD
S_CLK
tWL
S_CLK
Clock high time
tWH
S_CLK
Clock rise time
tTLH
S_CLK
Clock fall time
tTHL
S_CLK
Clock frequency Data
Transfer mode
Clock frequency
Identification mode
Clock low time
Value
Conditions
CCARD ≤ 10 pF
Remarks
Min
Max
0
25
MHz
0/100
400
kHz
10
-
ns
10
-
ns
-
10
ns
-
10
ns
(1card)
*: 0 Hz means to stop the clock. The given minimum frequency range is for cases where a continuous clock is required.
 Card Inputs CMD, DAT (referenced to Clock CLK)
Parameter
Symbol
Input set-up time
tISU
Input hold time
tIH
Pin Name
Value
Conditions
S_CMD,
S_DATA3: 0
CCARD ≤ 10 pF
S_CMD,
(1card)
S_DATA3: 0
Remarks
Min
Max
5
-
ns
5
-
ns
 Card Outputs CMD, DAT (referenced to Clock CLK)
Parameter
Symbol
Output Delay time during
tODLY
Data Transfer mode
Output Delay time during
tODLY
Identification mode
Pin Name
Value
Conditions
S_CMD,
S_DATA3: 0
CCARD ≤ 40 pF
S_CMD,
(1card)
S_DATA3: 0
ns
0
50
ns
VIH
tTLH
tIH
tISU
VIH
VIH
VIL
VIL
tODLY(Min)
tODLY(Max)
S_CMD,
S_DATA3: 0
(Card Output)
14
VIL
VIL
S_CMD,
S_DATA3: 0
(Card Input)
0
VIH
VIH
tTHL
Max
tWH
tWL
S_CLK
(SD Clock)
Remarks
Min
VOH
VOH
VOL
VOL
Default-Speed mode
Notes:
180
CONFIDENTIAL
−
The Card Input corresponds to the Host Output and the Card Output corresponds to the Host Input
because this model is the Host.
−
For more information about clock frequency (fPP), see Chapter 15: SD card Interface in FM4 Family
Peripheral Manual Main Part (MN709-00001).
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
High-speed mode
 Clock CLK (All values are referred to VIH and VIL)
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Symbol
Pin Name
fPP
S_CLK
Clock frequency Data Transfer
mode
Clock low time
tWL
S_CLK
Clock high time
tWH
S_CLK
Clock rise time
tTLH
S_CLK
Clock fall time
tTHL
S_CLK
Value
Conditions
Remarks
Min
Max
0
50
MHz
7
-
ns
7
-
ns
-
3
ns
-
3
ns
CCARD ≤ 10
pF
(1card)
 Card Inputs CMD, DAT (referenced to Clock CLK)
Parameter
Symbol
Input set-up time
tISU
Input hold time
tIH
Pin Name
S_CMD,
S_DATA3: 0
Value
Conditions
Remarks
Min
Max
6
-
ns
2
-
ns
CCARD ≤ 10
pF
S_CMD,
(1card)
S_DATA3: 0
 Card Outputs CMD, DAT (referenced to Clock CLK)
Parameter
Symbol
Output delay time during data
transfer mode
Output hold time
tODLY
tOH
Total system capacitance for
Pin Name
Conditions
S_CMD,
CL ≤ 40 pF
S_DATA3: 0
(1card)
S_CMD,
CL ≥ 15 pF
S_DATA3: 0
(1card)
-
1card
CL
each line*
Value
Remarks
Min
Max
0
14
ns
2.5
-
ns
-
40
pF
*: In order to satisfy severe timing, host shall drive only one card.
tWH
tWL
S_CLK
(SD Clock)
50%VCC
VIH
VIH
tTHL
VIL
VIL
50%VCC
tTLH
tIH
tISU
S_CMD,
S_DATA3: 0
(Card Input)
tODLY(Max)
S_CMD,
S_DATA3: 0
(Card Output)
VIH
VIH
VIH
VIL
VIL
tOH(Min)
VOH
VOH
VOL
VOL
High-speed mode
Notes:
−
The Card Input corresponds to the Host Output and the Card Output corresponds to the Host
Input because this model is the Host.
−
For more information about clock frequency (fPP), see Chapter 15: SD card Interface in FM4
Family Peripheral Manual Main Part (MN709-00001).
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
181
D a t a S h e e t
14.4.17 ETM/ HTM Timing
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Data hold
tETMH
TRACECLK
Pin Name
Conditions
TRACECLK,
TRACED[15: 0]
1/tTRACE
frequency
TRACECLK
TRACECLK
tTRACE
clock cycle
Value
Min
Max
VCC ≥ 4.5V
2
9
VCC <4.5V
2
15
Unit
Remarks
ns
VCC ≥ 4.5V
50
MHz
VCC <4.5V
32
MHz
VCC ≥ 4.5V
20
-
ns
VCC <4.5V
31.25
-
ns
Note:
−
When the external load capacitance CL = 30 pF.
HCLK
TRACECLK
TRACED[15: 0]
182
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
14.4.18 JTAG Timing
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
TMS, TDI setup time
tJTAGS
TMS, TDI hold time
tJTAGH
TDO delay time
tJTAGD
Pin Name
Conditions
TCK,
VCC ≥ 4.5 V
TMS, TDI
VCC <4.5 V
TCK,
VCC ≥ 4.5 V
TMS, TDI
VCC <4.5 V
Value
Unit
Min
Max
15
-
ns
15
-
ns
TCK,
VCC ≥ 4.5 V
-
25
TDO
VCC <4.5 V
-
45
Remarks
ns
Note:
−
When the external load capacitance CL = 30 pF.
TCK
TMS/TDI
TDO
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
183
D a t a S h e e t
14.4.19 Ethernet-MAC Timing
RMII Transmission (100 Mbps/10 Mbps)
*1
(ETHVCC = 3.0V to 3.6V, 4.5V to 5.5V , VSS = 0V, CL = 25 pF)
Parameter
*2
Reference clock cycle time
Reference clock
High-pulse-width duty cycle
Reference clock
Low-pulse-width duty cycle
Transmitted data → REFCK ↑
delay time
Symbol
Pin Name
Conditions
tREFCYC
E_RXCK_REFCK
tREFCYCH
tREFCYCL
Value
Unit
Min
Max
20 ns (typical)
-
-
ns
E_RXCK_REFCK
tREFCYCH/tREFCYC
35
65
%
E_RXCK_REFCK
tREFCYCL/tREFCYC
35
65
%
-
-
12
ns
E_TX03, E_TX02,
tRMIITX
E_TX01, E_TX00,
E_TXEN
1: When ETHV = 4.5 V to 5.5 V, it is recommended to add a series resistor at the output pin to suppress the output
current.
2: The reference clock is fixed to 50 MHz in the RMII specifications. The clock accuracy should meet the PHY-device
specifications.
tREFCYC
E_RXCK_REFCK
VIHS
VIHS
VILS
tREFCYCH
E_TX03
E_TX02
E_TX01
E_TX00
E_TXEN
tREFCYCL
VOH
VOL
tRMIITX
184
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
RMII Receiving (100 Mbps/10 Mbps)
(ETHVCC = 3.0V to 3.6V, 4.5V to 5.5V, VSS = 0V, CL = 25 pF)
Parameter
Reference clock
cycle time*
Reference clock
High-pulse-width duty cycle
Reference clock
Low-pulse-width duty cycle
Received data → REFCK↑
Setup time
Received data → REFCK ↑
Hold time
Symbol
Pin Name
Conditions
tREFCYC
E_RXCK_REFCK
tREFCYCH
tREFCYCL
Value
Unit
Min
Max
20 ns (typical)
-
-
ns
E_RXCK_REFCK
tREFCYCH/tREFCYC
35
65
%
E_RXCK_REFCK
tREFCYCL/tREFCYC
35
65
%
-
4
-
ns
-
2
-
ns
E_RX03, E_RX02,
tRMIIRXS
E_RX01, E_RX00,
E_RXDV
E_RX03, E_RX02,
tRMIIRXH
E_RX01, E_RX00,
E_RXDV
*: The reference clock is fixed to 50 MHz in the RMII specifications.
The clock accuracy should meet the PHY-device specifications.
tREFCYC
E_RXCK_REFCK
VIHS
tREFCYCH
E_RX03
E_RX02
E_RX01
E_RX00
E_RXDV
VIHS
VIHS
VILS
VILS
tRMIIRXS
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
VIHS
VILS
tREFCYCL
tRMIIRXH
185
D a t a S h e e t
Management Interface
(ETHVCC = 3.0V to 3.6V, 4.5V to 5.5V, VSS = 0V, CL = 25 pF)
Parameter
Management clock
cycle time*
Management clock
High pulse width duty cycle
Management clock
Low pulse width duty cycle
MDC ↓ → MDIO
Delay time
MDIO → MDC ↑
Setup time
MDC ↑ → MDIO
Hold time
Symbol
Pin Name
Conditions
tMDCYC
E_MDC
tMDCYCH
Value
Unit
Min
Max
-
400
-
ns
E_MDC
tMDCYCH/tMDCYC
35
65
%
tMDCYCL
E_MDC
tMDCYCL/tMDCYC
35
65
%
tMDO
E_MDIO
-
-
60
ns
tMDIS
E_MDIO
-
20
-
ns
tMDIH
E_MDIO
-
0
-
ns
*: The clock time should be set to a value greater than the minimum value by setting the Ethernet-MAC setting register.
tMDCYC
E_MDC (output)
VOL
VOH
tMDCYCH
E_MDIO (input)
VIHS
VIHS
VIHS
VILS
VILS
VILS
VILS
CONFIDENTIAL
tMDIS
tMDIH
tMDIH
tMDO
tMDO
186
tMDCYCL
VIHS
tMDIS
E_MDIO (output)
VOH
VOL
VOH
VOH
VOL
VOL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
MII Transmission (100 Mbps/10 Mbps)
(ETHVCC = 3.0V to 3.6V, 4.5V to 5.5V
Parameter
Symbol
Pin Name
Conditions
100 Mbps
Transmission clock
Cycle time*2
tTXCYC
40 ns (typical)
E_TCK
100 Mbps
400 ns (typical)
Transmission clock
High-pulse-width duty cycle
Transmission clock
Low-pulse-width duty cycle
TXCK ↑ → Transmitted data delay
time
*1,
VSS = 0V, CL = 25 pF)
Value
Unit
Min
Max
-
-
ns
-
-
ns
tTXCYCH
E_TCK
tTXCYCH/tTXCYC
35
65
%
tTXCYCL
E_TCK
tTXCYCL/tTXCYC
35
65
%
-
-
24
ns
E_TX03, E_TX02,
tMIITX
E_TX01, E_TX00,
E_TXEN
1: When ETHV = 4.5 V to 5.5 V, it is recommended to add a series resistor at the output pin to suppress the output
current.
2: The transmission clock is fixed to 25 MHz or 2.5 MHz in the MII specifications. The clock accuracy should meet the
PHY-device specifications.
tTXCYC
E_TCK
VIHS
VIHS
VILS
tTXCYCH
E_TX03
E_TX02
E_TX01
E_TX00
E_TXEN
tTXCYCL
VOH
VOL
tMIITX
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
187
D a t a S h e e t
MII Receiving (100 Mbps/10 Mbps)
(ETHVCC = 3.0V to 3.6V, 4.5V to 5.5V, VSS = 0V, CL = 25 pF)
Parameter
Symbol
Pin Name
Conditions
100 Mbps
Receiving clock
cycle time*
tRXCYC
E_RXCK_REFCK
40 ns (typical)
100 Mbps
400 ns (typical)
Receiving clock
High pulse width duty cycle
Receiving clock
Low pulse width duty cycle
Received data →
REFCK ↑Setup time
REFCK ↑ →
Received data Hold time
Value
Unit
Min
Max
-
-
ns
-
-
ns
tRXCYCH
E_RXCK_REFCK
tRXCYCH/tRXCYC
35
65
%
tRXCYCL
E_RXCK_REFCK
tRXCYCL/tRXCYC
35
65
%
-
5
-
ns
-
2
-
ns
E_RX03, E_RX02,
tMIIRXS
E_RX01, E_RX00,
E_RXDV
E_RX03, E_RX02,
tMIIRXH
E_RX01, E_RX00,
E_RXDV
*: The reference clock is fixed to 50 MHz in the RMII specifications.
The clock accuracy should meet the PHY-device specifications.
tRXCYC
E_RXCK_REFCK
VIHS
tRXCYCH
E_RX03
E_RX02
E_RX01
E_RX00
E_RXDV
VIHS
VIHS
VILS
VILS
tMIIRXS
188
CONFIDENTIAL
VIHS
VILS
tRXCYCL
tMIIRXH
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
14.4.20 I2S Timing
Master Mode Timing
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Output frequency
Output clock pulse width
Symbol
Pin Name
Conditions
fMCYC
I2SCK
-
tMHW
I2SCK
-
tMLW
I2SCK→I2SWS
delay time
I2SCK→I2SDO
delay time*
I2SDI→I2SCK
Max
Unit
-
12.288
MHz
45
55
%
45
55
%
tDFS
I2SCK, I2SWS
-
0
24.0
ns
tDDO
I2SCK, I2SDO
-
0
24.0
ns
-
25.0
-
ns
-
0
-
ns
-
-
5
ns
-
-
5
ns
tHSDI
setup time
Value
Min
Remarks
I2SCK, I2SDI
I2SDI→I2SCK
tHDJ
hold time
Input signal rise time
tFI
Input signal fall time
tFI
I2SDI
*: Except for the first bit of transmission frame
Notes:
−
−
When the external load capacitance CL = 20 pF
When I2SWS = 48 kHz, I2MCLK = 256 × I2SWS
Frame synchronization signal (I2SWS) is settable to 48 kHz, 32 kHz, 16 kHz.
2
See Chapter 7-2: I S (Inter-IC Sound bus) Interface in FM4 Family Peripheral Manual
Communication Macro Part (MN709-00004) for the details.
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
189
D a t a S h e e t
f MCYC
tMHW
I2SCK (CPOL=0)
tMLW
I2SCK (CPOL=1)
tDFS
I2SWS
(FSPH=0, FSLN=0)
tDFS
tDFS
tDFS
I2SWS
(FSPH=1, FSLN=0)
tDFS
tDFS
I2SWS
(FSPH=0, FSLN=1)
tDFS
tDFS
I2SWS
(FSPH=1, FSLN=1)
tDDO
I2SDO
tSDI
tHDI
tSDI
tHDI
I2SDI
(SMPL=0)
tSDI
tHDI
I2SDI
(SMPL=1)
Note:
−
I2SDI
2
See Chapter 7-2: I S (Inter-IC Sound bus) Interface in FM4 Family Peripheral Manual
Communication Macro Part (MN709-00004) for the details of CPOL, FSPH, FSLIN, and SMPL.
0. 8×VCC
0. 8×VCC
0.2×V CC
tFI
190
CONFIDENTIAL
0. 8×VCC
0.2×V CC
tRI
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Slave Mode Timing
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Input frequency
Symbol
Pin Name
Conditions
fSCYC
I2SCK
-
I2SCK
-
tSHW
Input clock pulse width
tSLW
I2SWS→I2SCK
Setup time
I2SWS→I2SCK
Hold time
I2SCK↑→I2SDO
Delay time
Max
-
12.288
MHz
45
55
%
45
55
%
I2SCK, I2SWS
-
8
-
ns
tHFI
I2SCK, I2SWS
-
0
-
ns
-
0
32
ns
-
0
32
ns
-
8
-
ns
-
0
-
ns
Remarks
I2SCK, I2SDO
I2SCK↑→I2SDO
Delay Time
Unit
Min
tSFI
tDDO
*1
Value
tDFB1
*2
I2SDI→I2SCK↓
tSDI
Setup time
I2SCK, I2SDI
I2SDI→I2SCK↓
tHDI
Hold time
Input signal rise time
tFI
I2SCK, I2SWS,
-
-
5
ns
Input signal fall time
tFI
I2SDI
-
-
5
ns
1: Except for the first bit of transmission frame
2: When FSPH bit = 1.
Notes:
−
−
When the external load capacitance CL = 20 pF
When I2SWS = 48 kHz, I2MCLK = 256×I2SWS
2
Frame synchronization signal (I2SWS) is settable to 48 kHz, 32 kHz, 16 kHz. See Chapter 7-2: I S
(Inter-IC Sound bus) Interface in FM4 Family Peripheral Manual Communication Macro Part
(MN709-00004) for the details.
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
191
D a t a S h e e t
f SCYC
tSHW
I2SCK (CPOL=0)
tSLW
I2SCK (CPOL=1)
tSFI tHFI
I2SWS
(FSPH=0, FSLN=0)
tSFI tHFI
I2SWS
(FSPH=1, FSLN=0)
tSFI
I2SWS
(FSPH=0, FSLN=1)
tSFI
I2SWS
(FSPH=1, FSLN=1)
t DDO
t DFB1
1
I2SDO
tSDI
tHDI
tSDI
tHDI
I2SDI
(SMPL=0)
tSDI
tHDI
I2SDI
(SMPL=1)
Notes:
I2SCK
I2SWS
I2SDI
−
See Chapter 7-2: I S (Inter-IC Sound bus) Interface in FM4 Family Peripheral Manual
Communication Macro Part (MN709-00004) for the details of FSPH, FSLN, SMPL
−
I2SCK input is selectable polarity by CPOL bit of CNTREG register
2
0.8×VCC
0.8×VCC
0.2×VCC
tfi
192
CONFIDENTIAL
0.8×VCC
0.2×VCC
tri
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
I2SMCLK Input Characteristics
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Pin Name
Conditions
Input frequency
fCHS
I2SMCK
Input clock cycle
tCYLHS
-
-
-
Input clock pulse width
Input clock rise time and fall
tCFS
time
tCRS
Unit
Min
Max
-
-
25
MHz
-
40
-
ns
45
55
%
-
5
ns
PWHS/tCYLHS
PWLS/tCYLHS
-
Value
-
Remarks
When using
external clock
When using
external clock
tCYLHS
0.8×VCC
I2SMCLK
0.8×VCC
0.8×VCC
0.2×VCC
PWHS
0.2×VCC
PWLS
tCFS
tCRS
I2SMCLK Output Characteristics
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Output frequency
Symbol
Pin Name
Conditions
fCHS
I2SMCK
-
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
Value
Min
Max
-
12.288
Unit
Remarks
MHz
193
D a t a S h e e t
14.4.21 High-Speed Quad SPI Timing
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Symbol
Pin Name
Conditions
CL = 15 pF,
Serial clock frequency
tSCYCM
Q_SCK_0
VCC = 3.0 to 3.6V
CL = 30 pF
Value
Unit
Remarks
66
MHz
*1
-
50
MHz
*2
1.5×tSCYCM - 5
-
ns
tSCYCM - 5
-
ns
tSCYCM
-
ns
1.5×tSCYCM
-
ns
0
5
ns
0
5
3
-
10
-
0.5×tSCYCM
-
Min
Max
-
Enabled CS→
CLK Starting Time
tOSLSK02
(mode0/mode2)
Enabled CS→
CLK Starting Time
tOSLSK13
Q_SCK_0,
(mode1/mode3)
Q_CS0_0,
CLK Last→
Q_CS1_0,
Disabled CS Time
tOSKSL02
CL = 30 pF
Q_CS2_0
(mode0/mode2)
CLK Last→
Disabled CS Time
tOSKSL13
(mode1/mode3)
CL = 15 pF,
SIO Data output time
tOSDAT
Q_SCK_0,
Q_IO0_0,
Q_IO1_0,
SIO Setup
tDSSET
SIO Hold
tSDHOLD
Q_IO2_0,
VCC = 3.0 to 3.6V
CL = 30 pF
CL = 30 pF
Q_IO3_0
CL = 30 pF
ns
*1
*2
ns
1: When RTM = 1 and mode = 0, 1, 3
2: When RTM = 1 and mode = 2 or RTM = 0 and mode = 0, 1, 2, 3
Notes:
−
−
194
CONFIDENTIAL
See Chapter 8-3: High-Speed Quad SPI controller in FM4 Family Peripheral Manual
Communication Macro Part (MN709-00004) for the detail of RTM mode.
When using High-Speed Quad SPI, please set PDSR register to set the pin drive capability for
VCC = 3 V. See Chapter 12: I/O Port in FM4 Family Peripheral Manual Main Part (MN709-00001) for
the details.
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Q_CS0,
Q_CS1,
Q_CS2
tSCYCM
mode0
mode2
tOSLSK02
Q_SCK
tOSKSL02
mode1
mode3
tOSKSL13
tOSLSK13
input
Q_IO0,
Q_IO1,
Q_IO2,
Q_IO3
tDSSET
tSDHOLD
output
tOSDAT
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
195
D a t a S h e e t
14.5 12-bit A/D Converter
Electrical Characteristics for the A/D Converter
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V)
Parameter
Symbol
Pin Name
Resolution
-
Integral nonlinearity
Differential nonlinearity
Zero transition voltage
Full-scale transition
voltage
Max
-
-
-
12
bit
-
-
- 4.5
-
+ 4.5
LSB
-
-
- 2.5
-
+ 2.5
LSB
VZT
ANxx
- 15
-
+ 15
mV
ANxx
AVRH – 15
-
AVRH + 15
mV
VFST
AVCC - 15
-
AVCC + 15
mV
*1
0.5
-
-
μs
0.15
-
0.3
-
10
μs
25
-
-
-
Sampling time *2
tS
-
*3
State transition time to
operation permission
Power supply current
(analog + digital)
Reference power supply
current (AVRH)
Analog input capacity
Analog input resistance
Interchannel disparity
Analog port input leak
current
Analog input voltage
Reference voltage
Unit
Typ
Conversion time
Compare clock cycle
Value
Min
tCCK
-
-
AVCC
-
CAIN
1000
ns
50
-
1000
-
-
1.0
μs
-
0.69
0.92
mA
-
1.3
22
μA
-
1.1
1.97
mA
-
0.3
6.3
μA
-
-
12.05
pF
-
-
-
-
-
4
LSB
-
ANxx
-
-
5
μA
-
ANxx
AVSS
-
AVRH
V
AVSS
-
AVCC
V
4.5
-
AVCC
2.7
-
AVCC
AVSS
-
AVSS
-
AVRH
AVRL
-
1.2
RAIN
-
-
AVCC ≥ 4.5 V
AVCC ≥ 4.5 V
1.8
AVCC ≥ 4.5 V
AVCC < 4.5 V
AVRH
-
AVRH
= 2.7 V to 5.5 V
AVCC < 4.5 V
-
tSTT
Remarks
kΩ
A/D 1 unit operation
When A/D stop
A/D 1 unit operation
AVRH = 5.5 V
When A/D stop
AVCC ≥ 4.5 V
AVCC < 4.5 V
V
Tcck <50 ns
Tcck ≥ 50 ns
V
1: The conversion time is the value of sampling time (tS) + compare time (tC).
The condition of the minimum conversion time is when the value of Ts = 150 ns and Tc = 350 ns (AVCC ≥ 4.5V). Ensure
that it satisfies the value of sampling time (tS) and compare clock cycle (tCCK).
For setting of sampling time and compare clock cycle, see Chapter 1-1: A/D Converter in FM4 Family Peripheral Manual
Analog Macro Part (MN709-00003). The register setting of the A/D converter is reflected by the APB bus clock timing.
For more information about the APB bus number to which the A/D converter is connected, see 10. Block Diagram in this
data sheet.
The sampling clock and compare clock are set at base clock (HCLK).
2: A necessary sampling time changes by external impedance. Ensure that it sets the sampling time to satisfy (Equation 1).
3: The compare time (tC) is the value of (Equation 2).
196
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
ANxx
Analog input pin
Rext
Comparator
RAIN
Rin
Analog signal
source
CAIN
Cin
(Equation 1) tS ≥ (RAIN + Rext) × CAIN × 9
tS:
Sampling time
RAIN: Input resistance of A/D = 1.2 kΩ at 4.5 V ≤ AVCC ≤ 5.5 V
Input resistance of A/D = 1.8 kΩ at 2.7 V ≤ AVCC < 4.5 V
CAIN: Input capacity of A/D = 12.05 pF at 2.7 V ≤ AVCC ≤ 5.5 V
Rext: Output impedance of external circuit
(Equation 2) tC = tCCK × 14
tC: Compare time
tCCK: Compare clock cycle
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
197
D a t a S h e e t
Definition of 12-bit A/D Converter Terms
 Resolution:
 Integral nonlinearity:
Analog variation that is recognized by an A/D converter.
Deviation of the line between the zero-transition point
(0b000000000000 ←→ 0b000000000001) and the full-scale transition point
(0b111111111110 ←→ 0b111111111111) from the actual conversion characteristics.
 Differential nonlinearity: Deviation from the ideal value of the input voltage that is required to change
the output code by 1 LSB.
Integral nonlinearity
Differential nonlinearity
0xFFF
Actual conversion
characteristics
0xFFE
Actual conversion
characteristics
0x(N+1)
{1 LSB(N-1) + VZT}
VFST
VNT
0x004
(Actuallymeasured
value)
(Actually-measured
value)
0x003
Digital output
Digital output
0xFFD
0xN
Ideal characteristics
V(N+1)T
0x(N-1)
(Actually-measured
value)
Actual conversion
characteristics
Ideal characteristics
0x002
VNT
(Actually-measured
value)
0x(N-2)
0x001
VZT (Actually-measured value)
AVss
Actual conversion characteristics
AVRH
AVss
AVRH
Analog input
Integral nonlinearity of digital output N =
Differential nonlinearity of digital output N =
1LSB =
N:
VZT:
VFST:
VNT:
198
CONFIDENTIAL
Analog input
VNT - {1LSB × (N - 1) + VZT}
1LSB
V(N + 1) T - VNT
1LSB
[LSB]
- 1 [LSB]
VFST - VZT
4094
A/D converter digital output value.
Voltage at which the digital output changes from 0x000 to 0x001.
Voltage at which the digital output changes from 0xFFE to 0xFFF.
Voltage at which the digital output changes from 0x(N − 1) to 0xN.
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
14.6 12-bit D/A Converter
Electrical Characteristics for the D/A Converter
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V)
Parameter
Resolution
Symbol
Pin Name
Value
Unit
Min
Typ
Max
-
-
-
12
bit
Remarks
tC20
0.56
0.69
0.81
μs
Load 20 pF
tC100
2.79
3.42
4.06
μs
Load 100 pF
Integral nonlinearity*
INL
- 16
-
+ 16
LSB
Differential nonlinearity*
DNL
- 0.98
-
+ 1.5
LSB
-
-
+ 10
mV
When setting 0x000
- 20.0
-
+ 1.4
mV
When setting 0xFFF
3.10
3.80
4.50
kΩ
D/A operation
2.0
-
-
MΩ
When D/A stop
260
330
410
μs
D/A 1ch operation AVCC = 3.3 V
400
510
620
μs
D/A 1ch operation AVCC = 5.0 V
-
-
14
μs
When D/A stop
Conversion time
Output voltage offset
Analog output impedance
Power supply current*
DAx
VOFF
RO
IDDA
AVCC
IDSA
*: During no load
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
199
D a t a S h e e t
14.7 USB Characteristics
(VCC = AVCC = 2.7V to 5.5V, USBVCC0 = USBVCC1 = 3.0V to 3.6V, VSS = AVSS = 0V)
Parameter
Input
characteristics
Symbol
Pin
Name
Max
USBVCC
Unit
Remarks
V
*1
VIH
-
2.0
Input L level voltage
VIL
-
VSS - 0.3
0.8
V
*1
Differential input sensitivity
VDI
-
0.2
-
V
*2
VCM
-
0.8
2.5
V
*2
2.8
3.6
V
*3
0.0
0.3
V
*3
range
Output H level voltage
External pull-down
VOH
UDP0/
Output L level voltage
characteristics
Min
Input H level voltage
Different common mode
Output
Value
Conditions
VOL
resistance = 15 kΩ
UDM0,
External pull-up
UDP1/
resistance = 1.5 kΩ
+ 0.3
Crossover voltage
VCRS
-
1.3
2.0
V
*4
Rise time
tFR
Full-Speed
4
20
ns
*5
UDM1
Fall time
tFF
Full-Speed
4
20
ns
*5
Rise/fall time matching
tFRFM
Full-Speed
90
111.11
%
*5
Output impedance
ZDRV
Full-Speed
28
44
Ω
*6
Rise time
tLR
Low-Speed
75
300
ns
*7
Fall time
tLF
Low-Speed
75
300
ns
*7
Rise/fall time matching
tLRFM
Low-Speed
80
125
%
*7
Minimum differential input
sensitivity [V]
1: The switching threshold voltage of the single-end-receiver of USB I/O buffer is set as within VIL (Max) = 0.8 V,
VIH (Min) = 2.0 V (TTL input standard).
There is some hysteresis applied to lower noise sensitivity.
2: Use differential-receiver to receive USB differential data signal. Differential-receiver has 200 mV of differential input
sensitivity when the differential data input is within 0.8 V to 2.5 V to the local ground reference level.
Above voltage range is the common mode input voltage range.
Common mode input voltage [V]
200
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
3: The output drive capability of the driver is below 0.3 V at low state (VOL) (to 3.6 V and 1.5 kΩ load), and 2.8 V or
above (to the VSS and 1.5 kΩ load) at high state (VOH).
4: The cross voltage of the external differential output signal (D +/D −) of USB I/O buffer is within 1.3 V to 2.0 V.
VCRS specified range
5: They indicate rise time (tRISE) and fall time (tFALL) of the full-speed differential data signal.
They are defined by the time between 10% and 90% of the output signal voltage.
For full-speed buffer, tR/tF ratio is regulated as within ± 10% to minimize RFI emission.
D+
90%
D-
90%
10%
10%
TRISE
Rise time
TFALL
Falling time
Full-speed Buffer
Rs=27?
TxD+
CL=50pF
Rs=27?
TxDCL=50pF
3-State Enable
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
201
D a t a S h e e t
6: USB Full-speed connection is performed via twisted-pair cable shield with 90Ω ± 15% characteristic impedance
(differential mode).
USB standard defines that the output impedance of the USB driver must be in the range from 28 Ω to 44 Ω. So, a
discrete series resistor (Rs) addition is defined in order to satisfy the above definition and keep balance.
When using this USB I/O, use it with 25 Ω to 30 Ω (recommended value 27 Ω) series resistor Rs.
28Ω to 44Ω Equiv. Imped.
28Ω to 44Ω Equiv. Imped.
Mount it as external resistance.
Rs series resistor 25Ω to 30Ω
Series resistor of 27Ω (recommendation value) must be added.
And, use "resistance with an uncertainty of 5% by E24 sequence.”
7: They indicate rise time (tRISE) and fall time (tFALL) of the low-speed differential data signal.
They are defined by the time between 10% and 90% of the output signal voltage.
D+
90%
D-
90%
10%
10%
TRISE
Rise time
TFALL
Falling time
Note:
−
202
CONFIDENTIAL
See Low-Speed Load (Compliance Load) for conditions of external load.
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Low-Speed Load (Upstream Port Load) - Reference 1
CL=50pF to 150pF
CL=50pF to 150pF
Low-Speed Load (Downstream Port Load) - Reference 2
CL=
200pF to 600pF
CL=
200pF to 600pF
Low-Speed Load (Compliance Load)
CL=200pF to 450pF
CL=200pF to 450pF
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
203
D a t a S h e e t
14.8 Low-Voltage Detection Characteristics
14.8.1 Low-Voltage Detection Reset
Parameter
Symbol
Conditions
Detected voltage
VDL
Released voltage
VDH
14.8.2
Value
Unit
Remarks
2.64
V
When voltage drops
2.69
V
When voltage rises
Min
Typ
Max
-
2.46
2.55
-
2.51
2.60
Interrupt of Low-Voltage Detection
Parameter
Symbol
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
LVD stabilization wait time
tLVDW
Conditions
SVHI = 00111
SVHI = 00100
SVHI = 01100
SVHI = 01111
SVHI = 01110
SVHI = 01001
SVHI = 01000
SVHI = 11000
-
Value
Unit
Remarks
3.00
V
When voltage drops
3.11
V
When voltage rises
3.10
3.21
V
When voltage drops
3.20
3.31
V
When voltage rises
3.18
3.30
3.42
V
When voltage drops
3.28
3.40
3.52
V
When voltage rises
3.67
3.80
3.93
V
When voltage drops
3.76
3.90
4.04
V
When voltage rises
3.76
3.90
4.04
V
When voltage drops
3.86
4.00
4.14
V
When voltage rises
4.05
4.20
4.35
V
When voltage drops
4.15
4.30
4.45
V
When voltage rises
4.15
4.30
4.45
V
When voltage drops
4.25
4.40
4.55
V
When voltage rises
4.25
4.40
4.55
V
When voltage drops
4.34
4.50
4.66
V
When voltage rises
-
-
6000×tCYCP*
μs
Min
Typ
Max
2.80
2.90
2.90
3.00
2.99
3.09
*: tCYCP indicates the APB2 bus clock cycle time.
204
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
14.9 MainFlash Memory Write/Erase Characteristics
(VCC = 2.7V to 5.5V)
Parameter
Value
Unit
Min
Typ
Max
Large Sector
-
0.7
3.7
s
Small Sector
-
0.3
1.1
s
-
12
Sector erase time
Remarks
Includes write time prior to internal erase
Half word (16-bit)
Write cycles < 100 times
write time
Write cycles > 100 times
Chip erase time*
100
μs
Not including system-level overhead time
s
Includes write time prior to internal erase
200
-
13.6
68
*: It indicates the chip erase time of 1 MB MainFlash memory
For devices with 1.5 MB or 2 MB of MainFlash memory, two erase cycles are required.
See 3.2.2 Command Operating Explanations and 3.3.3 Flash Erase Operation in this product's Flash
Programming Manual for the detail.
Write Cycles and Data Retention Time
Erase/Write Cycles (Cycle)
Data Retention Time (Year)
1,000
20*
10,000
10*
100,000
5*
*: This value comes from the technology qualification (using Arrhenius equation to translate high temperature
acceleration test result into average temperature value at + 85°C).
14.10 Dual Flash Memory Write/Erase Characteristics
It is the same write/erase characteristics as the MainFlash memory.
See 3.6 Dual flash mode in this product's Flash Programming Manual for the detail of dual flash mode.
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
205
D a t a S h e e t
14.11 Standby Recovery Time
14.11.1 Recovery Cause: Interrupt/WKUP
The time from the interrupt occurring to the time of program operation start is shown.
Recovery Count Time
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Value
Symbol
Sleep mode
Unit
Max*
Typ
Remarks
μs
HCLK×1
High-speed CR Timer mode
40
80
μs
Low-speed CR Timer mode
450
900
μs
Sub Timer mode
896
1136
μs
316
581
μs
270
540
μs
365
667
μs
365
667
μs
Main Timer mode
PLL Timer mode
RTC mode
tICNT
Stop mode
(High-speed CR/Main/PLL Run mode return)
RTC mode
Stop mode
(Low-speed CR/sub Run mode return)
Deep Standby RTC mode with RAM retention
Deep Standby Stop mode with RAM retention
without RAM
retention
with RAM retention
*: The maximum value depends on the built-in CR accuracy.
Example of Standby Recovery Operation (when in External Interrupt Recovery*)
Ext.INT
Interrupt factor
accept
Active
tICNT
CPU
Operation
Interrupt factor
clear by CPU
Start
*: External interrupt is set to detecting fall edge.
206
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Example of Standby Recovery Operation (when in Internal Resource Interrupt Recovery*)
Internal
Resource INT
Interrupt factor
accept
Active
tICNT
CPU
Operation
Interrupt factor
clear by CPU
Start
*: Depending on the standby mode, interrupt from the internal resource is not included in the recovery cause.
Notes:
−
The return factor is different in each low-power consumption mode. See Chapter 6: Low Power
Consumption mode and Operations of Standby modes in FM4 Family Peripheral Manual Main
Part (MN709-00001).
−
The recovery process is unique for each operating mode. See Chapter 6: Low Power
Consumption mode in FM4 Family Peripheral Manual Main Part (MN709-00001).
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
207
D a t a S h e e t
14.11.2 Recovery Cause: Reset
The time from reset release to the program operation start is shown.
Recovery Count Time
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Sleep mode
Value
Unit
Typ
Max*
155
266
μs
155
266
μs
315
567
μs
315
567
μs
315
567
μs
336
667
μs
336
667
μs
Remarks
High-speed CR Timer mode
Main Timer mode
PLL Timer mode
Low-speed CR Timer mode
tRCNT
Sub Timer mode
RTC mode
Stop mode
Deep Standby RTC mode with RAM retention
Deep Standby Stop mode with RAM retention
without RAM
retention
with RAM retention
*: The maximum value depends on the built-in CR accuracy.
Example of Standby Recovery Operation (when in INITX Recovery)
INITX
Internal RST
RST Active
Release
tRCNT
CPU
Operation
208
CONFIDENTIAL
Start
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
Example of Standby Recovery Operation (when in Internal Resource Reset Recovery*)
Internal
Resource RST
Internal RST
RST Active
Release
tRCNT
CPU
Operation
Start
*: Depending on the low-power consumption mode, the reset issue from the internal resource is not included in the
recovery cause.
Notes:
−
The return factor is different in each low power consumption mode.
See Chapter 6: Low Power Consumption mode and Operations of Standby modes in “FM4 Family
Peripheral Manual Main Part (MN709-00001).
−
The recovery process is unique for each operating mode. See Chapter 6: Low Power
Consumption mode in FM4 Family Peripheral Manual Main Part (MN709-00001).
−
When the power-on reset/low-voltage detection reset, they are not included in the return factor.
See 14.4.8 Power-On Reset Timing.
−
In recovering from reset, CPU changes to High-speed Run mode. In the case of using the main
clock and PLL clock, they need further main clock oscillation stabilization wait time and oscillation
stabilization wait time of Main PLL clock.
−
Internal resource reset indicates Watchdog reset and CSV reset.
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
209
D a t a S h e e t
15. Ordering Information
Flash
RAM
Crypto
Voice
S6E2CC8H0AGV20000
Part Number
1 MB
128 KB
N/A
N/A
S6E2CC9H0AGV20000
1.5 MB
192 KB
N/A
N/A
S6E2CCAH0AGV20000
2 MB
256 KB
N/A
N/A
S6E2CC8HHAGV20000
1 MB
128 KB
Yes
N/A
S6E2CC9HHAGV20000
1.5 MB
192 KB
Yes
N/A
S6E2CCAHHAGV20000
2 MB
256 KB
Yes
N/A
S6E2CC8J0AGV20000
1 MB
128 KB
N/A
N/A
S6E2CC9J0AGV20000
1.5 MB
192 KB
N/A
N/A
S6E2CCAJ0AGV20000
2 MB
256 KB
N/A
N/A
S6E2CC8JHAGV20000
1 MB
128 KB
Yes
N/A
S6E2CC9JHAGV20000
1.5 MB
192 KB
Yes
N/A
S6E2CCAJHAGV20000
2 MB
256 KB
Yes
N/A
S6E2CCAJGAGV20000
2 MB
256 KB
Yes
Yes
S6E2CC8J0AGB10000
1 MB
128 KB
N/A
N/A
S6E2CC9J0AGB10000
1.5 MB
192 KB
N/A
N/A
S6E2CCAJ0AGB10000
2 MB
256 KB
N/A
N/A
S6E2CC8JHAGB10000
1 MB
128 KB
Yes
N/A
S6E2CC9JHAGB10000
1.5 MB
192 KB
Yes
N/A
Plastic FBGA (0.8 mm pitch), 192 pin
S6E2CCAJHAGB10000
2 MB
256 KB
Yes
N/A
(LBE192)
S6E2CC8JGAGB10000
1 MB
128 KB
Yes
Yes
S6E2CC8JFAGB10000
1 MB
128 KB
N/A
Yes
S6E2CCAJGAGB10000
2 MB
256 KB
Yes
Yes
S6E2CCAJFAGB10000
2 MB
256 KB
N/A
Yes
S6E2CC8L0AGL20000
1 MB
128 KB
N/A
N/A
S6E2CC9L0AGL20000
1.5 MB
192 KB
N/A
N/A
S6E2CCAL0AGL20000
2 MB
256 KB
N/A
N/A
Plastic LQFP (0.4 mm pitch), 216 pin
S6E2CC8LHAGL20000
1 MB
128 KB
Yes
N/A
(FPT-216P-M01)
S6E2CC9LHAGL20000
1.5 MB
192 KB
Yes
N/A
S6E2CCALHAGL20000
2 MB
256 KB
Yes
N/A
210
CONFIDENTIAL
Package
Plastic LQFP (0.5 mm pitch), 144 pin
(FPT-144P-M08)
Plastic LQFP (0.5 mm pitch), 176 pin
(FPT-176P-M07)
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
16. Package Dimensions
144-pin plastic LQFP
(FPT-144P-M08)
144-pin plastic LQFP
(FPT-144P-M08)
0.50 mm
Package width ×
package length
20.0 × 20.0 mm
Lead shape
Gullwing
Sealing method
Plastic mold
Mounting height
1.70 mm MAX
Weight
1.20 g
Code
(Reference)
P-LFQFP144-20×20-0.50
Note 1) *:Values do not include resin protrusion.
Resin protrusion is +0.25(.010)Max(each side).
Note 2) Pins width and pins thickness include plating thickness.
Note 3) Pins width do not include tie bar cutting remainder.
22.00±0.20(.866±.008)SQ
* 20.00±0.10(.787±.004)SQ
108
Lead pitch
0.145±0.055
(.006±.002)
73
109
72
0.08(.003)
Details of "A" part
+0.20
1.50 –0.10
+.008
.059 –.004
0°~8°
INDEX
144
37
"A"
LEAD No.
1
36
0.50(.020)
C
0.22±0.05
(.009±.002)
2003-2010 FUJITSU SEMICONDUCTOR LIMITED F144019S-c-4-8
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
0.08(.003)
0.50±0.20
(.020±.008)
0.60±0.15
(.024±.006)
(Mounting height)
0.10±0.10
(.004±.004)
(Stand off)
0.25(.010)
M
Dimensions in mm (inches).
Note: The values in parentheses are reference values.
211
D a t a S h e e t
176-pin plastic LQFP
Lead pitch
0.50 mm
Package width ×
package length
24.0 × 24.0 mm
Lead shape
Gullwing
Sealing method
Plastic mold
Mounting height
1.70 mm MAX
Code
(Reference)
P-LQFP-0176-2424-0.50
(FPT-176P-M07)
176-pin plastic LQFP
(FPT-176P-M07)
Note 1) * : Values do not include resin protrusion.
Resin protrusion is +0.25(.010)Max(each side).
Note 2) Pins width and pins thickness include plating thickness
Note 3) Pins width do not include tie bar cutting remainder.
26.00±0.20(1.024±.008)SQ
*24.00±0.10(.945±.004)SQ
0.145±0.055
(.006±.002)
132
89
88
133
0.08(.003)
Details of "A" part
+0.20
1.50 –0.10
+.008
(Mounting height)
.059 –.004
0°~8°
0.10±0.10
(.004±.004)
(Stand off)
INDEX
176
45
"A"
LEAD No.
1
44
0.50(.020)
C
0.22±0.05
(.009±.002)
2004-2010 FUJITSU SEMICONDUCTOR LIMITED F176013S-c-1-3
212
CONFIDENTIAL
0.08(.003)
0.50±0.20
(.020±.008)
0.60±0.15
(.024±.006)
0.25(.010)
M
Dimensions in mm (inches).
Note: The values in parentheses are reference values.
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
216-pin plastic LQFP
Lead pitch
0.40 mm
Package width ×
package length
24.0 × 24.0 mm
Lead shape
Gullwing
Sealing method
Plastic mold
Mounting height
1.70 mm MAX
Code
(Reference)
P-LFQFP216-24×24-0.40
(FPT-216P-M01)
216-pin plastic LQFP
(FPT-216P-M01)
Note 1) * : These dimensions do not include resin protrusion.
Note 2) Pins width and pins thickness include plating thickness.
Note 3) Pins width do not include tie bar cutting remainder.
26.00±0.20(1.024±.008)SQ
* 24.00±0.10(.945±.004)SQ
162
109
163
108
Details of "A" part
+0.20
1.50 –0.10
0.08(.003)
+.008
.059 –.004
(Mounting height)
0.25(.010)
0~8°
INDEX
216
0.60±0.15
(.024±.006)
55
"A"
LEAD No.
1
54
0.40(.016)
C
0.18±0.05
(.007±.002)
2003-2010 FUJITSU SEMICONDUCTOR LIMITED F216001S-c-2-4
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
0.10±0.05
(.004±.002)
(Stand off)
0.07(.003)
M
0.145±0.055
(.006±.002)
Dimensions in mm (inches).
Note: The values in parentheses are reference values.
213
D a t a S h e e t
Package Type
Package Code
PFBGA 192
LBE 192
NOTES:
PACKAGE
LBE 192
JEDEC
N/A
DXE
12.00mm X 12.00mm PACKAGE
SYMBOL
MIN.
NOM.
MAX.
A
---
---
1.45
A1
0.25
---
---
PROFILE
BALL HEIGHT
D
12.00 BSC
BODY SIZE
E
12.00 BSC
BODY SIZE
D1
10.40 BSC
MATRIX FOOTPRINT
E1
10.40 BSC
MATRIX FOOTPRINT
MD
14
MATRIX SIZE D DIRECTION
ME
14
MATRIX SIZE E DIRECTION
---
0.35
0.55
0.80 BSC
BALL PITCH
eD
0.80 BSC
BALL PITCH
0.00 BSC
SOLDER BALL PLACEMENT
A1, A14, P1, P14
2.
DIMENSIONING AND TOLERANCING METHODS PER ASME Y14.5-2009.
THIS OUTLINE CONFORMS TO JEP 95, SECTION 4.5.
ALL DIMENSIONS ARE IN MILLIMETERS.
3.
BALL POSITION DESIGNATION PER JEP 95, SECTION 3, SPP-010.
4.
DEPOPULATED SOLDER BALLS
LOCATIONS
e REPRESENTS THE SOLDER BALL GRID PITCH.
5.
SYMBOL “MD” IS THE BALL MATRIX SIZE IN THE “D” DIRECTION.
SYMBOL “ME” IS THE BALL MATRIX SIZE IN THE “E” DIRECTION.
n IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX
SIZE MD X ME.
6
DIMENSION “b” IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A
PLANE PARALLEL TO DATUM C.
7
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A AND B AND
DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW.
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW
SD OR SE = 0
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW
SD OR SE = e/2
8
A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK,
METALLIZED MARK INDENTATION OR OTHER MEANS.
9.
“+” INDICATES THE THEORETICAL CENTER OF DEPOPULATED BALLS.
BALL DIAMETER
eE
SE
1.
BALL COUNT
192
n
Ob
SD
NOTE
10
INDEX MARK IS OPTIONAL.
gs5036-1-lbe192 / 6.16.14
214
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
17. Major Changes
Page
Section
Change Results
Revision 0.1
-
-
Initial release
Revision 0.2
Added the following products.
S6E2CC8HHA/S6E2CC9HHA/S6E2CCAHHA/
1, 3
Title
14
2.Feature
Added “Crypto Assist Function”
3.Product Lineup
Added “Crypto Assist Function”
S6E2CC8JHA/S6E2CC9JHA/S6E2CCAJHA/
S6E2CC8LHA/S6E2CC9LHA/S6E2CCALHA
16, 17
Added the following products.
18
4.Packages
S6E2CC8HHA/S6E2CC9HHA/S6E2CCAHHA/
S6E2CC8JHA/S6E2CC9JHA/S6E2CCAJHA/
S6E2CC8LHA/S6E2CC9LHA/S6E2CCALHA
Added the following part numbers.
S6E2CC8HHAGV20000/S6E2CC9HHAGV20000/S6E2CCAHHAGV2000/
212
15.ORDERING INFORMATION
S6E2CC8JHAGV20000/S6E2CC9JHAGV20000/S6E2CCAJHAGV20000/
S6E2CC8JHAGB10000/S6E2CC9JHAGB10000/S6E2CCAJHAGB10000/
S6E2CC8LHAGL20000/S6E2CC9LHAGL20000/S6E2CCALHAGL20000
Revision 0.3
1, 3
Title
14
2.Features
15, 16
3.Product Lineup
17
4.Packages
211
15.Ordering Information
Added the following products.
S6E2CCAJGA /S6E2CC8JGA/S6E2CC8JFA/S6E2CCAJFA
Added Voice Function
Added the following products.
S6E2CCAJGA /S6E2CC8JGA/S6E2CC8JFA/S6E2CCAJFA
Added the following products.
S6E2CCAJGA /S6E2CC8JGA/S6E2CC8JFA/S6E2CCAJFA
Added the following products.
S6E2CCAJGAGV20000/ S6E2CC8JGAGB10000/ S6E2CC8JFAGB10000
S6E2CCAJGAGB10000/ S6E2CCAJFAGB10000
Revision 1.0
7
2. Features
15
3. Product Lineup
12
2. Features
15
3. Product Lineup
90
10. Block Diagram
91
12. Memory Map
Added that CAN-FD Interface supported non-CAN FD.
Deleted HDM-CEC/Remote Control Receiver.
Deleted the pins of HDM-CEC/Remote Control Receiver.(CEC0,CEC1)
18-20
5. Pin Assignments
Modified the pin name of I2S. (MI2S*_0→MI2S*0_0)
Deleted the pin of IGTRG0_0.
Deleted the pins of HDM-CEC/Remote Control Receiver.(CEC0,CEC1)
Modified the pin name of I2S. (MI2S*_0→MI2S*0_0)
22-24
6. Pin Descriptions
Modified the pin number of PF7 in LQFP216.(91→90)
Modified the pin number of X1. (73, 58, 50, P5→107, 87, 71, P13)
Modified the pin number of X0A. (107, 87, 71, P13→73, 58, 50, P5)
Modified IOH/IOL of Type S.(IOH=-12mA→-10mA, IOL=12mA→10mA)
75-82
7. I/O Circuit Type
97-105
13. Pin Status In Each CPU State
Deleted X and Y in Pin Status Type.
106-107
14.1. Absolute Maximum Ratings
Added 10mA type.
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
Added the case of using I2C in Type E, F, G, L, N, S.
215
D a t a S h e e t
Page
Section
Change Results
Added AVRL in Analog reference voltage.
108-112
14.2. Recommended Operating Conditions
Modified the mistake in Ethernet-MAC Pins.
Modified the leakage current in Maximum leakage current at operating
113-122
14.3.1. Current Rating
123-124
14.3.2. Pin Characteristics
Modified the maximum current of each category.
Added the characteristic of external bus in H level input voltage (hysteresis
input).
Added the characteristic of 10mA type.
14.4.5.
127
Operating
Conditions
of
USB/Ethernet PLL・I2S PLL (in the case of
using main clock for input clock of PLL)
Modified the maximum of I2S PLL macro oscillation clock frequency.
(307.2MHz→384MHz)
Modified the minimum of Sampling time.
196
14.5.12-bit A/D Converter
Modified the characteristic of State transition time to operation permission
Added AVRL in Analog reference voltage.
204
14.8.2. Interrupt of Low-Voltage Detection
216
CONFIDENTIAL
Modified the SVHI values in Conditions
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
217
D a t a S h e e t
218
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015
D a t a S h e e t
March 25, 2015, S6E2CC_DS709-00009-1v0-E
CONFIDENTIAL
219
D a t a S h e e t
Colophon
The products described in this document are designed, developed and manufactured as contemplated for general use,
including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not
designed, developed and manufactured as contemplated (1) for any use that includes fatal risks or dangers that, unless
extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury,
severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control,
mass transport control, medical life support system, missile launch control in weapons systems), or (2) for any use in which
chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable
to you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such
failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating conditions. If any products described in this document
represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law
of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior authorization by the
respective government entity will be required for export of those products.
Trademarks and Notice
The contents of this document are subject to change without notice. This document may contain information on a Spansion
product under development by Spansion. Spansion reserves the right to change or discontinue work on any product without
notice. The information in this document is provided as is without warranty or guarantee of any kind as to its accuracy,
completeness, operability, fitness for particular purpose, merchantability, non-infringement of third-party rights, or any other
warranty, express, implied, or statutory. Spansion assumes no liability for any damages of any kind arising out of the use of
the information in this document.
®
®
®
TM
Copyright © 2014-2015 Cypress
All rights reserved. Spansion , the Spansion logo, MirrorBit , MirrorBit Eclipse ,
TM
TM
TM
ORNAND , Easy DesignSim , Traveo and combinations thereof, are trademarks and registered trademarks of Spansion
LLC in the United States and other countries. Other names used are for informational purposes only and may be trademarks
of their respective owners.
220
CONFIDENTIAL
S6E2CC_DS709-00009-1v0-E, March 25, 2015