AON7296 100V N-Channel MOSFET General Description Product Summary The AON7296 uses trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of RDS(ON), Ciss and Coss. This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting. VDS 100V 12.5A ID (at VGS=10V) RDS(ON) (at VGS=10V) < 66mΩ RDS(ON) (at VGS=4.5V) < 90mΩ 100% UIS Tested 100% Rg Tested Top View DFN 3x3 EP Bottom View D Top View 1 8 2 7 3 6 4 5 G S Pin 1 Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Symbol Drain-Source Voltage VDS Gate-Source Voltage VGS TC=25°C Continuous Drain Current Pulsed Drain Current C Avalanche Current C Avalanche energy L=0.1mH C TC=25°C Power Dissipation B TA=25°C Power Dissipation A Junction and Storage Temperature Range Thermal Characteristics Parameter Maximum Junction-to-Ambient A Maximum Junction-to-Ambient A D Maximum Junction-to-Case Rev 0: Sep. 2012 IAS 4 A EAS 0.8 mJ 20.8 Steady-State Steady-State W 8.3 3.1 RθJA RθJC www.aosmd.com W 2 TJ, TSTG Symbol t ≤ 10s A 4 PDSM TA=70°C A 5 PD TC=100°C V 25 IDSM TA=70°C ±20 8 IDM TA=25°C Continuous Drain Current Units V 12.5 ID TC=100°C Maximum 100 -55 to 150 Typ 30 60 5 °C Max 40 75 6 Units °C/W °C/W °C/W Page 1 of 6 AON7296 Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol Parameter STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage Conditions Min ID=250µA, VGS=0V 100 1 Zero Gate Voltage Drain Current IGSS Gate-Body leakage current VDS=0V, VGS=±20V VGS(th) Gate Threshold Voltage VDS=VGS, ID=250µA 1.7 ID(ON) On state drain current VGS=10V, VDS=5V 25 TJ=55°C TJ=125°C VGS=4.5V, ID=3A ±100 nA 2.3 2.8 V 54 66 100 122 72 90 A gFS Forward Transconductance VDS=5V, ID=5A 13.5 VSD Diode Forward Voltage IS=1A,VGS=0V 0.76 IS Maximum Body-Diode Continuous Current G DYNAMIC PARAMETERS Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance VGS=0V, VDS=50V, f=1MHz mΩ S V 16 A 415 pF 32 pF pF Ω 1.4 2.1 SWITCHING PARAMETERS Qg(10V) Total Gate Charge 6.5 12 nC Qg(4.5V) Total Gate Charge 3 6 nC Qgs Gate Source Charge Qgd Gate Drain Charge tD(on) Turn-On DelayTime tr Turn-On Rise Time tD(off) Turn-Off DelayTime VGS=10V, VDS=50V, ID=5A VGS=10V, VDS=50V, RL=10Ω, RGEN=3Ω 0.7 mΩ 1 3 VGS=0V, VDS=0V, f=1MHz Units µA 5 VGS=10V, ID=5A Static Drain-Source On-Resistance Max V VDS=100V, VGS=0V IDSS RDS(ON) Typ 1.5 nC 1.5 nC 4 ns 2 ns 15 ns tf Turn-Off Fall Time 2 ns trr Body Diode Reverse Recovery Time IF=5A, dI/dt=500A/µs 16 Qrr Body Diode Reverse Recovery Charge IF=5A, dI/dt=500A/µs 44 ns nC A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The Power dissipation PDSM is based on R θJA t ≤ 10s value and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 150°C may be used if the PCB allows it. B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The RθJA is the sum of the thermal impedance from junction to case RθJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating. G. The maximum current rating is package limited. H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev 0: Sep. 2012 www.aosmd.com Page 2 of 6 AON7296 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 25 20 10V VDS=5V 6V 20 4.5V 15 ID(A) ID (A) 15 10 10 125°C 3.5V 5 5 25°C VGS=3.0V 0 0 0 1 2 3 4 1 5 100 3 4 5 2.2 Normalized On-Resistance 90 VGS=4.5V 80 RDS(ON) (mΩ Ω) 2 VGS(Volts) Figure 2: Transfer Characteristics (Note E) VDS (Volts) Fig 1: On-Region Characteristics (Note E) 70 60 50 VGS=10V 40 2 VGS=10V ID=5A 1.8 17 5 2 VGS=4.5V 10 1.6 1.4 1.2 ID=3A 1 0.8 30 0 2 0 4 6 8 10 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E) 25 50 75 100 125 150 175 0 Temperature (°C) Figure 4: On-Resistance vs. Junction 18Temperature (Note E) 160 1.0E+02 ID=5A 1.0E+01 140 40 1.0E+00 125°C 100 IS (A) RDS(ON) (mΩ Ω) 120 1.0E-01 80 1.0E-02 60 1.0E-03 25°C 1.0E-04 25°C 40 125°C 1.0E-05 20 2 6 8 10 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E) Rev 0: Sep. 2012 4 www.aosmd.com 0.0 0.2 0.4 0.6 0.8 1.0 1.2 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) Page 3 of 6 AON7296 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 10 500 VDS=50V ID=5A 400 Capacitance (pF) VGS (Volts) 8 6 4 2 Ciss 300 200 Coss 100 Crss 0 0 0 2 4 6 Qg (nC) Figure 7: Gate-Charge Characteristics 8 0 40 60 80 VDS (Volts) Figure 8: Capacitance Characteristics 100 200 100.0 TJ(Max)=150°C TC=25°C 10µs 10µs RDS(ON) 150 Power (W) 10.0 ID (Amps) 20 100µs 1.0 1ms 10ms DC 0.1 17 5 2 10 100 50 TJ(Max)=150°C TC=25°C 0.0 0 0.01 0.1 1 10 VDS (Volts) 100 1000 0.0001 0.001 0.01 0.1 1 10 0 100 1000 Pulse Width (s) 18 Figure 10: Single Pulse Power Rating Junction-to-Case (Note F) Figure 9: Maximum Forward Biased Safe Operating Area (Note F) Zθ JC Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 40 RθJC=6°C/W 1 0.1 PD Single Pulse Ton T 0.01 1E-05 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) Rev 0: Sep. 2012 www.aosmd.com Page 4 of 6 AON7296 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 25 20 Power Dissipation (W) IAR (A) Peak Avalanche Current 100 TA=25°C 10 TA=125°C 15 10 5 1 0 1 10 Time in avalanche, tA (µ µs) Figure 12: Single Pulse Avalanche capability (Note C) 100 0 50 75 100 125 TCASE (°C) Figure 13: Power De-rating (Note F) 150 200 15 TA=25°C 150 10 Power (W) Current rating ID(A) 25 17 5 2 10 100 5 50 0 0 0 25 50 75 100 125 TCASE (°C) Figure 14: Current De-rating (Note F) 0.01 0.1 1 10 0 100 1000 Pulse Width (s) 18 Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H) 0.0001 0.001 150 Zθ JA Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TA+PDM.ZθJA.RθJA 1 In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 40 RθJA=75°C/W 0.1 PD 0.01 Single Pulse Ton T 0.001 1E-05 0.0001 0.001 0.01 0.1 1 10 100 1000 Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H) Rev 0: Sep. 2012 www.aosmd.com Page 5 of 6 AON7296 Gate Charge Test Circuit & Waveform Vgs Qg 10V + + Vds VDC - Qgs Qgd VDC - DUT Vgs Ig Charge Resistive Switching Test Circuit & Waveforms RL Vds Vds 90% + Vdd DUT Vgs VDC - Rg 10% Vgs Vgs t d(on) tr t d(off) t on tf toff Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L 2 E AR = 1/2 LIAR Vds BVDSS Vds Id + Vdd Vgs Vgs I AR VDC - Rg Id DUT Vgs Vgs Diode Recovery Test Circuit & Waveforms Q rr = - Idt Vds + DUT Vds Isd Vgs Ig Rev 0: Sep. 2012 Vgs L Isd + Vdd t rr dI/dt I RM Vdd VDC - IF Vds www.aosmd.com Page 6 of 6