Datasheet

AON7296
100V N-Channel MOSFET
General Description
Product Summary
The AON7296 uses trench MOSFET technology that is
uniquely optimized to provide the most efficient high
frequency switching performance. Both conduction and
switching power losses are minimized due to an
extremely low combination of RDS(ON), Ciss and Coss.
This device is ideal for boost converters and synchronous
rectifiers for consumer, telecom, industrial power supplies
and LED backlighting.
VDS
100V
12.5A
ID (at VGS=10V)
RDS(ON) (at VGS=10V)
< 66mΩ
RDS(ON) (at VGS=4.5V)
< 90mΩ
100% UIS Tested
100% Rg Tested
Top View
DFN 3x3 EP
Bottom View
D
Top View
1
8
2
7
3
6
4
5
G
S
Pin 1
Absolute Maximum Ratings TA=25°C unless otherwise noted
Parameter
Symbol
Drain-Source Voltage
VDS
Gate-Source Voltage
VGS
TC=25°C
Continuous Drain
Current
Pulsed Drain Current C
Avalanche Current
C
Avalanche energy L=0.1mH C
TC=25°C
Power Dissipation B
TA=25°C
Power Dissipation
A
Junction and Storage Temperature Range
Thermal Characteristics
Parameter
Maximum Junction-to-Ambient A
Maximum Junction-to-Ambient A D
Maximum Junction-to-Case
Rev 0: Sep. 2012
IAS
4
A
EAS
0.8
mJ
20.8
Steady-State
Steady-State
W
8.3
3.1
RθJA
RθJC
www.aosmd.com
W
2
TJ, TSTG
Symbol
t ≤ 10s
A
4
PDSM
TA=70°C
A
5
PD
TC=100°C
V
25
IDSM
TA=70°C
±20
8
IDM
TA=25°C
Continuous Drain
Current
Units
V
12.5
ID
TC=100°C
Maximum
100
-55 to 150
Typ
30
60
5
°C
Max
40
75
6
Units
°C/W
°C/W
°C/W
Page 1 of 6
AON7296
Electrical Characteristics (TJ=25°C unless otherwise noted)
Symbol
Parameter
STATIC PARAMETERS
BVDSS
Drain-Source Breakdown Voltage
Conditions
Min
ID=250µA, VGS=0V
100
1
Zero Gate Voltage Drain Current
IGSS
Gate-Body leakage current
VDS=0V, VGS=±20V
VGS(th)
Gate Threshold Voltage
VDS=VGS, ID=250µA
1.7
ID(ON)
On state drain current
VGS=10V, VDS=5V
25
TJ=55°C
TJ=125°C
VGS=4.5V, ID=3A
±100
nA
2.3
2.8
V
54
66
100
122
72
90
A
gFS
Forward Transconductance
VDS=5V, ID=5A
13.5
VSD
Diode Forward Voltage
IS=1A,VGS=0V
0.76
IS
Maximum Body-Diode Continuous Current G
DYNAMIC PARAMETERS
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
VGS=0V, VDS=50V, f=1MHz
mΩ
S
V
16
A
415
pF
32
pF
pF
Ω
1.4
2.1
SWITCHING PARAMETERS
Qg(10V) Total Gate Charge
6.5
12
nC
Qg(4.5V) Total Gate Charge
3
6
nC
Qgs
Gate Source Charge
Qgd
Gate Drain Charge
tD(on)
Turn-On DelayTime
tr
Turn-On Rise Time
tD(off)
Turn-Off DelayTime
VGS=10V, VDS=50V, ID=5A
VGS=10V, VDS=50V, RL=10Ω,
RGEN=3Ω
0.7
mΩ
1
3
VGS=0V, VDS=0V, f=1MHz
Units
µA
5
VGS=10V, ID=5A
Static Drain-Source On-Resistance
Max
V
VDS=100V, VGS=0V
IDSS
RDS(ON)
Typ
1.5
nC
1.5
nC
4
ns
2
ns
15
ns
tf
Turn-Off Fall Time
2
ns
trr
Body Diode Reverse Recovery Time
IF=5A, dI/dt=500A/µs
16
Qrr
Body Diode Reverse Recovery Charge IF=5A, dI/dt=500A/µs
44
ns
nC
A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The
Power dissipation PDSM is based on R θJA t ≤ 10s value and the maximum allowed junction temperature of 150°C. The value in any given
application depends on the user's specific board design, and the maximum temperature of 150°C may be used if the PCB allows it.
B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep
initial TJ =25°C.
D. The RθJA is the sum of the thermal impedance from junction to case RθJC and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming
a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating.
G. The maximum current rating is package limited.
H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C.
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Rev 0: Sep. 2012
www.aosmd.com
Page 2 of 6
AON7296
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
25
20
10V
VDS=5V
6V
20
4.5V
15
ID(A)
ID (A)
15
10
10
125°C
3.5V
5
5
25°C
VGS=3.0V
0
0
0
1
2
3
4
1
5
100
3
4
5
2.2
Normalized On-Resistance
90
VGS=4.5V
80
RDS(ON) (mΩ
Ω)
2
VGS(Volts)
Figure 2: Transfer Characteristics (Note E)
VDS (Volts)
Fig 1: On-Region Characteristics (Note E)
70
60
50
VGS=10V
40
2
VGS=10V
ID=5A
1.8
17
5
2
VGS=4.5V
10
1.6
1.4
1.2
ID=3A
1
0.8
30
0
2
0
4
6
8
10
ID (A)
Figure 3: On-Resistance vs. Drain Current and Gate
Voltage (Note E)
25
50
75
100
125
150
175
0
Temperature (°C)
Figure 4: On-Resistance vs. Junction
18Temperature
(Note E)
160
1.0E+02
ID=5A
1.0E+01
140
40
1.0E+00
125°C
100
IS (A)
RDS(ON) (mΩ
Ω)
120
1.0E-01
80
1.0E-02
60
1.0E-03
25°C
1.0E-04
25°C
40
125°C
1.0E-05
20
2
6
8
10
VGS (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
(Note E)
Rev 0: Sep. 2012
4
www.aosmd.com
0.0
0.2
0.4
0.6
0.8
1.0
1.2
VSD (Volts)
Figure 6: Body-Diode Characteristics (Note E)
Page 3 of 6
AON7296
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
10
500
VDS=50V
ID=5A
400
Capacitance (pF)
VGS (Volts)
8
6
4
2
Ciss
300
200
Coss
100
Crss
0
0
0
2
4
6
Qg (nC)
Figure 7: Gate-Charge Characteristics
8
0
40
60
80
VDS (Volts)
Figure 8: Capacitance Characteristics
100
200
100.0
TJ(Max)=150°C
TC=25°C
10µs
10µs
RDS(ON)
150
Power (W)
10.0
ID (Amps)
20
100µs
1.0
1ms
10ms
DC
0.1
17
5
2
10
100
50
TJ(Max)=150°C
TC=25°C
0.0
0
0.01
0.1
1
10
VDS (Volts)
100
1000
0.0001 0.001
0.01
0.1
1
10
0
100
1000
Pulse Width (s)
18
Figure 10: Single Pulse Power Rating Junction-to-Case
(Note F)
Figure 9: Maximum Forward Biased
Safe Operating Area (Note F)
Zθ JC Normalized Transient
Thermal Resistance
10
D=Ton/T
TJ,PK=TC+PDM.ZθJC.RθJC
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
40
RθJC=6°C/W
1
0.1
PD
Single Pulse
Ton
T
0.01
1E-05
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Rev 0: Sep. 2012
www.aosmd.com
Page 4 of 6
AON7296
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
25
20
Power Dissipation (W)
IAR (A) Peak Avalanche Current
100
TA=25°C
10
TA=125°C
15
10
5
1
0
1
10
Time in avalanche, tA (µ
µs)
Figure 12: Single Pulse Avalanche capability
(Note C)
100
0
50
75
100
125
TCASE (°C)
Figure 13: Power De-rating (Note F)
150
200
15
TA=25°C
150
10
Power (W)
Current rating ID(A)
25
17
5
2
10
100
5
50
0
0
0
25
50
75
100
125
TCASE (°C)
Figure 14: Current De-rating (Note F)
0.01
0.1
1
10 0 100 1000
Pulse Width (s)
18
Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H)
0.0001 0.001
150
Zθ JA Normalized Transient
Thermal Resistance
10
D=Ton/T
TJ,PK=TA+PDM.ZθJA.RθJA
1
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
40
RθJA=75°C/W
0.1
PD
0.01
Single Pulse
Ton
T
0.001
1E-05
0.0001
0.001
0.01
0.1
1
10
100
1000
Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)
Rev 0: Sep. 2012
www.aosmd.com
Page 5 of 6
AON7296
Gate Charge Test Circuit & Waveform
Vgs
Qg
10V
+
+ Vds
VDC
-
Qgs
Qgd
VDC
-
DUT
Vgs
Ig
Charge
Resistive Switching Test Circuit & Waveforms
RL
Vds
Vds
90%
+ Vdd
DUT
Vgs
VDC
-
Rg
10%
Vgs
Vgs
t d(on)
tr
t d(off)
t on
tf
toff
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms
L
2
E AR = 1/2 LIAR
Vds
BVDSS
Vds
Id
+ Vdd
Vgs
Vgs
I AR
VDC
-
Rg
Id
DUT
Vgs
Vgs
Diode Recovery Test Circuit & Waveforms
Q rr = - Idt
Vds +
DUT
Vds Isd
Vgs
Ig
Rev 0: Sep. 2012
Vgs
L
Isd
+ Vdd
t rr
dI/dt
I RM
Vdd
VDC
-
IF
Vds
www.aosmd.com
Page 6 of 6