AON6244 60V N-Channel MOSFET General Description Product Summary VDS The AO6244 uses trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance.Power losses are minimized due to an extremely low combination of RDS(ON) and Crss.In addition,switching behavior is well controlled with a soft recovery body diode.This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting. 60V 85A RDS(ON) (at VGS =10V) < 4.7mΩ RDS(ON) (at VGS =4.5V) < 6.2mΩ 100% UIS Tested 100% Rg Tested DFN5X6 Top View ID (at VGS =10V) D Top View Bottom View 1 8 2 7 3 6 4 5 G S PIN1 Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Symbol Drain-Source Voltage VDS Gate-Source Voltage VGS TC=25°C Continuous Drain Current G Pulsed Drain Current C Avalanche Current C Avalanche energy L=0.1mH C TC=25°C Power Dissipation B Power Dissipation A TA=25°C Junction and Storage Temperature Range Thermal Characteristics Parameter Maximum Junction-to-Ambient A Maximum Junction-to-Ambient A D Maximum Junction-to-Case Rev 0: July 2011 IAS, IAR 65 A EAS, EAR 211 mJ 83 Steady-State Steady-State W 33 2.3 RθJA RθJC W 1.5 TJ, TSTG Symbol t ≤ 10s A 12 PDSM TA=70°C A 15 PD TC=100°C V 200 IDSM TA=70°C ±20 59 IDM TA=25°C Continuous Drain Current Units V 85 ID TC=100°C Maximum 60 -55 to 150 Typ 14 40 1 www.aosmd.com °C Max 17 55 1.5 Units °C/W °C/W °C/W Page 1 of 6 AON6244 Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol Parameter STATIC PARAMETERS Drain-Source Breakdown Voltage BVDSS IDSS Zero Gate Voltage Drain Current Conditions Min ID=250µA, VGS=0V Max 60 1 TJ=55°C µA 5 Gate-Body leakage current VDS=0V, VGS=±20V VGS(th) Gate Threshold Voltage VDS=VGS, ID=250µA 1.5 ID(ON) On state drain current VGS=10V, VDS=5V 200 Units V VDS=60V, VGS=0V IGSS ±100 nA 2 2.5 V 3.8 4.7 6.9 8.5 VGS=4.5V, ID=20A 4.8 6.2 mΩ 1 V 85 A VGS=10V, ID=20A RDS(ON) Typ Static Drain-Source On-Resistance TJ=125°C A gFS Forward Transconductance VDS=5V, ID=20A 150 VSD Diode Forward Voltage IS=1A,VGS=0V 0.68 IS Maximum Body-Diode Continuous Current G DYNAMIC PARAMETERS Ciss Input Capacitance mΩ S 3070 3838 4610 pF VGS=0V, VDS=30V, f=1MHz 290 415 540 pF 4 14.5 25 pF VGS=0V, VDS=0V, f=1MHz 0.5 1 1.5 Ω SWITCHING PARAMETERS Qg(10V) Total Gate Charge 40 52 64 nC Qg(4.5V) Total Gate Charge 16 21 30 Coss Output Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance Qgs Gate Source Charge Qgd Gate Drain Charge tD(on) Turn-On DelayTime tr Turn-On Rise Time tD(off) Turn-Off DelayTime VGS=10V, VDS=30V, ID=20A VGS=10V, VDS=30V, RL=1.5Ω, RGEN=3Ω nC 13.5 nC 3 nC 11 ns 3 ns 34 ns tf Turn-Off Fall Time trr Body Diode Reverse Recovery Time IF=20A, dI/dt=500A/µs 14 21.5 28 Qrr Body Diode Reverse Recovery Charge IF=20A, dI/dt=500A/µs 60 87.5 115 4 ns ns nC A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design. B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The RθJA is the sum of the thermal impedance from junction to case RθJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating. G. The maximum current rating is package limited. H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev 0: July 2011 www.aosmd.com Page 2 of 6 AON6244 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 140 100 10V 4V 120 80 6V 100 3.5V 60 80 ID(A) ID (A) VDS=5V 4.5V 60 125°C 40 40 25°C 20 20 VGS=3V 0 0 0 1 2 3 4 0 5 6 2 3 4 5 6 Normalized On-Resistance 2.2 VGS=4.5V 5 RDS(ON) (mΩ Ω) 1 VGS(Volts) Figure 2: Transfer Characteristics (Note E) VDS (Volts) Fig 1: On-Region Characteristics (Note E) 4 VGS=10V 3 2 2 VGS=10V ID=20A 1.8 17 5 2 10 =4.5V 1.6 1.4 1.2 VGS ID=20A 1 0.8 0 5 10 15 20 25 30 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E) 0 25 50 75 100 125 150 175 0 Temperature (°C) Figure 4: On-Resistance vs. Junction 18Temperature (Note E) 10 1.0E+02 ID=20A 1.0E+01 8 125°C 40 6 IS (A) RDS(ON) (mΩ Ω) 1.0E+00 4 125°C 1.0E-01 1.0E-02 1.0E-03 25°C 2 25°C 1.0E-04 1.0E-05 0 2 6 8 10 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E) Rev 0: July 2011 4 www.aosmd.com 0.0 0.2 0.4 0.6 0.8 1.0 1.2 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) Page 3 of 6 AON6244 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 10 4400 VDS=30V ID=20A 3600 Capacitance (pF) 8 VGS (Volts) Ciss 4000 6 4 2 3200 2800 2400 2000 1600 Coss 1200 800 400 0 0 10 20 30 40 50 Qg (nC) Figure 7: Gate-Charge Characteristics 60 0 10µs 10µs RDS(ON) 60 100µs 10.0 1.0 TJ(Max)=150°C TC=25°C DC TJ(Max)=150°C TC=25°C 160 Power (W) 100.0 10 20 30 40 50 VDS (Volts) Figure 8: Capacitance Characteristics 200 1000.0 ID (Amps) Crss 0 1ms 10ms 0.1 17 5 2 10 120 80 40 0.0 0 0.01 0.1 1 10 VDS (Volts) 100 1000 0.0001 0.001 0.01 0.1 1 10 0 Pulse Width (s) 18 Figure 10: Single Pulse Power Rating Junction-to-Case (Note F) Figure 9: Maximum Forward Biased Safe Operating Area (Note F) Zθ JC Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 40 RθJC=1.5°C/W 1 PD 0.1 Ton Single Pulse T 0.01 0.00001 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) Rev 0: July 2011 www.aosmd.com Page 4 of 6 AON6244 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 TA=25°C TA=100°C Power Dissipation (W) IAR (A) Peak Avalanche Current 1000 100 TA=150°C TA=125°C 10 1 80 60 40 20 0 1 10 100 1000 Time in avalanche, tA (µ µs) Figure 12: Single Pulse Avalanche capability (Note C) 0 75 100 125 TCASE (°C) Figure 13: Power De-rating (Note F) 150 TA=25°C 80 1000 Power (W) Current rating ID(A) 50 10000 100 60 40 17 5 2 10 100 10 20 0 1 0 10 Zθ JA Normalized Transient Thermal Resistance 25 1 25 50 75 100 125 TCASE (°C) Figure 14: Current De-rating (Note F) 150 0.00001 0.001 10 0 0.1 1000 18 Pulse Width (s) Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H) D=Ton/T TJ,PK=TA+PDM.ZθJA.RθJA In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 40 RθJA=55°C/W 0.1 PD 0.01 Single Pulse Ton T 0.001 0.0001 0.001 0.01 0.1 1 10 100 1000 Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H) Rev 0: July 2011 www.aosmd.com Page 5 of 6 AON6244 Gate Charge Test Circuit & Waveform Vgs Qg 10V + + Vds VDC - Qgs Qgd VDC - DUT Vgs Ig Charge Resistive Switching Test Circuit & Waveforms RL Vds Vds 90% + Vdd DUT Vgs VDC - Rg 10% Vgs Vgs t d(on) tr t d(off) t on tf toff Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L 2 E AR = 1/2 LIAR Vds BVDSS Vds Id + Vdd Vgs Vgs I AR VDC - Rg Id DUT Vgs Vgs Diode Recovery Test Circuit & Waveforms Q rr = - Idt Vds + DUT Vds Isd Vgs Ig Rev 0: July 2011 Vgs L Isd + Vdd t rr dI/dt I RM Vdd VDC - IF Vds www.aosmd.com Page 6 of 6