AON6250 150V N-Channel MOSFET General Description Product Summary VDS The AON6250 uses trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of RDS(ON), Ciss and Coss. This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting. 150V 52A ID (at VGS=10V) RDS(ON) (at VGS=10V) < 16.5mΩ RDS(ON) (at VGS=6V) < 19mΩ 100% UIS Tested 100% Rg Tested DFN5X6 Top View D Top View Bottom View 1 8 2 7 3 6 4 5 G S PIN1 Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Symbol Drain-Source Voltage VDS Gate-Source Voltage VGS TC=25°C Continuous Drain Current Pulsed Drain Current C Avalanche Current C Avalanche energy L=0.3mH C TC=25°C Power Dissipation B TA=25°C Power Dissipation A Junction and Storage Temperature Range Thermal Characteristics Parameter Maximum Junction-to-Ambient A Maximum Junction-to-Ambient A D Maximum Junction-to-Case Rev.2.0: December 2013 IAS 33 A EAS 163 mJ 104 Steady-State Steady-State W 41.5 7.4 RθJA RθJC W 4.7 TJ, TSTG Symbol t ≤ 10s A 10.5 PDSM TA=70°C A 13.5 PD TC=100°C V 112 IDSM TA=70°C ±20 32 IDM TA=25°C Continuous Drain Current Units V 52 ID TC=100°C Maximum 150 -55 to 150 Typ 14 40 1 www.aosmd.com °C Max 17 55 1.2 Units °C/W °C/W °C/W Page 1 of 7 AON6250 Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol Parameter STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage Conditions Min ID=250µA, VGS=0V 150 1 Zero Gate Voltage Drain Current IGSS Gate-Body leakage current VDS=0V, VGS=±20V VGS(th) Gate Threshold Voltage VDS=VGS, ID=250µA 2.4 ID(ON) On state drain current VGS=10V, VDS=5V 112 TJ=55°C ±100 nA 2.85 3.4 V 13.5 16.5 27.4 33.5 VGS=6V, ID=20A 14.8 19 mΩ 58 1 V 52 A Static Drain-Source On-Resistance TJ=125°C gFS Forward Transconductance VDS=5V, ID=20A VSD Diode Forward Voltage IS=1A,VGS=0V IS Maximum Body-Diode Continuous Current Crss Reverse Transfer Capacitance Rg Gate resistance VGS=0V, VDS=75V, f=1MHz Gate Source Charge Qgd tD(on) VGS=10V, VDS=75V, ID=20A 0.4 mΩ S 2388 pF 213 pF 9.5 VGS=0V, VDS=0V, f=1MHz SWITCHING PARAMETERS Qg Total Gate Charge Qgs A 0.69 DYNAMIC PARAMETERS Input Capacitance Ciss Output Capacitance Units µA 5 VGS=10V, ID=20A Coss Max V VDS=150V, VGS=0V IDSS RDS(ON) Typ pF 0.95 1.5 30.5 43 Ω nC 10.5 nC Gate Drain Charge 4.5 nC Turn-On DelayTime 11 ns tr Turn-On Rise Time tD(off) Turn-Off DelayTime 3 ns 23 ns tf Turn-Off Fall Time 4.5 ns trr Body Diode Reverse Recovery Time Qrr IF=20A, dI/dt=500A/µs 68 Body Diode Reverse Recovery Charge IF=20A, dI/dt=500A/µs 560 ns nC VGS=10V, VDS=75V, RL=3.75Ω, RGEN=3Ω A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The Power dissipation PDSM is based on R θJA t ≤ 10s and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design. B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The RθJA is the sum of the thermal impedance from junction to case RθJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating. G. The maximum current rating is package limited. H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev.2.0: December 2013 www.aosmd.com Page 2 of 7 AON6250 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 100 10V 5.5V 8V 80 VDS=5V 5V 80 6V 60 ID(A) ID (A) 60 4.5V 40 20 40 125°C 20 VGS=4V 25°C 0 0 0 1 2 3 4 0 5 25 2 3 4 5 6 Normalized On-Resistance 2.6 20 RDS(ON) (mΩ Ω) 1 VGS(Volts) Figure 2: Transfer Characteristics (Note E) VDS (Volts) Fig 1: On-Region Characteristics (Note E) VGS=6V 15 VGS=10V 10 5 2.4 2.2 VGS=10V ID=20A 2 17 5 2 VGS=6V10 1.8 1.6 1.4 1.2 ID=20A 1 0.8 0 0 5 0 10 15 20 25 30 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E) 25 50 75 100 125 150 175 0 Temperature (°C) Figure 4: On-Resistance vs. Junction 18Temperature (Note E) 40 1.0E+02 ID=20A 1.0E+01 120 35 1.0E+00 25 IS (A) RDS(ON) (mΩ Ω) 40 125°C 30 30 1.0E-01 20 1.0E-02 15 1.0E-03 25°C 1.0E-04 25°C 10 125°C 1.0E-05 5 2 4 6 8 10 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E) Rev.2.0: December 2013 www.aosmd.com 0.0 0.2 0.4 0.6 0.8 1.0 1.2 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) Page 3 of 7 AON6250 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 10 4000 VDS=75V ID=20A 3500 8 Capacitance (pF) VGS (Volts) 3000 6 4 Ciss 2500 2000 Coss 1500 1000 2 500 0 0 5 10 15 20 25 30 Qg (nC) Figure 7: Gate-Charge Characteristics 35 0 30 60 90 120 VDS (Volts) Figure 8: Capacitance Characteristics 150 500 1000.0 RDS(ON) limited 10µs 100µs 1ms 10ms DC 1.0 Power (W) 10.0 TJ(Max)=150°C TC=25°C 0.1 TJ(Max)=150°C TC=25°C 400 10µs 100.0 ID (Amps) Crss 0 17 5 2 10 300 200 100 0.0 0 0.01 0.1 1 10 VDS (Volts) 100 1000 0.0001 0.001 0.01 0.1 1 10 0 Pulse Width (s) 18 Figure 10: Single Pulse Power Rating Junction-to-Case (Note F) VGS> or equal to 6V Figure 9: Maximum Forward Biased Safe Operating Area (Note F) Zθ JC Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC 120 40 RθJC=1.2°C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 1 30 PD 0.1 Ton T Single Pulse 0.01 1E-05 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) Rev.2.0: December 2013 www.aosmd.com Page 4 of 7 AON6250 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 150 TA=25°C Power Dissipation (W) IAR (A) Peak Avalanche Current 1000 TA=100°C 100 TA=150°C 10 TA=125°C 1 90 60 30 0 1 10 100 Time in avalanche, tA (µ µs) Figure 12: Single Pulse Avalanche capability (Note C) 1000 0 60 1.3 50 1.2 BVDSS (Normalized) Current rating ID(A) 120 40 30 20 10 25 50 75 100 125 TCASE (°C) Figure 13: Power De-rating (Note F) -50 0 150 1.1 1 0.9 0.8 0 0.7 0 25 50 75 100 125 TCASE (°C) Figure 14: Current De-rating (Note F) 150 -100 50 100 150 200 TJ (°C) Figure 15:Break Down vs. Junction Temparature 10000 Power (W) 1000 100 10 1 1E-05 Rev.2.0: December 2013 0.001 0.1 10 Pulse Width (s) Figure 16: Single Pulse Power Rating Junction-to-Ambient (Note H) www.aosmd.com 1000 Page 5 of 7 AON6250 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS Zθ JA Normalized Transient Thermal Resistance 10 In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse D=Ton/T TJ,PK=TA+PDM.ZθJA.RθJA 1 RθJA=55°C/W 0.1 PD 0.01 Single Pulse Ton T 0.001 0.0001 0.001 0.01 0.1 1 10 100 1000 Pulse Width (s) Figure 17: Normalized Maximum Transient Thermal Impedance (Note H) Rev.2.0: December 2013 www.aosmd.com Page 6 of 7 AON6250 Gate Charge Test Circuit & Waveform Vgs Qg 10V + + Vds VDC - Qgs Qgd VDC - DUT Vgs Ig Charge Resistive Switching Test Circuit & Waveforms RL Vds Vds 90% + Vdd DUT Vgs VDC - Rg 10% Vgs Vgs t d(on) tr t d(off) t on tf toff Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L 2 E AR = 1/2 LIAR Vds BVDSS Vds Id + Vdd Vgs Vgs I AR VDC - Rg Id DUT Vgs Vgs Diode Recovery Test Circuit & Waveforms Q rr = - Idt Vds + DUT Vds Isd Vgs Ig Rev.2.0: December 2013 Vgs L Isd + Vdd t rr dI/dt I RM Vdd VDC - IF Vds www.aosmd.com Page 7 of 7