32-Bit Microcontroller TC1798 32-Bit Single-Chip Microcontroller Data Sheet V 1.1 2014-05 Microcontrollers Edition 2014-05 Published by Infineon Technologies AG 81726 Munich, Germany © 2014 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 32-Bit Microcontroller TC1798 32-Bit Single-Chip Microcontroller Data Sheet V 1.1 2014-05 Microcontrollers TC1798 Table of Contents 1 Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 2 2.1 System Overview of the TC1798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9 3 3.1 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12 TC1798 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13 4 Identification Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-92 5 5.1 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.6.1 5.3 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6 5.3.7 5.3.8 5.3.9 5.3.10 5.3.11 5.3.12 5.3.12.1 5.3.12.2 5.3.12.3 Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-94 General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-94 Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-94 Pad Driver and Pad Classes Summary . . . . . . . . . . . . . . . . . . . . . . . 5-95 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-96 Pin Reliability in Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-98 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-100 Extended Range Operating Conditions . . . . . . . . . . . . . . . . . . . . 5-102 DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-105 Input/Output Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-105 Analog to Digital Converters (ADCx) . . . . . . . . . . . . . . . . . . . . . . . . 5-125 Fast Analog to Digital Converter (FADC) . . . . . . . . . . . . . . . . . . . . . 5-132 Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-136 Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-137 Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-138 Calculating the 1.3 V Current Consumption . . . . . . . . . . . . . . . . 5-140 AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-142 Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-142 Power Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-143 Power, Pad and Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-145 Phase Locked Loop (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-147 ERAY Phase Locked Loop (ERAY_PLL) . . . . . . . . . . . . . . . . . . . . . 5-150 JTAG Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-151 DAP Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-153 Micro Link Interface (MLI) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 5-154 Micro Second Channel (MSC) Interface Timing . . . . . . . . . . . . . . . 5-157 SSC Master/Slave Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-159 ERAY Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-161 EBU Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-163 BFCLKO Output Clock Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-163 EBU Asynchronous Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-163 EBU Burst Mode Access Timing . . . . . . . . . . . . . . . . . . . . . . . . . 5-170 Data Sheet I-1 V 1.1, 2014-05 TC1798 5.3.12.4 EBU Arbitration Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.12.5 EBU DDR Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 Package and Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.1 Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.2 Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.3 Quality Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Data Sheet 5-173 5-174 5-181 5-184 5-184 5-185 5-185 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 I-2 V 1.1, 2014-05 TC1798 Data Sheet 3 V 1.1, 2014-05 TC1798 Data Sheet 4 V 1.1, 2014-05 TC1798 Summary of Features 1 Summary of Features The SAK-TC1798F-512F300EL / SAK-TC1798F-512F300EP features: • • • • • • • • has the following High-performance 32-bit super-scalar TriCore V1.6 CPU with 6-stage pipeline – Superior real-time performance – Strong bit handling – Fully integrated DSP capabilities – Multiply-accumulate unit able to sustain 2 MAC operations per cycle – Fully pipelined Floating point unit (FPU) – 300 MHz operation at full temperature range 32-bit Peripheral Control Processor with single cycle instruction (PCP2) – 16 Kbyte Parameter Memory (PRAM) – 32 Kbyte Code Memory (CMEM) – 200 MHz operation at full temperature range Multiple on-chip memories – 4 Mbyte Program Flash Memory (PFLASH) with ECC – 192 Kbyte Data Flash Memory (DFLASH) usable for EEPROM emulation – 2 x 8 Kbyte Key Flash – 128 Kbyte Data Scratch-Pad RAM (DSPR) – 16 Kbyte Instruction Cache (ICACHE) – 32 Kbyte Instruction Scratch-Pad RAM (PSPR) – 16 Kbyte Data Cache (DACHE) – 128 Kbyte Memory (SRAM) – 16 Kbyte BootROM (BROM) 16-Channel DMA Controller 8-Channel Safe DMA (SDMA) Controller Sophisticated interrupt system with 2 × 255 hardware priority arbitration levels serviced by CPU or PCP2 High performing on-chip bus structure – 64-bit Cross Bar Interconnect between CPU, Flash and Data Memory – 32-bit System Peripheral Bus (SPB) for on-chip peripheral and functional units – One bus bridge (SFI Bridge) Versatile On-chip Peripheral Units – Two Asynchronous/Synchronous Serial Channels (ASC) with baud rate generator, parity, framing and overrun error detection – Four High-Speed Synchronous Serial Channels (SSC) with programmable data length and shift direction – Four SSC Guardian (SSCG) modules, one for each SSC – Two serial Micro Second Bus interfaces (MSC) for serial port expansion to external power devices – Two High-Speed Micro Link interfaces (MLI) for serial inter-processor communication Data Sheet 1 V 1.1, 2014-05 TC1798 Summary of Features • • • • • • • • • • – One External Bus Interface (EBU) supporting different memories: asynchronous memories e.g. SRAM, peripheral devices; synchronous devices e.g. burst NOR flash, PSRAM; and DDR NOR flash e.g. LPDDR-NVM (Jedec 42.2), ONFI 2.0 (limited frequency at 1.8 V I/O supply) – One MultiCAN Module with 4 CAN nodes and 128 free assignable message objects for high efficiency data handling via FIFO buffering and gateway data transfer (one CAN node supports TTCAN functionality) – One FlexRayTM module with 2 channels (E-Ray). – Two General Purpose Timer Array Modules (GPTA) with additional Local Timer Cell Array (LTCA2) providing a powerful set of digital signal filtering and timer functionality to realize autonomous and complex Input/Output management – Two Capture / Compare 6 modules – Two General Purpose 12 Timer Units (GPT120 and GPT121) 64 analog input lines for ADC – 4 independent kernels (ADC0, ADC1, ADC2, and ADC3) – Analog supply voltage range from 3.3 V to 5 V (single supply) 4 different FADC input channels – channels with impedance control and overlaid with ADC1 inputs – Extreme fast conversion, 21 cycles of fFADC clock – 10-bit A/D conversion (higher resolution can be achieved by averaging of consecutive conversions in digital data reduction filter) 8 digital input lines for SENT – communication according to the SENT specification J2716 FEB2008 238 digital general purpose I/O lines (GPIO) Digital I/O ports with 3.3 V capability On-chip debug support for OCDS Level 1 (CPU, PCP, DMA, On Chip Buses) Dedicated Emulation Device chip available (TC1798ED) – multi-core debugging, real time tracing, and calibration – four/five wire JTAG (IEEE 1149.1) or two wire DAP (Device Access Port) interface Power Management System Clock Generation Unit with PLL and PLL_ERAY Flexible CRC Engine (FCE) – IEEE 802.3 CRC32 ethernet polynomial: 0x82608EDB (CRC kernel 0) – CRC32C Castagnoli: 0xD419CC15 (CRC kernel 1) The SAK-TC1798N-512F300EP has the following features: • High-performance 32-bit super-scalar TriCore V1.6 CPU with 6-stage pipeline – Superior real-time performance – Strong bit handling – Fully integrated DSP capabilities – Multiply-accumulate unit able to sustain 2 MAC operations per cycle – Fully pipelined Floating point unit (FPU) – 300 MHz operation at full temperature range Data Sheet 2 V 1.1, 2014-05 TC1798 Summary of Features • • • • • • • 32-bit Peripheral Control Processor with single cycle instruction (PCP2) – 16 Kbyte Parameter Memory (PRAM) – 32 Kbyte Code Memory (CMEM) – 200 MHz operation at full temperature range Multiple on-chip memories – 4 Mbyte Program Flash Memory (PFLASH) with ECC – 192 Kbyte Data Flash Memory (DFLASH) usable for EEPROM emulation – 2 x 8 Kbyte Key Flash – 128 Kbyte Data Scratch-Pad RAM (DSPR) – 16 Kbyte Instruction Cache (ICACHE) – 32 Kbyte Instruction Scratch-Pad RAM (PSPR) – 16 Kbyte Data Cache (DACHE) – 128 Kbyte Memory (SRAM) – 16 Kbyte BootROM (BROM) 16-Channel DMA Controller 8-Channel Safe DMA (SDMA) Controller Sophisticated interrupt system with 2 × 255 hardware priority arbitration levels serviced by CPU or PCP2 High performing on-chip bus structure – 64-bit Cross Bar Interconnect between CPU, Flash and Data Memory – 32-bit System Peripheral Bus (SPB) for on-chip peripheral and functional units – One bus bridge (SFI Bridge) Versatile On-chip Peripheral Units – Two Asynchronous/Synchronous Serial Channels (ASC) with baud rate generator, parity, framing and overrun error detection – Four High-Speed Synchronous Serial Channels (SSC) with programmable data length and shift direction – Four SSC Guardian (SSCG) modules, one for each SSC – Two serial Micro Second Bus interfaces (MSC) for serial port expansion to external power devices – Two High-Speed Micro Link interfaces (MLI) for serial inter-processor communication – One External Bus Interface (EBU) supporting different memories: asynchronous memories e.g. SRAM, peripheral devices; synchronous devices e.g. burst NOR flash, PSRAM; and DDR NOR flash e.g. LPDDR-NVM (Jedec 42.2), ONFI 2.0 (limited frequency at 1.8 V I/O supply) – One MultiCAN Module with 4 CAN nodes and 128 free assignable message objects for high efficiency data handling via FIFO buffering and gateway data transfer (one CAN node supports TTCAN functionality) – Two General Purpose Timer Array Modules (GPTA) with additional Local Timer Cell Array (LTCA2) providing a powerful set of digital signal filtering and timer functionality to realize autonomous and complex Input/Output management – Two Capture / Compare 6 modules Data Sheet 3 V 1.1, 2014-05 TC1798 Summary of Features • • • • • • • • • • – Two General Purpose 12 Timer Units (GPT120 and GPT121) 64 analog input lines for ADC – 4 independent kernels (ADC0, ADC1, ADC2, and ADC3) – Analog supply voltage range from 3.3 V to 5 V (single supply) 4 different FADC input channels – channels with impedance control and overlaid with ADC1 inputs – Extreme fast conversion, 21 cycles of fFADC clock – 10-bit A/D conversion (higher resolution can be achieved by averaging of consecutive conversions in digital data reduction filter) 8 digital input lines for SENT – communication according to the SENT specification J2716 FEB2008 238 digital general purpose I/O lines (GPIO) Digital I/O ports with 3.3 V capability On-chip debug support for OCDS Level 1 (CPU, PCP, DMA, On Chip Buses) Dedicated Emulation Device chip available (TC1798ED) – multi-core debugging, real time tracing, and calibration – four/five wire JTAG (IEEE 1149.1) or two wire DAP (Device Access Port) interface Power Management System Clock Generation Unit with PLL and PLL_ERAY Flexible CRC Engine (FCE) – IEEE 802.3 CRC32 ethernet polynomial: 0x82608EDB (CRC kernel 0) – CRC32C Castagnoli: 0xD419CC15 (CRC kernel 1) The SAK-TC1798S-512F300EP has the following features: • • • High-performance 32-bit super-scalar TriCore V1.6 CPU with 6-stage pipeline – Superior real-time performance – Strong bit handling – Fully integrated DSP capabilities – Multiply-accumulate unit able to sustain 2 MAC operations per cycle – Fully pipelined Floating point unit (FPU) – 300 MHz operation at full temperature range 32-bit Peripheral Control Processor with single cycle instruction (PCP2) – 16 Kbyte Parameter Memory (PRAM) – 32 Kbyte Code Memory (CMEM) – 200 MHz operation at full temperature range Multiple on-chip memories – 4 Mbyte Program Flash Memory (PFLASH) with ECC – 192 Kbyte Data Flash Memory (DFLASH) usable for EEPROM emulation – 2 x 8 Kbyte Key Flash – 128 Kbyte Data Scratch-Pad RAM (DSPR) – 16 Kbyte Instruction Cache (ICACHE) – 32 Kbyte Instruction Scratch-Pad RAM (PSPR) – 16 Kbyte Data Cache (DACHE) Data Sheet 4 V 1.1, 2014-05 TC1798 Summary of Features • • • • • • • • – 128 Kbyte Memory (SRAM) – 16 Kbyte BootROM (BROM) 16-Channel DMA Controller 8-Channel Safe DMA (SDMA) Controller Sophisticated interrupt system with 2 × 255 hardware priority arbitration levels serviced by CPU or PCP2 High performing on-chip bus structure – 64-bit Cross Bar Interconnect between CPU, Flash and Data Memory – 32-bit System Peripheral Bus (SPB) for on-chip peripheral and functional units – One bus bridge (SFI Bridge) Versatile On-chip Peripheral Units – Two Asynchronous/Synchronous Serial Channels (ASC) with baud rate generator, parity, framing and overrun error detection – Four High-Speed Synchronous Serial Channels (SSC) with programmable data length and shift direction – Four SSC Guardian (SSCG) modules, one for each SSC – Two serial Micro Second Bus interfaces (MSC) for serial port expansion to external power devices – Two High-Speed Micro Link interfaces (MLI) for serial inter-processor communication – One External Bus Interface (EBU) supporting different memories: asynchronous memories e.g. SRAM, peripheral devices; synchronous devices e.g. burst NOR flash, PSRAM; and DDR NOR flash e.g. LPDDR-NVM (Jedec 42.2), ONFI 2.0 (limited frequency at 1.8 V I/O supply) – One MultiCAN Module with 4 CAN nodes and 128 free assignable message objects for high efficiency data handling via FIFO buffering and gateway data transfer (one CAN node supports TTCAN functionality) – One FlexRayTM module with 2 channels (E-Ray). – Two General Purpose Timer Array Modules (GPTA) with additional Local Timer Cell Array (LTCA2) providing a powerful set of digital signal filtering and timer functionality to realize autonomous and complex Input/Output management – Two Capture / Compare 6 modules – Two General Purpose 12 Timer Units (GPT120 and GPT121) 64 analog input lines for ADC – 4 independent kernels (ADC0, ADC1, ADC2, and ADC3) – Analog supply voltage range from 3.3 V to 5 V (single supply) 4 different FADC input channels – channels with impedance control and overlaid with ADC1 inputs – Extreme fast conversion, 21 cycles of fFADC clock – 10-bit A/D conversion (higher resolution can be achieved by averaging of consecutive conversions in digital data reduction filter) 8 digital input lines for SENT – communication according to the SENT specification J2716 FEB2008 Data Sheet 5 V 1.1, 2014-05 TC1798 Summary of Features • • • • • • • • 238 digital general purpose I/O lines (GPIO) Digital I/O ports with 3.3 V capability On-chip debug support for OCDS Level 1 (CPU, PCP, DMA, On Chip Buses) Dedicated Emulation Device chip available (TC1798ED) – multi-core debugging, real time tracing, and calibration – four/five wire JTAG (IEEE 1149.1) or two wire DAP (Device Access Port) interface Power Management System Clock Generation Unit with PLL and PLL_ERAY Flexible CRC Engine (FCE) – IEEE 802.3 CRC32 ethernet polynomial: 0x82608EDB (CRC kernel 0) – CRC32C Castagnoli: 0xD419CC15 (CRC kernel 1) Secure Hardware Extension (SHE) – For further information please contact your Infineon representative Data Sheet 6 V 1.1, 2014-05 TC1798 Summary of Features Ordering Information The ordering code for Infineon microcontrollers provides an exact reference to the required product. This ordering code identifies: • • The derivative itself, i.e. its function set, the temperature range, and the supply voltage The package and the type of delivery. For the available ordering codes for the TC1798 please refer to the “Product Catalog Microcontrollers”, which summarizes all available microcontroller variants. This document describes the derivatives of the device.The Table 1 enumerates these derivatives and summarizes the differences. Table 1 TC1798 Derivative Synopsis Derivative Ambient Temperature Range SAK-TC1798F-512F300EL TA = -40oC to +125oC SAK-TC1798F-512F300EP TA = -40oC to +125oC SAK-TC1798N-512F300EP TA = -40oC to +125oC SAK-TC1798S-512F300EP TA = -40oC to +125oC Data Sheet 7 V 1.1, 2014-05 TC1798 System Overview of the TC1798 2 System Overview of the TC1798 The TC1798 combines three powerful technologies within one silicon die, achieving new levels of power, speed, and economy for embedded applications: • • • Reduced Instruction Set Computing (RISC) processor architecture Digital Signal Processing (DSP) operations and addressing modes On-chip memories and peripherals DSP operations and addressing modes provide the computational power necessary to efficiently analyze complex real-world signals. The RISC load/store architecture provides high computational bandwidth with low system cost. On-chip memory and peripherals are designed to support even the most demanding high-bandwidth real-time embedded control-systems tasks. Additional high-level features of the TC1798 include: • • • • • • • • • Efficient memory organization: instruction and data scratch memories, caches Serial communication interfaces – flexible synchronous and asynchronous modes Peripheral Control Processor – standalone data operations and interrupt servicing DMA Controller – DMA operations and interrupt servicing General-purpose timers High-performance on-chip buses On-chip debugging and emulation facilities Flexible interconnections to external components Flexible power-management The TC1798 is a high-performance microcontroller with TriCore CPU, program and data memories, buses, bus arbitration, an interrupt controller, a peripheral control processor and a DMA controller and several on-chip peripherals. The TC1798 is designed to meet the needs of the most demanding embedded control systems applications where the competing issues of price/performance, real-time responsiveness, computational power, data bandwidth, and power consumption are key design elements. The TC1798 offers several versatile on-chip peripheral units such as serial controllers, timer units, and Analog-to-Digital converters. Within the TC1798, all these peripheral units are connected to the TriCore CPU/system via the Flexible Peripheral Interconnect (FPI) Bus and the Cross Bar Interconnect (SRI). Several I/O lines on the TC1798 ports are reserved for these peripheral units to communicate with the external world. Data Sheet 8 V 1.1, 2014-05 TC1798 System Overview of the TC1798Block Diagram 2.1 Block Diagram Figure 1 shows the block diagram of the SAK-TC1798S-512F300EP. FPU PMI DMI LMU TriCore CPU 32 KB PSPR 16 KB ICACHE 128LDRAM KB DSPR 16 KB DCACHE DCACHE 128 KB SRAM M/S S M/S EBU Cross Bar Interconnect (SRI) S XBAR S S PMU0 PMU1 M M/S 2 MB PFlash 192 KB DFlash 16 KB BROM KeyFlash 16 channels (MemCheck) (SFI) 2 MB PFlash M/S 4 SSCG M /S PCP2 Core 4 Interrupts ASC SSC SSC Guardian MultiCAN 2 Interrupt System 8 channels STM SHE SBCU BMU Ports 5V (3.3V supported as well) Ext. ADC Supply External Request Unit CCU6 (2xCCU6) SENT (8 channels ) FCE 2 GPT120 GPTA0 GPTA1 MLI SDMA 32 KB CMEM E-Ray (2 Channels) (4 Nodes, 128 MO) Interface/JTAG 2 M/S 16 KB PRAM 2 OCDS L 1 Debug DMA Bridge Abbreviations: ICACHE: Instruction Cache DCACHE Data Cache PSPR: Program Scratch-Pad RAM DSPR: Data Scratch-Padl Data RAM BROM: Boot ROM PFlash: Program Flash DFlash: Data Flash PRAM: Parameter RAM in PCP CMEM: Code RAM in PCP XBAR: SRI Cross Bar (XBar_SRI) S : On Chip Bus Slave Interface M : On Chip Bus Master Interface 2 SCU MSC ADC0 ADC1 (5V max) 64 ADC2 ADC3 FM-PLL (LVDS) PLL E-RAY (3.3V max) FADC 8 System Peripheral Bus (SPB) LTCA2 3.3V Ext. FADC Supply TC1798 Figure 1 Data Sheet Block Diagram 9 V 1.1, 2014-05 TC1798 System Overview of the TC1798Block Diagram Figure 1 shows the block diagram of the SAK-TC1798F-512F300EL / SAK-TC1798F512F300EP. FPU PMI DMI LMU TriCore CPU 32 KB PSPR 16 KB ICACHE 128LDRAM KB DSPR 16 KB DCACHE DCACHE 128 KB SRAM M/S S M/S EBU Cross Bar Interconnect (SRI) S XBAR S S PMU0 PMU1 M M/S 2 MB PFlash 192 KB DFlash 16 KB BROM KeyFlash 16 channels (MemCheck) (SFI) 2 MB PFlash M/S Interrupt System 4 SSCG M /S PCP2 Core 4 Interrupts ASC SSC E-Ray 2 SBCU BMU Ports 5V (3.3V supported as well) Ext. ADC Supply External Request Unit CCU6 (2xCCU6) SENT (8 channels ) FCE 2 GPT120 GPTA0 GPTA1 LTCA2 SDMA 8 channels 32 KB CMEM (2 Channels) MultiCAN MLI STM SSC Guardian (4 Nodes, 128 MO) Interface/JTAG 2 M/S 16 KB PRAM 2 OCDS L1 Debug DMA Bridge Abbreviations: ICACHE: Instruction Cache DCACHE Data Cache PSPR: Program Scratch-Pad RAM DSPR: Data Scratch-Padl Data RAM BROM: Boot ROM PFlash: Program Flash DFlash: Data Flash PRAM: Parameter RAM in PCP CMEM: Code RAM in PCP XBAR: SRI Cross Bar (XBar_SRI) S : On Chip Bus Slave Interface M : On Chip Bus Master Interface 2 SCU MSC ADC0 ADC1 (5V max) 64 ADC2 ADC3 FM-PLL (LVDS) PLL E-RAY (3.3V max) FADC 8 System Peripheral Bus (SPB) 3.3V Ext. FADC Supply TC1798 Figure 2 Block Diagram Figure 1 shows the block diagram of the SAK-TC1798N-512F300EP. Data Sheet 10 V 1.1, 2014-05 TC1798 System Overview of the TC1798Block Diagram FPU PMI DMI LMU TriCore CPU 32 KB PSPR 16 KB ICACHE 128LDRAM KB DSPR 16 KB DCACHE DCACHE 128 KB SRAM M/S S M/S EBU Cross Bar Interconnect (SRI) S XBAR S S PMU0 PMU1 M M/S 2 MB PFlash 192 KB DFlash 16 KB BROM KeyFlash SSCG 16 KB PRAM 2 4 PCP2 Core 4 Interface/JTAG 2 MLI M/S Interrupt System Interrupts SSC M/S M /S ASC 16 channels (MemCheck) (SFI) 2 MB PFlash OCDS L1 Debug DMA Bridge Abbreviations: ICACHE: Instruction Cache DCACHE Data Cache PSPR: Program Scratch-Pad RAM DSPR: Data Scratch-Padl Data RAM BROM: Boot ROM PFlash: Program Flash DFlash: Data Flash PRAM: Parameter RAM in PCP CMEM: Code RAM in PCP XBAR: SRI Cross Bar (XBar_SRI) S : On Chip Bus Slave Interface M : On Chip Bus Master Interface SDMA 8 channels STM SSC Guardian SBCU BMU Ports 5V (3.3V supported as well) Ext. ADC Supply 32 KB CMEM MultiCAN (4 Nodes, 128 MO) 2 (2xCCU6) SENT (8 channels ) External Request Unit CCU6 FCE 2 GPT120 GPTA0 GPTA1 LTCA2 2 SCU MSC ADC0 ADC1 (5V max) 64 ADC2 ADC3 FM-PLL (LVDS) PLL E-RAY (3.3V max) FADC 8 System Peripheral Bus (SPB) 3.3V Ext. FADC Supply TC1798 Figure 3 Data Sheet Block Diagram 11 V 1.1, 2014-05 TC1798 Pinning 3 Pinning Figure 4 is showing the TC1798 Logic Symbol. Alternate Functions : 16 PORST General Control TESTMODE 16 ESR0 14 ESR1 16 TRST 16 TCK / DAP0 OCDS / JTAG Control 16 TDI / BRKIN/ BRKOUT 12 TDO /BRKOUT/ DAP2 / BRKIN 8 TMS / DAP1 8 XTAL1 15 XTAL2 Oscillator VD D OSC VD D OSC3 VSSOSC / 3 VSS 6 16 TC1798 8 VD D PF VD D PF3 16 16 8 Digital Circuitry Power Supply VD D EBU 17 VDDP 14 VD D VD D FL3 2 VSS VD D SB 16 13 77 16 2 8 (ED only, N.C. in PD) VSSAF FADC Analog Power Supply Port 1 GPTA / HWCFG / E-RAY / GPT12 GPTA / MLI 0 / ERU / SSC1 / SSC3 / CCU6 / GPT12 Port 2 GPTA / SSC0 / SSC1 Port 3 GPTA / CCU6 / GPT12 Port 4 GPTA / SSC2 / CCU6 / GPT12 Port 5 Port 6 Port 7 Port 8 Port 9 ASC0 / ASC1 / MSC0 / MSC1 / LVDS / MLI 0 / CCU6 / GPT12 ASC0 / ASC1 / SSC1 / CAN / E-RAY1)/ CCU6 / GPT12 ERU / ADC-Mux / SSC3 MLI1 / GPTA / SENT / CCU6 / GPT12 MSC0 / MSC1 / GPTA / SENT / CCU6 / GPT12 Port 10 SSC0 Port 11 EBU Port 12 EBU Port 13 GPTA / EBU Port 14 GPTA / EBU / CCU6 / GPT12 Port 15 EBU / CCU6 / GPT12 Port 16 EBU Port 17 SENT (Overlay with Analog Inputs ) Port 18 SSC2 AN[71:0] ADC / FADC Analog Inputs 2 VSSMF VFAGN D VFAR EF VD D MF VD D AF N.C. 1) Port 0 4 VAR EFx VAGN D x VD D M 3 VSSM 4 51 ADC0 /ADC1 / ADC2 /ADC3 Analog Power Supply 1) Only available for SAK -TC1798 S-512F300EP / SAK-TC1798 F-512 F300EP / SAK-TC1798 F-512 F300EL TC 1798_LogSym_516 Figure 4 Data Sheet TC1798 Logic Symbol 12 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration 3.1 TC1798 Pin Configuration This chapter shows the pin configuration of the TC1798 package PG-LFBGA- 516. 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 AK VSS P15.13 P16.2 P16.8 P15.1 P15.8 P15.3 P16.4 VSS VDDE P15.12 P15.7 P15.5 P16.0 VSSP VDDP P4.15 NC NC VSSMF AJ VDD NC VSSMF VSS P15.10 P15.9 P15.0 P15.2 P15.11 P16.5 VSS VDDE P16.3 P16.1 P15.6 P15.4 VSSP VDDP P4.13 P4.11 10 9 8 7 6 5 4 VA VA AN71 AN69 AN67 AN65 NC GND3 GND1 VA VA AN70 AN68 AN66 AN64 NC GND2 REF3 AH P15.15 VDD AG P15.14 P16.6 3 2 1 NC NC NC NC NC NC NC NC AN62 AN63 AF P14.15 P16.7 AN60 AN61 VA VA AN39 AN37 AN34 AN1 GND0 REF0 P17.11 P17.9 AE P14.13 P14.14 VSS P14.6 P14.8 VSS P10.5 P10.0 P10.3 P4.7 P4.3 VSSPVSSMF AN30 AN26 AD P14.11 P14.12 VDD AC P14.9 P14.10 P14.2 VDD AB P14.7 P16.12 P14.0 P13.15 VSS P10.2 P4.14 P4.9 P4.5 P4.1 VDD VFA AN43 AN41 AN28 AN24 AN47 MF REF P17.15 P17.13 AA P14.5 P16.11 P13.14 P13.13 VDD VSS P4.12 P4.8 P4.4 P4.0 VDD AN42 AN40 AN31 AN27 AN35 AN7 AF P17.14 P17.12 Y P14.3 P16.10 P13.12 P13.11 P13.1 VDD 0 W P14.1 P16.9 P13.9 P13.8 P13.7 P13.6 V P12.4 P12.5 P13.5 P13.4 P13.3 P13.2 VDD U VDDE VDDE VDDE VDDE P13.1 P13.0 VSS VSS T VSS VSS VSS R VSS OSC VSS OSC VSS P14.4 VDDE P10.4 P10.1 P4.10 P4.6 P4.2 VDDP VSS XTAL1 XTAL2 NC AN58 AN59 VF VA VA AN38 AN36 AN29 AN25 AN33 AN2 AN3 AGND REF2 REF1 P17.10 P17.8 AN56 AN57 AN4 AN44 AN54 AN55 AN32 AN5 AN45 AN52 AN53 AN0 AN6 AN46 AN50 AN51 AN8 AN9 P17.0 P17.1 VDDMVSSM VSSM VSSM AN48 AN49 AN10 AN11 P17.2 P17.3 AN12 AN13 P17.4 P17.5 VDD AN16 AN17 AN14 AN15 P17.6 P17.7 NC NC VSS VSS AN18 AN19 AN20 AN21 NC NC VDD VDD PF3 FL3 VSS VSS VSS VSS VSS VSS VSS VSS NC NC AN22 AN23 VDDP VDDP VDD VDD PF OSC3 VSS VSS VSS VSS VSS VSS VSS VSS VDD FL3 P7.5 VDDP VSSP VSSP VSSP VSS P7.4 P7.3 P7.2 P7.1 P7.6 P7.7 VDD P7.0 P1.1 P1.12 P1.0 NC P1.9 P8.6 P1.6 P1.7 P1.2 P1.3 VDD VSS VSS VSS VSS VDD VSS VSS VSS VSS VSS VSS P P12.2 P12.3 VSS OSC VDD OSC TDI TMS VSS VSS N P12.0 P12.1 TCK TRST TDO P9.14 VDD M P11.14 P11.15 ESR1 ESR0 Test P9.13 mode L P11.12 P11.13 P9.10 PORST P9.5 P9.6 P8.5 P8.7 P8.4 P8.0 P1.8 P1.4 K P11.10 P11.11 P9.7 P9.8 P9.0 VSSP P5.5 P2.6 P8.1 VSSP P8.2 P8.3 P6.15 P1.10 P1.11 VSSP P5.7 P5.2 P5.12 P3.10 P0.0 P0.2 P0.4 P0.6 P2.10 P2.5 P2.4 P6.7 VSSP P6.11 P6.14 P1.5 P1.13 P6.10 P6.13 P1.14 P1.15 J P11.8 P11.9 P9.2 P9.1 H P11.6 P11.7 P9.3 P9.4 VSS VSS VSS VSS VSS VSS VSS VDD VSS VSS VSS VSS VDD P3.0 P3.4 P3.12 P0.1 P0.3 P0.5 P0.7 NC G P11.4 P11.5 P5.6 VSSP VDDP P5.9 P5.8 P5.3 P5.13 P5.14 P0.10 P0.13 VDDP P0.9 P2.12 P2.7 P2.3 P6.8 P6.4 VDDP VSSP P6.12 NC NC F P11.2 P11.3 VSSP VDDP P5.4 P5.11 P5.10 P5.0 P2.2 P6.9 P6.6 P5.1 P5.15 P0.11 P0.12 VSSP P0.14 P2.14 P2.8 P6.5 VDDP NC NC NC E P11.0 P11.1 NC NC D P12.6 P12.7 NC NC C VDDE NC NC B NC VSS VSSP VDDP P9.12 NC NC NC NC P3.1 P3.3 P3.6 P3.8 P3.11 NC VDDP VSSP NC P3.14 P0.8 A VSSP VDDP P9.9 P9.11 NC NC NC NC P3.2 P3.5 P3.7 P3.9 P3.13 NC VDDP VSSP NC P3.15 P0.15 P18.1 P18.3 P18.5 P18.7 P2.15 P2.11 NC Figure 5 Data Sheet P18.0 P18.2 P18.4 P18.6 P2.13 P2.9 NC NC VDDP VSSP NC NC NC VDDP NC TC1798 Pinning for PG-LFBGA- 516 Package 13 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Table 2 Pin Pin Definitions and Functions (PG-LFBGA- 516 Package) Symbol Ctrl. Type Function P0.0 I/O HWCFG0 I A1+/ PU OUT56 O1 OUT56 Line of GPTA0 OUT56 O2 OUT56 Line of GPTA1 OUT80 O3 OUT80 Line of LTCA2 P0.1 I/O HWCFG1 I OUT57 O1 OUT57 Line of GPTA0 OUT57 O2 OUT57 Line of GPTA1 OUT81 O3 OUT81 Line of LTCA2 P0.2 I/O HWCFG2 I OUT58 O1 OUT58 Line of GPTA0 OUT58 O2 OUT58 Line of GPTA1 OUT82 O3 OUT82 Line of LTCA2 P0.3 I/O HWCFG3 I OUT59 O1 OUT59 Line of GPTA0 OUT59 O2 OUT59 Line of GPTA1 OUT83 O3 OUT83 Line of LTCA2 Port 0 J17 K16 J16 K15 Data Sheet A1/ PU A2/ PU A1/ PU Port 0 General Purpose I/O Line 0 Hardware Configuration Input 0 Port 0 General Purpose I/O Line 1 Hardware Configuration Input 1 Port 0 General Purpose I/O Line 2 Hardware Configuration Input 2 Port 0 General Purpose I/O Line 3 Hardware Configuration Input 3 14 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function J15 P0.4 I/O HWCFG4 I A1/ PU OUT60 O1 OUT60 Line of GPTA0 OUT60 O2 OUT60 Line of GPTA1 EVTO0 O3 MCDS Output Event 01) P0.5 I/O HWCFG5 I OUT61 O1 OUT61 Line of GPTA0 OUT61 O2 OUT61 Line of GPTA1 EVTO1 O3 MCDS Output Event 11) P0.6 I/O HWCFG6 I OUT62 O1 OUT62 Line of GPTA0 OUT62 O2 OUT62 Line of GPTA1 EVTO2 O3 MCDS Output Event 21) P0.7 I/O HWCFG7 I OUT63 O1 OUT63 Line of GPTA0 OUT63 O2 OUT63 Line of GPTA1 EVTO3 O3 MCDS Output Event 31) P0.8 I/O Reserved O1 Reserved O2 - Reserved O3 - K14 J14 K13 B12 Data Sheet A1/ PU A2/ PU A1/ PU A1/ PU Port 0 General Purpose I/O Line 4 Hardware Configuration Input 4 Port 0 General Purpose I/O Line 5 Hardware Configuration Input 5 Port 0 General Purpose I/O Line 6 Hardware Configuration Input 6 Port 0 General Purpose I/O Line 7 Hardware Configuration Input 7 Port 0 General Purpose I/O Line 8 - 15 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function G14 P0.9 I/O RXDA0 I A1/ PU Reserved O1 - Reserved O2 - Reserved O3 - P0.10 I/O TXENA O1 Reserved O2 - Reserved O3 - P0.11 I/O T5INB I T5INA I GPT121 TXENB O1 E-Ray Channel B transmit Data Output enable 2) Reserved O2 - Reserved O3 - P0.12 I/O T5EUDA I T5EUDB I GPT121 TXDB O1 E-Ray Channel B transmit Data Output 2) Reserved O2 - Reserved O3 - G17 F17 F16 Data Sheet A2/ PU A2/ PU A2/ PU Port 0 General Purpose I/O Line 9 E-Ray Channel A Receive Data Input 0 2) Port 0 General Purpose I/O Line 10 E-Ray Channel A transmit Data Output enable 2) Port 0 General Purpose I/O Line 11 GPT120 Port 0 General Purpose I/O Line 12 GPT120 16 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function G16 P0.13 I/O RXDB0 I A1/ PU T5EUDB I GPT120 T5EUDA I GPT121 Reserved O1 - Reserved O2 - Reserved O3 - P0.14 I/O T6INA I T6INB I GPT121 TXDA O1 E-Ray Channel A transmit Data Output 2) Reserved O2 - Reserved O3 - P0.15 I/O Reserved O1 Reserved O2 - Reserved O3 - P1.0 I/O REQ0 I EXTCLK1 O1 External Clock Output 1 Reserved O2 - Reserved O3 - F14 A12 A2/ PU A1/ PU Port 0 General Purpose I/O Line 13 E-Ray Channel B Receive Data Input 0 2) Port 0 General Purpose I/O Line 14 GPT120 Port 0 General Purpose I/O Line 15 - Port 1 N6 Data Sheet A2/ PU Port 1 General Purpose I/O Line 0 External trigger Input 0 17 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function N9 P1.1 I/O REQ1 I A1/ PU CC60INA I CCU60 CC60INB I CCU61 CC60 O1 CCU60 Reserved O2 - Reserved O3 - P1.2 I/O REQ2 I Reserved O1 - Reserved O2 - Reserved O3 - P1.3 I/O REQ3 I TREADY0B I MLI0 transmit Channel ready Input B Reserved O1 - Reserved O2 - Reserved O3 - P1.4 I/O TCLK0 O1 Reserved O2 - Reserved O3 - M2 M1 L1 Data Sheet A1/ PU A1/ PU A2/ PU Port 1 General Purpose I/O Line 1 External trigger Input 1 Port 1 General Purpose I/O Line 2 External trigger Input 2 Port 1 General Purpose I/O Line 3 External trigger Input 3 Port 1 General Purpose I/O Line 4 MLI0 transmit Channel Clock Output 18 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function J2 P1.5 I/O TREADY0A I A1/ PU Reserved O1 - Reserved O2 - Reserved O3 - P1.6 I/O TVALID0A O1 SLSO10 O2 SSC1 Slave Select Output Line 10 COUT60 O3 CCU60 P1.7 I/O CC61INB I CC61INA I CCU61 TData0 O1 MLI0 transmit Channel Data Output CC61 O2 CCU61 T3OUT O3 GPT120 P1.8 I/O RCLK0A I OUT64 O1 OUT64 Line of GPTA0 OUT64 O2 OUT64 Line of GPTA1 OUT88 O3 OUT88 Line of LTCA2 P1.9 I/O RREADY0A O1 SLSO11 O2 SSC 1Slave Select Output Line 11 OUT65 O3 OUT65 Line of GPTA0 M7 M6 L2 M10 Data Sheet A2/ PU A2/ PU A1/ PU A2/ PU Port 1 General Purpose I/O Line 35 MLI0 transmit Channel ready Input A Port 1 General Purpose I/O Line 6 MLI0 transmit Channel valid Output A Port 1 General Purpose I/O Line 7 CCU60 Port 1 General Purpose I/O Line 8 MLI0 Receive Channel Clock Input A Port 1 General Purpose I/O Line 9 MLI0 Receive Channel ready Output A 19 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function K2 P1.10 I/O RVALID0A I A1/ PU OUT66 O1 OUT66 Line of GPTA0 OUT66 O2 OUT66 Line of GPTA1 OUT90 O3 OUT90 Line of LTCA2 P1.11 I/O RDATA0A I SLSI3 I SSC3 Input OUT67 O1 OUT67 Line of GPTA0 OUT67 O2 OUT67 Line of GPTA1 OUT91 O3 OUT91 Line of LTCA2 P1.12 I/O EXTCLK0 O1 OUT68 O2 OUT68 Line of GPTA0 OUT68 O3 OUT68 Line of GPTA1 P1.13 I/O RCLK0B I OUT69 O1 OUT69 Line of GPTA0 OUT69 O2 OUT69 Line of GPTA1 OUT93 O3 OUT93 Line of LTCA2 P1.14 I/O RVALID0B I OUT70 O1 OUT70 Line of GPTA0 OUT70 O2 OUT70 Line of GPTA1 OUT94 O3 OUT94 Line of LTCA2 K1 N7 J1 H2 Data Sheet A1/ PU A2/ PU A1/ PU A1/ PU Port 1 General Purpose I/O Line 10 MLI0 Receive Channel valid Input A Port 1 General Purpose I/O Line 11 MLI0 Receive Channel Data Input A Port 1 General Purpose I/O Line 12 External Clock Output 0 Port 1 General Purpose I/O Line 13 MLI0 Receive Channel Clock Input B Port 1 General Purpose I/O Line 14 MLI0 Receive Channel valid Input B 20 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function H1 P1.15 I/O RDATA0B I A1/ PU OUT71 O1 OUT71 Line of GPTA0 OUT71 O2 OUT71 Line of GPTA1 OUT95 O3 OUT95 Line of LTCA2 P2.2 I/O SLSO02 O1 SLSO12 O2 SSC1 Slave Select Output Line 12 SLSO02 AND SLSO12 O3 SSC0 & SSC1 Slave Select Output Line 2 AND Slave Select Output Line 12 P2.3 I/O SLSO03 O1 SLSO13 O2 SSC1 Slave Select Output Line 13 SLSO03 AND SLSO13 O3 SSC0 & SSC1 Slave Select Output Line 3 AND Slave Select Output Line 13 P2.4 I/O SLSO04 O1 SLSO14 O2 SSC1 Slave Select Output Line 14 SLSO04 AND SLSO14 O3 SSC0 & SSC1 Slave Select Output Line 4 AND Slave Select Output Line 14 Port 1 General Purpose I/O Line 15 MLI0 Receive Channel Data Input B Port 2 F11 G11 J11 Data Sheet A1+/ PU A1+/ PU A1+/ PU Port 2 General Purpose I/O Line 2 SSC0 Slave Select Output Line 2 Port 2 General Purpose I/O Line 3 SSC0 Slave Select Output Line 3 Port 2 General Purpose I/O Line 4 SSC0 Slave Select Output Line 4 21 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function J12 P2.5 I/O SLSO05 O1 A1+/ PU SLSO15 O2 SSC1 Slave Select Output Line 15 SLSO05 AND SLSO15 O3 SSC0 & SSC1 Slave Select Output Line 5 AND Slave Select Output Line 15 P2.6 I/O SLSO06 O1 SLSO16 O2 SSC1 Slave Select Output Line 16 SLSO06 AND SLSO16 O3 SSC0 & SSC1 Slave Select Output Line 6 AND Slave Select Output Line 16 P2.7 I/O SLSO07 O1 SLSO17 O2 SSC0 Slave Select Output Line 17 SLSO07 AND SLSO17 O3 SSC0 & SSC1 Slave Select Output Line 7AND Slave Select Output Line 17 K12 G12 Data Sheet A1+/ PU A1+/ PU Port 2 General Purpose I/O Line 5 SSC0 Slave Select Output Line 5 Port 2 General Purpose I/O Line 6 SSC0 Slave Select Output Line 6 Port 2 General Purpose I/O Line 7 SSC0 Slave Select Output Line 7 22 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function F12 P2.8 I/O IN0 I A1/ PU IN0 I IN0 Line of GPTA1 IN0 I IN0 Line of LTCA2 CCPOS0A I CCU62 T12HRB I CCU63 T3INB I GPT120 T3INA I GPT121 OUT0 O1 OUT0 Line of GPTA0 OUT0 O2 OUT0 Line of GPTA1 OUT0 O3 OUT0 Line of LTCA2 P2.9 I/O IN1 I IN1 I IN1 Line of GPTA1 IN1 I IN1 Line of LTCA2 OUT1 O1 OUT1 Line of GPTA0 OUT1 O2 OUT1 Line of GPTA1 OUT1 O3 OUT1 Line of LTCA2 B6 Data Sheet A1/ PU Port 2 General Purpose I/O Line 8 IN0 Line of GPTA0 Port 2 General Purpose I/O Line 9 IN1 Line of GPTA0 23 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function J13 P2.10 I/O IN2 I A1/ PU IN2 I IN2 Line of GPTA1 IN2 I IN2 Line of LTCA2 T12HRE I CCU60 CC61INC I CCU60 CTRAPA I CCU61 CC60INC I CCU61 CTRAPB I CCU63 OUT2 O1 OUT2 Line of GPTA0 OUT2 O2 OUT2 Line of GPTA1 OUT2 O3 OUT2 Line of LTCA2 P2.11 I/O IN3 I IN3 I IN3 Line of GPTA1 IN3 I IN3 Line of LTCA2 OUT3 O1 OUT3 Line of GPTA0 OUT3 O2 OUT3 Line of GPTA1 OUT3 O3 OUT3 Line of LTCA2 A6 Data Sheet A1/ PU Port 2 General Purpose I/O Line 10 IN2 Line of GPTA0 Port 2 General Purpose I/O Line 11 IN3 Line of GPTA0 24 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function G13 P2.12 I/O IN4 I A1/ PU IN4 I IN4 Line of GPTA1 IN4 I IN4 Line of LTCA2 T12HRB I CCU62 CCPOS0A I CCU63 T2INB I GPT120 T2INA I GPT121 OUT4 O1 OUT4 Line of GPTA0 OUT4 O2 OUT4 Line of GPTA1 OUT4 O3 OUT4 Line of LTCA2 P2.13 I/O IN5 I IN5 I IN5 Line of GPTA1 IN5 I IN5 Line of LTCA2 OUT5 O1 OUT5 Line of GPTA0 OUT5 O2 OUT5 Line of GPTA1 OUT5 O3 OUT5 Line of LTCA2 B7 Data Sheet A1/ PU Port 2 General Purpose I/O Line 12 IN4 Line of GPTA0 Port 2 General Purpose I/O Line 13 IN5 Line of GPTA0 25 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function F13 P2.14 I/O IN6 I A1/ PU IN6 I IN6 Line of GPTA1 IN6 I IN6 Line of LTCA2 CCPOS0A I CCU60 T12HRB I CCU61 T3INA I GPT120 T3INB I GPT121 OUT6 O1 OUT6 Line of GPTA0 OUT6 O2 OUT6 Line of GPTA1 OUT6 O3 OUT6 Line of LTCA2 P2.15 I/O IN7 I IN7 I IN7 Line of GPTA1 IN7 I IN7 Line of LTCA2 OUT7 O1 OUT7 Line of GPTA0 OUT7 O2 OUT7 Line of GPTA1 OUT7 O3 OUT7 Line of LTCA2 A7 A1/ PU Port 2 General Purpose I/O Line 14 IN6 Line of GPTA0 Port 2 General Purpose I/O Line 15 IN7 Line of GPTA0 Port 3 Data Sheet 26 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function K19 P3.0 I/O IN8 I A1/ PU IN8 I IN8 Line of GPTA1 IN8 I IN8 Line of LTCA2 CTRAPA I CCU62 CTRPAB I CCU61 CC60INC I CCU61 T12HRE I CCU63 CC61INC I CCU63 T5INA I GPT120 T5INB I GPT121 OUT8 O1 OUT8 Line of GPTA0 OUT8 O2 OUT8 Line of GPTA1 OUT8 O3 OUT8 Line of LTCA2 P3.1 I/O IN9 I IN9 I IN9 Line of GPTA1 IN9 I IN9 Line of LTCA2 OUT9 O1 OUT9 Line of GPTA0 OUT9 O2 OUT9 Line of GPTA1 OUT9 O3 OUT9 Line of LTCA2 B22 Data Sheet A1/ PU Port 3 General Purpose I/O Line 0 IN8 Line of GPTA0 Port 3 General Purpose I/O Line 1 IN9 Line of GPTA0 27 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function A22 P3.2 I/O IN10 I A1/ PU IN10 I IN10 Line of GPTA1 IN10 I IN10 Line of LTCA2 T13HRE I CCU63 OUT10 O1 OUT10 Line of GPTA0 OUT10 O2 OUT10 Line of GPTA1 OUT10 O3 OUT10 Line of LTCA2 P3.3 I/O IN11 I IN11 I IN11 Line of GPTA1 IN11 I IN11 Line of LTCA2 OUT11 O1 OUT11 Line of GPTA0 OUT11 O2 OUT11 Line of GPTA1 OUT11 O3 OUT11 Line of LTCA2 B21 Data Sheet A1/ PU Port 3 General Purpose I/O Line 2 IN10 Line of GPTA0 Port 3 General Purpose I/O Line 3 IN11 Line of GPTA0 28 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function K18 P3.4 I/O IN12 I A1/ PU IN12 I IN12 Line of GPTA1 IN12 I IN12 Line of LTCA2 T12HRE I CCU62 CC61INC I CCU62 CTRAPA I CCU63 CTRAPB I CCU60 CC60INC I CCU63 OUT12 O1 OUT12 Line of GPTA0 OUT12 O2 OUT12 Line of GPTA1 OUT12 O3 OUT12 Line of LTCA2 P3.5 I/O IN13 I IN13 I IN13 Line of GPTA1 IN13 I IN13 Line of LTCA2 OUT13 O1 OUT13 Line of GPTA0 OUT13 O2 OUT13 Line of GPTA1 OUT13 O3 OUT13 Line of LTCA2 A21 Data Sheet A1/ PU Port 3 General Purpose I/O Line 4 IN12 Line of GPTA0 Port 3 General Purpose I/O Line 5 IN13 Line of GPTA0 29 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function B20 P3.6 I/O IN14 I A1/ PU IN14 I IN14 Line of GPTA1 IN14 I IN14 Line of LTCA2 T13HRE I CCU62 T6EUDB I GPT120 T6EUDA I GPT121 OUT14 O1 OUT14 Line of GPTA0 OUT14 O2 OUT14 Line of GPTA1 OUT14 O3 OUT14 Line of LTCA2 P3.7 I/O IN15 I IN15 I IN15 Line of GPTA1 IN15 I IN15 Line of LTCA2 OUT15 O1 OUT15 Line of GPTA0 OUT15 O2 OUT15 Line of GPTA1 OUT15 O3 OUT15 Line of LTCA2 P3.8 I/O IN16 I IN16 I IN16 Line of GPTA1 IN16 I IN16 Line of LTCA2 T13HRE I CCU61 OUT16 O1 OUT16 Line of GPTA0 OUT16 O2 OUT16 Line of GPTA1 OUT16 O3 OUT16 Line of LTCA2 A20 B19 Data Sheet A1/ PU A1/ PU Port 3 General Purpose I/O Line 6 IN14 Line of GPTA0 Port 3 General Purpose I/O Line 7 IN15 Line of GPTA0 Port 3 General Purpose I/O Line 8 IN16 Line of GPTA0 30 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function A19 P3.9 I/O IN17 I A1/ PU IN17 I IN17 Line of GPTA1 IN17 I IN17 Line of LTCA2 OUT17 O1 OUT17 Line of GPTA0 OUT17 O2 OUT17 Line of GPTA1 OUT17 O3 OUT17 Line of LTCA2 P3.10 I/O IN18 I IN18 I IN18 Line of GPTA1 IN18 I IN18 Line of LTCA2 CCPOS1A I CCU62 T13HRB I CCU63 T3EUDB I GPT120 T3EUDA I GPT121 OUT18 O1 OUT18 Line of GPTA0 OUT18 O2 OUT18 Line of GPTA1 OUT18 O3 OUT18 Line of LTCA2 P3.11 I/O IN19 I IN19 I IN19 Line of GPTA1 IN19 I IN19 Line of LTCA2 OUT19 O1 OUT19 Line of GPTA0 OUT19 O2 OUT19 Line of GPTA1 OUT19 O3 OUT19 Line of LTCA2 J18 B18 Data Sheet A1+/ PU A1/ PU Port 3 General Purpose I/O Line 9 IN17 Line of GPTA0 Port 3 General Purpose I/O Line 10 IN18 Line of GPTA0 Port 3 General Purpose I/O Line 11 IN19 Line of GPTA0 31 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function K17 P3.12 I/O IN20 I A1/ PU IN20 I IN20 Line of GPTA1 IN20 I IN20 Line of LTCA2 CCPOS2A I CCU62 T12HRC I CCU63 T13HRC I CCU63 T4INB I GPT120 T4INA I GPT121 OUT20 O1 OUT20 Line of GPTA0 OUT20 O2 OUT20 Line of GPTA1 OUT20 O3 OUT20 Line of LTCA2 P3.13 I/O IN21 I IN21 I IN21 Line of GPTA1 IN21 I IN21 Line of LTCA2 OUT21 O1 OUT21 Line of GPTA0 OUT21 O2 OUT21 Line of GPTA1 OUT21 O3 OUT21 Line of LTCA2 A18 Data Sheet A1/ PU Port 3 General Purpose I/O Line 12 IN20 Line of GPTA0 Port 3 General Purpose I/O Line 13 IN21 Line of GPTA0 32 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function B13 P3.14 I/O IN22 I A1/ PU IN22 I IN22 Line of GPTA1 IN22 I IN22 Line of LTCA2 T13HRE I CCU63 OUT22 O1 OUT22 Line of GPTA0 OUT22 O2 OUT22 Line of GPTA1 OUT22 O3 OUT22 Line of LTCA2 P3.15 I/O IN23 I IN23 I IN23 Line of GPTA1 IN23 I IN23 Line of LTCA2 OUT23 O1 OUT23 Line of GPTA0 OUT23 O2 OUT23 Line of GPTA1 OUT23 O3 OUT23 Line of LTCA2 P4.0 I/O IN24 I IN24 I IN24 Line of GPTA1 IN24 I IN24 Line of LTCA2 MRST2A I SSC2 Master Receive Input A (Master Mode) OUT24 O1 OUT24 Line of GPTA0 OUT24 O2 OUT24 Line of GPTA1 MRST2 O3 SSC2 Slave Transmit Output (Slave Mode) A13 A1/ PU Port 3 General Purpose I/O Line 14 IN22 Line of GPTA0 Port 3 General Purpose I/O Line 15 IN23 Line of GPTA0 Port 4 AA17 Data Sheet A1+/ PU Port 4 General Purpose I/O Line 0 IN24 Line of GPTA0 33 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function AB17 P4.1 I/O IN25 I A1+/ PU IN25 I IN25 Line of GPTA1 IN25 I IN25 Line of LTCA2 MTSR2A I SSC2 Slave Receive Input A (Slave Mode) MRSTG2A I SSC Guardian 2 Master Receive Input A (Master Mode) OUT25 O1 OUT25 Line of GPTA0 OUT25 O2 OUT25 Line of GPTA1 MTSR2 O3 SSC2 Master Transmit Output (Master Mode)3) P4.2 I/O IN26 I IN26 I IN26 Line of GPTA1 IN26 I IN26 Line of LTCA2 SCLK2 I SSC2 Input OUT26 O1 OUT26 Line of GPTA0 OUT26 O2 OUT26 Line of GPTA1 SCLK2 O3 SSC2 Output P4.3 I/O IN27 I IN27 I IN27 Line of GPTA1 IN27 I IN27 Line of LTCA2 OUT27 O1 OUT27 Line of GPTA0 OUT27 O2 OUT27 Line of GPTA1 SLSO20 O3 SSC2 Output AD17 AE17 Data Sheet A1+/ PU A1+/ PU Port 4 General Purpose I/O Line 1 IN25 Line of GPTA0 Port 4 General Purpose I/O Line 2 IN26 Line of GPTA0 Port 4 General Purpose I/O Line 3 IN27 Line of GPTA0 34 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function AA18 P4.4 I/O IN28 I A1+/ PU IN28 I IN28 Line of GPTA1 IN28 I IN28 Line of LTCA2 OUT28 O1 OUT28 Line of GPTA0 OUT28 O2 OUT28 Line of GPTA1 SLSO21 O3 SSC2 Output P4.5 I/O IN29 I IN29 I IN29 Line of GPTA1 IN29 I IN29 Line of LTCA2 OUT29 O1 OUT29 Line of GPTA0 OUT29 O2 OUT29 Line of GPTA1 SLSO22 O3 SSC2 Output P4.6 I/O IN30 I IN30 I IN30 Line of GPTA1 IN30 I IN30 Line of LTCA2 OUT30 O1 OUT30 Line of GPTA0 OUT30 O2 OUT30 Line of GPTA1 SLSO23 O3 SSC2 Output AB18 AD18 Data Sheet A1+/ PU A1+/ PU Port 4 General Purpose I/O Line 4 IN28 Line of GPTA0 Port 4 General Purpose I/O Line 5 IN29 Line of GPTA0 Port 4 General Purpose I/O Line 6 IN30 Line of GPTA0 35 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function AE18 P4.7 I/O IN31 I A1+/ PU IN31 I IN31 Line of GPTA1 IN31 I IN31Line of LTCA2 T6INB I GPT120 T6INA I GPT121 OUT31 O1 OUT31 Line of GPTA0 OUT31 O2 OUT31 Line of GPTA1 SLSO24 O3 SSC2 Output P4.8 I/O IN32 I IN32 I IN32 Line of GPTA1 CCPOS1A I CCU60 T13HRB I CCU61 T3EUDA I GPT120 T3EUDB I GPT121 OUT32 O1 OUT32 Line of GPTA0 OUT32 O2 OUT32 Line of GPTA1 OUT0 O3 OUT0 Line of LTCA2 AA19 Data Sheet A1/ PU Port 4 General Purpose I/O Line 7 IN31 Line of GPTA0 Port 4 General Purpose I/O Line 8 IN32 Line of GPTA0 36 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function AB19 P4.9 I/O IN33 I A1/ PU IN33 I IN33 Line of GPTA1 CCPOS2A I CCU60 T12HRC I CCU61 T13HRC I CCU61 T4INA I GPT120 T4INB I GPT121 SLSI2 I SSC2 OUT33 O1 OUT33 Line of GPTA0 OUT33 O2 OUT33 Line of GPTA1 OUT1 O3 OUT1 Line of LTCA2 P4.10 I/O IN34 I IN34 I IN34 Line of GPTA1 T12HRB I CCU60 CCPOS0A I CCU61 T2INA I GPT120 T2INB I GPT121 OUT34 O1 OUT34 Line of GPTA0 OUT34 O2 OUT34 Line of GPTA1 OUT2 O3 OUT2 Line of LTCA2 AD19 Data Sheet A1/ PU Port 4 General Purpose I/O Line 9 IN33 Line of GPTA0 Port 4 General Purpose I/O Line 10 IN34 Line of GPTA0 37 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function AJ13 P4.11 I/O IN35 I A1/ PU IN35 I IN35 Line of GPTA1 OUT35 O1 OUT35 Line of GPTA0 OUT35 O2 OUT35 Line of GPTA1 OUT3 O3 OUT3 Line of LTCA2 P4.12 I/O IN36 I IN36 I IN36 Line of GPTA1 T13HRB I CCU60 CCPOS1A I CCU61 T2EUDA I GPT120 T2EUDB I GPT121 OUT36 O1 OUT36 Line of GPTA0 OUT36 O2 OUT36 Line of GPTA1 OUT4 O3 OUT4 Line of LTCA2 P4.13 I/O IN37 I IN37 I IN37 Line of GPTA1 OUT37 O1 OUT37 Line of GPTA0 OUT37 O2 OUT37 Line of GPTA1 OUT5 O3 OUT5 Line of LTCA2 AA20 AJ14 Data Sheet A1/ PU A1/ PU Port 4 General Purpose I/O Line 11 IN35 Line of GPTA0 Port 4 General Purpose I/O Line 12 IN36 Line of GPTA0 Port 4 General Purpose I/O Line 13 IN37 Line of GPTA0 38 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function AB20 P4.14 I/O IN38 I A1/ PU IN38 I IN38 Line of GPTA1 T12HRC I CCU60 T13HRC I CCU60 CCPOS2A I CCU61 T4EUDA I GPT120 T4EUDB I GPT121 OUT38 O1 OUT38 Line of GPTA0 OUT38 O2 OUT38 Line of GPTA1 OUT6 O3 OUT6 Line of LTCA2 P4.15 I/O IN39 I IN39 I IN39 Line of GPTA1 OUT39 O1 OUT39 Line of GPTA0 OUT39 O2 OUT39 Line of GPTA1 OUT7 O3 OUT7 Line of LTCA2 P5.0 I/O RXD0A I T6EUDA I GPT120 T6EUDB I GPT121 RXD0A O1 ASC0 Receiver Input/Output A OUT72 O2 OUT72 Line of GPTA0 OUT72 O3 OUT72 Line of GPTA1 AK14 A1/ PU Port 4 General Purpose I/O Line 14 IN38 Line of GPTA0 Port 4 General Purpose I/O Line 15 IN39 Line of GPTA0 Port 5 F20 Data Sheet A1+/ PU Port 5 General Purpose I/O Line 0 ASC0 Receiver Input/Output A 39 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function F19 P5.1 I/O TXD0 O1 A1+/ PU OUT73 O2 OUT73 Line of GPTA0 OUT73 O3 OUT73 Line of GPTA1 P5.2 I/O RXD1A I RXD1A O1 ASC1 Receiver Input/Output A OUT74 O2 OUT74 Line of GPTA0 OUT74 O3 OUT74 Line of GPTA1 P5.3 I/O TXD1 O1 OUT75 O2 OUT75 Line of GPTA0 OUT75 O3 OUT75 Line of GPTA1 P5.4 I/O T13HRB I CCPOS1A I CCU63 T2EUDB I GPT120 T2EUDA I GPT121 EN00 O1 MSC0 Device Select Output 0 RREADY0B O2 MLI0 Receive Channel ready Output B OUT76 O3 OUT76 Line of GPTA0 J20 G20 F23 Data Sheet A2/ PU A1+/ PU A2/ PU Port 5 General Purpose I/O Line 1 ASC0 Transmitter Output A Port 5 General Purpose I/O Line 2 ASC1 Receiver Input/Output A Port 5 General Purpose I/O Line 3 ASC1 Transmitter Output A Port 5 General Purpose I/O Line 4 CCU62 40 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function K20 P5.5 I/O SDI0 I A1+/ PU T12HRC I CCU62 T13HRC I CCU62 CCPOS2A I CCU63 T4EUDB I GPT120 T4EUDA I GPT121 OUT77 O1 OUT77 Line of GPTA0 OUT77 O2 OUT77 Line of GPTA1 OUT101 O3 OUT101 Line of LTCA2 P5.6 I/O CC60INA I CC60INB I CCU63 EN10 O1 MSC1 Device Select Output 0 TVALID0B O2 MLI0 transmit Channel valid Output B CC60 O3 CCU62 P5.7 I/O SDI1 I CC61INA I CCU62 CC61INB I CCU63 OUT79 O1 OUT79 Line of GPTA0 OUT79 O2 OUT79 Line of GPTA1 CC61 O3 CCU62 G25 J21 Data Sheet A2/ PU A1+/ PU Port 5 General Purpose I/O Line 5 MSC0 Serial Data Input Port 5 General Purpose I/O Line 6 CCU62 Port 5 General Purpose I/O Line 7 MSC1 Serial Data Input 41 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function G21 P5.8 I/O CC62INA I F/ PU CC62INB I CCU63 SON0 O1 MSC0 Differential Driver Serial Data Output Negative OUT80 O2 OUT80 Line of GPTA0 CC62 O3 CCU62 P5.9 I/O SOP0A O1 OUT81 O2 OUT81 Line of GPTA0 COUT60 O3 CCU62 P5.10 I/O FCLN0 O1 OUT82 O2 OUT82 Line of GPTA0 COUT61 O3 CCU62 P5.11 I/O FCLP0A O1 OUT83 O2 OUT83 Line of GPTA0 COUT62 O3 CCU62 P5.12 I/O SON1 O1 OUT84 O2 OUT84 Line of GPTA0 OUT84 O3 OUT84 Line of GPTA1 G22 F21 F22 J19 Data Sheet F/ PU F/ PU F/ PU F/ PU Port 5 General Purpose I/O Line 8 CCU62 Port 5 General Purpose I/O Line 9 MSC0 Differential Driver Serial Data Output Positive A Port 5 General Purpose I/O Line 10 MSC0 Differential Driver Clock Output Negative Port 5 General Purpose I/O Line 11 MSC0 Differential Driver Clock Output Positive A Port 5 General Purpose I/O Line 12 MSC1 Differential Driver Serial Data Output Negative 42 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function G19 P5.13 I/O SOP1A O1 F/ PU OUT85 O2 OUT85 Line of GPTA0 OUT85 O3 OUT85 Line of GPTA1 P5.14 I/O FCLN1 O1 OUT86 O2 OUT86 Line of GPTA0 OUT86 O3 OUT86 Line of GPTA1 P5.15 I/O FCLNP1A O1 OUT87 O2 OUT87 Line of GPTA0 OUT87 O3 OUT87 Line of GPTA1 P6.4 I/O MTSR1 I MRSTG1 I SSC Guardian 1 Master Receive Input (Master Mode) MTSR1 O1 SSC1 Master Transmit Output (Master Mode)3) Reserved O2 - Reserved O3 - G18 F18 F/ PU F/ PU Port 5 General Purpose I/O Line 13 MSC1 Differential Driver Serial Data Output Positive A Port 5 General Purpose I/O Line 14 MSC1 Differential Driver Clock Output Negative Port 5 General Purpose I/O Line 15 MSC1 Differential Driver Clock Output Positive A Port 6 G9 Data Sheet A1+/ PU Port 6 General Purpose I/O Line 4 SSC1 Slave Receive Input (Slave Mode) 43 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function F8 P6.5 I/O MRST1 I A1+/ PU MRST1 O1 SSC1 Slave Transmit Output (Slave Mode) Reserved O2 - Reserved O3 - P6.6 I/O SCLK1 I SCLK1 O1 SSC1 Clock Input/Output Reserved O2 - Reserved O3 - P6.7 I/O SLSI1 I T6OFL O1 GPT120 Reserved O2 - Reserved O3 - P6.8 I/O RXDCAN0 I RXD0B I ASC0 Receiver Input/Output B CAPINB I GPT120 CAPINA I GPT121 Reserved O1 - RXD0B O2 ASC0 Receiver Input/Output B Reserved O3 - F9 J10 G10 Data Sheet A1+/ PU A1+/ PU A2/ PU Port 6 General Purpose I/O Line 5 SSC1 Master Receive Input (Master Mode) Port 6 General Purpose I/O Line 6 SSC1 Clock Input/Output Port 6 General Purpose I/O Line 7 SSC1 slave Select Input Port 6 General Purpose I/O Line 8 CAN Node 0 Receiver Input 0 CAN Node 3 Receiver Input 1 44 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function F10 P6.9 I/O TXDCAN0 O1 A2/ PU TXD0 O2 ASC0 Transmitter Output B T60FL O3 GPT120 P6.10 I/O RXDCAN1 I RXD1B I ASC1 Receiver Input/Output B Reserved O1 - RXD1B O2 ASC1 Receiver Input/Output B TXENA O3 E-Ray Channel A transmit Data Output enable 2) P6.11 I/O TXDCAN1 O1 TXD1 O2 ASC1 Transmitter Output B TXENB O3 E-Ray Channel B transmit Data Output enable 2) P6.12 I/O RXDCAN2 I RXDA1 I E-Ray Channel A Receive Data Input 1 2) Reserved O1 - Reserved O2 - COUT61 O3 CCU60 H7 J7 G6 Data Sheet A2/ PU A2/ PU A1/ PU Port 6 General Purpose I/O Line 9 CAN Node 0 Transmitter Output Port 6 General Purpose I/O Line 10 CAN Node 1 Receiver Input 0 CAN Node 0 Receiver Input 1 Port 6 General Purpose I/O Line 11 CAN Node 1 Transmitter Output Port 6 General Purpose I/O Line 12 CAN Node 2 Receiver Input 0 CAN Node 1 Receiver Input 1 45 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function H6 P6.13 I/O TXDCAN2 O1 A2/ PU TXDA O2 E-Ray Channel A transmit Data Output 2) COUT62 O3 CCU60 P6.14 I/O RXDCAN3 I RXDB1 I E-Ray Channel B Receive Data Input 1 2) Reserved O1 - Reserved O2 - COUT63 O3 CCU60 P6.15 I/O CC60INB I CC60INA I CCU61 TXDCAN3 O1 CAN Node 3 Transmitter Output TXDB O2 E-Ray Channel B transmit Data Output 2) CC60 O3 CCU61 P7.0 I/O MRST3 I REQ4 I External trigger Input 4 AD2EMUX2 O1 ADC2 external multiplexer Control Output 2 MRST3 O2 SSC3 Slave Transmit Output (Slave Mode) Reserved O3 - J6 K6 A1/ PU A2/ PU Port 6 General Purpose I/O Line 13 CAN Node 2 Transmitter Output Port 6 General Purpose I/O Line 14 CAN Node 3 Receiver Input 0 CAN Node 2 Receiver Input 1 Port 6 General Purpose I/O Line 15 CCU60 Port 7 N10 Data Sheet A1+/ PU Port 7 General Purpose I/O Line 0 SSC3 Master Receive Input (Master Mode) 46 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function P6 P7.1 I/O REQ5 I A1+/ PU MTSR3 I SSC3 Slave Receive Input (Master Mode) MRSTG3B I SSC Guardian 3 Master Receive Input B (Master Mode) AD0EMUX2 O1 ADC0 external multiplexer Control Output 2 MTSR3 O2 SSC3 Master Transmit Output (Master Mode)3) Reserved O3 - P7.2 I/O SCLK3 I AD0EMUX0 O1 ADC0 external multiplexer Control Output 0 SCLK3 O2 SSC3 Output Reserved O3 - P7.3 I/O AD0EMUX1 O1 SLSO30 O2 SSC3 Output Reserved O3 - P7.4 I/O REQ6 I AD2EMUX0 O1 ADC2 external multiplexer Control Output 0 SLSO31 O2 SSC3 Output Reserved O3 - P7 P9 P10 Data Sheet A1+/ PU A1+/ PU A1+/ PU Port 7 General Purpose I/O Line 1 External trigger Input 5 Port 7 General Purpose I/O Line 2 SSC3 Input Port 7 General Purpose I/O Line 3 ADC0 external multiplexer Control Output 1 Port 7 General Purpose I/O Line 4 External trigger Input 6 47 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function R9 P7.5 I/O REQ7 I A1+/ PU AD2EMUX1 O1 ADC2 external multiplexer Control Output 1 SLSO32 O2 SSC3 Output Reserved O3 - P7.6 I/O AD1EMUX0 O1 SLSO33 O2 SSC3 Output Reserved O3 - P7.7 I/O AD1EMUX1 O1 SLSO34 O2 SSC3 Output Reserved O3 - P8.0 I/O IN40 I IN40 I IN40 Line of GPTA1 SENT0 I SENT Digital Input OUT40 O1 OUT40 Line of GPTA0 COUT62 O2 CCU61 TCLK1 O3 MLI1 transmit Channel Clock Output P2 P1 A1+/ PU A1+/ PU Port 7 General Purpose I/O Line 5 External trigger Input 7 Port 7 General Purpose I/O Line 6 ADC1 external multiplexer Control Output 0 Port 7 General Purpose I/O Line 7 ADC1 external multiplexer Control Output 1 Port 8 L6 Data Sheet A2/ PU Port 8 General Purpose I/O Line 0 IN40 Line of GPTA0 48 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function K11 P8.1 I/O IN41 I A1/ PU IN41 I IN41 Line of GPTA1 TREADY1A I MLI1 transmit Channel ready Input A SENT1 I SENT Digital Input CC61INA I CCU60 CC61INB I CCU61 OUT41 O1 OUT41 Line of GPTA0 CC61 O2 CCU60 SENT1 O3 SENT Digital Output P8.2 I/O IN42 I IN42 I IN42 Line of GPTA1 SENT2 I SENT Digital Input CAPINA I GPT120 CAPINB I GPT121 COUT63 O1 CCU61 OUT42 O2 OUT42 Line of GPTA1 TVALID1A O3 MLI1 transmit Channel valid Output A K9 Data Sheet A2/ PU Port 8 General Purpose I/O Line 1 IN41 Line of GPTA0 Port 8 General Purpose I/O Line 2 IN42 Line of GPTA0 49 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function K7 P8.3 I/O IN43 I A2/ PU IN43 I IN43 Line of GPTA1 SENT3 I SENT Digital Input CC62INA I CCU60 CC62INB I CCU61 OUT43 O1 OUT43 Line of GPTA0 CC62 O2 CCU60 TDATA1 O3 MLI1 transmit Channel Data Output A P8.4 I/O IN44 I IN44 I IN44 Line of GPTA1 RCLK1A I MLI1 Receive Channel Clock Input A SENT4 I SENT Digital Input CC62INB I CCU60 CC62INA I CCU61 OUT44 O1 OUT44 Line of GPTA0 CC62 O2 CCU61 T3OUT O3 GPT121 L7 Data Sheet A1/ PU Port 8 General Purpose I/O Line 3 IN43 Line of GPTA0 Port 8 General Purpose I/O Line 4 IN44 Line of GPTA0 50 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function L10 P8.5 I/O IN45 I A2/ PU IN45 I IN45 Line of GPTA1 SENT5 I SENT Digital Input CTRAPA I CCU60 CTRAPB I CCU62 CC60INC I CCU60 T12HRE I CCU61 CC61INC I CCU61 OUT45 O1 OUT45 Line of GPTA0 OUT45 O2 OUT45 Line of GPTA1 RREADY1A O3 MLI1 Receive Channel ready Output A P8.6 I/O IN46 I IN46 I IN46 Line of GPTA1 RVALID1A I MLI1 Receive Channel valid Input A SENT6 I SENT Digital Input OUT46 O1 OUT46 Line of GPTA0 COUT60 O2 CCU61 T6OUT O3 GPT120 M9 Data Sheet A1/ PU Port 8 General Purpose I/O Line 5 IN45 Line of GPTA0 Port 8 General Purpose I/O Line 6 IN46 Line of GPTA0 51 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function L9 P8.7 I/O IN47 I A1/ PU IN47 I IN47 Line of GPTA1 RDATA1A I MLI1 Receive Channel Data Input A SENT7 I SENT Digital Input OUT47 O1 OUT47 Line of GPTA0 COUT61 O2 CCU61 T6OUT O3 GPT121 P9.0 I/O IN48 I IN48 I IN48 Line of GPTA1 COUT63 O1 CCU62 OUT48 O2 OUT48 Line of GPTA1 EN12 O3 MSC1 Device Select Output 2 P9.1 I/O IN49 I IN49 I IN49 Line of GPTA1 CC60INB I CCU62 CC60INA I CCU63 CC60 O1 CCU63 OUT49 O2 OUT49 Line of GPTA1 EN11 O3 MSC1 Device Select Output 1 Port 8 General Purpose I/O Line 7 IN47 Line of GPTA0 Port 9 K22 J24 Data Sheet A2/ PU A2/ PU Port 9 General Purpose I/O Line 0 IN48 Line of GPTA0 Port 9 General Purpose I/O Line 1 IN49 Line of GPTA0 52 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function J25 P9.2 I/O IN50 I A2/ PU IN50 I IN50 Line of GPTA1 CC61INB I CCU62 CC61INA I CCU63 CC61 O1 CCU63 OUT50 O2 OUT50 Line of GPTA1 SOP1B O3 MSC1 serial Data Output P9.3 I/O IN51 I IN51 I IN51 Line of GPTA1 CC62INB I CCU62 CC62INA I CCU63 CC62 O1 CCU63 OUT51 O2 OUT51 Line of GPTA1 FCLP1B O3 MSC1 Clock Output P9.4 I/O IN52 I IN52 I IN52 Line of GPTA1 COUT60 O1 CCU63 OUT52 O2 OUT52 Line of GPTA1 EN03 O3 MSC0 Device Select Output 3 H25 H24 Data Sheet A2/ PU A2/ PU Port 9 General Purpose I/O Line 2 IN50 Line of GPTA0 Port 9 General Purpose I/O Line 3 IN51 Line of GPTA0 Port 9 General Purpose I/O Line 4 IN52 Line of GPTA0 53 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function L22 P9.5 I/O IN53 I A2/ PU IN53 I IN53 Line of GPTA1 SENT1 I SENT Digital Input COUT61 O1 CCU63 OUT53 O2 OUT53 Line of GPTA1 EN02 O3 MSC0 Device Select Output 2 P9.6 I/O IN54 I IN54 I IN54 Line of GPTA1 SENT3 I SENT Digital Input OUT54 O1 OUT54 Line of GPTA0 SENT3 O2 SENT Digital Output EN01 O3 MSC0 Device Select Output 1 P9.7 I/O IN55 I IN55 I IN55 Line of GPTA1 SENT4 I SENT Digital Input OUT55 O1 OUT55 Line of GPTA0 SENT4 O2 SENT Digital Output SOP0B O3 MSC0 serial Data Output P9.8 I/O SENT6 I COUT62 O1 CCU63 SENT6 O2 SENT Digital Output FCLP0B O3 MSC0 Clock Output L21 K25 K24 Data Sheet A2/ PU A2/ PU A2/ PU Port 9 General Purpose I/O Line 5 IN53 Line of GPTA0 Port 9 General Purpose I/O Line 6 IN54 Line of GPTA0 Port 9 General Purpose I/O Line 7 IN55 Line of GPTA0 Port 9 General Purpose I/O Line 8 SENT Digital Input 54 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function A28 P9.9 I/O SENT0 I A1/ PU Reserved O1 - SENT0 O2 SENT Digital Output Reserved O3 - P9.10 I/O EMGSTOP I SENT7 I SENT Digital Input COUT63 O1 CCU63 SENT7 O2 SENT Digital Output Reserved O3 - P9.11 I/O SENT2 I Reserved O1 - SENT2 O2 SENT Digital Output Reserved O3 - P9.12 I/O SENT5 I Reserved O1 - SENT5 O2 SENT Digital Output Reserved O3 - L25 A27 B27 Data Sheet A1/ PU A1/ PU A1/ PU Port 9 General Purpose I/O Line 9 SENT Digital Input Port 9 General Purpose I/O Line 10 Emergency Stop Port 9 General Purpose I/O Line 11 SENT Digital Input Port 9 General Purpose I/O Line 12 SENT Digital Input 55 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function M21 P9.13 I/O BRKIN I A2/ PU ECTT1 I TTCAN Input Reserved O1 - Reserved O2 - Reserved O3 - BRKOUT O OCDS Break Output P9.14 I/O BRKIN I ECTT2 I TTCAN Input REQ15 I External trigger Input 15 Reserved O1 - Reserved O2 - Reserved O3 - BRKOUT O OCDS Break Output P10.0 I/O MRST0 I MRST0 O1 SSC0 Slave Transmit Output (Slave Mode) Reserved O2 - Reserved O3 - N21 A2/ PU Port 9 General Purpose I/O Line 13 OCDS Break Input Port 9 General Purpose I/O Line 14 OCDS Break Input Port 10 AE20 Data Sheet A2/ PU Port 10 General Purpose I/O Line 0 SSC0 Master Receive Input (Master Mode) 56 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function AD20 P10.1 I/O MTSR0 I A2/ PU MRSTG0 I SSC Guardian 0 Master Receive Input (Master Mode) MTSR0 O1 SSC0 Master Transmit Output (Master Mode)3) Reserved O2 - Reserved O3 - P10.2 I/O SLSI0 I Reserved O1 - Reserved O2 - Reserved O3 - P10.3 I/O SCLK0 I SCLK0 O1 SSC0 Clock Input/Output Reserved O2 - Reserved O3 - P10.4 I/O SLSO0 O1 Reserved O2 - Reserved O3 - P10.5 I/O SLSO1 O1 Reserved O2 - Reserved O3 - AB21 AE19 AD21 AE21 Data Sheet A1/ PU A2/ PU A1+/ PU A1+/ PU Port 10 General Purpose I/O Line 1 SSC0 Slave Receive Input (Slave Mode) Port 10 General Purpose I/O Line 2 SSC0 Slave Select Input Port 10 General Purpose I/O Line 3 SSC0 Clock Input/Output Port 10 General Purpose I/O Line 4 SSC0 Slave Select Output Line 0 Port 10 General Purpose I/O Line 5 SSC0 Slave Select Output Line 1 57 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function P11.0 I/O Reserved O1 B/ PU Reserved O2 - Reserved O3 - A0 O EBU Address Bus Line 0 P11.1 I/O Reserved O1 Reserved O2 - Reserved O3 - A1 O EBU Address Bus Line 1 P11.2 I/O Reserved O1 Reserved O2 - Reserved O3 - A2 O EBU Address Bus Line 2 P11.3 I/O Reserved O1 Reserved O2 - Reserved O3 - A3 O EBU Address Bus Line 3 P11.4 I/O Reserved O1 Reserved O2 - Reserved O3 - A4 O EBU Address Bus Line 4 Port 11 E30 E29 F30 F29 G30 Data Sheet B/ PU B/ PU B/ PU B/ PU Port 11 General Purpose I/O Line 0 - Port 11 General Purpose I/O Line 1 - Port 11 General Purpose I/O Line 2 - Port 11 General Purpose I/O Line 3 - Port 11 General Purpose I/O Line 4 - 58 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function G29 P11.5 I/O Reserved O1 B/ PU Reserved O2 - Reserved O3 - A5 O EBU Address Bus Line 5 P11.6 I/O Reserved O1 Reserved O2 - Reserved O3 - A6 O EBU Address Bus Line 6 P11.7 I/O Reserved O1 Reserved O2 - Reserved O3 - A7 O EBU Address Bus Line 7 P11.8 I/O Reserved O1 Reserved O2 - Reserved O3 - A8 O EBU Address Bus Line 8 P11.9 I/O Reserved O1 Reserved O2 - Reserved O3 - A9 O EBU Address Bus Line 9 H30 H29 J30 J29 Data Sheet B/ PU B/ PU B/ PU B/ PU Port 11 General Purpose I/O Line 5 - Port 11 General Purpose I/O Line 6 - Port 11 General Purpose I/O Line 7 - Port 11 General Purpose I/O Line 8 - Port 11 General Purpose I/O Line 9 - 59 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function K30 P11.10 I/O Reserved O1 B/ PU Reserved O2 - Reserved O3 - A10 O EBU Address Bus Line 10 P11.11 I/O Reserved O1 Reserved O2 - Reserved O3 - A11 O EBU Address Bus Line 11 P11.12 I/O Reserved O1 Reserved O2 - Reserved O3 - A12 O EBU Address Bus Line 12 P11.13 I/O Reserved O1 Reserved O2 - Reserved O3 - A13 O EBU Address Bus Line 13 P11.14 I/O Reserved O1 Reserved O2 - Reserved O3 - A14 O EBU Address Bus Line 14 K29 L30 L29 M30 Data Sheet B/ PU B/ PU B/ PU B/ PU Port 11 General Purpose I/O Line 10 - Port 11 General Purpose I/O Line 11 - Port 11 General Purpose I/O Line 12 - Port 11 General Purpose I/O Line 13 - Port 11 General Purpose I/O Line 14 - 60 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function M29 P11.15 I/O Reserved O1 B/ PU Reserved O2 - Reserved O3 - A15 O EBU Address Bus Line 15 P12.0 I/O Reserved O1 Reserved O2 - Reserved O3 - A16 O EBU Address Bus Line 16 P12.1 I/O Reserved O1 Reserved O2 - Reserved O3 - A17 O EBU Address Bus Line 17 P12.2 I/O Reserved O1 Reserved O2 - Reserved O3 - A18 O EBU Address Bus Line 18 P12.3 I/O Reserved O1 Reserved O2 - Reserved O3 - A19 O EBU Address Bus Line 19 Port 11 General Purpose I/O Line 15 - Port 12 N30 N29 P30 P29 Data Sheet B/ PU B/ PU B/ PU B/ PU Port 12 General Purpose I/O Line 0 - Port 12 General Purpose I/O Line 1 - Port 12 General Purpose I/O Line 2 - Port 12 General Purpose I/O Line 3 - 61 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function V30 P12.4 I/O Reserved O1 B/ PU Reserved O2 - Reserved O3 - A20 O EBU Address Bus Line 20 P12.5 I/O Reserved O1 Reserved O2 - Reserved O3 - A21 O EBU Address Bus Line 21 P12.6 I/O Reserved O1 Reserved O2 - Reserved O3 - A22 O EBU Address Bus Line 22 P12.7 I/O Reserved O1 Reserved O2 - Reserved O3 - A23 O EBU Address Bus Line 23 V29 D30 D29 B/ PU B/ PU B/ PU Port 12 General Purpose I/O Line 4 - Port 12 General Purpose I/O Line 5 - Port 12 General Purpose I/O Line 6 - Port 12 General Purpose I/O Line 7 - Port 13 Data Sheet 62 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function U21 P13.0 I/O AD0 I B/ PU OUT88 O1 OUT88 Line of GPTA0 OUT88 O2 OUT88 Line of GPTA1 OUT80 O3 OUT80 Line of LTCA2 AD0 O EBU Address/Data Bus Line 0 P13.1 I/O AD1 I OUT89 O1 OUT89 Line of GPTA0 OUT89 O2 OUT89 Line of GPTA1 OUT81 O3 OUT81 Line of LTCA2 AD1 O EBU Address/Data Bus Line 1 P13.2 I/O AD2 I OUT90 O1 OUT90 Line of GPTA0 OUT90 O2 OUT90 Line of GPTA1 OUT82 O3 OUT82 Line of LTCA2 AD2 O EBU Address/Data Bus Line 2 P13.3 I/O AD3 I OUT91 O1 OUT91 Line of GPTA0 OUT91 O2 OUT91 Line of GPTA1 OUT83 O3 OUT83 Line of LTCA2 AD3 O EBU Address/Data Bus Line 3 U22 V21 V22 Data Sheet B/ PU B/ PU B/ PU Port 13 General Purpose I/O Line 0 EBU Address/Data Bus Line 0 Port 13 General Purpose I/O Line 1 EBU Address/Data Bus Line 1 Port 13 General Purpose I/O Line 2 EBU Address/Data Bus Line 2 Port 13 General Purpose I/O Line 3 EBU Address/Data Bus Line 3 63 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function V24 P13.4 I/O AD4 I B/ PU OUT92 O1 OUT92 Line of GPTA0 OUT92 O2 OUT92 Line of GPTA1 OUT84 O3 OUT84 Line of LTCA2 AD4 O EBU Address/Data Bus Line 4 P13.5 I/O AD5 I OUT93 O1 OUT93 Line of GPTA0 OUT93 O2 OUT93 Line of GPTA1 OUT85 O3 OUT85 Line of LTCA2 AD5 O EBU Address/Data Bus Line 5 P13.6 I/O AD6 I OUT94 O1 OUT94 Line of GPTA0 OUT94 O2 OUT94 Line of GPTA1 OUT86 O3 OUT86 Line of LTCA2 AD6 O EBU Address/Data Bus Line 6 P13.7 I/O AD7 I OUT95 O1 OUT95 Line of GPTA0 OUT95 O2 OUT95 Line of GPTA1 OUT87 O3 OUT87 Line of LTCA2 AD7 O EBU Address/Data Bus Line 7 V25 W21 W22 Data Sheet B/ PU B/ PU B/ PU Port 13 General Purpose I/O Line 4 EBU Address/Data Bus Line 4 Port 13 General Purpose I/O Line 5 EBU Address/Data Bus Line 5 Port 13 General Purpose I/O Line 6 EBU Address/Data Bus Line 6 Port 13 General Purpose I/O Line 7 EBU Address/Data Bus Line 7 64 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function W24 P13.8 I/O AD8 I B/ PU OUT96 O1 OUT96 Line of GPTA0 OUT96 O2 OUT96 Line of GPTA1 OUT88 O3 OUT88 Line of LTCA2 AD8 O EBU Address/Data Bus Line 8 P13.9 I/O AD9 I OUT97 O1 OUT97 Line of GPTA0 OUT97 O2 OUT97 Line of GPTA1 OUT89 O3 OUT89 Line of LTCA2 AD9 O EBU Address/Data Bus Line 9 P13.10 I/O AD10 I OUT98 O1 OUT98 Line of GPTA0 OUT98 O2 OUT98 Line of GPTA1 OUT90 O3 OUT90 Line of LTCA2 AD10 O EBU Address/Data Bus Line 10 P13.11 I/O AD11 I OUT99 O1 OUT99 Line of GPTA0 OUT99 O2 OUT99 Line of GPTA1 OUT91 O3 OUT91 Line of LTCA2 AD11 O EBU Address/Data Bus Line 11 W25 Y22 Y24 Data Sheet B/ PU B/ PU B/ PU Port 13 General Purpose I/O Line 8 EBU Address/Data Bus Line 8 Port 13 General Purpose I/O Line 9 EBU Address/Data Bus Line 9 Port 13 General Purpose I/O Line 10 EBU Address/Data Bus Line 10 Port 13 General Purpose I/O Line 11 EBU Address/Data Bus Line 11 65 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function Y25 P13.12 I/O AD12 I B/ PU OUT100 O1 OUT100 Line of GPTA0 OUT100 O2 OUT100 Line of GPTA1 OUT92 O3 OUT92 Line of LTCA2 AD12 O EBU Address/Data Bus Line 12 P13.13 I/O AD13 I OUT101 O1 OUT101 Line of GPTA0 OUT101 O2 OUT101 Line of GPTA1 OUT93 O3 OUT93 Line of LTCA2 AD13 O EBU Address/Data Bus Line 13 P13.14 I/O AD14 I OUT102 O1 OUT102 Line of GPTA0 OUT102 O2 OUT102 Line of GPTA1 OUT94 O3 OUT94 Line of LTCA2 AD14 O EBU Address/Data Bus Line 14 P13.15 I/O AD15 I OUT103 O1 OUT103 Line of GPTA0 OUT103 O2 OUT103 Line of GPTA1 OUT95 O3 OUT95 Line of LTCA2 AD15 O EBU Address/Data Bus Line 15 AA24 AA25 AB24 B/ PU B/ PU B/ PU Port 13 General Purpose I/O Line 12 EBU Address/Data Bus Line 12 Port 13 General Purpose I/O Line 13 EBU Address/Data Bus Line 13 Port 13 General Purpose I/O Line 14 EBU Address/Data Bus Line 14 Port 13 General Purpose I/O Line 15 EBU Address/Data Bus Line 15 Port 14 Data Sheet 66 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function AB25 P14.0 I/O AD16 I B/ PU CC60 O1 CCU60 OUT96 O2 OUT96 Line of GPTA1 OUT96 O3 OUT96 Line of LTCA2 AD16 O EBU Address/Data Bus Line 16 P14.1 I/O AD17 I CC61 O1 CCU60 OUT97 O2 OUT97 Line of GPTA1 OUT97 O3 OUT97 Line of LTCA2 AD17 O EBU Address/Data Bus Line 17 P14.2 I/O AD18 I CC62 O1 CCU60 OUT98 O2 OUT98 Line of GPTA1 OUT98 O3 OUT98 Line of LTCA2 AD18 O EBU Address/Data Bus Line 18 P14.3 I/O AD19 I COUT60 O1 CCU60 OUT99 O2 OUT99 Line of GPTA1 OUT99 O3 OUT99 Line of LTCA2 AD19 O EBU Address/Data Bus Line 19 W30 AC25 Y30 Data Sheet B/ PU B/ PU B/ PU Port 14 General Purpose I/O Line 0 EBU Address/Data Bus Line 16 Port 14 General Purpose I/O Line 1 EBU Address/Data Bus Line 17 Port 14 General Purpose I/O Line 2 EBU Address/Data Bus Line 18 Port 14 General Purpose I/O Line 3 EBU Address/Data Bus Line 19 67 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function AD23 P14.4 I/O AD20 I B/ PU COUT61 O1 CCU60 OUT100 O2 OUT100 Line of GPTA1 OUT100 O3 OUT100 Line of LTCA2 AD20 O EBU Address/Data Bus Line 20 P14.5 I/O AD21 I COUT62 O1 CCU60 OUT101 O2 OUT101 Line of GPTA1 OUT101 O3 OUT101 Line of LTCA2 AD21 O EBU Address/Data Bus Line 21 P14.6 I/O AD22 I COUT63 O1 CCU60 OUT102 O2 OUT102 Line of GPTA1 OUT102 O3 OUT102 Line of LTCA2 AD22 O EBU Address/Data Bus Line 22 P14.7 I/O AD23 I CC60 O1 CCU61 OUT103 O2 OUT103 Line of GPTA1 OUT103 O3 OUT103 Line of LTCA2 AD23 O EBU Address/Data Bus Line 23 AA30 AE24 AB30 Data Sheet B/ PU B/ PU B/ PU Port 14 General Purpose I/O Line 4 EBU Address/Data Bus Line 20 Port 14 General Purpose I/O Line 5 EBU Address/Data Bus Line 21 Port 14 General Purpose I/O Line 6 EBU Address/Data Bus Line 22 Port 14 General Purpose I/O Line 7 EBU Address/Data Bus Line 23 68 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function AE23 P14.8 I/O AD24 I B/ PU CC61 O1 CCU61 T3OUT O2 GPT120 OUT104 O3 OUT104 Line of LTCA2 AD24 O EBU Address/Data Bus Line 24 P14.9 I/O AD25 I CC62 O1 CCU61 T3OUT O2 GPT121 OUT105 O3 OUT105 Line of LTCA2 AD25 O EBU Address/Data Bus Line 25 P14.10 I/O AD26 I COUT60 O1 CCU61 T6OUT O1 GPT120 OUT106 O3 OUT106 Line of LTCA2 AD26 O EBU Address/Data Bus Line 26 P14.11 I/O AD27 I COUT61 O1 CCU61 T6OUT O1 GPT121 OUT107 O3 OUT107 Line of LTCA2 AD27 O EBU Address/Data Bus Line 27 AC30 AC29 AD30 Data Sheet B/ PU B/ PU B/ PU Port 14 General Purpose I/O Line 8 EBU Address/Data Bus Line 24 Port 14 General Purpose I/O Line 9 EBU Address/Data Bus Line 25 Port 14 General Purpose I/O Line 10 EBU Address/Data Bus Line 26 Port 14 General Purpose I/O Line 11 EBU Address/Data Bus Line 27 69 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function AD29 P14.12 I/O AD28 I B/ PU COUT62 O1 CCU61 OUT108 O2 OUT108 Line of GPTA1 OUT108 O3 OUT108 Line of LTCA2 AD28 O EBU Address/Data Bus Line 28 P14.13 I/O AD29 I COUT63 O1 CCU61 OUT109 O2 OUT109 Line of GPTA1 OUT109 O3 OUT109 Line of LTCA2 AD29 O EBU Address/Data Bus Line 29 P14.14 I/O AD30 I T3INC I GPT120 T3IND I GPT121 OUT110 O1 OUT110 Line of GPTA0 OUT110 O2 OUT110 Line of GPTA1 OUT110 O3 OUT110 Line of LTCA2 AD30 O EBU Address/Data Bus Line 30 AE30 AE29 Data Sheet B/ PU B/ PU Port 14 General Purpose I/O Line 12 EBU Address/Data Bus Line 28 Port 14 General Purpose I/O Line 13 EBU Address/Data Bus Line 29 Port 14 General Purpose I/O Line 14 EBU Address/Data Bus Line 30 70 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function AF30 P14.15 I/O AD31 I B/ PU T3EUDC I GPT120 T3EUDD I GPT121 OUT111 O1 OUT111 Line of GPTA0 OUT111 O2 OUT111 Line of GPTA1 OUT111 O3 OUT111 Line of LTCA2 AD31 O EBU Address/Data Bus Line 31 P15.0 I/O T4INC I T4IND I GPT121 CCPOS2B I CCU60 Reserved O1 - Reserved O2 - Reserved O3 - CS0 O Chip Select Output Line 0 P15.1 I/O T4EUDC I T4EUDD I GPT121 CCPOS2B I CCU61 Reserved O1 - Reserved O2 - Reserved O3 - CS1 O Chip Select Output Line 1 Port 14 General Purpose I/O Line 15 EBU Address/Data Bus Line 31 Port 15 AJ26 AK26 Data Sheet B/ PU B/ PU Port 15 General Purpose I/O Line 0 GPT120 Port 15 General Purpose I/O Line 1 GPT120 71 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function AJ25 P15.2 I/O Reserved O1 B/ PU Reserved O2 - Reserved O3 - CS2 O Chip Select Output Line 2 P15.3 I/O Reserved O1 Reserved O2 - Reserved O3 - CS3 O Chip Select Output Line 3 P15.4 I/O Reserved O1 Reserved O2 - Reserved O3 - BC0 O Byte Control Line 0 P15.5 I/O Reserved O1 Reserved O2 - Reserved O3 - BC1 O Byte Control Line 1 P15.6 I/O Reserved O1 Reserved O2 - Reserved O3 - BC2 O Byte Control Line 2 AK24 AJ17 AK18 AJ18 Data Sheet B/ PU B/ PU B/ PU B/ PU Port 15 General Purpose I/O Line 2 - Port 15 General Purpose I/O Line 3 - Port 15 General Purpose I/O Line 4 - Port 15 General Purpose I/O Line 5 - Port 15 General Purpose I/O Line 6 - 72 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function AK19 P15.7 I/O Reserved O1 B/ PU Reserved O2 - Reserved O3 - BC3 O Byte Control Line 3 P15.8 I/O Reserved O1 Reserved O2 - Reserved O3 - RD O Read Control Line P15.9 I/O Reserved O1 Reserved O2 - Reserved O3 - RD/WR O Write Control Line P15.10 I/O Reserved O1 Reserved O2 - Reserved O3 - ADV O Address Valid Output P15.11 I/O WAIT I Reserved O1 - Reserved O2 - Reserved O3 - AK25 AJ27 AJ28 AJ24 Data Sheet B/ PU B/ PU B/ PU B/ PU Port 15 General Purpose I/O Line 7 - Port 15 General Purpose I/O Line 8 - Port 15 General Purpose I/O Line 9 - Port 15 General Purpose I/O Line 10 - Port 15 General Purpose I/O Line 11 Wait Input for inserting Wait-States 73 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function AK20 P15.12 I/O Reserved O1 B/ PU Reserved O2 - Reserved O3 - MR/W O Motorola-style Read/Write Control Signal P15.13 I/O Reserved O1 Reserved O2 - Reserved O3 - BAA O Burst Address Advance Output P15.14 I/O BFCLKI I Reserved O1 - Reserved O2 - Reserved O3 - P15.15 I/O Reserved O1 Reserved O2 - Reserved O3 - BFCLKO O Burst Mode Flash Clock Output (NonDifferential) AK29 AG30 AH30 B/ PU B/ PU B/ PU Port 15 General Purpose I/O Line 12 - Port 15 General Purpose I/O Line 13 - Port 15 General Purpose I/O Line 14 Burst FLASH Clock Input (Clock Feedback). Port 15 General Purpose I/O Line 15 - Port 16 Data Sheet 74 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function AK17 P16.0 I/O HOLD I B/ PU Reserved O1 - Reserved O2 - Reserved O3 - P16.1 I/O HLDA I Reserved O1 - Reserved O2 - Reserved O3 - HLDA O Hold Acknowledge Output P16.2 I/O Reserved O1 Reserved O2 - Reserved O3 - BREQ O Bus Request Output P16.3 I/O Reserved O1 Reserved O2 - Reserved O3 - CSCOMB O Combined Chip Select Output P16.4 I/O Reserved O1 Reserved O2 - Reserved O3 - RAS O Row Address Select/Strobe AJ19 AK28 AJ20 AK23 Data Sheet B/ PU B/ PU B/ PU B/ PU Port 16 General Purpose I/O Line 0 Hold Request Input Port 16 General Purpose I/O Line 1 Hold Acknowledge Input Port 16 General Purpose I/O Line 2 - Port 16 General Purpose I/O Line 3 - Port 16 General Purpose I/O Line 4 - 75 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function AJ23 P16.5 I/O Reserved O1 B/ PU Reserved O2 - Reserved O3 - CAS O Column Address Select/Strobe P16.6 I/O Reserved O1 Reserved O2 - Reserved O3 - DDRCLK O Double Data Rate Flash Clock P16.7 I/O Reserved O1 Reserved O2 - Reserved O3 - DDRCLKN O Inverted Double Data Rate Flash Clock P16.8 I/O Reserved O1 Reserved O2 - Reserved O3 - CKE O Inverted Double Data Rate Flash Clock P16.9 I/O DQS0 I Reserved O1 - Reserved O2 - Reserved O3 - DQS0 O Data Strobe Signal 0 AG29 AF29 AK27 W29 Data Sheet B/ PU B/ PU B/ PU B/ PU Port 16 General Purpose I/O Line 5 - Port 16 General Purpose I/O Line 6 - Port 16 General Purpose I/O Line 7 - Port 16 General Purpose I/O Line 8 - Port 16 General Purpose I/O Line 9 Data Strobe Signal 0 76 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function Y29 P16.10 I/O DQS1 I B/ PU Reserved O1 - Reserved O2 - Reserved O3 - DQS1 O Data Strobe Signal 1 P16.11 I/O DQS2 I Reserved O1 - Reserved O2 - Reserved O3 - DQS2 O Data Strobe Signal 2 P16.12 I/O DQS3 I Reserved O1 - Reserved O2 - Reserved O3 - DQS3 O Data Strobe Signal 3 P17.0 I SENT0 I SENT Digital Input 0 AN8 I Analog Input : ADC0.CH8 5) P17.1 I SENT1 I SENT Digital Input 1 AN9 I Analog Input : ADC0.CH9 5) AA29 AB29 B/ PU B/ PU Port 16 General Purpose I/O Line 10 Data Strobe Signal 1 Port 16 General Purpose I/O Line 11 Data Strobe Signal 2 Port 16 General Purpose I/O Line 12 Data Strobe Signal 3 Port 17 Y10 Y9 Data Sheet D/S D/S Port 17 General Purpose I Line 04) Port 17 General Purpose I Line 14) 77 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function W10 P17.2 I D/S SENT2 I SENT Digital Input 2 AN10 I Analog Input : ADC0.CH10 5) P17.3 I SENT3 I SENT Digital Input 3 AN11 I Analog Input : ADC0.CH11 5) P17.4 I SENT4 I SENT Digital Input 4 AN12 I Analog Input : ADC0.CH12 5) P17.5 I SENT5 I SENT Digital Input 5 AN13 I Analog Input : ADC0.CH13 5) P17.6 I SENT6 I SENT Digital Input 6 AN14 I Analog Input : ADC0.CH14 5) P17.7 I SENT7 I SENT Digital Input 7 AN15 I Analog Input : ADC0.CH15 5) P17.8 I SENT0 I SENT Digital Input 0 AN36 I Analog Input : ADC2.CH4 5) P17.9 I SENT1 I SENT Digital Input 1 AN37 I Analog Input : ADC2.CH5 5) W9 W7 W6 V7 V6 AD9 AE9 Data Sheet D/S D/S D/S D/S D/S D/S D/S Port 17 General Purpose I Line 24) Port 17 General Purpose I Line 34) Port 17 General Purpose I Line 44) Port 17 General Purpose I Line 54) Port 17 General Purpose I Line 64) Port 17 General Purpose I Line 74) Port 17 General Purpose I Line 84) Port 17 General Purpose I Line 94) 78 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function AD10 P17.10 I D/S SENT2 I SENT Digital Input 2 AN38 I Analog Input : ADC2.CH6 5) P17.11 I SENT3 I SENT Digital Input 3 AN39 I Analog Input : ADC2.CH7 5) P17.12 I SENT4 I SENT Digital Input 4 AN40 I Analog Input : ADC2.CH8 5) P17.13 I SENT5 I SENT Digital Input 5 AN41 I Analog Input : ADC2.CH9 5) P17.14 I SENT6 I SENT Digital Input 6 AN42 I Analog Input : ADC2.CH10 5) P17.15 I SENT7 I SENT Digital Input 7 AN43 I Analog Input : ADC2.CH11 5) P18.0 I/O MRST2B I MRST2 O1 SSC2 Slave Transmit Output (Master Mode) Reserved O2 - Reserved O3 - AE10 AA11 AB11 AA12 AB12 D/S D/S D/S D/S D/S Port 17 General Purpose I Line 104) Port 17 General Purpose I Line 114) Port 17 General Purpose I Line 124) Port 17 General Purpose I Line 134) Port 17 General Purpose I Line 144) Port 17 General Purpose I Line 154) Port 18 B11 Data Sheet A1+/ PU Port 18 General Purpose I/O Line 0 SSC2 Master Receive Input B (Slave Mode) 79 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function A11 P18.1 I/O MTSR2B I A1+/ PU MRSTG2B I SSC Guardian 2 Master Receive Input B (Master Mode) MTSR2 O1 SSC2 Master Transmit Output (Master Mode)3) Reserved O2 - Reserved O3 - P18.2 I/O SCLK2B I SCLK2 O1 SSC2 Output Reserved O2 - Reserved O3 - P18.3 I/O SLSO20 O1 Reserved O2 - Reserved O3 - P18.4 I/O SLSO21 O1 Reserved O2 - Reserved O3 - P18.5 I/O SLSO22 O1 Reserved O2 - Reserved O3 - B10 A10 B9 A9 Data Sheet A1+/ PU A1+/ PU A1+/ PU A1+/ PU Port 18 General Purpose I/O Line 1 SSC2 Slave Receive Input B (Slave Mode) Port 18 General Purpose I/O Line 2 SSC2 Input Port 18 General Purpose I/O Line 3 SSC2 Output Port 18 General Purpose I/O Line 4 SSC2 Output Port 18 General Purpose I/O Line 5 SSC2 Output 80 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function B8 P18.6 I/O SLSO23 O1 A1+/ PU Reserved O2 - Reserved O3 - P18.7 I/O SLSO24 O1 Reserved O2 - Reserved O3 - A8 A1+/ PU Port 18 General Purpose I/O Line 6 SSC2 Output Port 18 General Purpose I/O Line 7 SSC2 Output Analog Input Port AA9 AN0 I D Analog Input 0: ADC0.CH0 5) AE7 AN1 I D Analog Input 1: ADC0.CH1 5) AD7 AN2 I D Analog Input 2: ADC0.CH2 5) AD6 AN3 I D Analog Input 3: ADC0.CH3 5) AC7 AN4 I D Analog Input 4: ADC0.CH4 5) AB7 AN5 I D Analog Input 5: ADC0.CH5 5) AA7 AN6 I D Analog Input 6: ADC0.CH6 5) AA10 AN7 I D Analog Input 7: ADC0.CH7 5) Y10 AN8 I S Analog Input 8: ADC0.CH8, SENT0 5) Y9 AN9 I S Analog Input 9: ADC0.CH9, SENT1 5) W10 AN10 I S Analog Input 10: ADC0.CH10, SENT2 5) W9 AN11 I S Analog Input 11: ADC0.CH11, SENT3 5) W7 AN12 I S Analog Input 12: ADC0.CH12, SENT4 5) W6 AN13 I S Analog Input 13: ADC0.CH13, SENT5 5) V7 AN14 I S Analog Input 14: ADC0.CH14, SENT6 5) V6 AN15 I S Analog Input 15: ADC0.CH15, SENT7 5) V10 AN16 I D Analog Input 16: ADC1.CH0 5) Data Sheet 81 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function V9 AN17 I D Analog Input 17: ADC1.CH1 5) U10 AN18 I D Analog Input 18: ADC1.CH2 5) U9 AN19 I D Analog Input 19: ADC1.CH3 5) U7 AN20 I D Analog Input 20: ADC1.CH4 5) U6 AN21 I D Analog Input 21: ADC1.CH5 5) T7 AN22 I D Analog Input 22: ADC1.CH6 5) T6 AN23 I D Analog Input 23: ADC1.CH7 5) AB13 AN24 I D Analog Input 24: ADC1.CH8 5) AD13 AN25 I D Analog Input 25: ADC1.CH9 5) AE13 AN26 I D Analog Input 26: ADC1.CH10 5) AA14 AN27 I D Analog Input 27: ADC1.CH11 5) AB14 AN28 I D Analog Input 28: ADC1.CH12 5) AD14 AN29 I D Analog Input 29: ADC1.CH13 5) AE14 AN30 I D Analog Input 30: ADC1.CH14 5) AA15 AN31 I D Analog Input 31: ADC1.CH15 5) AB9 AN32 I D Analog Input 32: ADC2.CH0 5) AD8 AN33 I D Analog Input 33: ADC2.CH1 5) AE8 AN34 I D Analog Input 34: ADC2.CH2 5) AA13 AN35 I D Analog Input 35: ADC2.CH3 5) AD9 AN36 I S Analog Input 36: ADC2.CH4, SENT0 5) AE9 AN37 I S Analog Input 37: ADC2.CH5, SENT1 5) AD10 AN38 I S Analog Input 38: ADC2.CH6, SENT2 5) AE10 AN39 I S Analog Input 39: ADC2.CH7, SENT3 5) AA11 AN40 I S Analog Input 40: ADC2.CH8, SENT4 5) AB11 AN41 I S Analog Input 41: ADC2.CH9, SENT5 5) AA12 AN42 I S Analog Input 42: ADC2.CH10, SENT6 5) Data Sheet 82 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function AB12 AN43 I S Analog Input 43: ADC2.CH11, SENT7 5) AC6 AN44 I D Analog Input 44: ADC2.CH12 5) AB6 AN45 I D Analog Input 45: ADC2.CH13 5) AA6 AN46 I D Analog Input 46: ADC2.CH14 5) AB10 AN47 I D Analog Input 47: ADC2.CH15 5) W2 AN48 I D Analog Input 48: ADC3.CH0 5) W1 AN49 I D Analog Input 49: ADC3.CH1 5) AA2 AN50 I D Analog Input 50: ADC3.CH2 5) AA1 AN51 I D Analog Input 51: ADC3.CH3 5) AB2 AN52 I D Analog Input 52: ADC3.CH4 5) AB1 AN53 I D Analog Input 53: ADC3.CH5 5) AC2 AN54 I D Analog Input 54: ADC3.CH6 5) AC1 AN55 I D Analog Input 55: ADC3.CH7 5) AD2 AN56 I D Analog Input 56: ADC3.CH8 5) AD1 AN57 I D Analog Input 57: ADC3.CH9 5) AE2 AN58 I D Analog Input 58: ADC3.CH10 5) AE1 AN59 I D Analog Input 59: ADC3.CH11 5) AF2 AN60 I D Analog Input 60: ADC3.CH12 5) AF1 AN61 I D Analog Input 61: ADC3.CH13 5) AG2 AN62 I D Analog Input 62: ADC3.CH14 5) AG1 AN63 I D Analog Input 63: ADC3.CH15 5) AJ5 AN64 I D Analog Input 64: FADC_FADIN0P 6) AK5 AN65 I D Analog Input 65: FADC_FADIN0N 6) AJ6 AN66 I D Analog Input 66: FADC_FADIN1P 6) AK6 AN67 I D Analog Input 67: FADC_FADIN1N 6) AJ7 AN68 I D Analog Input 68: FADC_FADIN2P 6) Data Sheet 83 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function AK7 AN69 I D Analog Input 69: FADC_FADIN2N 6) AJ8 AN70 I D Analog Input 70: FADC_FADIN3P 6) AK8 AN71 I D Analog Input 71: FADC_FADIN3N 6) System I/O L24 PORST I PD Power-on Reset Input M24 ESR0 I/O A2 External System Request Reset Input 0 Default configuration during and after reset is open-drain driver. The driver drives low during power-on reset. M25 ESR1 I/O A2/ PD External System Request Reset Input 1 N25 TCK I PD JTAG Module Clock Input DAP0 I TDI I BRKIN I BRKOUT O M22 TESTMODE I PU Test Mode Select Input P21 TMS I JTAG Module State Machine Control Input DAP1 I/O A2/ PD N24 TRST I PD JTAG Module Reset/Enable Input R25 XTAL1 I Main Oscillator/PLL/Clock Generator Input R24 XTAL2 O Main Oscillator/PLL/Clock Generator Output N22 TDO O BRKIN I BRKOUT O OCDS Break Output (Alternate Output) DAP2 O Device Access Port Line 2 P22 Device Access Port Line 0 A2/ PU JTAG Module Serial Data Input OCDS Break Input (Alternate Output) OCDS Break Output (Alternate Input) A2/ PU Device Access Port Line 1 JTAG Module Serial Data Output OCDS Break Input (Alternate Input) Power Supply Data Sheet 84 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function Y7 VDDM - - ADC Analog Part Power Supply (3.3V - 5V) Y1, VSSM Y2, Y6 - - ADC Analog Part Ground AE11 VAREF0 - - ADC0 Reference Voltage AE12 VAGND0 - - ADC0 Reference Ground AD11 VAREF1 - - ADC1 Reference Voltage AK9 VAGND1 - - ADC1 Reference Ground AD12 VAREF2 - - ADC2 Reference Voltage AJ10 VAGND2 - - ADC2 Reference Ground AJ9 VAREF3 - - ADC3 Reference Voltage AK10 VAGND3 - - ADC3 Reference Ground AB15 VFAREF - - FADC Reference Voltage AD15 VFAGND - - FADC Reference Ground AB16 VDDMF - - FADC Analog Part Power Supply (3.3V) AA16 VDDAF - - FADC Analog Part Logic Power Supply (1.3V) AE15, AJ11, AK11 VSSMF - - FADC Analog Part Ground VSSAF - - FADC Analog Part Logic Ground R10, T21 VDDFL3 - - Flash Power Supply (3.3V) R30, R29, P25 VSSOSC - - Main Oscillator Ground VSS - - Digital Ground P24 VDDOSC - - Main Oscillator Power Supply (1.3V) R21 VDDOSC3 - - Main Oscillator Power Supply (3.3V) R22 VDDPF - - E-Ray PLL Power Supply (1.3V) T22 VDDPF3 - - E-Ray PLL Power Supply (3.3V) Data Sheet 85 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function AJ30, AH29, AD25, AC24, AA22, Y21 VDD - - Digital Core Power Supply (1.3V) W18, W13, V19, V12, N19, N12, M18, M13 VDD - - Digital Core Power Supply (1.3V, center balls) AK15, VDDP AJ15, AD16, T2, T1, R7, G23, G15, G8, F24, F7, B28, A29, B16, A16, B3, A2 - - Port Power Supply (3.3V) AK21, AJ21, AD22, U24, U25, U29, U30, C30 - - EBU Port Power Supply (1.8 - 2.5V - 3.3V) VDDEBU Data Sheet 86 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function T9, T10 VDDSB - - Emulation Stand-by SRAM Power Supply (1.3V) (Emulation device only) Note: This pin is N.C. in a productive device. AK16, AJ16, AE16, R6, R2, R1, F15, K10, K21, J22, J9, G24, G7, F25, B29, B15, B2, A30, A15 VSSP - - Digital Ground AK22, AJ22, AE22, T30, T29, T25, T24, B30 VSS - - Digital Ground Data Sheet 87 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function W17, W16, W15, W14, , V17, V16, V15, V14 VSS - - Digital Ground (center balls) N17, N16, N15, N14, , M17, M16, M15, M14 VSS - - Digital Ground (center balls cont’d) U19, U18, U16, U15, U13, U12, P13, P12, P19, P18, P16, P15, VSS - - Digital Ground (center balls cont’d) R19, R18, R17, R16, R15, R14, R13, R12 VSS - - Digital Ground (center balls cont’d) Data Sheet 88 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function T19, T18, T17, T16, T15, T14, T13, T12 VSS - - Digital Ground (center balls cont’d) AK30, AJ29, AE25, AD24, AB22, AA21 VSS - - Digital Ground (center balls cont’d) A1, A3, A4, A5, A14, A17, A23, A24, A25, A26 N.C. - - Not connected. These pins are reserved for future extension and shall not be connected externally. B1, B4, B5, B14, B17, B23, B24, B25, B26 N.C. - - Not connected. These pins are reserved for future extension and shall not be connected externally. Data Sheet 89 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration Pin Definitions and Functions (PG-LFBGA- 516 Package) (cont’d) Table 2 Pin Symbol Ctrl. Type Function C1, C2, C29, D1, D2, E1, E2, F1, F2, F6, G1, G2, N1, N2 N.C. - - Not connected. These pins are reserved for future extension and shall not be connected externally. U1, U2, V1, V2, AE6, AH1, AH2, AJ1, AJ2, AJ3 N.C. - - Not connected. These pins are reserved for future extension and shall not be connected externally. AJ4, AJ12, AK1, AK2, AK3, AK4, AK12, AK13 N.C. - - Not connected. These pins are reserved for future extension and shall not be connected externally. 1) Only applicable in TC1798ED. Reserved in TC1798PD. 2) Only available for SAK-TC1798F-512F300EL, SAK-TC1798F-512F300EP, and SAK-TC1798S-512F300EP. 3) The MTSR output of SSCx is overlayed with the MRSTG input of the related SSCGx 4) Analog Input overlayed with a SENT Digitial Input. The related port logic is used configure the input as either analog input (default after reset) or digital input. The related port logic supports only the port input features as the connected pads are input pads only. Data Sheet 90 V 1.1, 2014-05 TC1798 PinningTC1798 Pin Configuration 5) IOZ1 valid for this pin is the parameter with overlayed = No in the ADC parameter table. 6) IOZ1 valid for this pin is the parameter with overlayed = Yes in the ADC parameter table. Legend for Table 2 Column “Ctrl.”: I = Input (for GPIO port lines with IOCR bit field selection PCx = 0XXXB) O = Output O0 = Output with IOCR bit field selection PCx = 1X00B O1 = Output with IOCR bit field selection PCx = 1X01B (ALT1) O2 = Output with IOCR bit field selection PCx = 1X10B(ALT2) O3 = Output with IOCR bit field selection PCx = 1X11(ALT3) Column “Type”: A1 = Pad class A1 (LVTTL) A1+ = Pad class A1+ (LVTTL) A2 = Pad class A2 (LVTTL) B = Pad class B (LVTTL) F = Pad class F (LVDS/CMOS) D = Pad class D (ADC) S = Pad class D (ADC) / Pad class S(SENT) PU = with pull-up device connected during reset (PORST = 0) PD = with pull-down device connected during reset (PORST = 0) TR = tri-state during reset (PORST = 0) Data Sheet 91 V 1.1, 2014-05 TC1798 Identification Registers 4 Identification Registers The Identification Registers uniquely identify the whole device. Table 3 SAK-TC1798F-512F300EL Identification Registers Short Name Value Address Stepping CBS_JDPID 0000 6350H F000 0408H AB CBS_JTAGID 1018 E083H F000 0464H AB SCU_CHIPID 0700 9802H F000 0640H AB SCU_MANID 0000 1820H F000 0644H AB SCU_RTID 0000 0000H F000 0648H AB Table 4 SAK-TC1798F-512F300EP Identification Registers Short Name Value Address Stepping CBS_JDPID 0000 6350H F000 0408H AB CBS_JTAGID 1018 E083H F000 0464H AB SCU_CHIPID 8700 9802H F000 0640H AB SCU_MANID 0000 1820H F000 0644H AB SCU_RTID 0000 0000H F000 0648H AB Table 5 SAK-TC1798N-512F300EP Identification Registers Short Name Value Address Stepping CBS_JDPID 0000 6350H F000 0408H AB CBS_JTAGID 1018 E083H F000 0464H AB SCU_CHIPID 8700 B002H F000 0640H AB SCU_MANID 0000 1820H F000 0644H AB SCU_RTID 0000 0000H F000 0648H AB Table 6 SAK-TC1798S-512F300EP Identification Registers Short Name Value Address Stepping CBS_JDPID 0000 6350H F000 0408H AB CBS_JTAGID 1018 E083H F000 0464H AB SCU_CHIPID 8700 AC02H F000 0640H AB Data Sheet 92 V 1.1, 2014-05 TC1798 Identification Registers Table 6 SAK-TC1798S-512F300EP Identification Registers (cont’d) Short Name Value Address Stepping SCU_MANID 0000 1820H F000 0644H AB SCU_RTID 0000 0000H F000 0648H AB Data Sheet 93 V 1.1, 2014-05 TC1798 Electrical ParametersGeneral Parameters 5 Electrical Parameters This specification provides all electrical parameters of the TC1798. 5.1 General Parameters 5.1.1 Parameter Interpretation The parameters listed in this section partly represent the characteristics of the TC1798 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are marked with an two-letter abbreviation in column “Symbol”: • • CC Such parameters indicate Controller Characteristics which are a distinctive feature of the TC1798 and must be regarded for a system design. SR Such parameters indicate System Requirements which must provided by the microcontroller system in which the TC1798 designed in. Data Sheet 94 V 1.1, 2014-05 TC1798 Electrical ParametersGeneral Parameters 5.1.2 Pad Driver and Pad Classes Summary This section gives an overview on the different pad driver classes and its basic characteristics. More details (mainly DC parameters) are defined in the Section 5.2.1. Table 7 Pad Driver and Pad Classes Overview Class Power Type Supply Sub Class Speed Load Grade 1) Leakage 150oC 1) Termination 1) A B 3.3 V 3.3 V2) LVTTL I/O, LVTTL outputs 6 MHz 100 pF 500 nA A1+ (e.g. serial I/Os) 25 MHz 50 pF 1 μA Series termination recommended A2 (e.g. serial I/Os) 40 MHz 50 pF 3 μA Series termination recommended 75 MHz 35 pF 6 μA 75 MHz 35 pF Series termination recommended Parallel termination, 100 Ω ± 10% 3) A1 (e.g. GPIO) LVTTL I/O 2.5 V 2) No 1.8 V 2) F 3.3 V LVDS – 50 MHz – – CMOS – 6 MHz 50 pF – DE 5V ADC – – – – I 3.3 V LVTTL (input only) – – – – 1) These values show typical application configurations for the pad. Complete and detailed pad parameters are available in the individual pad parameter table on the following pages. 2) Supplied via VDDEBU. 3) In applications where the LVDS pins are not used (disabled), these pins must be either left unconnected, or properly terminated with the differential parallel termination of 100 Ω ± 10%. Data Sheet 95 V 1.1, 2014-05 TC1798 Electrical ParametersGeneral Parameters 5.1.3 Absolute Maximum Ratings Stresses above the values listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability. Table 8 Absolute Maximum Rating Parameters Parameter Symbol Values Min. Typ. Max. Storage temperature TST Voltage at 1.3 V power supply VDD pins with respect to VSS Voltage at 3.3 V power supply VDDP SR pins with respect to VSS Voltage at 5 V power supply VDDM pins with respect to VSS Voltage on any Class A input VIN Unit Note / Test Con dition SR -65 – 150 °C – SR – – 2.0 V – – – 4.33 V – SR – – 7.0 V – SR -0.7 – VDDP + 0.5 V or max. 4.33 Whatever is lower -0.6 – 7.0 V – Voltage on any shared Class VAINF -0.6 – D analog input pin with VFAREF respect to VSSAF, if the FADC SR is switched through to the pin. 7.0 V – Voltage on any shared Class VAINF -0.5 – D analog input pin with SR respect to VSSAF, if the FADC is switched through to the pin. 7.0 V – Input current on any pin during overload condition1) +10 mA 2) pin and dedicated input pins with respect to VSS Voltage on any Class D analog input pin with respect to VAGND Data Sheet VAIN VAREFx IIN SR -10 96 – V 1.1, 2014-05 TC1798 Electrical ParametersGeneral Parameters Table 8 Parameter Absolute Maximum Rating Parameters Symbol Min. Typ. Max. Values Unit Note / Test Con dition Absolute maximum sum of all IIN input circuit currents for one port group during overload condition3) -25 – +25 mA Absolute maximum sum of all ΣIIN input circuit currents during overload condition -200 – 200 mA 1) This parameter is an Absolute Maximum Rating. Exposure to Absolute Maximum Ratings for extended periods of time may damage the device. 2) Refers to possibility of current caused degradation, where the voltages in overload do not violate the normal operating conditions. In case that the overvoltages violate the normal operating conditions, the reliability considerations caused by overvoltage apply independently, as described in this document. 3) The port groups are defined in Table 13. Data Sheet 97 V 1.1, 2014-05 TC1798 Electrical ParametersGeneral Parameters 5.1.4 Pin Reliability in Overload When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification. Table 9 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met: • • full operation life-time (24000 h) is not exceeded Operating Conditions are met for – pad supply levels (VDDP or VDDM) – temperature If a pin current is out of the Operating Conditions but within the overload parameters, then the parameters functionality of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters. Note: An overload condition on one or more pins does not require a reset. Table 9 Overload Parameters Parameter Min. Typ. Max. Unit Note / Test Con dition Input current on any digital pin IIN during overload condition except LVDS pins -5 mA Input current on LVDS pins IINLVDS IING -3 – +3 mA -20 – +20 mA IINANA IINSA -3 – +3 mA -45 – +45 mA ΣIINS -100 – 100 mA Absolute sum of all input circuit currents for one port group during overload condition1) Input current on analog pins Absolute sum of all analog input currents for analog inputs during overload condition Absolute sum of all input circuit currents during overload condition Symbol Values – +5 1) The port groups are defined in Table 13. Note: FADC input pins count as analog pin as they are overlayed with an ADC pins. Data Sheet 98 V 1.1, 2014-05 TC1798 Electrical ParametersGeneral Parameters Table 10 Pad Type A1 / A1+ / F A2 LVDS D S Table 11 Pad Type A1 / A1+ / F A2 LVDS D S PN-Junction Characterisitics for positive Overload IIN = 3 mA UIN = VDDP + 0.6 V UIN = VDDP + 0.5 V UIN = VDDP + 0.7 V UIN = VDDM + 0.6 V UIN = VDDM + 0.6 V IIN = 5 mA UIN = VDDP + 0.7 V UIN = VDDP + 0.6 V - PN-Junction Characterisitics for negative Overload IIN = -3 mA UIN = VSS - 0.6 V UIN = VSS - 0.5 V UIN = VSS - 0.7 V UIN = VSSM - 0.6 V UIN = VSSM - 0.6 V IIN = -5 mA UIN = VSS - 0.7 V UIN = VSS - 0.6 V - Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery without having any negative reliability impact on the operational life-time. Data Sheet 99 V 1.1, 2014-05 TC1798 Electrical ParametersGeneral Parameters 5.1.5 Operating Conditions The following operating conditions must not be exceeded in order to ensure correct operation and reliability of the TC1798. All parameters specified in the following tables refer to these operating conditions, unless otherwise noticed. Digital supply voltages applied to the TC1798 must be static regulated voltages which allow a typical voltage swing of ± 5 %. All parameters specified in the following tables (Table 14 and following) refer to these operating conditions (Table 12), unless otherwise noticed in the Note / Test Condition column. The Extended Range Operating Conditions did not increase area of validity of the parameters defined in table 10 and later. Table 12 Operating Conditions Parameters Parameter Symbol Overload coupling factor KOVAN for analog inputs, negative CC Values Unit Min. Typ. Max. − − 0.0001 Note / Test Condition IOV≤ 0 mA; IOV≥ -2 mA; analog pad= 5.0 V Overload coupling factor KOVAP for analog inputs, positive CC − − IOV≤ 3 mA; IOV≥ 0 mA; 0.0000 1 analog pad= 5.0 V CPU Frequency Modulated fCPU fCPU SR − fCPU_mod − ulated FPI bus frequency Modulated fFPI FSI frequency Modulated fFSI PCP Frequency Modulated fPCP Data Sheet 300MHz 2*MA1) − 100 − MHz 1002*MA1) − 150 − 150MHz 2*MA1) − 200 − 200MHz 2*MA1) − 300 SR fPCP SR − fPCP_mod − ulated SRI Frequency − SR fFSI SR − fFSI_modul − ated 300 SR fFPI SR − fFPI_modul − ated − SR fSRI SR − 100 MHz MHz MHz MHz MHz V 1.1, 2014-05 TC1798 Electrical ParametersGeneral Parameters Table 12 Operating Conditions Parameters (cont’d) Parameter Symbol Values Min. Modulated fSRI fSRI_modul − ated Unit Typ. Max. − 300MHz 2*MA1) SR Note / Test Condition Inactive device pin current IID SR -1 − 1 mA Short circuit current of digital outputs2) ISC SR -5 − 5 mA Absolute sum of short circuit currents of the device ΣISC_D CC − − 100 mA Absolute sum of short circuit currents per pin group ΣISC_PG CC − − 20 mA Ambient Temperature − 125 °C − 150 °C Core Supply Voltage TA SR -40 TJ SR -40 VDD SR 1.235 1.3 1.3653) V for duration limitation see Section 5.1.5.1 EBU supply voltage VDDEBU 3.135 3.3 3.4655) V for duration limitation see Section 5.1.5.1 2.375 2.5 2.625 V 1.71 1.8 1.89 V Junction temperature SR 5) All power supply voltages VDDx = 0 Flash supply voltage 3.3V VDDFL3 SR 3.135 3.3 3.63 ADC analog supply voltage VDDM 3.135 5 5.54) V Oscillator core supply voltage VDDOSC 1.235 1.3 1.433) V for duration limitation see Section 5.1.5.1 VDDOSC3 3.135 3.3 3.635) V for duration limitation see Section 5.1.5.1 Oscillator 3.3V supply voltage Data Sheet V for duration limitation see Section 5.1.5.1 SR SR SR 101 V 1.1, 2014-05 TC1798 Electrical ParametersGeneral Parameters Table 12 Operating Conditions Parameters (cont’d) Parameter Symbol Values Min. Unit Typ. Max. Note / Test Condition Digital supply voltage for IO pads VDDP SR 3.135 3.3 3.63 5) V for duration limitation see Section 5.1.5.1 E-Ray PLL core voltage supply VDDPF 1.235 1.3 1.433) V SR for duration limitation see Section 5.1.5.1 E-Ray PLL 3.3V supply VDDPF3 3.135 3.3 3.635) V for duration limitation see Section 5.1.5.1 VDDP voltage to ensure defined pad states6) VDDPPA 0.65 − − V Digital ground voltage VSS SR 0 SR CC Analog ground voltage for VSSM SR -0.1 − − V 0 0.1 V VDDM Analog core supply VDDAF 1.235 1.3 1.3653) V for duration limitation see Section 5.1.5.1 VDDMF 3.135 3.3 3.475) V for duration limitation see Section 5.1.5.1 -0.1 0 0.1 V SR FADC / ADC analog supply voltage SR Analog ground voltage for VSSAF SR VDDMF 1) MA equals the modulation amplitude in percentage times the configured PLL clock out frequency. 2) Applicable for digital outputs. 3) Voltage overshoot to 1.7V is permissible at Power-Up and PORST low, provided the pulse duration is less than 100 μs and the cumulated sum of the pulses does not exceed 1 h. 4) Voltage overshoot to 6.5V is permissible at Power-Up and PORST low, provided the pulse duration is less than 100 μs and the cumulated sum of the pulses does not exceed 1 h. 5) Voltage overshoot to 4.0V is permissible at Power-Up and PORST low, provided the pulse duration is less than 100 μs and the cumulated sum of the pulses does not exceed 1 h. 6) This parameter is valid under the assumption the PORST signal is constantly at low level during the powerup/power-down of VDDP. 5.1.5.1 Extended Range Operating Conditions The following extended operating conditions are defined: • 1.3V + 5% < VDD / VDDOSC / VDDPF / VDDAF < 1.3V + 7.5% (overvoltage condition): Data Sheet 102 V 1.1, 2014-05 TC1798 Electrical ParametersGeneral Parameters • • – limited to 10000 hour duration cumulative in lifetime, due to the reliability reduction of the chip caused by the overvoltage stress. 1.3V + 7.5% < VDD / VDDOSC / VDDPF / VDDAF < 1.3V + 10% (overvoltage condition): – limited to 1000 hour duration cumulative in lifetime, due to the reliability reduction of the chip caused by the overvoltage stress. VDDP / VDDOSC3 / VDDPF3 / VDDFL3 / VDDMF / VDDEBU< 3.3 V ± 10% – 3.3V + 5% < VDDP / VDDOSC3 / VDDPF3 / VDDFL3 / VDDMF / VDDEBU< 3.3V + 10% (overvoltage condition): limited to 1000 hour duration cumulative in lifetime, due to the reliability reduction of the chip caused by the overvoltage stress. Table 13 Pin Groups for Overload / Short-Circuit Current Sum Parameter Group Pins 1 P2.[4:2], P6.[6:9] 2 P6.[5:4], P6.[11:10] 3 P6.[15:12] 4 P8.[5:0] 5 P8.[7:6], P1.[15:13] 6 P1.5, P1.[11:8] 7 P1.[4:2], P1.6, P1.12 8 P1.[1:0], P7.[2:0] 9 P7.[7:3] 10 P4.[6:0] 11 P4.[10:7] 12 P4.[15:11] 13 P10.[5:0] 14 P15.[7:4], P16.[1:0] 15 P15.3, P15.[12:11], P16.[5:3] 16 P15.[2:0], P15.[9:8], P16.2, P16.8 17 P15.10, P15.[15:13], P16.[7:6] 18 P14.[15:12] 19 P14.[11:8], P16.12 20 P14.[7:3], P16.11 21 P13.15, P14.[2:0] Data Sheet 103 V 1.1, 2014-05 TC1798 Electrical ParametersGeneral Parameters Table 13 Pin Groups for Overload / Short-Circuit Current Sum Parameter (cont’d) Group Pins 22 P13.[14:11] 23 P13.[10:8], P16.10 24 P13.[7:4], P16.9 25 P12.5, P13.[3:0] 26 P12.[4:0] 27 P11.[15:11] 28 P11.[10:6] 29 P11.[5:2] 30 P11.[1:0], P12.[7:6] 31 P9.10, P9.14 32 P9.7, P9.13 33 P9.[4:2], P9.6 34 P9.1, P9.5, P9.[9:8] 35 P9.0, P9.[12:11] 36 P5.[11:8] 37 P5.6, P5.[15:12] 38 P5.0, P5.[5:2], P5.7 39 P3.[5:0], P5.1 40 P3.[12:6] 41 P0.[3:0], P3.[15:13] 42 P0.[11:4] 43 P0.[14:12] 44 P0.15, P18.[5:0] 45 P2.[15:11], P18.[7:6] 46 P2.[10:5] Data Sheet 104 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters 5.2 DC Parameters 5.2.1 Input/Output Pins Table 14 Standard_Pads Parameters Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition TA= 25 °C; f= 1 MHz Vi≥ 0.6 x VDDP V Vi≥ 0.36 x VDDP V Vi≤ 0.6 x VDDP V Vi≤ 0.36 x VDDP V Pin capacitance (digital inputs/outputs) CIO CC − − 10 pF Pull-down current |IPDL| CC − − 150 μA 10 − − μA |IPUH| CC 10 − − μA − − 100 μA Spike filter always blocked tSF1 CC pulse duration − − 10 ns only PORST pin Spike filter pass-through pulse duration 100 − − ns only PORST pin Unit Note / Test Condition Pull-Up current Table 15 tSF2 CC Standard_Pads Class_A1 Parameter Symbol Min. Typ. Max. Input Hysteresis for A1 pads 1) HYSA1 0.1 x − − V CC VDDP IOZA1 -500 − 500 nA VILA1 / VIHA1 0.6 − − Input Leakage Current Class A1 Ratio Vil/Vih, A1 pads Values CC Vi≥ 0 V; Vi≤ VDDP V CC Data Sheet 105 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters Table 15 Standard_Pads Class_A1 (cont’d) Parameter Symbol On-Resistance of the RDSONW class A1 pad, weak driver CC On-Resistance of the class A1 pad, medium driver CC Fall time,pad type A1 tFA1 CC RDSONM Values Unit Note / Test Condition Min. Typ. Max. − 450 600 Ohm IOH> -0.5 mA; P_MOS − 210 340 Ohm IOL< 0.5 mA; N_MOS − − 155 Ohm IOH> 2 mA; P_MOS − − 110 Ohm IOL< 2 mA; N_MOS − − 150 ns CL= 20 pF; pin out driver= weak − − 50 ns CL= 50 pF; pin out driver= medium − − 140 ns CL= 150 pF; pin out driver= medium − − 550 ns CL= 150 pF; pin out driver= weak − − 18000 ns CL= 20000 pF; pin out driver= medium − − 65000 ns CL= 20000 pF; pin out driver= weak Data Sheet 106 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters Table 15 Standard_Pads Class_A1 (cont’d) Parameter Symbol Values Min. Rise time, pad type A1 Typ. Max. tRA1 CC − − 150 − − Unit Note / Test Condition ns CL= 20 pF; pin out driver= weak 50 ns CL= 50 pF; pin out driver= medium − − 140 ns CL= 150 pF; pin out driver= medium − − 550 ns CL= 150 pF; pin out driver= weak − − 18000 ns CL= 20000 pF; pin out driver= medium − − 65000 ns CL= 20000 pF; pin out driver= weak Input high voltage class A1 pads VIHA1 SR 0.6 x min(V V DDP+ 0.3,3.6 ) − Input low voltage class A1 VILA1 SR -0.3 pads Data Sheet − VDDP 0.36 x V VDDP 107 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters Table 15 Standard_Pads Class_A1 (cont’d) Parameter Symbol Values Min. Output voltage high class A1 pads VOHA1 CC Typ. Unit Note / Test Condition V IOH≥ -1.4 mA; Max. VDDP - − − − − 0.4 2.4 pin out driver= medium V IOH≥ -2 mA; pin out driver= medium VDDP - − − V IOH≥ -400 μA; pin out driver= weak 2.4 − − V IOH≥ -500 μA; pin out driver= weak − − 0.4 V IOL≤ 2 mA; pin 0.4 Output voltage low class A1 pads VOLA1 CC out driver= medium − − 0.4 V IOL≤ 500 μA; pin out driver= weak 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can´t be guaranteed that it suppresses switching due to external system noise. Table 16 Standard_Pads Class_A1+ Parameter Symbol Input Hysteresis for A1+ pads 1) HYSA1 + CC IOZA1+ VDDP RDSONW Input Leakage Current Class A1+ On-Resistance of the class A1+ pad, weak driver Data Sheet Values Unit Note / Test Condition Min. Typ. Max. 0.1 x − − V -1000 − 1000 nA − 450 600 Ohm IOH> -0.5 mA; P_MOS − 210 340 Ohm IOL< 0.5 mA; N_MOS CC CC 108 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters Table 16 Standard_Pads Class_A1+ (cont’d) Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. − − 155 Ohm IOH> 2 mA; P_MOS − − 110 Ohm IOL< 2 mA; N_MOS On-Resistance of the class A1+ pad, strong driver RDSON1+ − − 100 Ohm IOH> 2 mA; P_MOS − − 80 Ohm IOL< 2 mA; N_MOS Fall time, pad type A1+ tFA1+ CC − − 150 ns − − On-Resistance of the class A1+ pad, medium driver RDSONM CC CC CL= 20 pF; pin out driver= weak 28 ns CL= 50 pF; edge= slow ; pin out driver= strong − − 16 ns CL= 50 pF; edge= soft ; pin out driver= strong − − 50 ns CL= 50 pF; pin out driver= medium − − 140 ns CL= 150 pF; pin out driver= medium − − 550 ns CL= 150 pF; pin out driver= weak − − 18000 ns CL= 20000 pF; pin out driver= medium − − 65000 ns CL= 20000 pF; pin out driver= weak Data Sheet 109 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters Table 16 Standard_Pads Class_A1+ (cont’d) Parameter Symbol Values Min. Rise time, pad type A1+ Typ. Max. tRA1+ CC − − 150 − − Unit Note / Test Condition ns CL= 20 pF; pin out driver= weak 28 ns CL= 50 pF; edge= slow ; pin out driver= strong − − 16 ns CL= 50 pF; edge= soft ; pin out driver= strong − − 50 ns CL= 50 pF; pin out driver= medium − − 140 ns CL= 150 pF; pin out driver= medium − − 550 ns CL= 150 pF; pin out driver= weak − − 18000 ns CL= 20000 pF; pin out driver= medium − − 65000 ns CL= 20000 pF; pin out driver= weak Input high voltage, Class A1+ pads Input low voltage Class A1+ pads Ratio Vil/Vih, A1+ pads VIHA1+ SR VILA1+ 0.6 x − VDDP 0.3,3.6 ) − -0.3 SR VILA1+ / VIHA1+ min(V V DDP+ 0.36 x V VDDP − 0.6 − CC Data Sheet 110 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters Table 16 Standard_Pads Class_A1+ (cont’d) Parameter Symbol Values Min. Output voltage high class A1+ pads VOHA1+ CC Typ. Unit Note / Test Condition V IOH≥ -1.4 mA; Max. VDDP - − − VDDP - − − − − 0.4 pin out driver= medium V 0.4 2.4 IOH≥ -1.4 mA; pin out driver= strong V IOH≥ -2 mA; pin out driver= medium − 2.4 − V IOH≥ -2 mA; pin out driver= strong VDDP - − − V IOH≥ -400 μA; pin out driver= weak 2.4 − − V IOH≥ -500 μA; pin out driver= weak − − 0.4 V IOL≤ 2 mA; pin 0.4 Output voltage low class A1+ pads VOLA1+ CC out driver= medium − − 0.4 V IOL≤ 2 mA; pin out driver= strong − − 0.4 V IOL≤ 500 μA; pin out driver= weak 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can´t be guaranteed that it suppresses switching due to external system noise. Data Sheet 111 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters Table 17 Standard_Pads Class_A2 Parameter Input Hysteresis for A2 pads 1) Input Leakage current Class A2 Symbol Values Unit Note / Test Condition Min. Typ. Max. HYSA2 0.1 x − − V CC VDDP IOZA2 -6000 − 6000 nA -3000 − 3000 nA 0.6 − − − 450 600 Ohm IOH> -0.5 mA; P_MOS − 210 340 Ohm IOL< 0.5 mA; N_MOS − − 155 Ohm IOH> 2 mA; P_MOS − − 110 Ohm IOL< 2 mA; N_MOS − − 28 Ohm IOH> 2 mA; P_MOS − − 22 Ohm IOL< 2 mA; N_MOS CC Vi< VDDP / 2 1 V; Vi> VDDP / 2 + 1 V; Vi≥ 0 V; Vi≤ VDDP V Vi> VDDP / 2 1 V; Vi< VDDP / 2 +1V Ratio Vil/Vih, A2 pads VILA2 / VIHA2 CC On-Resistance of the RDSONW class A2 pad, weak driver CC On-Resistance of the class A2 pad, medium driver RDSONM CC On-Resistance of the RDSON2 class A2 pad, strong driver CC Data Sheet 112 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters Table 17 Standard_Pads Class_A2 (cont’d) Parameter Fall time, pad type A2 Symbol tFA2 CC Values Min. Typ. Max. − − 150 Unit Note / Test Condition ns CL= 20 pF; pin out driver= weak − − 7 ns CL= 50 pF; edge= medium ; pin out driver= strong − − 10 ns CL= 50 pF; edge= mediumminus ; pin out driver= strong − − 3.7 ns CL= 50 pF; edge= sharp ; pin out driver= strong − − 5 ns CL= 50 pF; edge= sharpminus ; pin out driver= strong − − 16 ns CL= 50 pF; edge= soft ; pin out driver= strong − − 50 ns CL= 50 pF; pin out driver= medium − − 7.5 ns CL= 100 pF; edge= sharp ; pin out driver= strong − − 140 ns CL= 150 pF; pin out driver= medium Data Sheet 113 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters Table 17 Parameter Standard_Pads Class_A2 (cont’d) Symbol Values Min. Typ. Max. − − 550 Unit Note / Test Condition ns CL= 150 pF; pin out driver= weak − − 18000 ns CL= 20000 pF; pin out driver= medium − − 65000 ns CL= 20000 pF; pin out driver= weak Data Sheet 114 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters Table 17 Standard_Pads Class_A2 (cont’d) Parameter Symbol Values Min. Rise time, pad type A2 Typ. Max. tRA2 CC − − 150 − − Unit Note / Test Condition ns CL= 20 pF; pin out driver= weak 7.0 ns CL= 50 pF; edge= medium ; pin out driver= strong − − 10 ns CL= 50 pF; edge= mediumminus ; pin out driver= strong − − 3.7 ns CL= 50 pF; edge= sharp ; pin out driver= strong − − 5 ns CL= 50 pF; edge= sharpminus ; pin out driver= strong − − 16 ns CL= 50 pF; edge= soft ; pin out driver= strong − − 50 ns CL= 50 pF; pin out driver= medium − − 7.5 ns CL= 100 pF; edge= sharp ; pin out driver= strong − − 140 ns CL= 150 pF; pin out driver= medium Data Sheet 115 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters Table 17 Standard_Pads Class_A2 (cont’d) Parameter Symbol Values Min. Typ. Max. − − 550 Unit Note / Test Condition ns CL= 150 pF; pin out driver= weak − − 18000 ns CL= 20000 pF; pin out driver= medium − − 65000 ns CL= 20000 pF; pin out driver= weak Input high voltage, class A2 pads VIHA2 SR 0.6 x VOHA2 CC min(V V DDP + 0.3, 3.6) − Input low voltage Class A2 VILA2 SR -0.3 pads Output voltage high class A2 pads − VDDP 0.36 x V VDDP VDDP - − − VDDP - − − − − V 0.4 pin out driver= medium V 0.4 2.4 IOH≥ -1.4 mA; IOH≥ -1.4 mA; pin out driver= strong V IOH≥ -2 mA; pin out driver= medium − 2.4 − V IOH≥ -2 mA; pin out driver= strong VDDP - − − V IOH≥ -400 μA; pin out driver= weak − − V IOH≥ -500 μA; pin out driver= weak 0.4 2.4 Data Sheet 116 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters Table 17 Standard_Pads Class_A2 (cont’d) Parameter Symbol Output voltage low class A2 pads VOLA2 Values Min. Typ. Max. − − 0.4 Unit Note / Test Condition V IOL≤ 2 mA; pin CC out driver= medium − − 0.4 V IOL≤ 2 mA; pin out driver= strong − − 0.4 V IOL≤ 500 μA; pin out driver= weak 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can´t be guaranteed that it suppresses switching due to external system noise. Table 18 Standard_Pads Class_B Parameter Input Hysteresis, B class pads1) Symbol Values Unit Note / Test Condition − V VDDEBU= 1.8 V − − V VDDEBU= 2.5 V − − V VDDEBU= 3.3 V IOZB CC -3000 − 3000 nA -6000 − 6000 nA VDDEBU= 1.8 V; Vi> 0 V; Vi< VDDEBU V Vi> 0 V; Vi> VDDEBU/2 + Min. Typ. Max. HYSB 0.05 x − CC VDDEBU 0.08 x VDDEBU 0.1 x VDDEBU Input Leakage Current, class B pads 0.6 V; Vi≤ VDDEBU V; Vi≤ VDDEBU/2 0.6 V -3000 − 3000 nA Vi> VDDEBU/2 - 0.6 V; Vi< VDDEBU/2 + 0.6 V Data Sheet 117 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters Table 18 Standard_Pads Class_B (cont’d) Parameter Symbol Values Min. Ratio between low and high input threshold On-Resistance of the class B pad, weak driver On-Resistance of the class B pad, medium driver On-Resistance of the class B pad, strong driver Data Sheet Unit Max. − − 450 600 Ohm IOH> -0.5 mA; P_MOS; VDDEBU= 3.3 V − 210 340 Ohm IOL< 0.5 mA; N_MOS; VDDEBU= 3.3 V − − 155 Ohm IOH> -2 mA; P_MOS; VDDEBU= 3.3 V − − 110 Ohm IOL< 2 mA; N_MOS; VDDEBU= 3.3 V − − 28 Ohm IOH> -2 mA; P_MOS; VDDEBU= 3.3 V − − 22 Ohm IOL< 2 mA; N_MOS; VDDEBU= 3.3 V VILB / 0.6 VIHB CC RDSONW − CC RDSONM CC RDSON2 Note / Test Condition Typ. CC 118 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters Table 18 Standard_Pads Class_B (cont’d) Parameter Fall time, class B pads; edge= sharp ; pin out driver= strong 2) Data Sheet Symbol tFB CC Values Unit Note / Test Condition 3.3 ns − 5.0 ns − − 3.0 ns − − 2.5 ns − − 7.0 ns − − 4.0 ns − − 3.3 ns − − 12.0 ns − − 7.0 ns − − 6.0 ns CL= 20 pF; VDDEBU 1.53 V; VDDEBU≤ 1.98 V CL= 35 pF; VDDEBU 1.53 V; VDDEBU≤ 1.98 V CL= 35 pF; VDDEBU 2.375 ; VDDEBU≤ 2.625 CL= 35 pF; VDDEBU 3.13 ; VDDEBU≤ 3.47 CL= 50 pF; VDDEBU 1.53 V; VDDEBU≤ 1.98 V CL= 50 pF; VDDEBU 2.375 ; VDDEBU≤ 2.625 CL= 50 pF; VDDEBU 3.13 ; VDDEBU≤ 3.47 CL= 100 pF; VDDEBU 1.53 V; VDDEBU≤ 1.98 V CL= 100 pF; VDDEBU 2.375 ; VDDEBU≤ 2.625 CL= 100 pF; VDDEBU 3.13 ; VDDEBU≤ 3.47 Min. Typ. Max. − − − 119 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters Table 18 Standard_Pads Class_B (cont’d) Parameter Rise time, class B pads; edge= sharp ; pin out driver= strong 2) Symbol tRB CC Values Unit Note / Test Condition 3.3 ns − 5.0 ns − − 3.0 ns − − 3.0 ns − − 7.0 ns − − 4.0 ns − − 3.7 ns − − 12.0 ns − − 7.0 ns − − 6.0 ns CL= 20 pF; VDDEBU 1.53 V; VDDEBU≤ 1.98 V CL= 35 pF; VDDEBU 1.53 V; VDDEBU≤ 1.98 V CL= 35 pF; VDDEBU 2.375 ; VDDEBU≤ 2.625 CL= 35 pF; VDDEBU 3.13 ; VDDEBU≤ 3.47 CL= 50 pF; VDDEBU 1.53 V; VDDEBU≤ 1.98 V CL= 50 pF; VDDEBU 2.375 ; VDDEBU≤ 2.625 CL= 50 pF; VDDEBU 3.13 ; VDDEBU≤ 3.47 CL= 100 pF; VDDEBU 1.53 V; VDDEBU≤ 1.98 V CL= 100 pF; VDDEBU 2.375 ; VDDEBU≤ 2.625 CL= 100 pF; VDDEBU 3.13 ; VDDEBU≤ 3.47 Min. Typ. Max. − − − Input high voltage, class B VIHB CC 0.6 x − pads VDDEBU Data Sheet 120 max(V V DDEBU + 0.3, 3.6) V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters Table 18 Standard_Pads Class_B (cont’d) Parameter Symbol Values Min. Input low voltage, Class B VILB CC -0.3 pads Output voltage high, class VOHB B pads CC Output voltage low, class B pads Unit Typ. Max. − 0.36 x Note / Test Condition V VDDEBU VDDEBU − − V IOH -2 mA; 0.4 V IOL= 2 mA - 0.4 VOLB CC − − 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can´t be guaranteed that it suppresses switching due to external system noise. 2) For non strong driver and sharp edge settings see the class A2 definitions. Table 19 Standard_Pads Class_F Parameter Symbol Min. Typ. Max. Input Hysteresis F1) HYSF 0.05 x − − V CC VDDP IOZF CC -6000 − 6000 nA -3000 − 3000 nA Input Leakage Current Class F Values Unit Note / Test Condition Vi< VDDP / 2 1 V; Vi> VDDP / 2 + 1 V; Vi≥ 0 V; Vi≤ VDDP V Vi> VDDP / 2 1 V; Vi< VDDP / 2 +1V Ratio Vil/ Vih, F pads On-Resistance of the class F pad, medium driver − − − 170 Ohm IOH> -2 mA; P_MOS − − 145 Ohm IOL< 2 mA; N_MOS 0.6 VILF / VIHF CC RDSONM − CC Fall time, pad type F, CMOS mode tFF CC − − 60 ns CL= 50 pF Rise time, pad type F, CMOS mode tRF CC − − 60 ns CL= 50 pF Data Sheet 121 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters Table 19 Standard_Pads Class_F (cont’d) Parameter Symbol Values Min. Input high voltage, pad class F, CMOS mode VIHF SR 0.6 x VDDP Input low voltage, Class F VILF SR pads, CMOS mode Output high voltage, class VOHF F pads, CMOS mode CC − min(V V DDP+ Note / Test Condition 0.3, 3.6) 0.36 x V VDDP VDDP- − − V IOH≥ -1.4 mA − − V − 0.4 V IOH≥ -2 mA IOL≤ 2 mA 0.4 2.4 Output low voltage, class F pads, CMOS mode Max. − -0.3 Unit Typ. VOLF CC − 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can´t be guaranteed that it suppresses switching due to external system noise. Table 20 Standard_Pads Class_I Parameter Symbol Min. Typ. Max. Input Hysteresis Class I1) HYSI 0.1 x − − V CC VDDP IOZI CC -1000 VILI / VIHI 0.6 − 1000 nA − − VIHI SR − min(V V DDP+ Input Leakage Current Ratio between low and high input threshold Input high voltage, class I pins Input low voltage, Class I pads Values Unit Note / Test Condition CC 0.6 x VDDP VILI SR 0.3, 3.6) − -0.3 0.36 x V VDDP 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can´t be guaranteed that it suppresses switching due to external system noise. Class S pad parameters are only valid for VDDM = 4.75 V to 5.25 V. Data Sheet 122 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters Table 21 Standard_Pads Class_S Parameter Symbol Input Hysteresis for class S pads1) Input leakage current Input voltage high Input voltage low VILS Delta 2) HYSS Values Unit Min. Typ. Max. 0.3 − − V -300 − 300 nA − − 3.6 V 1.9 − − V -50 − 50 mV Note / Test Condition CC IOZS CC VIHS CC VILS CC VILSD CC Maximum input low state treshold variation over 1ms (VDDP = consta nt) 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can´t be guaranteed that it suppresses switching due to external system noise. 2) VILSD is implemented to ensure J2716 specification. It can’t be guaranteed that it suppresses switching due to external noise. Table 22 LVDS_Pads Parameters Parameter Symbol Min. Typ. Max. Output impedance, pad class F, LVDS mode RO CC 40 − 140 Ohm Fall time, pad type LVDS tFL CC − − 2 ns Data Sheet Values 123 Unit Note / Test Condition termination 100 Ω ± 1 %; differential capacitance = 1 0 pF; input capacitance = 2 0 pF V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters Table 22 LVDS_Pads Parameters (cont’d) Parameter Symbol Unit Note / Test Condition 2 ns termination 100 Ω ± 1 %; differential capacitance = 1 0 pF; input capacitance = 2 0 pF − 13 μs termination 100 Ω ± 1 % − 400 mV termination 100 Ω ± 1 % Typ. Max. − − tSET_LVD − Rise time, pad type LVDS tRL CC Pad set-up time Values Min. S CC Output Differential Voltage VOD CC 150 Output voltage high, pad class F, LVDS mode VOH CC − − 1525 mV termination 100 Ω ± 1 % Output voltage low, pad class F, LVDS mode VOL CC − − mV termination 100 Ω ± 1 % Output Offset Voltage VOS CC 1075 − 1325 mV termination 100 Ω ± 1 % Data Sheet 875 124 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters 5.2.2 Analog to Digital Converters (ADCx) ADC parameter are valid for VDD / DDAF = 1.235 V to 1.365 V; VDDM = 4.5 V to 5.5 V. Table 23 ADC Parameters Parameter Symbol Values Unit Min. Typ. Max. CAINSW Switched capacitance at the analog voltage inputs1) CC − 9 20 pF Total capacitance of an analog input − 20 30 pF Switched capacitance at the positive reference voltage input2)3) CAREFSW − 15 30 pF Total capacitance of the voltage reference inputs2) CAREFTO − 20 40 pF Differential Non-Linearity Error4)5)6)7) Gain Error4)5)6)7) CAINTOT CC CC T CC EADNL -3 − 3 LSB ADC resolution= 12bit 8) 9) EAGAIN -3.5 − 3.5 LSB ADC resolution= 12bit 8) 9) EAINL -3 − 3 LSB ADC resolution= 12bit 8) 9); ADC = 0,1,2 -3 − 3 LSB ADC resolution= 12bit 8) 9) ADC3 and VAIN ≤ VAREFx 0.15 V -15 − 15 LSB ADC resolution= 12bit 8) 9) ADC3 and VAREFx 0.15 V ≤ VAIN < CC CC Integral NonLinearity4)5)7)7) Note / Test Condition CC VAREFx Data Sheet 125 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters Table 23 ADC Parameters (cont’d) Parameter Offset Error4)5)6)7) Symbol EAOFF Values Unit Note / Test Condition 4 LSB ADC resolution= 12bit 8) 9) Min. Typ. Max. -4 − CC Converter clock Internal ADC clock Charge consumption per conversion fADC SR 4 fADCI CC 1 − 100 MHz fADC= fFPI − 18 MHz ADC0 1 − 18 MHz ADC1 QCONV 10) 1 − 20 MHz ADC2 1 − 16 MHz ADC3 100 pC 11) 70 85 CC charge needs to be provided via VAREF0 Data Sheet 126 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters Table 23 ADC Parameters (cont’d) Parameter Symbol Values Min. Input leakage at analog inputs12) IOZ1 CC -100 Typ. Max. − 500 Unit Note / Test Condition nA Vi≤ VDDM V; Vi≥ 0.97 x VDDM V; overlayed= No -100 − 600 nA Vi≥ 0.97 x VDDM V; Vi≤ VDDM V; overlayed= Yes -500 − 100 nA Vi≤ 0.03 x VDDM V; Vi≥ 0 V; -600 − 100 nA Vi≤ 0.03 x VDDM V; Vi≥ 0 V; -100 − 200 nA Vi> 0.03 x VDDM V; Vi< 0.97 x VDDM V; overlayed= No overlayed= Yes overlayed= No -100 − 300 nA Vi< 0.97 x VDDM V; Vi> 0.03 x VDDM V; overlayed= Yes Input leakage current at IOZ2 CC -1 − 1 μA IOZ3 CC -1 − 1 μA RAIN CC − 900 1500 Ohm 550 900 Ohm VAREFx Input leakage current at VAGNDx ON resistance of the transmission gates in the analog voltage path ON resistance for the ADC RAIN7T test (pull down for AIN7) CC Data Sheet 180 127 VAREFx≥ 0 V; VAREFx≤ VDDM V VAGNDx≥ 0 V; VAGNDx≤ VDDM V V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters Table 23 ADC Parameters (cont’d) Parameter Symbol Values Unit Min. Typ. Max. − 500 1000 Ohm Note / Test Condition Resistance of the reference voltage input path RAREF CC Sample time tS CC 2 tCAL CC − − 257 TADCI − 4352 cycle s TUE CC -4 − 414) LSB ADC resolution= 12bit ADC = 0,1,2 -4 − 414) LSB ADC resolution= 12bit 8) 9) ADC3 and VAIN ≤ VAREFx 0.15 V -14 − 1414) LSB ADC resolution= 12bit 8) 9) ADC3 and VAREFx 0.15 V ≤ VAIN < Calibration time after bit ADC_GLOBCFG.SUCAL is set Total Unadjusted Error6)5)13) VAREFx Analog reference ground 2) VAGNDx SR Analog input voltage Analog reference voltage 2) VAIN SR VAGNDx − VAREFx VAGNDx − SR Analog reference voltage range6)5)2) VSSM - − 0.05 +1 VAREFx V -1 VAREFx V VDDM + V 0.0515) 16) VAREFx - VDDM/2 − VAGNDx VDDM + V 0.05 SR 1) The sampling capacity of the conversion C-network is pre-charged to VAREFx/2 before the sampling moment. Because of the parasitic elements the voltage measured at AINx can deviate from VAREFx/2. 2) Applies to AINx, when used as auxiliary reference input. Data Sheet 128 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters 3) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead smaller capacitances are successively switched to the reference voltage. 4) The sum of DNL/INL/GAIN/OFF errors does not exceed the related TUE total unadjusted error. 5) If a reduced analog reference voltage between 1V and VDDM / 2 is used, then there are additional decrease in the ADC speed and accuracy. 6) If the analog reference voltage range is below VDDM but still in the defined range of VDDM / 2 and VDDM is used, then the ADC converter errors increase. If the reference voltage is reduced by the factor k (k<1), TUE,DNL,INL,Gain, and Offset errors increase also by the factor 1/k. 7) If the analog reference voltage is > VDDM, then the ADC converter errors increase. 8) For 10-bit conversions the error value must be multiplied with a factor 0.25. 9) For 8-bit conversions the error value must be multiplied with a factor 0.0625. 10) For fADCI between 18MHz and 20MHz the TUE and Gain Error can increase beyond the given limits. For STC < 2 INL, DNL , and Offset errors can also increase. 11) For a conversion time of 1 µs a rms value of 85µA result for IAREFx. 12) The leakage current definition is a continuos function, as shown in figure ADCx Analoge Input Leakage. The numerical values defined determine the characteristic points of the given continuous linear approximation they do not define step function. 13) Measured without noise. 14) For 10-bit conversion the TUE is ±2LSB; for 8-bit conversion the TUE is ±1LSB 15) A running conversion may become inexact in case of violating the normal conditions (voltage overshoot). 16) If the reference voltage VAREFx increase or the VDDM decrease, so that VAREF = (VDDM + 0.05V to VDDM + 0.07V), then the accuracy of the ADC decrease by 4LSB12. Table 24 Conversion Time (Operating Conditions apply) Parameter Symbol Values tC Conversion time with post-calibration Conversion time without post-calibration Unit Note CC 2 × TADC + (4 + STC + n) × TADCI μs 2 × TADC + (2 + STC + n) × TADCI n = 8, 10, 12 for n - bit conversion TADC = 1 / fFPI TADCI = 1 / fADCI The power-up calibration of the ADC requires a maximum number of 4352 fADCI cycles. Data Sheet 129 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters REXT VAIN = Analog Input Circuitry RAIN, On ANx CEXT CAINTOT - CAINSW VAGNDx CAINSW RAIN7T Reference Voltage Input Circuitry RAREF, On VAREFx VAREF CAREFTOT - CAREFSW CAREFSW VAGNDx Analog_InpRefDiag Figure 6 Data Sheet ADCx Input Circuits 130 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters Ioz1 Single ADC Input 500nA 200nA 100nA -100nA VIN[VDDM%] 3% 97% 100% -500nA Ioz1 Overlayed ADC/FADC Input 600nA 300nA 100nA -100nA VIN[VDDM%] 3% 97% 100% -600nA Figure 7 Data Sheet ADCx Analog Inputs Leakage 131 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters 5.2.3 Fast Analog to Digital Converter (FADC) FADC parameter are vaild for VDD / DDAF = 1.235 V to 1.365 V; VDDMF = 2.97 V to 3.6 V. Table 25 FADC Parameters Parameter Input current at VFAREF Symbol Values Unit Min. Typ. Max. IFAREF − − 120 μA IFOZ2 -500 − 500 nA IFOZ3 -500 − 500 nA EFDNL -1 − 1 LSB Note / Test Condition CC Input leakage current at VFAREF1) CC Input leakage current at VFAGND CC DNL error CC VFAREF≤ VDDMF V; VFAREF≥ 0 V VIN mode= differential; Gain = 1 or 2 − -2 2 LSB VIN mode= differential; Gain = 4 or 82) − -1 1 LSB VIN mode= single ended; Gain = 1 or 2 − -2 2 LSB VIN mode= single ended; Gain = 4 or 82) GRADient error EFGRAD -5 − -5 − 5 % CC VIN mode= differential ; Gain≤ 4 5 % VIN mode= single ended ; Gain≤ 4 − -6 6 % VIN mode= differential ; Gain= 8 − -6 6 % VIN mode= single ended ; Gain= 8 Data Sheet 132 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters Table 25 FADC Parameters (cont’d) Parameter INL error Symbol EFINL Values Unit Note / Test Condition 4 LSB VIN mode= 4 LSB VIN mode= Min. Typ. Max. -4 − -4 − CC differential single ended Offset error EFOFF − -90 90 mV CC VIN mode= differential ; Calibration= No − -90 90 mV VIN mode= single ended ; Calibration= No − -20 20 mV VIN mode= differential ; Calibration= Ye s 3)4) − -20 20 mV VIN mode= single ended ; Calibration= Ye s 3)4) EFREF -60 − 60 mV Channel amplifier cutoff frequency fCOFF 2 − − MHz Converter clock fFADC 1 − 100 MHz fFADC= fFPI tC CC − − 21 1/ Input resistance of the analog voltage path (Rn, Rp) RFAIN 100 Settling time of a channel amplifier after changing ENN or ENP tSET CC − Analog input voltage range VAINF Error of commen mode voltage VFAREF/2 CC CC SR Conversion time Data Sheet − 200 kOh m − 5 μs VDDMF V CC SR For 10-bit fFADC conversion VFAGND − 133 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters Table 25 FADC Parameters (cont’d) Parameter Symbol Values Min. Analog reference ground VFAGND VSSAF - − VFAREF 2.97 SR Analog reference voltage Typ. 0.05 SR − Unit Max. VSSAF V 3.635) V Note / Test Condition + 0.05 6) 1) This value applies in power-down mode. 2) No missing codes. 3) Calibration should be preformed at each power-up. In case of a continous operation, it should be performed minimium once per week. 4) The offser error voltage drifts over the whole temperature range maximum +-3LSB. 5) Voltage overshoot to 4V is permissible, provided the pulse duration is less than 100 μs and the cumulated sum of the pulses does not exceed 1 h. 6) A running conversion may become inexact in case of violating the nomal operating conditions (voltage overshoots). The calibration procedure should run after each power-up, when all power supply voltages and the reference voltage have stabilized. Data Sheet 134 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters FADC Analog Input Stage FAINxN - = VFAGND RN VFAREF /2 + + FAINxP RP - FADC Reference Voltage Input Circuitry VFAREF IFAREF VFAREF VFAGND FADC_InpRefDiag Figure 8 Data Sheet FADC Input Circuits 135 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters 5.2.4 Table 26 Oscillator Pins OSC_XTAL Parameters Parameter Symbol Values Unit Note / Test Condition VIN<VDDOSC3 ; VIN>0 V Min. Typ. Max. -25 − 25 μA Input current at XTAL1 IIX1 CC Input frequency fOSC SR 4 − 40 MHz Direct Input Mode selected 8 − 25 MHz External Crystal Mode selected − − 10 ms VDDOS V Oscillator start-up time1) tOSCS CC Input high voltage at XTAL12) VIHX SR 0.7 x VDDOS Input low voltage at XTAL1 VILX SR -0.5 Input Hysteresis for XTAL1 pad 3) HYSAX − + 0.5 C3 C3 − 0.3 x V VDDOS C3 − − 200 mV CC 1) tOSCS is defined from the moment when VDDOSC3 = 3.13V until the oscillations reach an amplitude at XTAL1 of 0.3 * VDDOSC3. The external oscillator circuitry must be optimized by the customer and checked for negative resistance as recommended and specified by crystral suppliers. 2) If the XTAL1 pin is driven by a crystal, reaching a minimum amplitude (peak-to-peak) of 0.4 * VDDOSC3 is necessary. 3) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can´t be guaranteed that it suppresses switching due to external system noise. Note: It is strongly recommended to measure the oscillation allowance (negative resistance) in the final target system (layout) to determine the optimal parameters for the oscillator operation. Please refer to the limits specified by the crystal or ceramic resonator supplier. Data Sheet 136 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters 5.2.5 Table 27 Temperature Sensor DTS Parameters Parameter Symbol Values Min. Measurement time Temperature sensor range tM CC TSR SR Unit Typ. Max. − − 100 μs -40 − 150 °C Sensor Accuracy (calibrated) TTSA CC -6 − 6 °C Start-up time after resets inactive tTSST SR − − 20 μs Note / Test Condition The following formula calculates the temperature measured by the DTS in [oC] from the RESULT bit field of the DTSSTAT register. (1) DTSSTAT RESULT – 596 Tj = ------------------------------------------------------------------2, 03 Data Sheet 137 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters 5.2.6 Power Supply Current The total power supply current defined below consists of leakage and switching component. Application relevant values are typically lower than those given in the following two tables and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations). The operating conditions for the parameters in the following table are: VDD / VDDOSC / VDDAF / VDDPF=1.365 V, VDDP / VDDOSC / VDDMF / VDDFL3 / VDDPF=3.47 V, fSRI / CPU=300 MHz, fPCP=200 MHz, fSRI=100 MHz, TJ=150 oC The realisic power pattern defines the following conditions: • • • • • • • TJ=150 oC fSRI = fCPU = 300 MHz fPCP = 200 MHz fFPI = 100 MHz VDD = VDDOSC = VDDAF = VDDPF = 1.326 V VDDP = VDDOSC3 = VDDFL3 VDDPF3 = VDDMF = 3.366 V VDDM = 5.1 V The max power pattern defines the following conditions: • • • • • • • TJ=150 oC fSRI = fCPU = 300 MHz fPCP = 200 MHz fFPI = 100 MHz VDD = VDDOSC = VDDAF = VDDPF = 1.43 V VDDP = VDDOSC3 = VDDFL3 VDDPF3 = VDDMF = 3.63 V VDDM = 5.5 V Table 28 Power Supply Parameters Parameter Symbol Core active mode supply current1)2) IDD CC Values Unit Note / Test Condition Min. Typ. Max. − − 8903) mA power pattern= max; fCPU=300 MHz − − 6564) mA power pattern= realisti c; fCPU=300 MHz IDD current at PORST Low IDD_PORS − T CC − − 298 mA TJ=150 oC − 249 mA TJ=140 oC Data Sheet 138 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters Table 28 Power Supply Parameters (cont’d) Parameter Symbol Values Unit Min. Typ. Max. E-Ray PLL core supply current IDDPF − − 4 mA Oscillator core supply current IDDOSC − − 3 mA FADC core supply current IDDAF CC − − 26 mA Sum of all 1.3 V supply currents IDDSUM − − 689 mA E-Ray PLL 3.3V supply IDDPF3 − − 4 mA Oscillator power supply current, 3.3V IDDOSC3 − − 11 mA FADC analog supply current, 3.3V IDDMF − − 15 mA IDDEBU current at PORST IDDEBU_P − − 1 mA mA Note / Test Condition CC CC CC power pattern= realisti c; fCPU=300 MHz CC Low CC CC ORST CC IDDP current at PORST IDDP_POR − − 7 IDDP current no pad IDDP CC − − IDDP_P Low activity, LVDS off 5) ST CC ORST mA including flash read current mA including flash programming current 6) mA including flash erase verify current 6) + 25 − − IDDP_P ORST + 55 − − IDDP_P ORST + 7) 40 Data Sheet 139 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters Table 28 Power Supply Parameters (cont’d) Parameter Symbol Unit Note / Test Condition 98 mA flash read current − 29 mA flash programming current 6) − − 98 mA flash erase current 6) ILVDS − − 24 mA in total for all LVDS pairs Sum of all 3.3 V supply currents, no pad activity, LVDS off IDD3SUM − − 161 8) mA including flash read current ADC 5V power supply current IDDM CC − − 8 mA Maximum power dissipation PD CC − − 1808 mW power pattern= max; fCPU=300 MHz − − 1547 mW power pattern= realisti c; fCPU=300 MHz Flash memory current 5) IDDFL3 Values Min. Typ. Max. − − − CC Current Consumption of LVDS Pad Pairs CC CC 1) Infineon Power Loop: CPU and PCP running, all peripherals active. The power consumption of each customer application will most probably be lower than this value, but must be evaluated seperately. 2) This current includes the E-Ray module power consumption, including the PCP operation component. 3) The IDD decreases typically by 89mA if the fCPU decreases by 50MHz, at constant TJ 4) The IDD decreases typically by 70mA if the fCPU decreases by 50MHz, at constant TJ 5) For operations including the D-Flash the required currents are always lower than the currents for non D-Flash operation. 6) Relevant for the power supply dimensioning, not for thermal considerations. 7) In case of erase of Program Flash PFx, internal flash array loading effects may generate transient current spikes of up to 15 mA for maximum 5 ms per flash module. 8) For power supply dimensioning of VDDP 30 mA have to added for flash programming case. 5.2.6.1 Calculating the 1.3 V Current Consumption The current consumption of the 1.3 V rail compose out of two parts: • Static current consumption Data Sheet 140 V 1.1, 2014-05 TC1798 Electrical ParametersDC Parameters • Dynamic current consumption The static current consumption is related to the device temperature TJ and the dynamic current consumption depends of the configured clocking frequencies and the software application executed. These two parts needs to be added in order to get the rail current consumption. (2) I 0 mA = 3, 75 --------- × e 0, 02041 × T J [ C ] C (3) I 0 mA = 18, 77 --------- × e 0, 01825 × T J [ C ] C Function 2 defines the typical static current consumption and Function 3 defines the maximum static current consumption. Both functions are valid for VDD = 1.326 V. For the dynamic current consumption using the application pattern and fSRI = 2 * fPCP = 3 * fFPI the function 4 applies: (4) mA I D m = 1, 19 ------------- × f CPU [ MHz ] y MHz and this finally results in (5) I DD = I 0 + I DYM Data Sheet 141 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters 5.3 AC Parameters That means, keeping the pads constantly at maximum strength. 5.3.1 Testing Waveforms VD D P 90% 90% 10% 10% VSS tR tF rise_fall Figure 9 Rise/Fall Time Parameters VD D P VD D E / 2 Test Points VD D E / 2 VSS mct04881_a.vsd Figure 10 Testing Waveform, Output Delay VLoad+ 0.1 V VLoad- 0.1 V Timing Reference Points VOH - 0.1 V VOL - 0.1 V MCT04880_new Figure 11 Data Sheet Testing Waveform, Output High Impedance 142 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters 5.3.2 Power Sequencing V 5.25V 5V 4.75V VAREF 3.47V 3.3V 3.0V -12% 1.365V 1.3V 1.235V 0.5V -12% 0.5V 0.5V t VDDP PORST power down Figure 12 power fail t Power-Up 10.vsd 5 V / 3.3 V / 1.3 V Power-Up/Down Sequence The following list of rules applies to the power-up/down sequence: • • • All ground pins VSS must be externally connected to one single star point in the system. Regarding the DC current component, all ground pins are internally directly connected. At any moment in time to avoid increased latch-up risk, each power supply must be higher then any lower_power_supply - 0.5 V, or: VDD5 > VDD3.3 - 0.5 V; VDD5 > VDD1.3 - 0.5 V;VDD3.3 > VDD1.3 - 0.5 V, see Figure 12. – The latch-up risk is minimized if the I/O currents are limited to: – 20 mA for one pin group – AND 100 mA for the completed device I/Os – AND additionally before power-up / after power-down: 1 mA for one pin in inactive mode (0 V on all power supplies) During power-up and power-down, the voltage difference between the power supply pins of the same voltage (3.3 V, 1.3 V, and 5 V) with different names (for example VDDP, VDDFL3 ...), that are internally connected via diodes, must be lower than Data Sheet 143 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters • • • • • • 100 mV. On the other hand, all power supply pins with the same name (for example all VDDP), are internally directly connected. It is recommended that the power pins of the same voltage are driven by a single power supply. The PORST signal may be deactivated after all VDD5, VDD3.3, VDD1.3, and VAREF power-supplies and the oscillator have reached stable operation, within the normal operating conditions. At normal power down the PORST signal should be activated within the normal operating range, and then the power supplies may be switched off. Care must be taken that all Flash write or delete sequences have been completed. At power fail the PORST signal must be activated at latest when any 3.3 V or 1.3 V power supply voltage falls 12% below the nominal level. If, under these conditions, the PORST is activated during a Flash write, only the memory row that was the target of the write at the moment of the power loss will contain unreliable content. In order to ensure clean power-down behavior, the PORST signal should be activated as close as possible to the normal operating voltage range. In case of a power-loss at any power-supply, all power supplies must be powereddown, conforming at the same time to the rules number 2 and 4. Although not necessary, it is additionally recommended that all power supplies are powered-up/down together in a controlled way, as tight to each other as possible. Additionally, regarding the ADC reference voltage VAREF: – VAREF must power-up at the same time or later then VDDM, and – VAREF must power-down either earlier or at latest to satisfy the condition VAREF < VDDM + 0.5 V. This is required in order to prevent discharge of VAREF filter capacitance through the ESD diodes through the VDDM power supply. In case of discharging the reference capacitance through the ESD diodes, the current must be lower than 5 mA. Data Sheet 144 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters 5.3.3 Table 29 Power, Pad and Reset Timing Reset Timings Parameters Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition fCPU = 300 MHz Application Reset Boot Time1)2) tB CC − − 880 μs Power on Reset Boot Time3)4) tBP CC − − 2.5 ms − − ns − − ns HWCFG pins hold time from ESR0 rising edge tHDH SR 16 / fFPI HWCFG pins setup time to tHDS SR 0 ESR0 rising edge Ports inactive after ESR0 reset active tPI CC − − 8/fFPI ns Ports inactive after PORST reset active5) tPIP CC − − 150 ns Minimum PORST active time after power supplies are stable at operating levels tPOA SR 10 − − ms TESTMODE / TRST hold time from PORST rising edge tPOH SR 100 − − ns PORST rise time tPOR SR − tPOS SR 0 − 50 ms − − ns − 40 6) μs TESTMODE / TRST setup time to PORST rising edge Application Reset inactive tPOR_APP − after PORST deassertion SR 1) The duration of the boot time is defined between the rising edge of the internal application reset and the clock cycle when the first user instruction has entered the CPU pipeline and its processing starts. 2) The given time includes the time of the internal reset extension for a configured value of SCU_RSTCNTCON.RELSA = 0x05BE. 3) The duration of the boot time is defined between the rising edge of the PORST and the clock cycle when the first user instruction has entered the CPU pipeline and its processing starts. Data Sheet 145 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters 4) The given time includes the internal reset extension time for the System and Application Reset which is visible through ESR0. 5) This parameter includes the delay of the analog spike filter in the PORST pad. 6) Application Reset is assumed not to be extended from external, otherwise the time extends by the time the Application Reset is extended. VDD P -12% VD D PPA V D DPPA VDDP VDD VD D -12% tPOA tPOA PORST tPOH TRST TESTMODE ESR0 tPOH t hd t hd tHDH tHDH tHDH HWCFG t PIP tPI Pads tPI t PIP tPI tPI t PIP tPI Pad-state undefined Tri-state or pull device active reset_beh2 As programmed Figure 13 Data Sheet Power, Pad and Reset Timing 146 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters 5.3.4 Table 30 Phase Locked Loop (PLL) PLL_SysClk Parameters Parameter Symbol Values Min. Accumulated Jitter Modulation frequency PLL base frequency DP CC -7 fMOD SR 50 fPLLBASE 50 Unit Typ. Max. − 7 Note / Test Condition ns − 200 kHz 200 320 MHz fREF CC 8 fVCO CC 400 − 16 MHz − 720 MHz with inactive modulation 400 − 600 MHz with active modulation − − 2.5 ns − − 9.5 ns 0 − 2.5 % 14 − 200 μs 14 − 400 μs N ≤ 32 − − 0.01 % with active modulation CC VCO input frequency VCO frequency range Modulation jitter Total long term jitter Modulation Amplitude PLL lock-in time System frequency deviation JMOD CC JTOT CC MA SR tL CC fSYSD CC N > 32 Phase Locked Loop Operation When PLL operation is enabled and configured, the PLL clock fVCO (and with it the SRIBus clock fSRI) is constantly adjusted to the selected frequency. The PLL is constantly adjusting its output frequency to correspond to the input frequency (from crystal or clock source), resulting in an accumulated jitter that is limited. This means that the relative deviation for periods of more than one clock cycle is lower than for a single clock cycle. This is especially important for bus cycles using wait states and for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is negligible. Data Sheet 147 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters Two formulas are defined for the (absolute) approximate maximum value of jitter Dm in [ns] dependent on the K2 - factor, the SRI clock frequency fSRI in [MHz], and the number m of consecutive fSRI clock periods. for ( K2 ≤ 100 ) ( m ≤ ( f SRI [ MHz ] ) ⁄ 2 ) and ( 1 – 0, 01 × K2 ) × ( m – 1 ) 740 D m [ ns ] = ⎛⎝ ------------------------------------------ + 5⎞⎠ × ⎛⎝ ---------------------------------------------------------------- + 0, 01 × K2⎞⎠ 0, 5 × f SRI [ MHz ] – 1 K2 × f SRI [ MHz ] else 740 D m [ ns ] = ------------------------------------------ + 5 K2 × f SRI [ MHz ] (6) (7) With rising number m of clock cycles the maximum jitter increases linearly up to a value of m that is defined by the K2-factor of the PLL. Beyond this value of m the maximum accumulated jitter remains at a constant value. Further, a lower SRI-Bus clock frequency fSRI results in a higher absolute maximum jitter value. Note: The specified PLL jitter values are valid if the capacitive load per pin does not exceed CL = 20 pF with the maximum driver and sharp edge. Note: The maximum peak-to-peak noise on the pad supply voltage, measured between VDDOSC3 and VSSOSC, is limited to a peak-to-peak voltage of VPP = 100 mV for noise frequencies below 300 KHz and VPP = 40 mV for noise frequencies above 300 KHz. The maximum peak-to peak noise on the pad supply voltage, measured between VDDOSC and VSSOSC, is limited to a peak-to-peak voltage of VPP = 100 mV for noise frequencies below 300 KHz and VPP = 40 mV for noise frequencies above 300 KHz. These conditions can be achieved by appropriate blocking of the supply voltage as near as possible to the supply pins and using PCB supply and ground planes. Oscillator Watchdog (OSC_WDT) The expected input frequency is selected via the bit field SCU_OSCCON.OSCVAL. The OSC_WDT checks for too low frequencies and for too high frequencies. The frequency that is monitored is fOSCREF which is derived for fOSC. (8) f O S C R EF fO S C = ---------------------------------OSCVAL + 1 The divider value SCU_OSCCON.OSCVAL has to be selected in a way that fOSCREF is 2.5 MHz. Data Sheet 148 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters Note: fOSCREF has to be within the range of 2 MHz to 3 MHz and should be as close as possible to 2.5 MHz. The monitored frequency is too low if it is below 1.25 MHz and too high if it is above 7.5 MHz. This leads to the following two conditions: • • Too low: fOSC < 1.25 MHz × (SCU_OSCCON.OSCVAL+1) Too high: fOSC > 7.5 MHz × (SCU_OSCCON.OSCVAL+1) Note: The accuracy is 30% for these boundaries. Frequency Modulation Frequency modulation defines a slow and predictable variation of the clock speed. The modulation configuration itself is controlled via register SCU_PLLCON2 where the two bit fields define the modulation properties. (9) f OSC MODFREQ × 31, 32 f MOD = -------------- × ---------------------------------------------------P MODAMP (10) MODAMP MA = ---------------------------- N × 161 Data Sheet 149 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters 5.3.5 Table 31 ERAY Phase Locked Loop (ERAY_PLL) PLL_ERAY Parameters Parameter Symbol Values Min. Unit Typ. Max. Accumulated jitter at SYSCLK pin DPP CC -0.8 − 0.8 ns Accumulated_Jitter DP CC -0.5 fPLLBASE_ 50 − 0.5 ns 250 360 MHz fREF CC 20 − 40 MHz fVCO_ERA 450 − 500 MHz − 200 μs PLL Base Frequency of the ERAY PLL VCO input frequency of the ERAY PLL ERAY Note / Test Condition CC VCO frequency range of the ERAY PLL Y PLL lock-in time tL CC CC 5.6 Note: The specified PLL jitter values are valid if the capacitive load per pin does not exceed CL = 20 pF with the maximum driver and sharp edge. Note: The maximum peak-to-peak noise on the pad supply voltage, measured between VDDPF3 and VSSPF, is limited to a peak-to-peak voltage of VPP = 100 mV for noise frequencies below 300 KHz and VPP = 40 mV for noise frequencies above 300 KHz. These conditions can be achieved by appropriate blocking of the supply voltage as near as possible to the supply pins and using PCB supply and ground planes. Data Sheet 150 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters 5.3.6 JTAG Interface Timing The following parameters are applicable for communication through the JTAG debug interface. The JTAG module is fully compliant with IEEE1149.1-2000. Note: These parameters are not subject to production test but verified by design and/or characterization. Table 32 JTAG Interface Timing Parameters (Operating Conditions apply) Parameter Min. Typ. Max. Unit Note / Test Condition 25 – – ns – 10 – – ns – 10 – – ns – – – 4 ns – – – 4 ns – 6 – – ns – t7 SR 6 – – ns – TDO valid after TCK falling t8 CC edge1) (propagation delay) t CC 8 – – 13 ns CL = 50 pF 3 – – ns CL = 20 pF TDO hold after TCK falling t18 CC edge1) 2 – – ns TDO high imped. to valid from TCK falling edge1)2) t9 CC – – 14 ns CL = 50 pF TDO valid to high imped. from TCK falling edge1) t10 CC – – 13.5 ns CL = 50 pF TCK clock period TCK high time TCK low time TCK clock rise time TCK clock fall time TDI/TMS setup to TCK rising edge TDI/TMS hold after TCK rising edge Symbol t1 SR t2 SR t3 SR t4 SR t5 SR t6 SR Values 1) The falling edge on TCK is used to generate the TDO timing. 2) The setup time for TDO is given implicitly by the TCK cycle time. Data Sheet 151 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters t1 0.9 VD D P 0.5 VD D P t5 t2 0.1 VD D P t4 t3 MC_ JTAG_ TCK Figure 14 Test Clock Timing (TCK) TCK t6 t7 t6 t7 TMS TDI t9 t8 t1 0 TDO t18 Figure 15 Data Sheet MC_JTAG JTAG Timing 152 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters 5.3.7 DAP Interface Timing The following parameters are applicable for communication through the DAP debug interface. Note: These parameters are not subject to production test but verified by design and/or characterization. Table 33 DAP Parameters Parameter Symbol 1) tTCK SR t12 SR t13 SR t14 SR t15 SR t16 SR DAP0 clock period DAP0 high time 1) DAP0 low time DAP0 clock rise time DAP0 clock fall time DAP1 setup to DAP0 rising edge Values Unit Min. Typ. Max. 12.5 − − ns 4 − − ns 4 − − ns − − 2 ns − − 2 ns 6.0 − − ns DAP1 hold after DAP0 rising edge t17 SR 6.0 − − ns DAP1 valid per DAP0 clock period2) t19 CC 8 − − ns 10 − − ns Note / Test Condition CL= 20 pF; f= 80 MHz CL= 50 pF; f= 40 MHz 1) See the DAP chapter for clock rate restrictions in the Active:IDLE protocol state. 2) The Host has to find a suitable sampling point by analyzing the sync telegram response. t11 0.9 VD D P 0.5 VD D P t1 5 t1 2 t14 0.1 VD D P t1 3 MC_DAP0 Figure 16 Data Sheet Test Clock Timing (DAP0) 153 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters DAP0 t1 6 t1 7 DAP1 MC_ DAP1_RX Figure 17 DAP Timing Host to Device t1 1 DAP1 t1 9 MC_ DAP1_TX Figure 18 5.3.8 Data Sheet DAP Timing Device to Host Micro Link Interface (MLI) Timing 154 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters MLI Transmitter Timing t13 t14 t10 t12 TCLKx t11 t15 t15 TDATAx TVALIDx t16 t17 TREADYx MLI Receiver Timing t23 t24 t20 RCLKx t22 t21 t25 t26 RDATAx RVALIDx t27 t27 RREADYx MLI_Tmg_2.vsd Figure 19 MLI Interface Timing Note: The generation of RREADYx is in the input clock domain of the receiver. The reception of TREADYx is asynchronous to TCLKx. The MLI parameters are vaild for CL = 50 pF and strong driver medium edge. Data Sheet 155 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters Table 34 MLI Receiver Parameter Symbol Values Unit Min. Typ. 1 / fFPI − − ns − 0.5 x − ns − ns − 4 ns − − 4 ns 4.2 − − ns RDATA/RVALID hold time t26 SR after RCLK falling edge 2.2 − − ns RREADY output delay time 0 − 16 ns RCLK clock period RCLK high time1)2) t20 SR t21 SR Max. Note / Test Condition t20 RCLK low time1)2) t22 SR − 0.5 x t20 RCLK rise time3) RCLK fall time 3) RDATA/RVALID setup time before RCLK falling edge t23 SR t24 SR t25 SR t27 SR − 1) The following formula is valid: t21 + t22 = t20. 2) Min and Max values for this parameter can be derived from the typ. value by considering the other receiver timing parameters. 3) The RCLK max. input rise/fall times are best case parameters for fSYS = 90 MHz. For reduction of EMI, slower input signal rise/fall times can be used for longer RCLK clock periods. Table 35 MLI Transmitter Parameter TCLK clock period Symbol t10 CC Values Unit Min. Typ. Max. 2x1/ − − ns 0.45 x 0.5 x 0.55 x ns t10 t10 t10 0.45 x 0.5 x 0.55 x t10 t10 t10 Note / Test Condition fFPI TCLK high time1)2) TCLK low time1)2) t11 CC t12 CC ns TCLK rise time t13 CC − − 0.3 x ns TCLK fall time t14 CC − − 0.3 x ns Data Sheet 156 t103) t103) V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters MLI Transmitter (cont’d) Table 35 Parameter Symbol Values Unit Min. Typ. Max. TDATA/TVALID output delay time t15 CC -3 − 4.4 ns TREADY setup time before TCLK rising edge t16 SR 18 − − ns TREADY hold time after TCLK rising edge t17 SR -2 − − ns Note / Test Condition 1) The following formula is valid: t11 + t12 = t10. 2) The min./max. TCLK low/high times t11/t12 include the PLL jitter of fSYS. Fractional divider settings must be regarded additionally to t11 / t12. 3) For high-speed MLI interface, strong driver sharp or medium edge selection (class A2 pad) is recommended for TCLK. 5.3.9 Micro Second Channel (MSC) Interface Timing The MSC parameters are vaild for CL = 50 pF. Table 36 MSC Parameters Parameter Symbol FCLP clock period1)2) t40 CC SOP4)/ENx outputs delay from FCLP4) rising edge t45 CC SDI bit time t46 CC Values Unit Note / Test Condition Min. Typ. Max. 2x − − ns -2 − 5 ns ENx with strong driver and sharp (minus ) edge -2 − 10 ns ENx with strong driver and medium (minus) edge 0 − 21 ns ENx with strong driver and soft edge 8x − − ns TMSC3) TMSC Data Sheet 157 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters Table 36 MSC Parameters (cont’d) Parameter Symbol t48 SR t49 SR SDI rise time SDI fall time Values Unit Min. Typ. Max. − − 200 ns − − 200 ns Note / Test Condition 1) FCLP signal rise/fall times are only defined by the pad rise/fall times. 2) FCLP signal high and low can be minimum 1xTMSC 3) TMSC = TSYS = 1 / fSYS. 4) SOP / FCLP either propagated by LVDS or by CMOS strong driver and non soft edge. t40 0.9 VDDP 0.1 VDDP FCLP t45 t45 SOP EN t48 t49 0.9 VDDP 0.1 VDDP SDI t46 Figure 20 t46 MSC_Tmg_1.vsd MSC Interface Timing Note: The data at SOP should be sampled with the falling edge of FCLP in the target device. Data Sheet 158 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters 5.3.10 SSC Master/Slave Mode Timing The SSC parameters are vaild for CL = 50 pF and strong driver medium edge. Table 37 SSC Parameters Parameter SCLK clock period1)2)3) Symbol t50 CC Values Unit Min. Typ. Max. 2x1/ − − ns Note / Test Condition fFPI MTSR/SLSOx delay form SCLK rising edge t51 CC 0 − 8 ns MRST setup to SCLK latching edge3) t52 SR 16.5 − − ns MRST hold from SCLK latching edge3) t53 SR 0 − − ns SCLK input clock period1)3) t54 SR 4x1/ − − ns SCLK input clock duty cycle t55_t54 45 − 55 % MTSR setup to SCLK latching edge3)4) t56 SR 1 / fFPI − − ns MTSR hold from SCLK latching edge t57 SR 1 / fFPI +5 − − ns SLSI setup to first SCLK latching edge t58 SR 1 / fFPI +5 − − ns SLSI hold from last SCLK t59 SR latching edge5) 7 − − ns MRST delay from SCLK shift edge t60 CC 0 − 16.5 ns SLSI to valid data on MRST t61 CC − − 16.5 ns fFPI SR 1) SCLK signal rise/fall times are the same as the rise/fall times of the pad. 2) SCLK signal high and low times can be minimum 1xTSSC. 3) TSSCmin = TSYS = 1/fSYS. 4) Fractional divider switched off, SSC internal baud rate generation used. Data Sheet 159 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters 5) For CON.PH=1 slave select must not be removed before the following shifting edge. This mean, that what ever is configured (shifting / latching first), SLSI must not be de-actived before the last trailing edge from the pair of shifting / latching edges. t50 SCLK1)2) t51 t51 MTSR1) t52 t53 Data valid 1) MRST t51 2) SLSOn 1) This timing is based on the following setup: CON.PH = CON.PO = 0. 2) The transition at SLSOn is based on the following setup: SSOTC.TRAIL = 0 and the first SCLK high pulse is in the first one of a transmission. SSC_TmgMM Figure 21 Data Sheet SSC Master Mode Timing 160 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters t54 First latching SCLK edge First shift SCLK edge SCLK1) t55 t56 Last latching SCLK edge t55 t56 t57 Data valid 1) MTSR t57 Data valid t60 t60 1) MRST t61 SLSI t59 t58 1) This timing is based on the following setup: CON.PH = CON.PO = 0. Figure 22 Data Sheet SSC_TmgSM SSC Slave Mode Timing 161 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters 5.3.11 ERAY Interface Timing The timings of this section are valid for the strong driver and either sharp edge or medium edge settings of the output drivers with CL = 25 pF. The ERAY interface is only available for the SAK-TC1798F-512F300EP / SAKTC1798F-512F300EL / SAK-TC1798S-512F300EP. Table 38 ERAY Parameters Parameter Symbol Values Min. Typ. Unit Max. Note / Test Condition Time span from last BSS to FES without the influence of quartz tolerancies (d10Bit_TX)1) t60 CC 997.75 − 1002.2 ns 5 TxD data valid from fsample flip flop txd_reg TxDA, TxDB (dTxAsym)2)3) t61-t62 − − 1.5 Time span between last BSS and FES without influence of quartz tolerancies (d10Bit_RX)1)4)5) t63 SR 966 − 1046.1 ns RxD capture by fsample (RxDA/RxDB sampling flip-flop) (dRxAsym)6) t64-t65 − − 3.0 ns Asymmetrical delay of rising and falling edge (RxDA, RxDB) TxD data delay from sampling flip-flop dTxdly − − 10.0 ns Px_PDR.PDy = 000B − − 15.0 ns Px_PDR.PDy = 001B − − 10.0 ns RxD capture delay by sampling flip-flop ns CC CC CC dRxdly Asymmetrical delay of rising and falling edge (TxDA, TxDB) CC 1) This includes the PLL_ERAY accumulated jitter. 2) Refers to delays caused by the asymmetries of the output drivers of the digital logic and the GPIO pad drivers. Quarz tolerance and PLL_ERAY accumulated jitter are not included. 3) E-Ray TxD output drivers have an asymmetry of rising and falling edges of |tFA2 - tRA2| ≤ 1 ns. 4) Limits of 966ns and 1046.1ns correspond to (30%, 70%) * VDDP FlexRay standard input thresholds. For input thresholds of this product, a correction of - 0.5 ns and +0.1 ns has to be applied. Data Sheet 162 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters 5) Valid for output slopes of the bus driver of dRxSlope ≤ 5ns, 20% * VDDP to 80% * VDDP, according to the FlexRay Electrical Physical Layer Specification V2.1B. For A2 pads, the rise and fall times of the incoming signal have to satisfy the following inequality: -1.6ns ≤ tFA2 - tRA2 ≤ 1.3ns. 6) Valid for output slopes of the bus driver of dRxSlope ≤ 5ns, 20% * VDDP to 80% * VDDP, according to the FlexRay Electrical Physical Layer Specification V2.1B. For A2 pads, the rise and fall times of the incoming signal have to satisfy the following inequality: -1.6ns ≤ tFA2 - tRA2 ≤ 1.3ns. Last CRC Byte BSS (Byte Start Sequence) FES (Frame End Sequence) 0.7 VDD 0.3 VDD TXD t60 tsample TXD 0.9 VDD 0.1 VDD t61 t62 Last CRC Byte BSS (Byte Start Sequence) FES (Frame End Sequence) 0.7 VDD 0.3 VDD RXD t63 tsample RXD 0.7 VDD 0.3 VDD t64 t65 ERAY_TIMING Figure 23 Data Sheet ERAY Timing 163 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters 5.3.12 EBU Timings 5.3.12.1 BFCLKO Output Clock Timing VSS = 0 V;VDD = 1.3 V ± 5%; VDDEBU = 2.5 V ± 5% and 3.3 V ± 5%,; CL = 35 pF BFCLK0 Output Clock Timing Parameters1) Table 39 Parameter Symbol Values Max. Unit Note / Test Con dition 13.332) – – ns – 3 – – ns – 3 – – ns – – – 3 ns – Min. BFCLKO clock period BFCLKO high time BFCLKO low time BFCLKO rise time BFCLKO fall time BFCLKO duty cycle t5/(t5 + t6)3) tBFCLKO CC t5 CC t6 CC t7 CC t8 CC DC Typ. – – 3 ns – 35 50 55 % – 1) Not subject to production test, verified by design/characterization. 2) The PLL jitter characteristics add to this value according to the application settings. See the PLL jitter parameters. 3) The PLL jitter is not included in this parameter. If the BFCLKO frequency is equal to fCPU, the K divider has to be regarded. tBFCLKO BFCLKO 0.5 VDDP05 t5 t6 t8 t7 0.9 VDD 0.1 VDD MCT04883_mod Figure 24 BFCLKO Output Clock Timing 5.3.12.2 EBU Asynchronous Timings VSS = 0 V;VDD = 1.3 V ± 5%; VDDEBU = 2.5 V ± 5% and 3.3 V ± 5%, Class B pins; CL = 35 pF for address/data; CL = 40pF for the control lines. For each timing, the accumulated PLL jitter of the programed duration in number of clock periods must be added separately. Operating conditions apply and CL = 35 pF. Data Sheet 164 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters Table 40 EBU Common Asynchronous Timings Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. Pulse wdih deviation from ta CC the ideal programmed width due to B pad asymmetry, rise delay - fall delay1) -0.8 − 0.8 ns edge= medium -0.8 − 0.8 ns edge= sharp AD(31:0) output delay to ADV# rising edge, multiplexed read / write1) t13 CC -5.5 − 2 ns AD(31:0) output delay to ADV# rising edge, multiplexed read / write1) t14 CC -5.5 − 2 ns Address valid to CS falling t15 CC edge (deviation from programmed value)1) -2 − 2 ns Address valid to ADV t16 CC falling edge (deviation from programmed value)1) -2 − 2 ns t17 CC -2 − 2 ns ADV falling edge -> CSfalling edge (deviation from programmed value)1) 1) Not subject to production test, verified by design/characterization. Data Sheet 165 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters Table 41 Parameter EBU Asynchronous Read Timings Symbol Values Unit Min. Typ. Max. A(23:0) output delay to RD t0 CC rising edge, deviation from the ideal programmed value1) -2.5 − 2.5 ns A(23:0) output delay to RD t1 CC rising edge, deviation from the ideal programmed value1) -2.5 − 2.5 ns CS rising edge to RD t2 CC rising edge, deviation from the ideal programmed value1) -2 − 2.5 ns ADV rising edge to RD t3 CC rising edge, deviation from the ideal programmed value1) -1.5 − 4.5 ns BC rising edge to RD t4 CC rising edge, deviation from the ideal programmed value1) -2.5 − 2.5 ns t5 SR WAIT input setup to RD rising edge, deviation from the ideal programmed value1) 12 − − ns WAIT input hold to RD t6 SR rising edge, deviation from the ideal programmed value1) 0 − − ns t7 SR Data input setup to RD rising edge, deviation from the ideal programmed value1) 12 − − ns Data Sheet 166 Note / Test Condition V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters Table 41 EBU Asynchronous Read Timings (cont’d) Parameter Symbol Values Unit Min. Typ. Max. Data input hold to RD t8 SR rising edge, deviation from the ideal programmed value1) -2 − − ns MR / W output delay to t9 CC RD# rising edge, deviation from the ideal programmed value1) -2.5 − 1.5 ns Data input hold from CS rising edge1) t18 CC -2 − − ns Data input setup to CS rising edge1) t19 CC 12 − − ns Note / Test Condition 1) Not subject to production test, verified by design/characterization. Data Sheet 167 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters EBU STATE Address Phase Address Hold Phase (opt.) Command Delay Phase Command Phase Recovery Phase (opt.) New Addr. Phase Control Bitfield: ADDRC AHOLDC CMDDELAY RDWAIT RDRECOVC ADDRC 1...15 0...15 0...7 1...31 Duration Limits in EBU_CLK Cycles 0...15 1...15 Next Addr. Valid Address A[23:0] pv + t0 pv + ta CS[3:0] CSCOMB pv + ta pv + pv + t1 t2 t3 ADV pv + ta RD pv + ta pv + ta t4 BC[3:0] pv + t5 t6 WAIT pv + AD[31:0] MR/W t13 pv + t14 t7 Address Out Data In pv + t9 pv = programmed value, TEBU_CLK * sum (correponding bitfield values) Figure 25 Data Sheet t8 new_MuxRD_Async_10.vsd Multiplexed Read Access 168 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters EBU STATE Control Bitfield: Duration Limits in EBU_CLK Cycles Address Phase Address Hold Phase (opt.) Command Phase Recovery Phase (opt.) New Addr. Phase ADDRC AHOLDC RDWAIT RDRECOVC ADDRC 1...15 0...15 1...31 0...15 Next Addr. Valid Address A[23:0] pv + pv + t1 t0 pv + CS[3:0] CSCOMB pv + 1...15 t2 ta pv + t3 ta ADV pv + ta RD pv + ta pv + ta t4 BC[3:0] pv + t5 t6 WAIT t7 AD[31:0] Data In MR/W pv + pv = programmed value, TEBU_CLK * sum (correponding bitfield values) Figure 26 Data Sheet t8 t9 new_DemuxRD_Async_10.vsd Demultiplexed Read Access 169 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters Table 42 EBU Asynchnronous Write Timings Parameter Symbol Values Unit Min. Typ. Max. t30 CC A(23:0) output delay to WR rising edge, deviation from the ideal programmed value1) -2.5 − 2.5 ns A(23:0) output delay to t31 CC WR rising edge, deviation from the ideal programmed value1) -2.5 − 2.5 ns CS rising edge to WR t32 CC rising edge, deviation from the ideal programmed value1) -2 − 2 ns ADV rising edge to WR t33 CC rising edge, deviation from the ideal programmed value1) -2.5 − 2 ns BC rising edge to WR t34 CC rising edge, deviation from the ideal programmed value1) -2.5 − 2 ns WAIT input setup to WR t35 SR rising edge, deviation from the ideal programmed value1) 12 − − ns WAIT input hold to WR t36 SR rising edge, deviation from the ideal programmed value1) 0 − − ns -5.5 − 2 ns Data output delay to WR falling edge, deviation from the ideal programmed value1) Data Sheet t37 CC 170 Note / Test Condition V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters Table 42 EBU Asynchnronous Write Timings (cont’d) Parameter Symbol Values Unit Min. Typ. Max. Data output delay to WR t38 CC rising edge, deviation from the ideal programmed value1) -5.5 − 2 ns MR / W output delay to t39 CC WR rising edge, deviation from the ideal programmed value1) -2.5 − 1.5 ns Note / Test Condition 1) Not subject to production test, verified by design/characterization. 5.3.12.3 EBU Burst Mode Access Timing VSS = 0 V;VDD = 1.3 V ± 5%; VDDEBU = 2.5 V ± 5% and 3.3 V ± 5%, Class B pins; CL = 35 pF; Table 43 EBU Burst Read Timings Parameter Symbol Min. Typ. Max. Output delay from BFCLKO rising edge1) t10 CC -2 − 2 ns RD and RD/WR active/inactive after BFCLKO active edge1)2) t12 CC -2 − 2 ns CSx output delay from BFCLKO active edge1)2) t21 CC -2.5 − 1.5 ns ADV active/inactive after BFCLKO active edge1)3) t22 CC -2 − 2 ns BAA active/inactive after BFCLKO active edge1)3) t22a CC -2.5 − 1.5 ns Data setup to BFCLKI rising edge1) t23 SR 3 − − ns Data hold from BFCLKI rising edge1) t24 SR 0 − − ns Data Sheet Values 171 Unit Note / Test Condition V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters Table 43 EBU Burst Read Timings (cont’d) Parameter Symbol Values Unit Min. Typ. Max. t25 SR 3 − − ns WAIT hold (low or high) t26 SR from BFCLKI rising edge1) 0 − − ns WAIT setup (low or high) to BFCLKI rising edge 1) Note / Test Condition 1) Not subject to production test, verified by design/characterization. 2) An active edge can be rising or falling edge, depending on the settings of bits BFCON.EBSE / ECSE and clock divider ratio. Negative minimum values for these parameters mean that the last data read during a burst may be corrupted. However, with clock feedback enabled, this value is oversampling not required for the LMB transaction and will be discarded. If the clock feedback is not enabled, the input signals are latched using the internal clock in the same way as at asynchronous access. So t14, t15, t16, t17, t18 and t19 from the asynchronous timings apply. 3) For BUSCONx.EBSE=1B and BUSAPx.EXLCLK=00B, ADV will change normally on the clock edge so this parameter is used directly. For BUSCONx.EBSE=1B and other values of BUSAPx.EXTCLK, ADV and BAA add the high pulse width of EBUCLK to this parameter. For BUSCONx.EBSE=0B and BUSAPx.EXTCLK=00B add the high pulse width of EBUCLK to this parameter. For BUSCONx.EBSE=0B and BUSAPx.EXTCLK=11B add two EBUCLK periodsto this parameter to get the hold time from BFCLKO rising edge to the ADV. For BUSCONx.EBSE=0B and BUSAPx.EXTCLK=01B or 10B add 1 EBUCLK period. Please note that the high pulse width of EBUCLK is defined by the high pulse width of fVCO of the used PLL. Data Sheet 172 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters Address Phase(s) BFCLKI BFCLKO Command Phase(s) Burst Phase(s) Burst Phase(s) Recovery Phase(s) Next Addr. Phase(s) 1) t10 t10 A[23:0] Next Addr. Burst Start Address t22 t22 t22 ADV t21 t21 t21 CS[3:0] CSCOMB t12 t12 RD RD/WR t22a t22a BAA t24 t23 D[31:0] (32-Bit) D[15:0] (16-Bit) t25 t24 t23 Data (Addr+0) Data (Addr+4) Data (Addr+0) Data (Addr+2) t26 WAIT 1) Figure 27 Data Sheet Output delays are always referenced to BCLKO. The reference clock for input characteristics depends on bit EBU_BFCON.FDBKEN. EBU_BFCON.FDBKEN = 0: BFCLKO is the input reference clock. EBU_BFCON.FDBKEN = 1: BFCLKI is the input reference clock (EBU clock feedback enabled). BurstRDWR_4.vsd EBU Burst Mode Read / Write Access Timing 173 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters 5.3.12.4 EBU Arbitration Signal Timing VSS = 0 V;VDD = 1.5 V ± 5%; VDDEBU = 2.5 V ± 5% and 3.3 V ± 5%, Class B pins; TA = -40°C to +125 °C; CL = 35 pF; Table 44 EBU EBU Arbitration Timings Parameter Symbol Values Unit Min. Typ. Max. Output delay from BFCLKO rising edge1) t27 CC − − 3 ns Data setup to BFCLKO falling edge1) t28 SR 8 − − ns Data hold from BFCLKO falling edge1) t29 SR 2 − − ns Note / Test Condition 1) Not subject to production test, verified by design/characterization. BFCLKO t27 t27 HLDA Output t27 t27 BREQ Output BFCLKO t28 t28 t29 t29 HOLD Input HLDA Input Figure 28 Data Sheet EBUArb_1 EBU Arbitration Signal Timing 174 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters 5.3.12.5 EBU DDR Timing Parameters Parameters applicable when using the EBU to access DDR memories Table 45 is valid under the following conditions: CL≤ 20 pF; VDDEBU= 1.8 ±5% V Table 45 EBU DDR Timings Parameter Symbol Values Unit Min. Typ. Max. DDR Clock Signal fall time tCF CC − − 3.3 ns DDR Clock Signal high time 29 − 71 % DDR Clock Signal period1) tCK CC 24.0 − − ns Skew between clock rising tCKDQS transition and DQS rising CC edge or clock falling transition and DQS falling edge2) -1.2 − 1.2 ns DDR Clock Signal low time tCL CC 47 − 53 % DDR Clock Signal rise time tCR CC − − 3.3 ns Maximum time from falling tCVA CC − clock edge until DDR Control signal is valid3) − 5 ns Maximum time before falling clock edge that DDR control signal can become invalid3) tCVB CC − − 5 ns DLL Delay time for duty cycle correction when locked tDCC CC tEBU / 2 − tCH CC - 0.3 byte lane x signals valid tDH1 CC value hold time (DQ & DM) after DQSx edge4) -1.65) DLL Delay time for for DQ tDLL CC and DM when locked with DLLCON.WR_ADJ=0d tEBU / 4 − - 0.2 Data Sheet 175 − Note / Test Condition tEBU / 2 ns + 0.3 − ns tEBU / 4 ns + 0.2 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters Table 45 EBU DDR Timings (cont’d) Parameter Symbol Values Min. Typ. Unit Max. DLL Delay time for DQS when locked with DLLCON.RD_ADJ=0d tDLLR CC tEBU / 4 − DQ and DQS all signals hold time after DDRCLK0 edge, DDRCLK0 controlled read tDQCKH 1.0 − − ns DQ and DQS all signal tDQCKS valid to DDRCLK0 edge, CC DDRCLK0 controlled read 1.2 − − ns DQSx edge to byte lane x tDS1 CC signals valid (DQ & DM)4) − − 1.0 ns Maximum Peak to Peak jitter of the DDR clock output tPKPK − − 0 ns DQ byte lane hold time after DQSx edge, minimum hold time to guarantee read data capture, DLL Controlled read tQH SR 1.0 − − ns DQ byte lane valid to DQSx edge minimum setup time to guarantee read data capture, DLL Controlled read6)4) tQS SR 1.0 − − ns - 0.15 Note / Test Condition tEBU / 4 ns + 0.15 CC CC 1) This is a configuration constraint and not a design limit. Application code must not configure the EBU to generate a DDR clock with a period of less than 12ns. 2) To allow for the differential clock trigger point being different from the trigger point on each of the individual signals, this parameter will be characterised separately for each of the clock signals OCLKO, DDRCLKO and DDRCLKO with a limit of ±1 ns 3) To allow for the differential clock trigger point being different from the trigger point on each of the individual signals, this parameter will be characterised separately for each of the clock signals DDRCLKO (SDCLKO) and DDRCLKO with a limit of ±2.4 ns 4) x = 0 to 3 5) i.e. signal can become invalid at most tDH1 before the clock edge 6) falling or rising edge Data Sheet 176 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters Timing for EBU DDR Clock Outputs The EBU provides three possible DDR clock outputs depending on the type of device being accessed. These are • • • Differential clock for accessing devices using a DDRAM type protocol on the DDRCLKO and DDRCLKO pins. Differential clock for accessing devices using a burst flash type protocol on the BFCLKO and DDRCLKO pins. A single-ended clock on OCLKO (MR/W) for interfacing to ONFI 2 compliant devices. All these clocks operate with identical timing parameters and have a restricted load limit of 10pF for DDR operation. The rising edge on the differential clocks is defined as when a rising edge on DDRCLKO or BFCLKO transitions past a falling edge on DDRCLKO. Timings apply at VDDEBU = 1.8 volts tCK 0.5 VDDEBU tCH Figure 29 tCF tCL tCR 0.9 VDDEBU 0.1 VDDEBU Timing Waveform for DDR Clock Signals Timing for EBU DDR Control Outputs The EBU control state machine will ensure that commands and signal transitions are generated in the correct clock cycle to meet device requirements. This section also applies when accessing SDRAM devices. The EBU will generate address (A[15:0]) and control (CKE, RAS, CAS, WR) outputs on the falling edge of the DDR clock to allow nominally symmetric setup and hold margins around the rising edge of the clock. For SDRAM devices, the same address and control signals are required but, in addition, the write data (AD[31:0]) and DQM signals (BC[3:0]) are required to meet the same timing requirements. As these parameters apply to SDRAM as well as DDR devices, the load limit should be taken to be 40pF. Data Sheet 177 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters DDRCLKO T1 T0 T2 DDRCLKO tCVA t CVB t CVA CKE tCVA Command t CVB VALID t CVA ADDR NOP t CVB VALID Don't Care Figure 30 DDR command and Address Timing Using the DDRNCON.AMODE field, the timing of the address can be changed so that the address changes on the rising clock edge and is held for two clock cycles. This allows a nominal setup and hold margin of a full clock cycle. This mode is not compatible with burst length of two as commands needing a valid address output can then be generated in consecutive clock cycles. Timing of DDR Write Data The EBU will generate the DQ (write data) DM and DQS signals in two different modes depending on the ratio of the internal to external clocks. If the ratio is 1:1, then the clock used to generate the DQ and DM outputs must be shifted by the DLL by 25% of the external clock period (nominal value). If the ratio is 1:2 or 1:4, then the DQ and DM signals will be generated using edges of the internal clock and the DLL must not be used to further adjust the edge timing. A ratio of 1:3 is not supported. In all cases, the edges of the DQS signals are nominally aligned to the clock output and the DQS waveform is in phase with, and the same frequency as, the memory device clock input. Data Sheet 178 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters The EBU is characterised with the DLL inactive, so the timing parameters are specified for this case. For the 1:1 operating mode, the DLL shift time and its error margin has to be added where appropriate. For the 1:2 or 1:4 cases, the signals will be generated by the appropriate clock edge so will be delayed by the correct number of EBU clock periods (tEBU). In this case the clock jitter will need to be subtracted from the available setup and hold margins. T0 DDRCLKO DDRCLKO tCKDQS tCKDQS tCK (nom) DQS[3:0] tDH1 tDS1 DQ[31:0] DM[3:0] Figure 31 WRITE command issued at T0 Don't Care DQ and DM signals shown with DLL disabled. With DLL enabled, DQ and DQM will be delayed by 0.25*tCK (nominal) Data Valid Transitioning Data Signal Relationship for DDR writes 1:1 internal to external clock ratio If the external bus clock is running at the same frequency as the internal clock, then the DLL is used to generate intermediate clock edges at the intervals necessary to correctly position the transitions on DQ and DM Using the defined parameters. In the case where the DDR memory clock is the same frequency as the internal EBU clock and the DLL is enabled but the DLL’s internal duty cycle correction is not in use: • • tDH for the memory will be tCK/2+tDH1-tDLL tDS for the memory will be tCK/2-tDS1-tDLL-tJIT1) If the duty cycle correction is in use (DLLCON.DCC_EN=1B), then the equation for setup becomes: 1) tJIT is the pk-pk clock jitter of the EBU internal clock Data Sheet 179 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters • • tDS for the memory will be tCK/2-tDS1-tDLL-(2*tJIT) tDH for the memory will be tCK/2+tDH1-tDLL 1:2 internal to external clock ratio If the external bus clock is running at half the internal clock frequency, then the negative phase clock is used to generate intermediate clock edges at the intervals necessary to correctly position the transitions on DQ and DM The negative phase clock is generated either by: • • • If the EBU internal clock is a pulse swallowed version of the system clock then the negative phase clock is generated by swallowing alternate pulses. So if the main clock is divide by 4 and generated by passing pulses 0..4..8.. etc, then the neagtive phase clock will be generated by passing pulses 2..6..10.. – tDH for the memory will be tEBU/2+tDH1-(n1)/2*tJIT2)) – tDS for the memory will be tEBU/4-tDS1-(n/2*tJIT) If the EBU internal clock is a buffered version of the system clock input then the negative phase clock will be an inverted version of the system clock – tDH for the memory will be tCK/4+tDH1-tJIT23) – tDS for the memory will be tCK/4-tDS1-tJIT2 If the duty cycle correction function of the DLL is enabled, then the negative phase clock will be the main clock delayed by 0.5*tCK – tDH for the memory will be tDCC+tDH1 – tDS for the memory will be tDCC-tDS1 1:4 internal to external clock ratio If the external bus clock is running at one quarter the internal clock frequency, then EBU internal clock clock is used to generate intermediate clock edges at the intervals necessary to correctly position the transitions on DQ and DM The negative phase clock is generated either by: • • tDH for the memory will be tEBU+tDH1-tJIT tDS for the memory will be tEBU-tDS1-tJIT Timing of DDR Read Data DDR read data can be captured in two modes. The first mode uses the DLL to shift the DQS signals internally to provide setup and hold margins between the DQS and DQ lines. The DQS signals are then used as a clock to latch the data into internal registers. The second mode is suitable only for lower frequencies and uses the DDRCLKO signal internally as a clock to latch both the DQ and DQS signals. The state of the latched DQS 1) where n is the divide ratio between the system clock input and the EBU internal clock 2) tJIT is the pk-pk clock jitter of the system clock source 3) tJIT2 is the rising to falling edge jitter of the system clock source Data Sheet 180 V 1.1, 2014-05 TC1798 Electrical ParametersAC Parameters signal is used to determine whether DQ is valid at any given clock edge. The restriction is that the DDRCLKO signal must propagate through the TC1798 output pad in both directions in time for the DQ and DQS signals to be latched before the next rising edge of DDRCLKO at the clock generating flip-flop inside the EBU, i.e. (Pad Output Delay)+(Pad Input Delay)+(Latch CK->Q valid) = tTIME < tck In addition the clock to output valid delay of the attached memory device must be less than 0.5 * tCK DLL Controlled Read The EBU interface is characterised with the DLL disabled. The relative positioning of the DQ and DQS edges are then adjusted to determine the setup and hold times. The parameters in the following table are therefore specified with the DLL inactive A standard DDR device will output the DQ and DQS signals with edges that are nominally aligned and the DLL will delay the DQS inputs internally to re-establish the setup and hold margins. T0 T1 T2 DDRCLKO DDRCLKO DQS[3:0] tQS tQH tQS tQH DQ[31:0] Don't Care Figure 32 Data Valid Transitioning Data DLL Controlled Read Once the DLL is enabled, to satisfy the setup time, the DQ output from the memory device must be valid less than tDLLR-tQS ns after the DQS edge. To satisfy the hold time, the DQ output from the memory device must remain valid until the time (tCK/2)-tJITn-tDLLR-tDH before the next DQS edge. DDRCLKO Controlled Read A standard DDR device will output the DQ and DQS signals with edges that are nominally aligned. In this mode, the data will be latched on both edges of the feedback clock. This clock is generated from DDRCLKO. Data Sheet 181 V 1.1, 2014-05 TC1798 Electrical ParametersFlash Memory Parameters T0 T1 T2 tDQCKS tDQCKH DDRCLKO DDRCLKO DQS[3:0] tDQCKS tDQCKH DQ[31:0] Don't Care Figure 33 Data Valid Transitioning Data DDRCLKO Controlled Read In order for the read data to be captured successfully, the maximum clock to DQS & DQ valid limit for the attached memory device must be less than half an external bus clock period by the setup margin, tDQCKS and the hold time for the DQS and data after the clock edge must be greater than tDQCKH. Timing of SDRAM Read Data For SDRAM read accesses, DDRCLKO (SDCLKO) must be connected to DDRCLKO (SDCLKI) to establish a path for the feedback clock. Then tDQCKS and tDQCKH can be used to calculate timing margins in the same ways as for a DDR read except that only the rising edge of SDCLKI is used for capturing data. In order for the read data to be captured successfully, the maximum clock to DQ valid limit for the attached memory device must be less than an external bus clock period by the setup margin, tDQCKS and the hold time for the data after the clock edge must be greater than tDQCKH. 5.4 Flash Memory Parameters The data retention time of the TC1798’s Flash memory depends on the number of times the Flash memory has been erased and programmed. Table 46 FLASH32 Parameters Parameter Symbol Values Min. Unit Typ. Max. Data Flash Erase Time per Sector tERD CC − − 4.21) s Program Flash Erase Time per 256 KByte Sector tERP CC − − 5 s Data Sheet 182 Note / Test Condition V 1.1, 2014-05 TC1798 Electrical ParametersFlash Memory Parameters Table 46 FLASH32 Parameters (cont’d) Parameter Symbol Values Unit Note / Test Condition 5.3 ms without reprogramming − 15.9 ms with two reprogramming cycles tPRP CC − − 5.3 ms without reprogramming − − 10.6 ms with one reprogramming cycle − cycle Min. data s retention time 5 years Min. Program time data flash per page2) Program time program flash per page3) Data Flash Endurance Erase suspend delay Typ. Max. tPRD CC − − − NE CC 60000 − 4) tFL_ErSusp − − 15 ms tFL_Margin 10 − − μs tFL_SPRE − − 400 ms CC Wait time after margin change Aborted logical sector erase soft-programming recovery Del CC C CC Program Flash Retention Time, Physical Sector5)6) tRET CC 20 − − year s Max. 1000 erase/program cycles Program Flash Retention Time, Logical Sector5)6) tRETL CC 20 − − year s Max. 100 erase/program cycles UCB Retention Time5)6) tRTU CC 20 − − year s Max. 4 erase/program cycles per UCB Wake-Up time tWU CC WSDF − 270 μs DFlash wait state configuration PFlash wait state configuration Data Sheet CC WSPF CC − 50 ns x − fFSI 26 ns x − fFSI 183 − − V 1.1, 2014-05 TC1798 Electrical ParametersFlash Memory Parameters 1) In case of wordline oriented defects (see robust EEPROM emulation in the User's Manual) this erase time can increase by up to 100%. 2) In case the Program Verify feature detects weak bits, these bits will be programmed up to twice more. Each reprogramming takes additional 5 ms. 3) In case the Program Verify feature detects weak bits, these bits will be programmed once more. The reprogramming takes additional 5 ms. 4) Only valid when a robust EEPROM emulation algorithm is used. For more details see the User´s Manual. 5) Storage and inactive time included. 6) At average weighted junction temperature Tj = 100°C, or the retention time at average weighted temperature of Tj = 110°C is minimum 10 years, or the retention time at average weighted temperature of Tj = 150°C is minimum 0.7 years. Data Sheet 184 V 1.1, 2014-05 TC1798 Electrical ParametersPackage and Reliability 5.5 Package and Reliability 5.5.1 Package Parameters Table 47 Thermal Characteristics of the Package Device Package TC1798 PG-LFBGA- 516 RΘJCT RΘJCB RΘJA 1) 1) 3,5 6,1 14,7 Unit Note K/W 1) The top and bottom thermal resistances between the case and the ambient (RTCAT, RTCAB) are to be combined with the thermal resistances between the junction and the case given above (RTJCT, RTJCB), in order to calculate the total thermal resistance between the junction and the ambient (RTJA). The thermal resistances between the case and the ambient (RTCAT, RTCAB) depend on the external system (PCB, case) characteristics, and are under user responsibility. The junction temperature can be calculated using the following equation: TJ = TA + RTJA × PD, where the RTJA is the total thermal resistance between the junction and the ambient. This total junction ambient resistance RTJA can be obtained from the upper four partial thermal resistances. Thermal resistances as measured by the ’cold plate method’ (MIL SPEC-883 Method 1012.1). Data Sheet 185 V 1.1, 2014-05 TC1798 Electrical ParametersPackage and Reliability 5.5.2 Figure 34 Package Outline Package Outlines PG-LFBGA- 516 You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”: http://www.infineon.com/products. 5.5.3 Table 48 Parameter Quality Declarations Quality Parameters Symbol Values Unit Note / Test Condition Min. Typ. Max. – – 24000 hours –2) ESD susceptibility VHBM according to Human Body Model (HBM) – – 2000 V Conforming to JESD22-A114-B ESD susceptibility VHBM1 of the LVDS pins – – 500 V – Operation Lifetime1) Data Sheet tOP 186 V 1.1, 2014-05 TC1798 Electrical ParametersPackage and Reliability Table 48 Quality Parameters Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. ESD susceptibility VCDM according to Charged Device Model (CDM) – – 500 V Conforming to JESD22-C101-C Moisture Sensitivity Level – – 3 – Conforming to Jedec J-STD-020C for 240°C MSL 1) This lifetime refers only to the time when the device is powered on. 2) For worst-case temperature profile equivalent to: 1200 hours at Tj = 125...150oC 3600 hours at Tj = 110...125oC 7200 hours at Tj = 100...110oC 11000 hours at Tj = 25...110oC 1000 hours at Tj = -40...25oC Data Sheet 187 V 1.1, 2014-05 TC1798 History 6 History The following changes where done between Version 0.6 and 0.62 of this document: • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • change wdith for port 2 in figure 2 change numbers of VDDFL3 and VSS in figure 2 update figure 3 according to pinning changes remove typo in Ctrl. line from I/O0 to I/O change for port 2.8 the symbol from CTRAPB (CCU60) to CCPOS0A (CCU62) change for port 2.8 the symbol from T13HRE (CCU61) to T12HRB (CCU63) add for port 2.8 the symbol from T3INB (GPT120) add for port 2.8 the symbol from T3INA (GPT121) change for port 2.10 the symbol from CC60INC (CCU61) to CTRAPB (CCU63) change for port 2.12 the symbol from CTRAPB (CCU61) to CCPOS0A (CCU63) change for port 2.12 the symbol from T13HRE (CCU60) to T12HRB (CCU62) add for port 2.12 the symbol from T2INB (GPT120) add for port 2.12 the symbol from T2INA (GPT121) add for port 3.0 the symbol CTRAPB (CCU61) change for port 3.0 for symbol CC60INC from CCU62 to CCU61 move pin P3.1 from B20 to B22 move pin P3.2 from J19 to A22 move pin P3.3 from A20 to B21 move pin P3.4 from G19 to K18 move pin P3.5 from B19 to A21 move pin P3.6 from K18 to B19 move pin P3.7 from A19 to A20 move pin P3.8 from J18 to B19 move pin P3.9 from B18 to A19 move pin P3.10 from G18 to J18 move pin P3.11 from A18 to B18 move pin P3.12 from F18 to K17 move pin P3.13 from B13 to A18 move pin P3.14 from K17 to B13 removed for port 3.2 the symbol CTRAPB (CCU62) add for port 3.4 the symbol CTRAPA (CCU63) change for port 3.4 the symbol from CC61INC (CCU62) to CTRAPB (CCU60) removed for port 3.6 the symbol CTRAPB (CCU63) change for port 3.8 the symbol from T12HRB (CCU63) to T13HRE (CCU61) removed for port 3.8 the symbol CCPOS0A (CCU62) removed for port 3.8 the symbol T3INB (GPT120) removed for port 3.8 the symbol T3INA (GPT121) change for port 3.14 the symbol from T12HRB (CCU62) to T13HRE (CCU60) removed for port 3.14 the symbol CCPOS0A (CCU63) Data Sheet 1 V 1.1, 2014-05 TC1798 History • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • removed for port 3.14 the symbol T2INB (GPT120) removed for port 3.14 the symbol T2INA (GPT121) change function description for port 4.1 alternate output 3 MTSR2 from Slave to Master Mode add footnote to port 4.1 alternate output 3 MTSR2 change function description for port 4.1 alternate output 3 MTSR2 from Slave to Master Transmit move pin P5.12 from B22 to J19 move pin P5.12 from B23 to G19 move pin P5.12 from A22 to G18 move pin P5.12 from A23 to F18 add footnote to port 6.4 alternate output 1 MTSR1 change for port 7.0 the symbol from ADEMUX0 to ADEMUX2 change function description for port 7.1 alternate output 2 MTSR3 from Slave to Master Mode add footnote to port 7.1 alternate output 2 MTSR3 change for port 8.3 the symbol from OUT43 (GPTA1) to CC62 (CCU60) add for port 8.5 the symbol CTRAPB (CCU62) change for port 9.13 the symbol from ECTT2 to ECTT1 change for port 9.14 the symbol from ECTT1 to ECTT2 add for port 9.14 the symbol REQ15 add footnote to port 10.1 alternate output 1 MTSR0 change for port 15 the type from S to D / S change function description for port 18.1 alternate input MTSR2B from Master to Slave Mode change function description for port 18.1 alternate output 1 MTSR2 from Slave to Master Mode add footnote to port 18.1 alternate output 1 MTSR2 move pin VDDP from AD15 to AD16 add clarification that table 9 defines the conditions for all other parameters add conditions for MLI, MSC, SSC, parameters add parameters dTxdly and dRxdly to ERAY parameters correct footnotes for ERAY parameters split flash parameters tPRD and tPRP in two conditions add conditions to LVDS pad parameters remove Pin Reliability in Overload section add parameters IIN and Sum IIN to absolute ratings add parameter HYSX to PSC_XTAL added RDSON values for all driver settings (weak, medium, and strong) removed footnote 2 of table 10 change load for timing of SSC, MSC, and MLI from CL = 25 pF to CL = 50 pF (typical) add to parameters tRF and tFF condition CL = 50 pF add new footnote 7) to ADC parameter table Data Sheet 2 V 1.1, 2014-05 TC1798 History • • • • • • • • • • • • • • • • • • • add min and max value for QCONV and adapt typ value add load conditions for tFF1 and tRF1 add conditions to PLL parameter tL change DAP parameter t19 from SR to CC classification remove footnote 2 for the FADC adapt IDs for AB step move pin AN49 from W2 to W1 move pin AN48 from W1 to W2 removed footnote 2 in table 9 change max value for ADC parameter tS from 255 to 257 change P1.7 input CC60INB to CC61INB remove O2 OUT105 for GPTA1 of P14.9 add O2 T3OUt for GPT121 of P14.9 changed the name for O3 from EVTO2 to EVTO1 for P0.5 changed the name for O3 from EVTO3 to EVTO2 for P0.6 changed the name for O3 from EVTO4 to EVTO3 for P0.7 changed the name for O1 and O2 from OUT70 to OUT71 for P1.15 add input function SLSI2 for SSC2 to P4.9 The following changes where done between Version 0.62 and 0.63 of this document: • • • • • • • • • • • • • • • • • • change P1.7 input CC60INB to CC61INB remove O2 OUT105 for GPTA1 of P14.9 add O2 T3OUt for GPT121 of P14.9 changed the name for O3 from EVTO2 to EVTO1 for P0.5 changed the name for O3 from EVTO3 to EVTO2 for P0.6 changed the name for O3 from EVTO4 to EVTO3 for P0.7 changed the name for O1 and O2 from OUT70 to OUT71 for P1.15 add input function SLSI2 for SSC2 to P4.9 add input function CC60INC forCCU61 for P2.10 change back for port 3.0 for symbol CC60INC from CCU61 to CCU62 change input function T13HRE from CCU60 to CCU63 change for port 6.15 the symbol from CC61(CCU60) to CC60(CCU61) change for port 8.2 the symbol from CC61(CCU60) to COUT63(CCU61) change for port 14.10 the symbol from T3OUT(GPT120) to T6OUT(GPT121) add to all SSC signal the assosiated SSC module where is was missing in the pinning add section Pin Reliability in Overload incease values for absolute maximium parameters IIN and SumIIN correct P14.8 O2 as this was incorrected label as O1 The following changes where done between Version 0.63 and 0.7 of this document: • • • change value RΘJCT from 2.6 to 3.5 K/W change value RΘJCB from 4.3 to 6.1 K/W change value RΘJA from 13.6 to 14.7 K/W Data Sheet 3 V 1.1, 2014-05 TC1798 History • • • • • • • add parameter tPOR_APP replace in Operating Conditions Parameter Note MA = modulation amplitude by footnote 1) remove the redundant test condition IOH for RDSON NMOS remove the redundant test condition IOL for RDSON PMOS add parameter VILSD to class S pads remove footnote 2 from FADC remove capacitance conditions for LVDS pad parameters as loads are defined by interface (MSC) timings The following changes where done between Version 0.7 and 1.0 of this document: • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • add product options SAK-TC1798S-512F300EP and SAK-TC1798N-512F300EP remove product options SAK-TC1798F-512F240EP and SAK-TC1798F512F240EL update block diagrams to cover new options add note to TC1798 Logic Symbol figure and pin list for E-RAY pins availability add identification registers for new options adapt Absolute Maximum Rating clarify pad supply levels in Pin Reliability in Overload section correct errors for analog inputs in tables 10 and 11 add note at the end of Pin Reliability in Overload section clarify wording for valid operating conditions correct section Extended Range Operating Conditions for the 3.3 V area increase limit in Extended Range Operating Conditions from 1 hour to 1000 hours add negative limit for class S pad leakage removed RDSON parameters for class F pads weak driver as only medium is available and update values change description of parameter tCAL for the ADC update footnote 10 for the ADC update definition of INL and TUE for ADC3 split FADC DNL parameter into two conditions and change value for gain 4 and 8 update all current values of table 28 (Power Supply Parameters) add footnote 5 to IDDP improve parameters IDDFL3 add footnote for D-Flash currents in power section add section 5.2.6.1. rework first sentence for chapter 5.3 increase max values for parameter tB reduce min value for tL for both PLLs split fVCO for the system PLL into two conditions change formula 10 add for MLI and SSC timing parameter: valid strong driver medium edge only change MLI parameter t17 min value Data Sheet 4 V 1.1, 2014-05 TC1798 History • • • • • • • • update parameter description for SSC parameters t52, t53, t56, t57, t58, and t59 change SSC parameters from CC to SR Symbol for t56, t57, t58 and t59 add note to ERAY parameters for availability add parameters t15, t16, t17, t18, and t19 to the EBU adapt EBU parameters for DDR Timming add footnote to Flash parameter tERD change for parameter NE note from Max. data retention to Min. rework the 3.3 V current part of the Power Supply Parameters for better description and usage – Parameters IDDP_FP, IDDFL3E and IDDFL3R are removed and replaced in the following way – IDDP_FP is replaced by IDDP with the condition including flash programming current – IDDFL3E is replaced by IDDP with the condition including flash erase verify current – IDDFL3R is replaced by IDDP with the condition including flash read current – parameter IDDFL3R was renamed to IDDFL3 The rework of the 3.3 V current part of the Power Supply Parameters was done for simplification and clarification. Former given values could still be used if liked, the new definition results in the same resulting values or slightly better values. The flash module is supplied via IDDFL3 and IDDP. For the different flash operating modes in worst case different allocations for the two domains resulting. The application typical case ‘flash read’ has max IDDP of 25 mA and max IDDFL3 of 98 mA resulting is a sum of 123 mA. The case ‘flash programming’ has max IDDP of 55 mA and max IDDFL3 of 29 mA resulting is a sum of 84 mA. The case ‘flash erase verify’ has max IDDP of 40 mA and max IDDFL3 of 98 mA resulting is a sum of 138 mA. So for the old parameter IDDP with 35 mA, the new version reads as IDDP = 25+IDDP_PORST = 32 mA for the same application relevant case. The following changes where done between Version 1.0 and 1.1 of this document: • • • • • • • • • change VILS from 2.1V to 1.9V in table 23 change t48 from 100ns to 200ns in table 42 change t49 from 100ns to 200ns in table 42 extend KOVAN conditon from IOV≤ 0 mA; IOV≥ -1 mA to IOV≤ 0 mA; IOV≥ -2 mA change t8 from -4ns to -2ns in table 43 change t18 from -4ns to -2ns in table 43 change t37 parameter description from ‘Data output delay to WR rising edge, deviation from the ideal programmed value’ to ‘Data output delay to WR falling edge, deviation from the ideal programmed value’ in table 44 Add RDSONx information for class B pads to table 18 Add exact definition ‘edge= sharp ; pin out driver= strong’ for the pad conviguration of the rise and fall times in table 18 Data Sheet 5 V 1.1, 2014-05 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG