32-Bit Microcontroller TC1791 32-Bit Single-Chip Microcontroller Data Sheet V 1.1 2014-05 Microcontrollers Edition 2014-05 Published by Infineon Technologies AG 81726 Munich, Germany © 2014 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 32-Bit Microcontroller TC1791 32-Bit Single-Chip Microcontroller Data Sheet V 1.1 2014-05 Microcontrollers TC1791 Table of Contents 1 Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 2 2.1 System Overview of the TC1791 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 3 3.1 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19 TC1791 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20 4 Identification Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-67 5 5.1 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.6.1 5.3 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6 5.3.7 5.3.8 5.3.9 5.3.10 5.3.11 5.4 5.5 5.5.1 5.5.2 Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-70 General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-70 Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-70 Pad Driver and Pad Classes Summary . . . . . . . . . . . . . . . . . . . . . . . 5-71 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-72 Pin Reliability in Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-73 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-75 Extended Range Operating Conditions . . . . . . . . . . . . . . . . . . . . . 5-81 DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-83 Input/Output Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-83 Analog to Digital Converters (ADCx) . . . . . . . . . . . . . . . . . . . . . . . . . 5-99 Fast Analog to Digital Converter (FADC) . . . . . . . . . . . . . . . . . . . . . 5-104 Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-108 Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-109 Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-110 Calculating the 1.3 V Current Consumption . . . . . . . . . . . . . . . . 5-113 AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-115 Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-115 Power Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-116 Power, Pad and Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-118 Phase Locked Loop (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-120 ERAY Phase Locked Loop (ERAY_PLL) . . . . . . . . . . . . . . . . . . . . . 5-123 JTAG Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-124 DAP Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-126 Micro Link Interface (MLI) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 5-127 Micro Second Channel (MSC) Interface Timing . . . . . . . . . . . . . . . 5-130 SSC Master/Slave Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-132 ERAY Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-135 Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-136 Package and Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-139 Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-139 Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-140 Data Sheet I-1 V 1.1, 2014-05 TC1791 5.5.3 6 Data Sheet Quality Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-140 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 I-2 V 1.1, 2014-05 TC1791 Data Sheet 3 V 1.1, 2014-05 TC1791 Data Sheet 4 V 1.1, 2014-05 TC1791 Summary of Features 1 Summary of Features The SAK-TC1791F-512F240EL / SAK-TC1791F-512F240EP features: • • • • • • • • has the following High-performance 32-bit super-scalar TriCore V1.6 CPU with 6-stage pipeline – Superior real-time performance – Strong bit handling – Fully integrated DSP capabilities – Multiply-accumulate unit able to sustain 2 MAC operations per cycle – Fully pipelined Floating point unit (FPU) – 240 MHz operation at full temperature range 32-bit Peripheral Control Processor with single cycle instruction (PCP2) – 16 Kbyte Parameter Memory (PRAM) – 32 Kbyte Code Memory (CMEM) – 200 MHz operation at full temperature range Multiple on-chip memories – 4 Mbyte Program Flash Memory (PFLASH) with ECC – 192 Kbyte Data Flash Memory (DFLASH) usable for EEPROM emulation – 2 x 8 Kbyte Key Flash – 128 Kbyte Data Scratch-Pad RAM (DSPR) – 16 Kbyte Instruction Cache (ICACHE) – 32 Kbyte Instruction Scratch-Pad RAM (PSPR) – 16 Kbyte Data Cache (DACHE) – 128 Kbyte Memory (SRAM) – 16 Kbyte BootROM (BROM) 16-Channel DMA Controller 8-Channel Safe DMA (SDMA) Controller Sophisticated interrupt system with 2 × 255 hardware priority arbitration levels serviced by CPU or PCP2 High performing on-chip bus structure – 64-bit Cross Bar Interconnect between CPU, Flash and Data Memory – 32-bit System Peripheral Bus (SPB) for on-chip peripheral and functional units – One bus bridge (SFI Bridge) Versatile On-chip Peripheral Units – Two Asynchronous/Synchronous Serial Channels (ASC) with baud rate generator, parity, framing and overrun error detection – Four High-Speed Synchronous Serial Channels (SSC) with programmable data length and shift direction – Four SSC Guardian (SSCG) modules, one for each SSC – Two serial Micro Second Bus interfaces (MSC) for serial port expansion to external power devices – Two High-Speed Micro Link interfaces (MLI) for serial inter-processor communication Data Sheet 1 V 1.1, 2014-05 TC1791 Summary of Features • • • • • • • • • • – One MultiCAN Module with 4 CAN nodes and 128 free assignable message objects for high efficiency data handling via FIFO buffering and gateway data transfer (one CAN node supports TTCAN functionality) – One FlexRayTM module with 2 channels (E-Ray). – Two General Purpose Timer Array Modules (GPTA) with additional Local Timer Cell Array (LTCA2) providing a powerful set of digital signal filtering and timer functionality to realize autonomous and complex Input/Output management – Two Capture / Compare 6 modules – Two General Purpose 12 Timer Units (GPT120 and GPT121) 48 analog input lines for ADC – 4 independent kernels (ADC0, ADC1, and ADC2) – Analog supply voltage range from 3.3 V to 5 V (single supply) 4 different FADC input channels – channels with impedance control and overlaid with ADC1 inputs – Extreme fast conversion, 21 cycles of fFADC clock – 10-bit A/D conversion (higher resolution can be achieved by averaging of consecutive conversions in digital data reduction filter) 8 digital input lines for SENT – communication according to the SENT specification J2716 FEB2008 128 digital general purpose I/O lines (GPIO) Digital I/O ports with 3.3 V capability On-chip debug support for OCDS Level 1 (CPU, PCP, DMA, On Chip Buses) Dedicated Emulation Device chip available (TC1791ED) – multi-core debugging, real time tracing, and calibration – four/five wire JTAG (IEEE 1149.1) or two wire DAP (Device Access Port) interface Power Management System Clock Generation Unit with PLL and PLL_ERAY Flexible CRC Engine (FCE) – IEEE 802.3 CRC32 ethernet polynomial: 0x82608EDB (CRC kernel 0) – CRC32C Castagnoli: 0xD419CC15 (CRC kernel 1) The SAK-TC1791F-512F200EL / SAK-TC1791F-512F200EP features: • • has the following High-performance 32-bit super-scalar TriCore V1.6 CPU with 6-stage pipeline – Superior real-time performance – Strong bit handling – Fully integrated DSP capabilities – Multiply-accumulate unit able to sustain 2 MAC operations per cycle – Fully pipelined Floating point unit (FPU) – 200 MHz operation at full temperature range 32-bit Peripheral Control Processor with single cycle instruction (PCP2) – 16 Kbyte Parameter Memory (PRAM) – 32 Kbyte Code Memory (CMEM) Data Sheet 2 V 1.1, 2014-05 TC1791 Summary of Features • • • • • • • • – 200 MHz operation at full temperature range Multiple on-chip memories – 4 Mbyte Program Flash Memory (PFLASH) with ECC – 192 Kbyte Data Flash Memory (DFLASH) usable for EEPROM emulation – 2 x 8 Kbyte Key Flash – 128 Kbyte Data Scratch-Pad RAM (DSPR) – 16 Kbyte Instruction Cache (ICACHE) – 32 Kbyte Instruction Scratch-Pad RAM (PSPR) – 16 Kbyte Data Cache (DACHE) – 128 Kbyte Memory (SRAM) – 16 Kbyte BootROM (BROM) 16-Channel DMA Controller 8-Channel Safe DMA (SDMA) Controller Sophisticated interrupt system with 2 × 255 hardware priority arbitration levels serviced by CPU or PCP2 High performing on-chip bus structure – 64-bit Cross Bar Interconnect between CPU, Flash and Data Memory – 32-bit System Peripheral Bus (SPB) for on-chip peripheral and functional units – One bus bridge (SFI Bridge) Versatile On-chip Peripheral Units – Two Asynchronous/Synchronous Serial Channels (ASC) with baud rate generator, parity, framing and overrun error detection – Four High-Speed Synchronous Serial Channels (SSC) with programmable data length and shift direction – Four SSC Guardian (SSCG) modules, one for each SSC – Two serial Micro Second Bus interfaces (MSC) for serial port expansion to external power devices – Two High-Speed Micro Link interfaces (MLI) for serial inter-processor communication – One MultiCAN Module with 4 CAN nodes and 128 free assignable message objects for high efficiency data handling via FIFO buffering and gateway data transfer (one CAN node supports TTCAN functionality) – One FlexRayTM module with 2 channels (E-Ray). – Two General Purpose Timer Array Modules (GPTA) with additional Local Timer Cell Array (LTCA2) providing a powerful set of digital signal filtering and timer functionality to realize autonomous and complex Input/Output management – Two Capture / Compare 6 modules – Two General Purpose 12 Timer Units (GPT120 and GPT121) 44 analog input lines for ADC – 4 independent kernels (ADC0, ADC1, and ADC2) – Analog supply voltage range from 3.3 V to 5 V (single supply) 4 different FADC input channels – channels with impedance control and overlaid with ADC1 inputs Data Sheet 3 V 1.1, 2014-05 TC1791 Summary of Features • • • • • • • • – Extreme fast conversion, 21 cycles of fFADC clock – 10-bit A/D conversion (higher resolution can be achieved by averaging of consecutive conversions in digital data reduction filter) 8 digital input lines for SENT – communication according to the SENT specification J2716 FEB2008 128 digital general purpose I/O lines (GPIO) Digital I/O ports with 3.3 V capability On-chip debug support for OCDS Level 1 (CPU, PCP, DMA, On Chip Buses) Dedicated Emulation Device chip available (TC1791ED) – multi-core debugging, real time tracing, and calibration – four/five wire JTAG (IEEE 1149.1) or two wire DAP (Device Access Port) interface Power Management System Clock Generation Unit with PLL and PLL_ERAY Flexible CRC Engine (FCE) – IEEE 802.3 CRC32 ethernet polynomial: 0x82608EDB (CRC kernel 0) – CRC32C Castagnoli: 0xD419CC15 (CRC kernel 1) The SAK-TC1791F-384F200EL / SAK-TC1791F-384F200EP features: • • • • • has the following High-performance 32-bit super-scalar TriCore V1.6 CPU with 6-stage pipeline – Superior real-time performance – Strong bit handling – Fully integrated DSP capabilities – Multiply-accumulate unit able to sustain 2 MAC operations per cycle – Fully pipelined Floating point unit (FPU) – 200 MHz operation at full temperature range 32-bit Peripheral Control Processor with single cycle instruction (PCP2) – 16 Kbyte Parameter Memory (PRAM) – 32 Kbyte Code Memory (CMEM) – 200 MHz operation at full temperature range Multiple on-chip memories – 3 Mbyte Program Flash Memory (PFLASH) with ECC – 192 Kbyte Data Flash Memory (DFLASH) usable for EEPROM emulation – 2 x 8 Kbyte Key Flash – 128 Kbyte Data Scratch-Pad RAM (DSPR) – 16 Kbyte Instruction Cache (ICACHE) – 32 Kbyte Instruction Scratch-Pad RAM (PSPR) – 16 Kbyte Data Cache (DACHE) – 128 Kbyte Memory (SRAM) – 16 Kbyte BootROM (BROM) 16-Channel DMA Controller 8-Channel Safe DMA (SDMA) Controller Data Sheet 4 V 1.1, 2014-05 TC1791 Summary of Features • • • • • • • • • • • • Sophisticated interrupt system with 2 × 255 hardware priority arbitration levels serviced by CPU or PCP2 High performing on-chip bus structure – 64-bit Cross Bar Interconnect between CPU, Flash and Data Memory – 32-bit System Peripheral Bus (SPB) for on-chip peripheral and functional units – One bus bridge (SFI Bridge) Versatile On-chip Peripheral Units – Two Asynchronous/Synchronous Serial Channels (ASC) with baud rate generator, parity, framing and overrun error detection – Four High-Speed Synchronous Serial Channels (SSC) with programmable data length and shift direction – Four SSC Guardian (SSCG) modules, one for each SSC – Two serial Micro Second Bus interfaces (MSC) for serial port expansion to external power devices – Two High-Speed Micro Link interfaces (MLI) for serial inter-processor communication – One MultiCAN Module with 4 CAN nodes and 128 free assignable message objects for high efficiency data handling via FIFO buffering and gateway data transfer (one CAN node supports TTCAN functionality) – One FlexRayTM module with 2 channels (E-Ray). – Two General Purpose Timer Array Modules (GPTA) with additional Local Timer Cell Array (LTCA2) providing a powerful set of digital signal filtering and timer functionality to realize autonomous and complex Input/Output management – Two Capture / Compare 6 modules – Two General Purpose 12 Timer Units (GPT120 and GPT121) 44 analog input lines for ADC – 4 independent kernels (ADC0, ADC1, and ADC2) – Analog supply voltage range from 3.3 V to 5 V (single supply) 4 different FADC input channels – channels with impedance control and overlaid with ADC1 inputs – Extreme fast conversion, 21 cycles of fFADC clock – 10-bit A/D conversion (higher resolution can be achieved by averaging of consecutive conversions in digital data reduction filter) 8 digital input lines for SENT – communication according to the SENT specification J2716 FEB2008 128 digital general purpose I/O lines (GPIO) Digital I/O ports with 3.3 V capability On-chip debug support for OCDS Level 1 (CPU, PCP, DMA, On Chip Buses) Dedicated Emulation Device chip available (TC1791ED) – multi-core debugging, real time tracing, and calibration – four/five wire JTAG (IEEE 1149.1) or two wire DAP (Device Access Port) interface Power Management System Clock Generation Unit with PLL and PLL_ERAY Data Sheet 5 V 1.1, 2014-05 TC1791 Summary of Features • Flexible CRC Engine (FCE) – IEEE 802.3 CRC32 ethernet polynomial: 0x82608EDB (CRC kernel 0) – CRC32C Castagnoli: 0xD419CC15 (CRC kernel 1) The SAK-TC1791S-512F240EP has the following features: • • • • • • • • High-performance 32-bit super-scalar TriCore V1.6 CPU with 6-stage pipeline – Superior real-time performance – Strong bit handling – Fully integrated DSP capabilities – Multiply-accumulate unit able to sustain 2 MAC operations per cycle – Fully pipelined Floating point unit (FPU) – 240 MHz operation at full temperature range 32-bit Peripheral Control Processor with single cycle instruction (PCP2) – 16 Kbyte Parameter Memory (PRAM) – 32 Kbyte Code Memory (CMEM) – 200 MHz operation at full temperature range Multiple on-chip memories – 4 Mbyte Program Flash Memory (PFLASH) with ECC – 192 Kbyte Data Flash Memory (DFLASH) usable for EEPROM emulation – 2 x 8 Kbyte Key Flash – 128 Kbyte Data Scratch-Pad RAM (DSPR) – 16 Kbyte Instruction Cache (ICACHE) – 32 Kbyte Instruction Scratch-Pad RAM (PSPR) – 16 Kbyte Data Cache (DACHE) – 128 Kbyte Memory (SRAM) – 16 Kbyte BootROM (BROM) 16-Channel DMA Controller 8-Channel Safe DMA (SDMA) Controller Sophisticated interrupt system with 2 × 255 hardware priority arbitration levels serviced by CPU or PCP2 High performing on-chip bus structure – 64-bit Cross Bar Interconnect between CPU, Flash and Data Memory – 32-bit System Peripheral Bus (SPB) for on-chip peripheral and functional units – One bus bridge (SFI Bridge) Versatile On-chip Peripheral Units – Two Asynchronous/Synchronous Serial Channels (ASC) with baud rate generator, parity, framing and overrun error detection – Four High-Speed Synchronous Serial Channels (SSC) with programmable data length and shift direction – Four SSC Guardian (SSCG) modules, one for each SSC – Two serial Micro Second Bus interfaces (MSC) for serial port expansion to external power devices Data Sheet 6 V 1.1, 2014-05 TC1791 Summary of Features • • • • • • • • • • • – Two High-Speed Micro Link interfaces (MLI) for serial inter-processor communication – One MultiCAN Module with 4 CAN nodes and 128 free assignable message objects for high efficiency data handling via FIFO buffering and gateway data transfer (one CAN node supports TTCAN functionality) – One FlexRayTM module with 2 channels (E-Ray). – Two General Purpose Timer Array Modules (GPTA) with additional Local Timer Cell Array (LTCA2) providing a powerful set of digital signal filtering and timer functionality to realize autonomous and complex Input/Output management – Two Capture / Compare 6 modules – Two General Purpose 12 Timer Units (GPT120 and GPT121) 48 analog input lines for ADC – 4 independent kernels (ADC0, ADC1, and ADC2) – Analog supply voltage range from 3.3 V to 5 V (single supply) 4 different FADC input channels – channels with impedance control and overlaid with ADC1 inputs – Extreme fast conversion, 21 cycles of fFADC clock – 10-bit A/D conversion (higher resolution can be achieved by averaging of consecutive conversions in digital data reduction filter) 8 digital input lines for SENT – communication according to the SENT specification J2716 FEB2008 128 digital general purpose I/O lines (GPIO) Digital I/O ports with 3.3 V capability On-chip debug support for OCDS Level 1 (CPU, PCP, DMA, On Chip Buses) Dedicated Emulation Device chip available (TC1791ED) – multi-core debugging, real time tracing, and calibration – four/five wire JTAG (IEEE 1149.1) or two wire DAP (Device Access Port) interface Power Management System Clock Generation Unit with PLL and PLL_ERAY Flexible CRC Engine (FCE) – IEEE 802.3 CRC32 ethernet polynomial: 0x82608EDB (CRC kernel 0) – CRC32C Castagnoli: 0xD419CC15 (CRC kernel 1) Secure Hardware Extension (SHE) – For further information please contact your Infineon representative The SAK-TC1791S-384F200EP has the following features: • High-performance 32-bit super-scalar TriCore V1.6 CPU with 6-stage pipeline – Superior real-time performance – Strong bit handling – Fully integrated DSP capabilities – Multiply-accumulate unit able to sustain 2 MAC operations per cycle – Fully pipelined Floating point unit (FPU) – 200 MHz operation at full temperature range Data Sheet 7 V 1.1, 2014-05 TC1791 Summary of Features • • • • • • • • 32-bit Peripheral Control Processor with single cycle instruction (PCP2) – 16 Kbyte Parameter Memory (PRAM) – 32 Kbyte Code Memory (CMEM) – 200 MHz operation at full temperature range Multiple on-chip memories – 3 Mbyte Program Flash Memory (PFLASH) with ECC – 192 Kbyte Data Flash Memory (DFLASH) usable for EEPROM emulation – 2 x 8 Kbyte Key Flash – 128 Kbyte Data Scratch-Pad RAM (DSPR) – 16 Kbyte Instruction Cache (ICACHE) – 32 Kbyte Instruction Scratch-Pad RAM (PSPR) – 16 Kbyte Data Cache (DACHE) – 128 Kbyte Memory (SRAM) – 16 Kbyte BootROM (BROM) 16-Channel DMA Controller 8-Channel Safe DMA (SDMA) Controller Sophisticated interrupt system with 2 × 255 hardware priority arbitration levels serviced by CPU or PCP2 High performing on-chip bus structure – 64-bit Cross Bar Interconnect between CPU, Flash and Data Memory – 32-bit System Peripheral Bus (SPB) for on-chip peripheral and functional units – One bus bridge (SFI Bridge) Versatile On-chip Peripheral Units – Two Asynchronous/Synchronous Serial Channels (ASC) with baud rate generator, parity, framing and overrun error detection – Four High-Speed Synchronous Serial Channels (SSC) with programmable data length and shift direction – Four SSC Guardian (SSCG) modules, one for each SSC – Two serial Micro Second Bus interfaces (MSC) for serial port expansion to external power devices – Two High-Speed Micro Link interfaces (MLI) for serial inter-processor communication – One MultiCAN Module with 4 CAN nodes and 128 free assignable message objects for high efficiency data handling via FIFO buffering and gateway data transfer (one CAN node supports TTCAN functionality) – One FlexRayTM module with 2 channels (E-Ray). – Two General Purpose Timer Array Modules (GPTA) with additional Local Timer Cell Array (LTCA2) providing a powerful set of digital signal filtering and timer functionality to realize autonomous and complex Input/Output management – Two Capture / Compare 6 modules – Two General Purpose 12 Timer Units (GPT120 and GPT121) 44 analog input lines for ADC – 4 independent kernels (ADC0, ADC1, and ADC2) Data Sheet 8 V 1.1, 2014-05 TC1791 Summary of Features • • • • • • • • • • – Analog supply voltage range from 3.3 V to 5 V (single supply) 4 different FADC input channels – channels with impedance control and overlaid with ADC1 inputs – Extreme fast conversion, 21 cycles of fFADC clock – 10-bit A/D conversion (higher resolution can be achieved by averaging of consecutive conversions in digital data reduction filter) 8 digital input lines for SENT – communication according to the SENT specification J2716 FEB2008 128 digital general purpose I/O lines (GPIO) Digital I/O ports with 3.3 V capability On-chip debug support for OCDS Level 1 (CPU, PCP, DMA, On Chip Buses) Dedicated Emulation Device chip available (TC1791ED) – multi-core debugging, real time tracing, and calibration – four/five wire JTAG (IEEE 1149.1) or two wire DAP (Device Access Port) interface Power Management System Clock Generation Unit with PLL and PLL_ERAY Flexible CRC Engine (FCE) – IEEE 802.3 CRC32 ethernet polynomial: 0x82608EDB (CRC kernel 0) – CRC32C Castagnoli: 0xD419CC15 (CRC kernel 1) Secure Hardware Extension (SHE) – For further information please contact your Infineon representative The SAK-TC1791N-384F200EP has the following features: • • • High-performance 32-bit super-scalar TriCore V1.6 CPU with 6-stage pipeline – Superior real-time performance – Strong bit handling – Fully integrated DSP capabilities – Multiply-accumulate unit able to sustain 2 MAC operations per cycle – Fully pipelined Floating point unit (FPU) – 200 MHz operation at full temperature range 32-bit Peripheral Control Processor with single cycle instruction (PCP2) – 16 Kbyte Parameter Memory (PRAM) – 32 Kbyte Code Memory (CMEM) – 200 MHz operation at full temperature range Multiple on-chip memories – 3 Mbyte Program Flash Memory (PFLASH) with ECC – 192 Kbyte Data Flash Memory (DFLASH) usable for EEPROM emulation – 2 x 8 Kbyte Key Flash – 128 Kbyte Data Scratch-Pad RAM (DSPR) – 16 Kbyte Instruction Cache (ICACHE) – 32 Kbyte Instruction Scratch-Pad RAM (PSPR) – 16 Kbyte Data Cache (DACHE) – 128 Kbyte Memory (SRAM) Data Sheet 9 V 1.1, 2014-05 TC1791 Summary of Features • • • • • • • • • • • • – 16 Kbyte BootROM (BROM) 16-Channel DMA Controller 8-Channel Safe DMA (SDMA) Controller Sophisticated interrupt system with 2 × 255 hardware priority arbitration levels serviced by CPU or PCP2 High performing on-chip bus structure – 64-bit Cross Bar Interconnect between CPU, Flash and Data Memory – 32-bit System Peripheral Bus (SPB) for on-chip peripheral and functional units – One bus bridge (SFI Bridge) Versatile On-chip Peripheral Units – Two Asynchronous/Synchronous Serial Channels (ASC) with baud rate generator, parity, framing and overrun error detection – Four High-Speed Synchronous Serial Channels (SSC) with programmable data length and shift direction – Four SSC Guardian (SSCG) modules, one for each SSC – Two serial Micro Second Bus interfaces (MSC) for serial port expansion to external power devices – Two High-Speed Micro Link interfaces (MLI) for serial inter-processor communication – One MultiCAN Module with 4 CAN nodes and 128 free assignable message objects for high efficiency data handling via FIFO buffering and gateway data transfer (one CAN node supports TTCAN functionality) – Two General Purpose Timer Array Modules (GPTA) with additional Local Timer Cell Array (LTCA2) providing a powerful set of digital signal filtering and timer functionality to realize autonomous and complex Input/Output management – Two Capture / Compare 6 modules – Two General Purpose 12 Timer Units (GPT120 and GPT121) 44 analog input lines for ADC – 4 independent kernels (ADC0, ADC1, and ADC2) – Analog supply voltage range from 3.3 V to 5 V (single supply) 4 different FADC input channels – channels with impedance control and overlaid with ADC1 inputs – Extreme fast conversion, 21 cycles of fFADC clock – 10-bit A/D conversion (higher resolution can be achieved by averaging of consecutive conversions in digital data reduction filter) 8 digital input lines for SENT – communication according to the SENT specification J2716 FEB2008 128 digital general purpose I/O lines (GPIO) Digital I/O ports with 3.3 V capability On-chip debug support for OCDS Level 1 (CPU, PCP, DMA, On Chip Buses) Dedicated Emulation Device chip available (TC1791ED) – multi-core debugging, real time tracing, and calibration – four/five wire JTAG (IEEE 1149.1) or two wire DAP (Device Access Port) interface Data Sheet 10 V 1.1, 2014-05 TC1791 Summary of Features • • • Power Management System Clock Generation Unit with PLL and PLL_ERAY Flexible CRC Engine (FCE) – IEEE 802.3 CRC32 ethernet polynomial: 0x82608EDB (CRC kernel 0) – CRC32C Castagnoli: 0xD419CC15 (CRC kernel 1) Data Sheet 11 V 1.1, 2014-05 TC1791 Summary of Features Ordering Information The ordering code for Infineon microcontrollers provides an exact reference to the required product. This ordering code identifies: • • The derivative itself, i.e. its function set, the temperature range, and the supply voltage The package and the type of delivery. For the available ordering codes for the TC1791 please refer to the “Product Catalog Microcontrollers”, which summarizes all available microcontroller variants. This document describes the derivatives of the device.The Table 1 enumerates these derivatives and summarizes the differences. Table 1 TC1791 Derivative Synopsis Derivative Ambient Temperature Range SAK-TC1791F-512F240EL TA = -40oC to +125oC SAK-TC1791F-512F240EP TA = -40oC to +125oC SAK-TC1791F-512F200EL TA = -40oC to +125oC SAK-TC1791F-512F200EP TA = -40oC to +125oC SAK-TC1791F-384F200EL TA = -40oC to +125oC SAK-TC1791F-384F200EP TA = -40oC to +125oC SAK-TC1791S-512F240EP TA = -40oC to +125oC SAK-TC1791S-384F200EP TA = -40oC to +125oC SAK-TC1791N-384F200EP TA = -40oC to +125oC Data Sheet 12 V 1.1, 2014-05 TC1791 System Overview of the TC1791 2 System Overview of the TC1791 The TC1791 combines three powerful technologies within one silicon die, achieving new levels of power, speed, and economy for embedded applications: • • • Reduced Instruction Set Computing (RISC) processor architecture Digital Signal Processing (DSP) operations and addressing modes On-chip memories and peripherals DSP operations and addressing modes provide the computational power necessary to efficiently analyze complex real-world signals. The RISC load/store architecture provides high computational bandwidth with low system cost. On-chip memory and peripherals are designed to support even the most demanding high-bandwidth real-time embedded control-systems tasks. Additional high-level features of the TC1791 include: • • • • • • • • • Efficient memory organization: instruction and data scratch memories, caches Serial communication interfaces – flexible synchronous and asynchronous modes Peripheral Control Processor – standalone data operations and interrupt servicing DMA Controller – DMA operations and interrupt servicing General-purpose timers High-performance on-chip buses On-chip debugging and emulation facilities Flexible interconnections to external components Flexible power-management The TC1791 is a high-performance microcontroller with TriCore CPU, program and data memories, buses, bus arbitration, an interrupt controller, a peripheral control processor and a DMA controller and several on-chip peripherals. The TC1791 is designed to meet the needs of the most demanding embedded control systems applications where the competing issues of price/performance, real-time responsiveness, computational power, data bandwidth, and power consumption are key design elements. The TC1791 offers several versatile on-chip peripheral units such as serial controllers, timer units, and Analog-to-Digital converters. Within the TC1791, all these peripheral units are connected to the TriCore CPU/system via the Flexible Peripheral Interconnect (FPI) Bus and the Cross Bar Interconnect (SRI). Several I/O lines on the TC1791 ports are reserved for these peripheral units to communicate with the external world. Data Sheet 13 V 1.1, 2014-05 TC1791 System Overview of the TC1791Block Diagram 2.1 Block Diagram Figure 1 shows the block diagram of the SAK-TC1791F-512F240EL / SAK-TC1791F512F240EP / SAK-TC1791F-512F200EL / SAK-TC1791F-512F200EP. FPU PMI DMI LMU TriCore CPU 32 KB PSPR 16 KB ICACHE 128LDRAM KB DSPR 16 KB DCACHE DCACHE 128 KB SRAM M/S S M/S EBU Cross Bar Interconnect (SRI) S XBAR S S PMU0 PMU1 M M/S 2 MB PFlash 192 KB DFlash 16 KB BROM KeyFlash 16 channels (MemCheck) (SFI) 2 MB PFlash M/S Interrupt System 4 SSCG M /S PCP2 Core 4 Interrupts ASC SSC E-Ray 2 SBCU BMU Ports 5V (3.3V supported as well) Ext. ADC Supply External Request Unit CCU6 (2xCCU6) SENT (8 channels ) FCE 2 GPT120 GPTA0 GPTA1 LTCA2 SDMA 8 channels 32 KB CMEM (2 Channels) MultiCAN MLI STM SSC Guardian (4 Nodes, 128 MO) Interface/JTAG 2 M/S 16 KB PRAM 2 OCDS L 1 Debug DMA Bridge Abbreviations: ICACHE: Instruction Cache DCACHE Data Cache PSPR: Program Scratch-Pad RAM DSPR: Data Scratch-Padl Data RAM BROM: Boot ROM PFlash: Program Flash DFlash: Data Flash PRAM: Parameter RAM in PCP CMEM: Code RAM in PCP XBAR: SRI Cross Bar (XBar_SRI) S : On Chip Bus Slave Interface M : On Chip Bus Master Interface 2 ADC0 ADC1 (5V max) 44 ADC2 SCU MSC FM-PLL (LVDS) PLL E-RAY (3.3V max) FADC 8 System Peripheral Bus (SPB) 3.3V Ext. FADC Supply TC1791 Figure 1 Data Sheet Block Diagram 14 V 1.1, 2014-05 TC1791 System Overview of the TC1791Block Diagram Figure 2 shows the block diagram of the SAK-TC1791F-384F200EL / SAK-TC1791F384F200EP. FPU PMI DMI LMU TriCore CPU 32 KB PSPR 16 KB ICACHE 128LDRAM KB DSPR 16 KB DCACHE DCACHE 128 KB SRAM M/S S M/S EBU Cross Bar Interconnect (SRI) S XBAR S S PMU0 PMU1 M M/S 2 MB PFlash 192 KB DFlash 16 KB BROM KeyFlash 16 channels (MemCheck) (SFI) 1 MB PFlash M/S Interrupt System SSCG PCP2 M /S 4 Core 4 Interrupts ASC SSC 2 SBCU BMU Ports 5V (3.3V supported as well) Ext. ADC Supply External Request Unit CCU6 (2xCCU6) SENT (8 channels ) FCE 2 GPT120 GPTA 0 GPTA1 SDMA 8 channels 32 KB CMEM E-Ray (2 Channels) MultiCAN MLI STM SSC Guardian (4 Nodes, 128 MO) Interface/JTAG 2 M/S 16 KB PRAM 2 OCDS L 1 Debug DMA Bridge Abbreviations: ICACHE: Instruction Cache DCACHE Data Cache PSPR: Program Scratch-Pad RAM DSPR: Data Scratch-Padl Data RAM BROM: Boot ROM PFlash: Program Flash DFlash: Data Flash PRAM: Parameter RAM in PCP CMEM: Code RAM in PCP XBAR: SRI Cross Bar (XBar_SRI) S : On Chip Bus Slave Interface M : On Chip Bus Master Interface 2 ADC0 ADC1 (5V max) 44 ADC2 SCU MSC FM-PLL (LVDS) PLL E-RAY (3.3V max) FADC 8 System Peripheral Bus (SPB) LTCA2 3.3V Ext. FADC Supply TC1791 Figure 2 Block Diagram Figure 3 shows the block diagram of the SAK-TC1791S-512F240EP. Data Sheet 15 V 1.1, 2014-05 TC1791 System Overview of the TC1791Block Diagram FPU PMI DMI LMU TriCore CPU 32 KB PSPR 16 KB ICACHE 128LDRAM KB DSPR 16 KB DCACHE DCACHE 128 KB SRAM M/S S M/S EBU Cross Bar Interconnect (SRI) S XBAR S S PMU0 PMU1 M M/S 2 MB PFlash 192 KB DFlash 16 KB BROM KeyFlash 16 channels (MemCheck) (SFI) 2 MB PFlash M/S 4 SSCG M /S PCP2 Core 4 Interrupts ASC SSC SSC Guardian (4 Nodes, 128 MO) 2 Interrupt System 8 channels STM SHE SBCU BMU Ports 5V (3.3V supported as well) Ext. ADC Supply External Request Unit CCU6 (2xCCU6) SENT (8 channels ) FCE 2 GPT120 GPTA0 GPTA1 MLI SDMA 32 KB CMEM E-Ray (2 Channels) MultiCAN Interface/JTAG 2 M/S 16 KB PRAM 2 OCDS L 1 Debug DMA Bridge Abbreviations: ICACHE: Instruction Cache DCACHE Data Cache PSPR: Program Scratch-Pad RAM DSPR: Data Scratch-Padl Data RAM BROM: Boot ROM PFlash: Program Flash DFlash: Data Flash PRAM: Parameter RAM in PCP CMEM: Code RAM in PCP XBAR: SRI Cross Bar (XBar_SRI) S : On Chip Bus Slave Interface M : On Chip Bus Master Interface 2 ADC0 ADC1 (5V max) 44 ADC2 SCU MSC FM-PLL (LVDS) PLL E-RAY (3.3V max) FADC 8 System Peripheral Bus (SPB) LTCA2 3.3V Ext. FADC Supply TC1791 Figure 3 Block Diagram Figure 4 shows the block diagram of the SAK-TC1791S-384F200EP. Data Sheet 16 V 1.1, 2014-05 TC1791 System Overview of the TC1791Block Diagram FPU PMI DMI LMU TriCore CPU 32 KB PSPR 16 KB ICACHE 128LDRAM KB DSPR 16 KB DCACHE DCACHE 128 KB SRAM M/S S M/S EBU Cross Bar Interconnect (SRI) S XBAR S S PMU0 PMU1 M M/S 2 MB PFlash 192 KB DFlash 16 KB BROM KeyFlash 16 channels (MemCheck) (SFI) 1 MB PFlash M/S 4 SSCG M /S PCP2 Core 4 Interrupts ASC SSC SSC Guardian (4 Nodes, 128 MO) 2 Interrupt System 8 channels STM SHE SBCU BMU Ports 5V (3.3V supported as well) Ext. ADC Supply External Request Unit CCU6 (2xCCU6) SENT (8 channels ) FCE 2 GPT120 GPTA0 GPTA1 LTCA2 MLI SDMA 32 KB CMEM E-Ray (2 Channels) MultiCAN Interface/JTAG 2 M/S 16 KB PRAM 2 OCDS L 1 Debug DMA Bridge Abbreviations: ICACHE: Instruction Cache DCACHE Data Cache PSPR: Program Scratch-Pad RAM DSPR: Data Scratch-Padl Data RAM BROM: Boot ROM PFlash: Program Flash DFlash: Data Flash PRAM: Parameter RAM in PCP CMEM: Code RAM in PCP XBAR: SRI Cross Bar (XBar_SRI) : On Chip Bus Slave Interface S : On Chip Bus Master Interface M 2 ADC0 ADC1 (5V max) 44 ADC2 SCU MSC FM-PLL (LVDS) PLL E-RAY (3.3V max) FADC 8 System Peripheral Bus (SPB) 3.3V Ext. FADC Supply TC1791 Figure 4 Block Diagram Figure 5 shows the block diagram of the SAK-TC1791N-384F200EP. Data Sheet 17 V 1.1, 2014-05 TC1791 System Overview of the TC1791Block Diagram FPU PMI DMI LMU TriCore CPU 32 KB PSPR 16 KB ICACHE 128LDRAM KB DSPR 16 KB DCACHE DCACHE 128 KB SRAM M/S S M/S EBU Cross Bar Interconnect (SRI) S XBAR S S PMU0 PMU1 M M/S 2 MB PFlash 192 KB DFlash 16 KB BROM KeyFlash 16 channels (MemCheck) (SFI) 1 MB PFlash M/S Interrupt System 4 SSCG M /S PCP2 Core 4 Interrupts ASC SSC Interface/JTAG 2 MLI M/S 16 KB PRAM 2 OCDS L 1 Debug DMA Bridge Abbreviations: ICACHE: Instruction Cache DCACHE Data Cache PSPR: Program Scratch-Pad RAM DSPR: Data Scratch-Padl Data RAM BROM: Boot ROM PFlash: Program Flash DFlash: Data Flash PRAM: Parameter RAM in PCP CMEM: Code RAM in PCP XBAR: SRI Cross Bar (XBar_SRI) : On Chip Bus Slave Interface S : On Chip Bus Master Interface M SDMA 8 channels STM SSC Guardian SBCU BMU Ports 5V (3.3V supported as well) Ext. ADC Supply 32 KB CMEM MultiCAN (4 Nodes, 128 MO) 2 SENT (8 channels ) External Request Unit CCU6 (2xCCU6) FCE 2 GPT120 GPTA0 GPTA1 LTCA2 2 ADC0 ADC1 (5V max) 44 ADC2 SCU MSC FM-PLL (LVDS) PLL E-RAY (3.3V max) FADC 8 System Peripheral Bus (SPB) 3.3V Ext. FADC Supply TC1791 Figure 5 Data Sheet Block Diagram 18 V 1.1, 2014-05 TC1791 Pinning 3 Pinning Figure 6 is showing the TC1791 Logic Symbol. General Control Alternate Functions : PORST TESTMODE 14 ESR0 6 ESR1 10 TRST 4 TCK / DAP0 OCDS / JTAG Control 13 TDI / BRKIN/ BRKOUT 16 TDO /BRKOUT/ DAP2 / BRKIN 12 TMS / DAP1 6 XTAL1 8 XTAL2 Oscillator 12 V D DOSC VDD OSC3 6 VSSOSC 16 TC1791 VD D PF VD DPF3 5 16 10 Digital Circuitry Power Supply VD DP 12 VDD 2 VD D FL3 VSS VSSP V 13 Port 2 GPTA / SSC0 / SSC1 Port 3 GPTA / CCU6 / GPT12 Port 4 Port 5 Port 6 Port 7 GPTA / SSC2 / CCU6 / GPT12 ASC0 / ASC1 / MSC0 / LVDS / MLI0 / MLI1 / CCU6 / GPT12 ASC0 / ASC1 / SSC1 / CAN / E-RAY / CCU6 / GPT12 ERU / ADC-Mux / SSC3 Port 9 MLI 1 / GPTA / SENT / CCU6 / GPT12 MSC0 / MSC1 / GPTA / SENT / CCU6 / GPT12 Port 10 SSC0 Port 13 GPTA Port 14 GPTA / CCU6 / GPT12 Port 17 SENT (Overlay with Analog Inputs ) Port 8 3 VSSAF V SS MF VFAGND VFAR EF VD DMF VD DAF 3 V N.C. Port 1 1) GPTA / HWCFG / E-RAY / GPT12 GPTA / ERU / SSC1 / SSC3 / CCU6 / GPT12 1) Only available for SAK-TC 1791S-512F240EP, SAK-TC 1791F-512F240EP, SAK-TC 1791F512F240EL, SAK-TC 1791S-384F200EP, SAKTC 1791F-384F200EL, SAK-TC1791F-384F200EP, and SAK-TC 1791F-384F200EL. 48 DD SB (ED only, N.C. in PD) FADC Analog Power Supply Port 0 AN[47:0] ADC / FADC Analog Inputs VAR EFx VAGND VDD M VSSM ADC0 /ADC1 / ADC2 Analog Power Supply 2 TC 1791_LogSym_292 Figure 6 Data Sheet TC1791 Logic Symbol 19 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration 3.1 TC1791 Pin Configuration This chapter shows the pin configuration of the TC1791 package PG-LFBGA- 292-6. 20 19 18 17 16 15 14 13 12 11 Y VSS P14.6 P14.8 VSSP P10.5 P10.0 P10.3 P4.7 P4.3 VSSP W VDD P4.2 VDDP VSS P14.4 VDDP P10.4 P10.1 P4.10 P4.6 10 9 8 7 6 5 4 3 2 VSS VA VA AN39 AN37 AN30 AN26 AN34 AN1 MF GND0 REF0 P17.11 P17.9 VFA VA VA AN38 AN36 AN29 AN25 AN33 AN2 GND REF2 REF1 P17.10 P17.8 V P14.2 VDD 1 NC AN3 AN4 AN44 U P14.0 P13.15 VSS P10.2 P4.14 P4.9 P4.5 P4.1 VDD VFA AN43 AN41 AN28 AN24 AN47 AN32 MF REF P17.15 P17.13 T P13.14 P13.13 VDD VSS P4.12 P4.8 P4.4 P4.0 VDD AN42 AN40 AN31 AN27 AN35 AN7 P17.14 P17.12 AF AN5 AN45 AN0 AN6 AN46 P13.10 VDD AN8 AN9 P17.0 P17.1 VDDM VSSM P P13.9 P13.8 P13.7 P13.6 AN10 AN11 P17.2 P17.3 AN12 AN13 P17.4 P17.5 N P13.5 P13.4 P13.3 P13.2 VDD VDD AN16 AN17 AN14 AN15 P17.6 P17.7 M VDDP VDDP P13.1 P13.0 VSS VSS VSS VSS AN18 AN19 AN20 AN21 L VSSP VSSP VDD VDD PF3 FL3 VSS VSS VSS VSS NC NC AN22 AN23 K XTAL1 XTAL2 VDD VDD PF OSC3 VSS VSS VSS VSS VDD FL3 P7.5 VDDP VSSP TDI TMS VSS VSS VSS VSS P7.4 P7.3 P7.2 H TCK TRST TDO P9.14 VDD VDD P7.0 P1.1 P1.12 P1.0 G ESR1 ESR0 Test P9.13 mode P1.9 P8.6 P1.6 P1.7 F P9.10 PORST P9.5 P8.5 P8.7 P8.4 P8.0 E P9.7 P9.8 P9.0 VSSP P5.5 D P9.2 P9.1 VSSP P5.7 C P9.3 P9.4 R P13.12 P13.11 J VSS VDD OSC OSC VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDD VSS VSS VSS VSS VDD VDD P9.6 P3.0 P3.4 P3.12 P0.1 P5.2 P5.12 P3.10 P0.0 P5.8 P0.2 P0.7 P7.1 P0.3 P0.5 P2.6 P8.1 VSSP P8.2 P8.3 P6.15 P0.4 P0.6 P2.10 P2.5 P2.4 P6.7 VSSP P6.11 P6.14 P5.3 P5.13 P5.14 P0.10 P0.13 VDDP P0.9 P2.12 P2.7 A VSSP VDDP P5.4 P5.11 P5.10 P5.0 Data Sheet VSS P6.10 P6.13 B P5.6 VSSP VDDP P5.9 Figure 7 VDD VSS P5.1 P5.15 P0.11 P0.12 VSSP P0.14 P2.14 P2.8 P2.3 P6.8 P6.4 VDDP VSSP P6.12 P2.2 P6.9 P6.6 P6.5 VDDP NC TC1791 Pinning for PG-LFBGA-292 Package 20 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Table 2 Pin Pin Definitions and Functions Symbol Ctrl. Type Function P0.0 I/O HWCFG0 I A1+/ PU OUT56 O1 OUT56 Line of GPTA0 OUT56 O2 OUT56 Line of GPTA1 OUT80 O3 OUT80 Line of LTCA2 P0.1 I/O HWCFG1 I OUT57 O1 OUT57 Line of GPTA0 OUT57 O2 OUT57 Line of GPTA1 OUT81 O3 OUT81 Line of LTCA2 P0.2 I/O HWCFG2 I OUT58 O1 OUT58 Line of GPTA0 OUT58 O2 OUT58 Line of GPTA1 OUT82 O3 OUT82 Line of LTCA2 P0.3 I/O HWCFG3 I OUT59 O1 OUT59 Line of GPTA0 OUT59 O2 OUT59 Line of GPTA1 OUT83 O3 OUT83 Line of LTCA2 Port 0 D12 E11 D11 E10 Data Sheet A1/ PU A2/ PU A1/ PU Port 0 General Purpose I/O Line 0 Hardware Configuration Input 0 Port 0 General Purpose I/O Line 1 Hardware Configuration Input 1 Port 0 General Purpose I/O Line 2 Hardware Configuration Input 2 Port 0 General Purpose I/O Line 3 Hardware Configuration Input 3 21 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function D10 P0.4 I/O HWCFG4 I A1/ PU OUT60 O1 OUT60 Line of GPTA0 OUT60 O2 OUT60 Line of GPTA1 EVTO0 O3 MCDS Output Event 01) P0.5 I/O HWCFG5 I OUT61 O1 OUT61 Line of GPTA0 OUT61 O2 OUT61 Line of GPTA1 EVTO1 O3 MCDS Output Event 11) P0.6 I/O HWCFG6 I OUT62 O1 OUT62 Line of GPTA0 OUT62 O2 OUT62 Line of GPTA1 EVTO2 O3 MCDS Output Event 21) P0.7 I/O HWCFG7 I OUT63 O1 OUT63 Line of GPTA0 OUT63 O2 OUT63 Line of GPTA1 EVTO3 O3 MCDS Output Event 31) P0.9 I/O RXDA0 I Reserved O1 - Reserved O2 - Reserved O3 - E9 D9 E8 B9 Data Sheet A1/ PU A2/ PU A1/ PU A1/ PU Port 0 General Purpose I/O Line 4 Hardware Configuration Input 4 Port 0 General Purpose I/O Line 5 Hardware Configuration Input 5 Port 0 General Purpose I/O Line 6 Hardware Configuration Input 6 Port 0 General Purpose I/O Line 7 Hardware Configuration Input 7 Port 0 General Purpose I/O Line 9 E-Ray Channel A Receive Data Input 0 2) 22 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function B12 P0.10 I/O TXENA O1 A2/ PU Reserved O2 - Reserved O3 - P0.11 I/O T5INB I T5INA I GPT121 TXENB O1 E-Ray Channel B transmit Data Output enable 2) Reserved O2 - Reserved O3 - P0.12 I/O T5EUDA I T5EUDB I GPT121 TXDB O1 E-Ray Channel B transmit Data Output 2) Reserved O2 - Reserved O3 - P0.13 I/O RXDB0 I T5EUDB I GPT120 T5EUDA I GPT121 Reserved O1 - Reserved O2 - Reserved O3 - A12 A11 B11 Data Sheet A2/ PU A2/ PU A1/ PU Port 0 General Purpose I/O Line 10 E-Ray Channel A transmit Data Output enable 2) Port 0 General Purpose I/O Line 11 GPT120 Port 0 General Purpose I/O Line 12 GPT120 Port 0 General Purpose I/O Line 13 E-Ray Channel B Receive Data Input 0 2) 23 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function A9 P0.14 I/O T6INA I A2/ PU T6INB I GPT121 TXDA O1 E-Ray Channel A transmit Data Output 2) Reserved O2 - Reserved O3 - P1.0 I/O REQ0 I EXTCLK1 O1 External Clock Output 1 Reserved O2 - Reserved O3 - P1.1 I/O REQ1 I CC60INA I CCU60 CC60INB I CCU61 CC60 O1 CCU60 Reserved O2 - Reserved O3 - P1.6 I/O TVALID0A O1 SLSO10 O2 SSC1 Slave Select Output Line 10 COUT60 O3 CCU60 Port 0 General Purpose I/O Line 14 GPT120 Port 1 H1 H4 G2 Data Sheet A2/ PU A1/ PU A2/ PU Port 1 General Purpose I/O Line 0 External trigger Input 0 Port 1 General Purpose I/O Line 1 External trigger Input 1 Port 1 General Purpose I/O Line 6 MLI0 transmit Channel valid Output A 24 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function G1 P1.7 I/O CC61INB I A2/ PU CC61INA I CCU61 TData0 O1 MLI0 transmit Channel Data Output CC61 O2 CCU61 T3OUT O3 GPT120 P1.9 I/O RREADY0A O1 SLSO11 O2 SSC1 Slave Select Output Line 11 OUT65 O3 OUT65 Line of GPTA0 P1.12 I/O EXTCLK0 O1 OUT68 O2 OUT68 Line of GPTA0 OUT68 O3 OUT68 Line of GPTA1 P2.2 I/O SLSO02 O1 SLSO12 O2 SSC1 Slave Select Output Line 12 SLSO02 AND SLSO12 O3 SSC0 & SSC1 Slave Select Output Line 2 AND Slave Select Output Line 12 P2.3 I/O SLSO03 O1 SLSO13 O2 SSC1 Slave Select Output Line 13 SLSO03 AND SLSO13 O3 SSC0 & SSC1 Slave Select Output Line 3 AND Slave Select Output Line 13 G5 H2 A2/ PU A2/ PU Port 1 General Purpose I/O Line 7 CCU60 Port 1 General Purpose I/O Line 9 MLI0 Receive Channel ready Output A Port 1 General Purpose I/O Line 12 External Clock Output 0 Port 2 A6 B6 Data Sheet A1+/ PU A1+/ PU Port 2 General Purpose I/O Line 2 SSC0 Slave Select Output Line 2 Port 2 General Purpose I/O Line 3 SSC0 Slave Select Output Line 3 25 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function D6 P2.4 I/O SLSO04 O1 A1+/ PU SLSO14 O2 SSC1 Slave Select Output Line 14 SLSO04 AND SLSO14 O3 SSC0 & SSC1 Slave Select Output Line 4 AND Slave Select Output Line 14 P2.5 I/O SLSO05 O1 SLSO15 O2 SSC1 Slave Select Output Line 15 SLSO05 AND SLSO15 O3 SSC0 & SSC1 Slave Select Output Line 5 AND Slave Select Output Line 15 P2.6 I/O SLSO06 O1 SLSO16 O2 SSC1 Slave Select Output Line 16 SLSO06 AND SLSO16 O3 SSC0 & SSC1 Slave Select Output Line 6 AND Slave Select Output Line 16 P2.7 I/O SLSO07 O1 SLSO17 O2 SSC1 Slave Select Output Line 17 SLSO07 AND SLSO17 O3 SSC0 & SSC1 Slave Select Output Line 7AND Slave Select Output Line 17 D7 E7 B7 Data Sheet A1+/ PU A1+/ PU A1+/ PU Port 2 General Purpose I/O Line 4 SSC0 Slave Select Output Line 4 Port 2 General Purpose I/O Line 5 SSC0 Slave Select Output Line 5 Port 2 General Purpose I/O Line 6 SSC0 Slave Select Output Line 6 Port 2 General Purpose I/O Line 7 SSC0 Slave Select Output Line 7 26 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function A7 P2.8 I/O IN0 I A1/ PU IN0 I IN0 Line of GPTA1 IN0 I IN0 Line of LTCA2 CCPOS0A I CCU62 T12HRB I CCU63 T3INB I GPT120 T3INA I GPT121 OUT0 O1 OUT0 Line of GPTA0 OUT0 O2 OUT0 Line of GPTA1 OUT0 O3 OUT0 Line of LTCA2 P2.10 I/O IN2 I IN2 I IN2 Line of GPTA1 IN2 I IN2 Line of LTCA2 T12HRE I CCU60 CC61INC I CCU60 CTRAPA I CCU61 CTRAPB I CCU63 CC60INC I CCU61 OUT2 O1 OUT2 Line of GPTA0 OUT2 O2 OUT2 Line of GPTA1 OUT2 O3 OUT2 Line of LTCA2 D8 Data Sheet A1/ PU Port 2 General Purpose I/O Line 8 IN0 Line of GPTA0 Port 2 General Purpose I/O Line 10 IN2 Line of GPTA0 27 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function B8 P2.12 I/O IN4 I A1/ PU IN4 I IN4 Line of GPTA1 IN4 I IN4 Line of LTCA2 T12HRB I CCU62 CCPOS0A I CCU63 T2INB I GPT120 T2INA I GPT121 OUT4 O1 OUT4 Line of GPTA0 OUT4 O2 OUT4 Line of GPTA1 OUT4 O3 OUT4 Line of LTCA2 P2.14 I/O IN6 I IN6 I IN6 Line of GPTA1 IN6 I IN6 Line of LTCA2 CCPOS0A I CCU60 T12HRB I CCU61 T3INA I GPT120 T3INB I GPT121 OUT6 O1 OUT6 Line of GPTA0 OUT6 O2 OUT6 Line of GPTA1 OUT6 O3 OUT6 Line of LTCA2 A8 A1/ PU Port 2 General Purpose I/O Line 12 IN4 Line of GPTA0 Port 2 General Purpose I/O Line 14 IN6 Line of GPTA0 Port 3 Data Sheet 28 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function E14 P3.0 I/O IN8 I A1/ PU IN8 I IN8 Line of GPTA1 IN8 I IN8 Line of LTCA2 CTRAPA I CCU62 CTRAPB I CCU61 CC60INC I CCU62 T12HRE I CCU63 CC61INC I CCU63 T5INA I GPT120 T5INB I GPT121 OUT8 O1 OUT8 Line of GPTA0 OUT8 O2 OUT8 Line of GPTA1 OUT8 O3 OUT8 Line of LTCA2 P3.4 I/O IN12 I IN12 I IN12 Line of GPTA1 IN12 I IN12 Line of LTCA2 T12HRE I CCU62 CC61INC I CCU62 CTRAPA I CCU63 CTRAPB I CCU60 CC60INC I CCU63 OUT12 O1 OUT12 Line of GPTA0 OUT12 O2 OUT12 Line of GPTA1 OUT12 O3 OUT12 Line of LTCA2 E13 Data Sheet A1/ PU Port 3 General Purpose I/O Line 0 IN8 Line of GPTA0 Port 3 General Purpose I/O Line 4 IN12 Line of GPTA0 29 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function D13 P3.10 I/O IN18 I A1+/ PU IN18 I IN18 Line of GPTA1 IN18 I IN18 Line of LTCA2 CCPOS1A I CCU62 T13HRB I CCU63 T3EUDB I GPT120 T3EUDA I GPT121 OUT18 O1 OUT18 Line of GPTA0 OUT18 O2 OUT18 Line of GPTA1 OUT18 O3 OUT18 Line of LTCA2 P3.12 I/O IN20 I IN20 I IN20 Line of GPTA1 IN20 I IN20 Line of LTCA2 CCPOS2A I CCU62 T12HRC I CCU63 T13HRC I CCU63 T4INB I GPT120 T4INA I GPT121 OUT20 O1 OUT20 Line of GPTA0 OUT20 O2 OUT20 Line of GPTA1 OUT20 O3 OUT20 Line of LTCA2 E12 A1/ PU Port 3 General Purpose I/O Line 10 IN18 Line of GPTA0 Port 3 General Purpose I/O Line 12 IN20 Line of GPTA0 Port 4 Data Sheet 30 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function T12 P4.0 I/O IN24 I A1+/ PU IN24 I IN24 Line of GPTA1 IN24 I IN24 Line of LTCA2 MRST2A I SSC2 Master Receive Input A (Master Mode) OUT24 O1 OUT24 Line of GPTA0 OUT24 O2 OUT24 Line of GPTA1 MRST2 O3 SSC2 Slave Transmit Output (Slave Mode) P4.1 I/O IN25 I IN25 I IN25 Line of GPTA1 IN25 I IN25 Line of LTCA2 MTSR2A I SSC2 Slave Receive Input A (Slave Mode) MRSTG2A I SSC Guardian 2 Master Receive Input A (Master Mode)3) OUT25 O1 OUT25 Line of GPTA0 OUT25 O2 OUT25 Line of GPTA1 MTSR2 O3 SSC2 Master Transmit Output (Master Mode) U12 Data Sheet A1+/ PU Port 4 General Purpose I/O Line 0 IN24 Line of GPTA0 Port 4 General Purpose I/O Line 1 IN25 Line of GPTA0 31 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function W12 P4.2 I/O IN26 I A1+/ PU IN26 I IN26 Line of GPTA1 IN26 I IN26 Line of LTCA2 SCLK2 I SSC2 Input OUT26 O1 OUT26 Line of GPTA0 OUT26 O2 OUT26 Line of GPTA1 SCLK2 O3 SSC2 Output P4.3 I/O IN27 I IN27 I IN27 Line of GPTA1 IN27 I IN27 Line of LTCA2 OUT27 O1 OUT27 Line of GPTA0 OUT27 O2 OUT27 Line of GPTA1 SLSO20 O3 SSC2 Output P4.4 I/O IN28 I IN28 I IN28 Line of GPTA1 IN28 I IN28 Line of LTCA2 OUT28 O1 OUT28 Line of GPTA0 OUT28 O2 OUT28 Line of GPTA1 SLSO21 O3 SSC2 Output Y12 T13 Data Sheet A1+/ PU A1+/ PU Port 4 General Purpose I/O Line 2 IN26 Line of GPTA0 Port 4 General Purpose I/O Line 3 IN27 Line of GPTA0 Port 4 General Purpose I/O Line 4 IN28 Line of GPTA0 32 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function U13 P4.5 I/O IN29 I A1+/ PU IN29 I IN29 Line of GPTA1 IN29 I IN29 Line of LTCA2 OUT29 O1 OUT29 Line of GPTA0 OUT29 O2 OUT29 Line of GPTA1 SLSO22 O3 SSC2 Output P4.6 I/O IN30 I IN30 I IN30 Line of GPTA1 IN30 I IN30 Line of LTCA2 OUT30 O1 OUT30 Line of GPTA0 OUT30 O2 OUT30 Line of GPTA1 SLSO23 O3 SSC2 Output P4.7 I/O IN31 I IN31 I IN31 Line of GPTA1 IN31 I IN31Line of LTCA2 T6INB I GPT120 T6INA I GPT121 OUT31 O1 OUT31 Line of GPTA0 OUT31 O2 OUT31 Line of GPTA1 SLSO24 O3 SSC2 Output W13 Y13 Data Sheet A1+/ PU A1+/ PU Port 4 General Purpose I/O Line 5 IN29 Line of GPTA0 Port 4 General Purpose I/O Line 6 IN30 Line of GPTA0 Port 4 General Purpose I/O Line 7 IN31 Line of GPTA0 33 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function T14 P4.8 I/O IN32 I A1/ PU IN32 I IN32 Line of GPTA1 CCPOS1A I CCU60 T13HRB I CCU61 T3EUDA I GPT120 T3EUDB I GPT121 OUT32 O1 OUT32 Line of GPTA0 OUT32 O2 OUT32 Line of GPTA1 OUT0 O3 OUT0 Line of LTCA2 P4.9 I/O IN33 I IN33 I IN33 Line of GPTA1 CCPOS2A I CCU60 T12HRC I CCU61 T13HRC I CCU61 T4INA I GPT120 T4INB I GPT121 SLSI2 I SSC2 OUT33 O1 OUT33 Line of GPTA0 OUT33 O2 OUT33 Line of GPTA1 OUT1 O3 OUT1 Line of LTCA2 AB19 Data Sheet A1/ PU Port 4 General Purpose I/O Line 8 IN32 Line of GPTA0 Port 4 General Purpose I/O Line 9 IN33 Line of GPTA0 34 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function W14 P4.10 I/O IN34 I A1/ PU IN34 I IN34 Line of GPTA1 T12HRB I CCU60 CCPOS0A I CCU61 T2INA I GPT120 T2INB I GPT121 OUT34 O1 OUT34 Line of GPTA0 OUT34 O2 OUT34 Line of GPTA1 OUT2 O3 OUT2 Line of LTCA2 P4.12 I/O IN36 I IN36 I IN36 Line of GPTA1 T13HRB I CCU60 CCPOS1A I CCU61 T2EUDA I GPT120 T2EUDB I GPT121 OUT36 O1 OUT36 Line of GPTA0 OUT36 O2 OUT36 Line of GPTA1 OUT4 O3 OUT4 Line of LTCA2 T15 Data Sheet A1/ PU Port 4 General Purpose I/O Line 10 IN34 Line of GPTA0 Port 4 General Purpose I/O Line 12 IN36 Line of GPTA0 35 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function U15 P4.14 I/O IN38 I A1/ PU IN38 I IN38 Line of GPTA1 T12HRC I CCU60 T13HRC I CCU60 CCPOS2A I CCU61 T4EUDA I GPT120 T4EUDB I GPT121 OUT38 O1 OUT38 Line of GPTA0 OUT38 O2 OUT38 Line of GPTA1 OUT6 O3 OUT6 Line of LTCA2 P5.0 I/O RXD0A I T6EUDA I GPT120 T6EUDB I GPT121 RXD0A O1 ASC0 Receiver Input/Output A OUT72 O2 OUT72 Line of GPTA0 OUT72 O3 OUT72 Line of GPTA1 P5.1 I/O TXD0 O1 OUT73 O2 OUT73 Line of GPTA0 OUT73 O3 OUT73 Line of GPTA1 Port 4 General Purpose I/O Line 14 IN38 Line of GPTA0 Port 5 A15 A14 Data Sheet A1+/ PU A1+/ PU Port 5 General Purpose I/O Line 0 ASC0 Receiver Input/Output A Port 5 General Purpose I/O Line 1 ASC0 Transmitter Output A 36 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function D15 P5.2 I/O RXD1A I A2/ PU RXD1A O1 ASC1 Receiver Input/Output A OUT74 O2 OUT74 Line of GPTA0 OUT74 O3 OUT74 Line of GPTA1 P5.3 I/O TXD1 O1 OUT75 O2 OUT75 Line of GPTA0 OUT75 O3 OUT75 Line of GPTA1 P5.4 I/O T13HRB I CCPOS1A I CCU63 T2EUDB I GPT120 T2EUDA I GPT121 EN00 O1 MSC0 Device Select Output 0 RREADY0B O2 MLI0 Receive Channel ready Output B OUT76 O3 OUT76 Line of GPTA0 B15 A18 Data Sheet A1+/ PU A2/ PU Port 5 General Purpose I/O Line 2 ASC1 Receiver Input/Output A Port 5 General Purpose I/O Line 3 ASC1 Transmitter Output A Port 5 General Purpose I/O Line 4 CCU62 37 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function E15 P5.5 I/O SDI0 I A1+/ PU T12HRC I CCU62 T13HRC I CCU62 CCPOS2A I CCU63 T4EUDB I GPT120 T4EUDA I GPT121 OUT77 O1 OUT77 Line of GPTA0 OUT77 O2 OUT77 Line of GPTA1 OUT101 O3 OUT101 Line of LTCA2 P5.6 I/O CC60INA I CC60INB I CCU63 EN10 O1 MSC1 Device Select Output 0 TVALID0B O2 MLI0 transmit Channel valid Output B CC60 O3 CCU62 P5.7 I/O SDI1 I CC61INA I CCU62 CC61INB I CCU63 OUT79 O1 OUT79 Line of GPTA0 OUT79 O2 OUT79 Line of GPTA1 CC61 O3 CCU62 B20 D16 Data Sheet A2/ PU A1+/ PU Port 5 General Purpose I/O Line 5 MSC0 Serial Data Input Port 5 General Purpose I/O Line 6 CCU62 Port 5 General Purpose I/O Line 7 MSC1 Serial Data Input 38 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function B16 P5.8 I/O CC62INA I F/ PU CC62INB I CCU63 SON0 O1 MSC0 Differential Driver Serial Data Output Negative OUT80 O2 OUT80 Line of GPTA0 CC62 O3 CCU62 P5.9 I/O SOP0A O1 OUT81 O2 OUT81 Line of GPTA0 COUT60 O3 CCU62 P5.10 I/O FCLN0 O1 OUT82 O2 OUT82 Line of GPTA0 COUT61 O3 CCU62 P5.11 I/O FCLP0A O1 OUT83 O2 OUT83 Line of GPTA0 COUT62 O3 CCU62 P5.12 I/O SON1 O1 OUT84 O2 OUT84 Line of GPTA0 OUT84 O3 OUT84 Line of GPTA1 B17 A16 A17 D14 Data Sheet F/ PU F/ PU F/ PU F/ PU Port 5 General Purpose I/O Line 8 CCU62 Port 5 General Purpose I/O Line 9 MSC0 Differential Driver Serial Data Output Positive A Port 5 General Purpose I/O Line 10 MSC0 Differential Driver Clock Output Negative Port 5 General Purpose I/O Line 11 MSC0 Differential Driver Clock Output Positive A Port 5 General Purpose I/O Line 12 MSC1 Differential Driver Serial Data Output Negative 39 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function B14 P5.13 I/O SOP1A O1 F/ PU OUT85 O2 OUT85 Line of GPTA0 OUT85 O3 OUT85 Line of GPTA1 P5.14 I/O FCLN1 O1 OUT86 O2 OUT86 Line of GPTA0 OUT86 O3 OUT86 Line of GPTA1 P5.15 I/O FCLNP1A O1 OUT87 O2 OUT87 Line of GPTA0 OUT87 O3 OUT87 Line of GPTA1 P6.4 I/O MTSR1 I MRSTG1 I SSC Guardian 1 Master Receive Input (Master Mode) MTSR1 O1 SSC1 Master Transmit Output (Master Mode)3) Reserved O2 - Reserved O3 - B13 A13 F/ PU F/ PU Port 5 General Purpose I/O Line 13 MSC1 Differential Driver Serial Data Output Positive A Port 5 General Purpose I/O Line 14 MSC1 Differential Driver Clock Output Negative Port 5 General Purpose I/O Line 15 MSC1 Differential Driver Clock Output Positive A Port 6 B4 Data Sheet A1+/ PU Port 6 General Purpose I/O Line 4 SSC1 Slave Receive Input (Slave Mode) 40 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function A3 P6.5 I/O MRST1 I A1+/ PU MRST1 O1 SSC1 Slave Transmit Output (Slave Mode) Reserved O2 - Reserved O3 - P6.6 I/O SCLK1 I SCLK1 O1 SSC1 Clock Input/Output Reserved O2 - Reserved O3 - P6.7 I/O SLSI1 I T6OFL O1 GPT120 Reserved O2 - Reserved O3 - P6.8 I/O RXDCAN0 I RXD0B I ASC0 Receiver Input/Output B CAPINB I GPT120 CAPINA I GPT121 Reserved O1 - RXD0B O2 ASC0 Receiver Input/Output B Reserved O3 - A4 D5 B5 Data Sheet A1+/ PU A1+/ PU A2/ PU Port 6 General Purpose I/O Line 5 SSC1 Master Receive Input (Master Mode) Port 6 General Purpose I/O Line 6 SSC1 Clock Input/Output Port 6 General Purpose I/O Line 7 SSC1 slave Select Input Port 6 General Purpose I/O Line 8 CAN Node 0 Receiver Input 0 CAN Node 3 Receiver Input 1 41 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function A5 P6.9 I/O TXDCAN0 O1 A2/ PU TXD0 O2 ASC0 Transmitter Output B T60FL O3 GPT120 P6.10 I/O RXDCAN1 I RXD1B I ASC1 Receiver Input/Output B Reserved O1 - RXD1B O2 ASC1 Receiver Input/Output B TXENA O3 E-Ray Channel A transmit Data Output enable 2) P6.11 I/O TXDCAN1 O1 TXD1 O2 ASC1 Transmitter Output B TXENB O3 E-Ray Channel B transmit Data Output enable 2) P6.12 I/O RXDCAN2 I RXDA1 I E-Ray Channel A Receive Data Input 1 2) Reserved O1 - Reserved O2 - COUT61 O3 CCU60 C2 D2 B1 Data Sheet A2/ PU A2/ PU A1/ PU Port 6 General Purpose I/O Line 9 CAN Node 0 Transmitter Output Port 6 General Purpose I/O Line 10 CAN Node 1 Receiver Input 0 CAN Node 0 Receiver Input 1 Port 6 General Purpose I/O Line 11 CAN Node 1 Transmitter Output Port 6 General Purpose I/O Line 12 CAN Node 2 Receiver Input 0 CAN Node 1 Receiver Input 1 42 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function C1 P6.13 I/O TXDCAN2 O1 A2/ PU TXDA O2 E-Ray Channel A transmit Data Output 2) COUT62 O3 CCU60 P6.14 I/O RXDCAN3 I RXDB1 I E-Ray Channel B Receive Data Input 1 2) Reserved O1 - Reserved O2 - COUT63 O3 CCU60 P6.15 I/O CC60INB I CC60INA I CCU61 TXDCAN3 O1 CAN Node 3 Transmitter Output TXDB O2 E-Ray Channel B transmit Data Output 2) CC60 O3 CCU61 P7.0 I/O MRST3 I REQ4 I External trigger Input 4 AD2EMUX2 O1 ADC2 external multiplexer Control Output 2 MRST3 O2 SSC3 Slave Transmit Output (Master Mode) Reserved O3 - D1 E1 A1/ PU A2/ PU Port 6 General Purpose I/O Line 13 CAN Node 2 Transmitter Output Port 6 General Purpose I/O Line 14 CAN Node 3 Receiver Input 0 CAN Node 2 Receiver Input 1 Port 6 General Purpose I/O Line 15 CCU60 Port 7 H5 Data Sheet A1+/ PU Port 7 General Purpose I/O Line 0 SSC3 Master Receive Input (Slave Mode) 43 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function J1 P7.1 I/O REQ5 I A1+/ PU MTSR3 I SSC3 Slave Receive Input (Slave Mode) MRSTG3B I SSC Guardian 3 Master Receive Input B (Master Mode) AD0EMUX2 O1 ADC0 external multiplexer Control Output 2 MTSR3 O2 SSC3 Master Transmit Output (Master Mode)3) Reserved O3 - P7.2 I/O SCLK3 I AD0EMUX0 O1 ADC0 external multiplexer Control Output 0 SCLK3 O2 SSC3 Output Reserved O3 - P7.3 I/O AD0EMUX1 O1 SLSO30 O2 SSC3 Output Reserved O3 - P7.4 I/O REQ6 I AD2EMUX0 O1 ADC2 external multiplexer Control Output 0 SLSO31 O2 SSC3 Output Reserved O3 - J2 J4 J5 Data Sheet A1+/ PU A1+/ PU A1+/ PU Port 7 General Purpose I/O Line 1 External trigger Input 5 Port 7 General Purpose I/O Line 2 SSC3 Input Port 7 General Purpose I/O Line 3 ADC0 external multiplexer Control Output 1 Port 7 General Purpose I/O Line 4 External trigger Input 6 44 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function K4 P7.5 I/O REQ7 I A1+/ PU AD2EMUX1 O1 ADC2 external multiplexer Control Output 1 SLSO32 O2 SSC3 Output Reserved O3 - P8.0 I/O IN40 I IN40 I IN40 Line of GPTA1 SENT0 I SENT Digital Input OUT40 O1 OUT40 Line of GPTA0 COUT62 O2 CCU61 TCLK1 O3 MLI1 transmit Channel Clock Output P8.1 I/O IN41 I IN41 I IN41 Line of GPTA1 TREADY1A I MLI1 transmit Channel ready Input A SENT1 I SENT Digital Input CC61INA I CCU60 CC61INB I CCU61 OUT41 O1 OUT41 Line of GPTA0 CC61 O2 CCU60 SENT1 O3 SENT Digital Output Port 7 General Purpose I/O Line 5 External trigger Input 7 Port 8 F1 E6 Data Sheet A2/ PU A1/ PU Port 8 General Purpose I/O Line 0 IN40 Line of GPTA0 Port 8 General Purpose I/O Line 1 IN41 Line of GPTA0 45 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function E4 P8.2 I/O IN42 I A2/ PU IN42 I IN42 Line of GPTA1 SENT2 I SENT Digital Input CAPINA I GPT120 CAPINB I GPT121 COUT63 O1 CCU61 OUT42 O2 OUT42 Line of GPTA1 TVALID1A O3 MLI1 transmit Channel valid Output A P8.3 I/O IN43 I IN43 I IN43 Line of GPTA1 SENT3 I SENT Digital Input CC62INA I CCU60 CC62INB I CCU61 OUT43 O1 OUT43 Line of GPTA0 CC62 O2 CCU60 TDATA1 O3 MLI1 transmit Channel Data Output A E2 Data Sheet A2/ PU Port 8 General Purpose I/O Line 2 IN42 Line of GPTA0 Port 8 General Purpose I/O Line 3 IN43 Line of GPTA0 46 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function F2 P8.4 I/O IN44 I A1/ PU IN44 I IN44 Line of GPTA1 RCLK1A I MLI1 Receive Channel Clock Input A SENT4 I SENT Digital Input CC62INB I CCU60 CC62INA I CCU61 OUT44 O1 OUT44 Line of GPTA0 CC62 O2 CCU61 T3OUT O3 GPT121 P8.5 I/O IN45 I IN45 I IN45 Line of GPTA1 SENT5 I SENT Digital Input CTRAPA I CCU60 CTRAPB I CCU62 CC60INC I CCU60 T12HRE I CCU61 CC61INC I CCU61 OUT45 O1 OUT45 Line of GPTA0 OUT45 O2 OUT45 Line of GPTA1 RREADY1A O3 MLI1 Receive Channel ready Output A F5 Data Sheet A2/ PU Port 8 General Purpose I/O Line 4 IN44 Line of GPTA0 Port 8 General Purpose I/O Line 5 IN45 Line of GPTA0 47 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function G4 P8.6 I/O IN46 I A1/ PU IN46 I IN46 Line of GPTA1 RVALID1A I MLI1 Receive Channel valid Input A SENT6 I SENT Digital Input OUT46 O1 OUT46 Line of GPTA0 COUT60 O2 CCU61 T6OUT O3 GPT120 P8.7 I/O IN47 I IN47 I IN47 Line of GPTA1 RDATA1A I MLI1 Receive Channel Data Input A SENT7 I SENT Digital Input OUT47 O1 OUT47 Line of GPTA0 COUT61 O2 CCU61 T6OUT O3 GPT121 P9.0 I/O IN48 I IN48 I IN48 Line of GPTA1 COUT63 O1 CCU62 OUT48 O2 OUT48 Line of GPTA1 EN12 O3 MSC1 Device Select Output 2 F4 A1/ PU Port 8 General Purpose I/O Line 6 IN46 Line of GPTA0 Port 8 General Purpose I/O Line 7 IN47 Line of GPTA0 Port 9 E17 Data Sheet A2/ PU Port 9 General Purpose I/O Line 0 IN48 Line of GPTA0 48 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function D19 P9.1 I/O IN49 I A2/ PU IN49 I IN49 Line of GPTA1 CC60INB I CCU62 CC60INA I CCU63 CC60 O1 CCU63 OUT49 O2 OUT49 Line of GPTA1 EN11 O3 MSC1 Device Select Output 1 P9.2 I/O IN50 I IN50 I IN50 Line of GPTA1 CC61INB I CCU62 CC61INA I CCU63 CC61 O1 CCU63 OUT50 O2 OUT50 Line of GPTA1 SOP1B O3 MSC1 serial Data Output P9.3 I/O IN51 I IN51 I IN51 Line of GPTA1 CC62INB I CCU62 CC62INA I CCU63 CC62 O1 CCU63 OUT51 O2 OUT51 Line of GPTA1 FCLP1B O3 MSC1 Clock Output D20 C20 Data Sheet A2/ PU A2/ PU Port 9 General Purpose I/O Line 1 IN49 Line of GPTA0 Port 9 General Purpose I/O Line 2 IN50 Line of GPTA0 Port 9 General Purpose I/O Line 3 IN51 Line of GPTA0 49 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function C19 P9.4 I/O IN52 I A2/ PU IN52 I IN52 Line of GPTA1 COUT60 O1 CCU63 OUT52 O2 OUT52 Line of GPTA1 EN03 O3 MSC0 Device Select Output 3 P9.5 I/O IN53 I IN53 I IN53 Line of GPTA1 SENT1 I SENT Digital Input COUT61 O1 CCU63 OUT53 O2 OUT53 Line of GPTA1 EN02 O3 MSC0 Device Select Output 2 P9.6 I/O IN54 I IN54 I IN54 Line of GPTA1 SENT3 I SENT Digital Input OUT54 O1 OUT54 Line of GPTA0 SENT3 O2 SENT Digital Output EN01 O3 MSC0 Device Select Output 1 F17 F16 Data Sheet A2/ PU A2/ PU Port 9 General Purpose I/O Line 4 IN52 Line of GPTA0 Port 9 General Purpose I/O Line 5 IN53 Line of GPTA0 Port 9 General Purpose I/O Line 6 IN54 Line of GPTA0 50 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function E20 P9.7 I/O IN55 I A2/ PU IN55 I IN55 Line of GPTA1 SENT4 I SENT Digital Input OUT55 O1 OUT55 Line of GPTA0 SENT4 O2 SENT Digital Output SOP0B O3 MSC0 serial Data Output P9.8 I/O SENT6 I COUT62 O1 CCU63 SENT6 O2 SENT Digital Output FCLP0B O3 MSC0 Clock Output P9.10 I/O EMGSTOP I SENT7 I SENT Digital Input COUT63 O1 CCU63 SENT7 O2 SENT Digital Output Reserved O3 - P9.13 I/O BRKIN I ECTT1 I TTCAN Input Reserved O1 - Reserved O2 - Reserved O3 - BRKOUT O OCDS Break Output E19 F20 G16 Data Sheet A2/ PU A1/ PU A2/ PU Port 9 General Purpose I/O Line 7 IN55 Line of GPTA0 Port 9 General Purpose I/O Line 8 SENT Digital Input Port 9 General Purpose I/O Line 10 Emergency Stop Port 9 General Purpose I/O Line 13 OCDS Break Input 51 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function H16 P9.14 I/O BRKIN I A2/ PU ECTT2 I TTCAN Input REQ15 I External trigger Input 15 Reserved O1 - Reserved O2 - Reserved O3 - BRKOUT O OCDS Break Output P10.0 I/O MRST0 I MRST0 O1 SSC0 Slave Transmit Output (Slave Mode) Reserved O2 - Reserved O3 - P10.1 I/O MTSR0 I MRSTG0 I SSC Guardian 0 Master Receive Input (Master Mode) MTSR0 O1 SSC0 Master Transmit Output (Master Mode) Reserved O2 - Reserved O3 - Port 9 General Purpose I/O Line 14 OCDS Break Input Port 10 Y15 W15 Data Sheet A2/ PU A2/ PU Port 10 General Purpose I/O Line 0 SSC0 Master Receive Input (Master Mode) Port 10 General Purpose I/O Line 1 SSC0 Slave Receive Input (Slave Mode) 52 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function U16 P10.2 I/O SLSI0 I A1/ PU Reserved O1 - Reserved O2 - Reserved O3 - P10.3 I/O SCLK0 I SCLK0 O1 SSC0 Clock Input/Output Reserved O2 - Reserved O3 - P10.4 I/O SLSO0 O1 Reserved O2 - Reserved O3 - P10.5 I/O SLSO1 O1 Reserved O2 - Reserved O3 - P13.0 I/O OUT88 O1 OUT88 O2 OUT88 Line of GPTA1 OUT80 O3 OUT80 Line of LTCA2 Y14 W16 Y16 A2/ PU A1+/ PU A1+/ PU Port 10 General Purpose I/O Line 2 SSC0 Slave Select Input Port 10 General Purpose I/O Line 3 SSC0 Clock Input/Output Port 10 General Purpose I/O Line 4 SSC0 Slave Select Output Line 0 Port 10 General Purpose I/O Line 5 SSC0 Slave Select Output Line 1 Port 13 M16 Data Sheet A2/ PU Port 13 General Purpose I/O Line 0 OUT88 Line of GPTA0 53 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function M17 P13.1 I/O OUT89 O1 A2/ PU OUT89 O2 OUT89 Line of GPTA1 OUT81 O3 OUT81 Line of LTCA2 P13.2 I/O OUT90 O1 OUT90 O2 OUT90 Line of GPTA1 OUT82 O3 OUT82 Line of LTCA2 P13.3 I/O OUT91 O1 OUT91 O2 OUT91 Line of GPTA1 OUT83 O3 OUT83 Line of LTCA2 P13.4 I/O OUT92 O1 OUT92 O2 OUT92 Line of GPTA1 OUT84 O3 OUT84 Line of LTCA2 P13.5 I/O OUT93 O1 OUT93 O2 OUT93 Line of GPTA1 OUT85 O3 OUT85 Line of LTCA2 P13.6 I/O OUT94 O1 OUT94 O2 OUT94 Line of GPTA1 OUT86 O3 OUT86 Line of LTCA2 N16 N17 N19 N20 P16 Data Sheet A2/ PU A2/ PU A2/ PU A2/ PU A2/ PU Port 13 General Purpose I/O Line 1 OUT89 Line of GPTA0 Port 13 General Purpose I/O Line 2 OUT90 Line of GPTA0 Port 13 General Purpose I/O Line 3 OUT91 Line of GPTA0 Port 13 General Purpose I/O Line 4 OUT92 Line of GPTA0 Port 13 General Purpose I/O Line 5 OUT93 Line of GPTA0 Port 13 General Purpose I/O Line 6 OUT94 Line of GPTA0 54 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function P17 P13.7 I/O OUT95 O1 A2/ PU OUT95 O2 OUT95 Line of GPTA1 OUT87 O3 OUT87 Line of LTCA2 P13.8 I/O OUT96 O1 OUT96 O2 OUT96 Line of GPTA1 OUT88 O3 OUT88 Line of LTCA2 P13.9 I/O OUT97 O1 OUT97 O2 OUT97 Line of GPTA1 OUT89 O3 OUT89 Line of LTCA2 P13.10 I/O OUT98 O1 OUT98 O2 OUT98 Line of GPTA1 OUT90 O3 OUT90 Line of LTCA2 P13.11 I/O OUT99 O1 OUT99 O2 OUT99 Line of GPTA1 OUT91 O3 OUT91 Line of LTCA2 P13.12 I/O OUT100 O1 OUT100 O2 OUT100 Line of GPTA1 OUT92 O3 OUT92 Line of LTCA2 P19 P20 R17 R19 R20 Data Sheet A2/ PU A2/ PU A2/ PU A2/ PU A2/ PU Port 13 General Purpose I/O Line 7 OUT95 Line of GPTA0 Port 13 General Purpose I/O Line 8 OUT96 Line of GPTA0 Port 13 General Purpose I/O Line 9 OUT97 Line of GPTA0 Port 13 General Purpose I/O Line 10 OUT98 Line of GPTA0 Port 13 General Purpose I/O Line 11 OUT99 Line of GPTA0 Port 13 General Purpose I/O Line 12 OUT100 Line of GPTA0 55 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function T19 P13.13 I/O OUT101 O1 A2/ PU OUT101 O2 OUT101 Line of GPTA1 OUT93 O3 OUT93 Line of LTCA2 P13.14 I/O OUT102 O1 OUT102 O2 OUT102 Line of GPTA1 OUT94 O3 OUT94 Line of LTCA2 P13.15 I/O OUT103 O1 OUT103 O2 OUT103 Line of GPTA1 OUT95 O3 OUT95 Line of LTCA2 P14.0 I/O CC60 O1 OUT96 O2 OUT96 Line of GPTA1 OUT96 O3 OUT96 Line of LTCA2 P14.2 I/O CC62 O1 OUT98 O2 OUT98 Line of GPTA1 OUT98 O3 OUT98 Line of LTCA2 P14.4 I/O COUT61 O1 OUT100 O2 OUT100 Line of GPTA1 OUT100 O3 OUT100 Line of LTCA2 T20 U19 A2/ PU A2/ PU Port 13 General Purpose I/O Line 13 OUT101 Line of GPTA0 Port 13 General Purpose I/O Line 14 OUT102 Line of GPTA0 Port 13 General Purpose I/O Line 15 OUT103 Line of GPTA0 Port 14 U20 V20 W18 Data Sheet A2/ PU A2/ PU A2/ PU Port 14 General Purpose I/O Line 0 CCU60 Port 14 General Purpose I/O Line 2 CCU60 Port 14 General Purpose I/O Line 4 CCU60 56 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function Y19 P14.6 I/O COUT63 O1 A2/ PU OUT102 O2 OUT102 Line of GPTA1 OUT102 O3 OUT102 Line of LTCA2 P14.8 I/O CC61 O1 T3OUT O2 GPT120 OUT104 O3 OUT104 Line of LTCA2 P17.0 I SENT0 I SENT Digital Input 0 AN8 I Analog Input : ADC0.CH8 5) P17.1 I SENT1 I SENT Digital Input 1 AN9 I Analog Input : ADC0.CH9 5) P17.2 I SENT2 I SENT Digital Input 2 AN10 I Analog Input : ADC0.CH10 5) P17.3 I SENT3 I SENT Digital Input 3 AN11 I Analog Input : ADC0.CH11 5) P17.4 I SENT4 I SENT Digital Input 4 AN12 I Analog Input : ADC0.CH12 5) Y18 A2/ PU Port 14 General Purpose I/O Line 6 CCU60 Port 14 General Purpose I/O Line 8 CCU61 Port 17 R5 R4 P5 P4 P2 Data Sheet D/S D/S D/S D/S D/S Port 17 General Purpose I Line 04) Port 17 General Purpose I Line 14) Port 17 General Purpose I Line 24) Port 17 General Purpose I Line 34) Port 17 General Purpose I Line 44) 57 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function P1 P17.5 I D/S SENT5 I SENT Digital Input 5 AN13 I Analog Input : ADC0.CH13 5) P17.6 I SENT6 I SENT Digital Input 6 AN14 I Analog Input : ADC0.CH14 5) P17.7 I SENT7 I SENT Digital Input 7 AN15 I Analog Input : ADC0.CH15 5) P17.8 I SENT0 I SENT Digital Input 0 AN36 I Analog Input : ADC2.CH4 5) P17.9 I SENT1 I SENT Digital Input 1 AN37 I Analog Input : ADC2.CH5 5) P17.10 I SENT2 I SENT Digital Input 2 AN38 I Analog Input : ADC2.CH6 5) P17.11 I SENT3 I SENT Digital Input 3 AN39 I Analog Input : ADC2.CH7 5) P17.12 I SENT4 I SENT Digital Input 4 AN40 I Analog Input : ADC2.CH8 5) N2 N1 W4 Y4 W5 Y5 T6 Data Sheet D/S D/S D/S D/S D/S D/S D/S Port 17 General Purpose I Line 54) Port 17 General Purpose I Line 64) Port 17 General Purpose I Line 74) Port 17 General Purpose I Line 84) Port 17 General Purpose I Line 94) Port 17 General Purpose I Line 104) Port 17 General Purpose I Line 114) Port 17 General Purpose I Line 124) 58 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function U6 P17.13 I D/S SENT5 I SENT Digital Input 5 AN41 I Analog Input : ADC2.CH9 5) P17.14 I SENT6 I SENT Digital Input 6 AN42 I Analog Input : ADC2.CH10 5) P17.15 I SENT7 I SENT Digital Input 7 AN43 I Analog Input : ADC2.CH11 5) T7 U7 D/S D/S Port 17 General Purpose I Line 134) Port 17 General Purpose I Line 144) Port 17 General Purpose I Line 154) Analog Input Port T4 AN0 I D Analog Input 0: ADC0.CH0 5) Y2 AN1 I D Analog Input 1: ADC0.CH1 5) W2 AN2 I D Analog Input 2: ADC0.CH2 5) W1 AN3 I D Analog Input 3: ADC0.CH3 5) V2 AN4 I D Analog Input 4: ADC0.CH4 5) U2 AN5 I D Analog Input 5: ADC0.CH5 5) T2 AN6 I D Analog Input 6: ADC0.CH6 5) T5 AN7 I D Analog Input 7: ADC0.CH7 5) R5 AN8 I D/S Analog Input 8: ADC0.CH8, SENT0 5) R4 AN9 I D/S Analog Input 9: ADC0.CH9, SENT1 5) P5 AN10 I D/S Analog Input 10: ADC0.CH10, SENT2 5) P4 AN11 I D/S Analog Input 11: ADC0.CH11, SENT3 5) P2 AN12 I D/S Analog Input 12: ADC0.CH12, SENT4 5) P1 AN13 I D/S Analog Input 13: ADC0.CH13, SENT5 5) N2 AN14 I D/S Analog Input 14: ADC0.CH14, SENT6 5) N1 AN15 I D/S Analog Input 15: ADC0.CH15, SENT7 5) Data Sheet 59 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function N5 AN16 I D Analog Input 16: ADC1.CH0 5) N4 AN17 I D Analog Input 17: ADC1.CH1 5) M5 AN18 I D Analog Input 18: ADC1.CH2 5) M4 AN19 I D Analog Input 19: ADC1.CH3 5) M2 AN20 I D Analog Input 20: ADC1.CH4 5) M1 AN21 I D Analog Input 21: ADC1.CH5 5) L2 AN22 I D Analog Input 22: ADC1.CH6 5) L1 AN23 I D Analog Input 23: ADC1.CH7 5) U8 AN24 I D Analog Input 24: ADC1.CH8, FADC_FADIN0P 6) W8 AN25 I D Analog Input 25: ADC1.CH9, FADC_FADIN0N 6) Y8 AN26 I D Analog Input 26: ADC1.CH10, FADC_FADIN1P 6) T9 AN27 I D Analog Input 27: ADC1.CH11, FADC_FADIN1N 6) U9 AN28 I D Analog Input 28: ADC1.CH12, FADC_FADIN2P 6) W9 AN29 I D Analog Input 29: ADC1.CH13, FADC_FADIN2N 6) Y9 AN30 I D Analog Input 30: ADC1.CH14, FADC_FADIN3P 6) T10 AN31 I D Analog Input 31: ADC1.CH15, FADC_FADIN3N 6) U4 AN32 I D Analog Input 32: ADC2.CH0 5) W3 AN33 I D Analog Input 33: ADC2.CH1 5) Y3 AN34 I D Analog Input 34: ADC2.CH2 5) T8 AN35 I D Analog Input 35: ADC2.CH3 5) Data Sheet 60 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function W4 AN36 I D Analog Input 36: ADC2.CH4, SENT0 5) Y4 AN37 I D Analog Input 37: ADC2.CH5, SENT1 5) W5 AN38 I D Analog Input 38: ADC2.CH6, SENT2 5) Y5 AN39 I D Analog Input 39: ADC2.CH7, SENT3 5) T6 AN40 I D Analog Input 40: ADC2.CH8, SENT4 5) U6 AN41 I D Analog Input 41: ADC2.CH9, SENT5 5) T7 AN42 I D Analog Input 42: ADC2.CH10, SENT6 5) U7 AN43 I D Analog Input 43: ADC2.CH11, SENT7 5) V1 AN44 I D Analog Input 44: ADC2.CH12 5) U1 AN45 I D Analog Input 45: ADC2.CH13 5) T1 AN46 I D Analog Input 46: ADC2.CH14 5) U5 AN47 I D Analog Input 47: ADC2.CH15 5) System I/O F19 PORST I PD Power-on Reset Input G19 ESR0 I/O A2 External System Request Reset Input 0 Default configuration during and after reset is open-drain driver. The driver drives low during power-on reset. G20 ESR1 I/O A2/ PD External System Request Reset Input 1 H20 TCK I PD JTAG Module Clock Input DAP0 I TDI I BRKIN I BRKOUT O TESTMODE I J17 G17 Data Sheet Device Access Port Line 0 A2/ PU JTAG Module Serial Data Input OCDS Break Input (Alternate Output) OCDS Break Output (Alternate Input) PU Test Mode Select Input 61 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function J16 TMS I JTAG Module State Machine Control Input DAP1 I/O A2/ PD H19 TRST I PD JTAG Module Reset/Enable Input K20 XTAL1 I Main Oscillator/PLL/Clock Generator Input K19 XTAL2 O Main Oscillator/PLL/Clock Generator Output H17 TDO O BRKIN I BRKOUT O OCDS Break Output (Alternate Output) DAP2 O Device Access Port Line 2 A2/ PU Device Access Port Line 1 JTAG Module Serial Data Output OCDS Break Input (Alternate Input) Power Supply R2 VDDM - - ADC Analog Part Power Supply (3.3V - 5V) R1 VSSM - - ADC Analog Part Ground Y6 VAREF0 - - ADC0 Reference Voltage W6 VAREF1 - - ADC1 Reference Voltage W7 VAREF2 - - ADC2 Reference Voltage Y7 VAGND0 - - ADC0 Reference Ground VAGND1 - - ADC1 Reference Ground VAGND2 - - ADC2 Reference Ground U10 VFAREF - - FADC Reference Voltage W10 VFAGND - - FADC Reference Ground U11 VDDMF - - FADC Analog Part Power Supply (3.3V) T11 VDDAF - - FADC Analog Part Logic Power Supply (1.3V) Y10 VSSMF - - FADC Analog Part Ground VSSAF - - FADC Analog Part Logic Ground Data Sheet 62 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function K5, L16 VDDFL3 - - Flash Power Supply (3.3V) J20 VSSOSC - - Oscillator Ground (Main & E-Ray) VSSOSC3 - - Oscillator Ground (Main & E-Ray) J19 VDDOSC - - Main Oscillator Power Supply (1.3V) K16 VDDOSC3 - - Main Oscillator Power Supply (3.3V) K17 VDDPF - - E-Ray PLL Power Supply (1.3V) L17 VDDPF3 - - E-Ray PLL Power Supply (3.3V) G8, G13, H7, H14, N7, N14, P8, P13, R16, T17, V19, W20 VDD - - Digital Core Power Supply (1.3V) A2, A19, B3, B10, B18, K2, M19, M20, W11, W17 VDDP - - Port Power Supply (3.3V) L4, L5 VDDSB - - Emulation Stand-by SRAM Power Supply (1.3V) (Emulation device only) Note: This pin is N.C. in a productive device. Data Sheet 63 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function P9, P10, P11, P12, N9, N10, N11, N12 VSS - - Digital Ground (center balls) M7, M8, M10, M11, M13, M14, J7, J8, J10, J11, J13, J14 VSS - - Digital Ground (center balls cont’d) L7, L8, VSS L9, L10, L11, L12, L13, L14 - - Digital Ground (center balls cont’d) K7, K8, K9, K10, K11, K12, K13, K14 - - Digital Ground (center balls cont’d) VSS Data Sheet 64 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Pin Definitions and Functions (cont’d) Table 2 Pin Symbol Ctrl. Type Function G9, G10, G11, G12, H9, H10, H11, H12 VSS - - Digital Ground (center balls cont’d) T16, U17, W19 VSS - - Digital Ground (outer balls) L19, L20, Y17, Y20 VSS - - Digital Ground (outer balls) A10, A20, B2, B19, D4, D17, E5, E16, K1, Y11 VSS - - Digital Ground (outer balls) - - Not connected. These pins are reserved for future extension and shall not be connected externally. A1, Y1 N.C. 1) Only applicable in TC1791ED. Reserved in TC1791PD. 2) Only available for SAK-TC1791S-512F240EP, SAK-TC1791F-512F240EP, SAK-TC1791F-512F240EL, SAKTC1791S-384F200EP, SAK-TC1791F-384F200EP, and SAK-TC1791F-384F200EL. 3) The MTSR output of SSCx is overlayed with the MRSTG input of the related SSCGx 4) Analog Input overlayed with a SENT Digitial Input. The related port logic is used configure the input as either analog input (default after reset) or digital input. The related port logic supports only the port input features as the connected pads are input pads only. 5) IOZ1 valid for this pin is the parameter with overlayed = No in the ADC parameter table. 6) IOZ1 valid for this pin is the parameter with overlayed = Yes in the ADC parameter table. Data Sheet 65 V 1.1, 2014-05 TC1791 PinningTC1791 Pin Configuration Legend for Table 2 Column “Ctrl.”: I = Input (for GPIO port lines with IOCR bit field selection PCx = 0XXXB) O = Output O0 = Output with IOCR bit field selection PCx = 1X00B O1 = Output with IOCR bit field selection PCx = 1X01B (ALT1) O2 = Output with IOCR bit field selection PCx = 1X10B(ALT2) O3 = Output with IOCR bit field selection PCx = 1X11(ALT3) Column “Type”: A1 = Pad class A1 (LVTTL) A1+ = Pad class A1+ (LVTTL) A2 = Pad class A2 (LVTTL) F = Pad class F (LVDS/CMOS) D = Pad class D (ADC) S = Pad class S(SENT) PU = with pull-up device connected during reset (PORST = 0) PD = with pull-down device connected during reset (PORST = 0) TR = tri-state during reset (PORST = 0) Data Sheet 66 V 1.1, 2014-05 TC1791 Identification Registers 4 Identification Registers The Identification Registers uniquely identify the whole device. Table 3 SAK-TC1791F-512F240EL Identification Registers Short Name Value Address Stepping CBS_JDPID 0000 6350H F000 0408H AB CBS_JTAGID 1018 E083H F000 0464H AB SCU_CHIPID 0700 9502H F000 0640H AB SCU_MANID 0000 1820H F000 0644H AB SCU_RTID 0000 0000H F000 0648H AB Table 4 SAK-TC1791F-512F240EP Identification Registers Short Name Value Address Stepping CBS_JDPID 0000 6350H F000 0408H AB CBS_JTAGID 1018 E083H F000 0464H AB SCU_CHIPID 8700 9502H F000 0640H AB SCU_MANID 0000 1820H F000 0644H AB SCU_RTID 0000 0000H F000 0648H AB Table 5 SAK-TC1791F-512F200EL Identification Registers Short Name Value Address Stepping CBS_JDPID 0000 6350H F000 0408H AB CBS_JTAGID 1018 E083H F000 0464H AB SCU_CHIPID 1700 9502H F000 0640H AB SCU_MANID 0000 1820H F000 0644H AB SCU_RTID 0000 0000H F000 0648H AB Table 6 SAK-TC1791F-512F200EP Identification Registers Short Name Value Address Stepping CBS_JDPID 0000 6350H F000 0408H AB CBS_JTAGID 1018 E083H F000 0464H AB SCU_CHIPID 9700 9502H F000 0640H AB Data Sheet 67 V 1.1, 2014-05 TC1791 Identification Registers Table 6 SAK-TC1791F-512F200EP Identification Registers (cont’d) Short Name Value Address Stepping SCU_MANID 0000 1820H F000 0644H AB SCU_RTID 0000 0000H F000 0648H AB Table 7 SAK-TC1791F-384F200EL Identification Registers Short Name Value Address Stepping CBS_JDPID 0000 6350H F000 0408H AB CBS_JTAGID 1018 E083H F000 0464H AB SCU_CHIPID 1600 9502H F000 0640H AB SCU_MANID 0000 1820H F000 0644H AB SCU_RTID 0000 0000H F000 0648H AB Table 8 SAK-TC1791F-384F200EP Identification Registers Short Name Value Address Stepping CBS_JDPID 0000 6350H F000 0408H AB CBS_JTAGID 1018 E083H F000 0464H AB SCU_CHIPID 9600 9502H F000 0640H AB SCU_MANID 0000 1820H F000 0644H AB SCU_RTID 0000 0000H F000 0648H AB Table 9 SAK-TC1791S-512F240EP Identification Registers Short Name Value Address Stepping CBS_JDPID 0000 6350H F000 0408H AB CBS_JTAGID 1018 E083H F000 0464H AB SCU_CHIPID 8700 AA02H F000 0640H AB SCU_MANID 0000 1820H F000 0644H AB SCU_RTID 0000 0000H F000 0648H AB Data Sheet 68 V 1.1, 2014-05 TC1791 Identification Registers Table 10 SAK-TC1791S-384F200EP Identification Registers Short Name Value Address Stepping CBS_JDPID 0000 6350H F000 0408H AB CBS_JTAGID 1018 E083H F000 0464H AB SCU_CHIPID 9600 AA02H F000 0640H AB SCU_MANID 0000 1820H F000 0644H AB SCU_RTID 0000 0000H F000 0648H AB Table 11 SAK-TC1791N-384F200EP Identification Registers Short Name Value Address Stepping CBS_JDPID 0000 6350H F000 0408H AB CBS_JTAGID 1018 E083H F000 0464H AB SCU_CHIPID 9600 B502H F000 0640H AB SCU_MANID 0000 1820H F000 0644H AB SCU_RTID 0000 0000H F000 0648H AB Data Sheet 69 V 1.1, 2014-05 TC1791 Electrical ParametersGeneral Parameters 5 Electrical Parameters This specification provides all electrical parameters of the TC1791. 5.1 General Parameters 5.1.1 Parameter Interpretation The parameters listed in this section partly represent the characteristics of the TC1791 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are marked with an two-letter abbreviation in column “Symbol”: • • CC Such parameters indicate Controller Characteristics which are a distinctive feature of the TC1791 and must be regarded for a system design. SR Such parameters indicate System Requirements which must provided by the microcontroller system in which the TC1791 designed in. Data Sheet 70 V 1.1, 2014-05 TC1791 Electrical ParametersGeneral Parameters 5.1.2 Pad Driver and Pad Classes Summary This section gives an overview on the different pad driver classes and its basic characteristics. More details (mainly DC parameters) are defined in the Section 5.2.1. Table 12 Pad Driver and Pad Classes Overview Class Power Type Supply Sub Class Speed Load Grade 1) Leakage 150oC 1) Termination 1) A F 3.3 V 3.3 V LVTTL I/O, LVTTL outputs A1 (e.g. GPIO) 6 MHz 100 pF 500 nA A1+ (e.g. serial I/Os) 25 MHz 50 pF 1 μA Series termination recommended A2 (e.g. serial I/Os) 40 MHz 50 pF 3 μA Series termination recommended LVDS – 50 MHz – – Parallel termination, 100 Ω ± 10% 2) CMOS – 6 MHz 50 pF – DE 5V ADC – – – – I 3.3 V LVTTL (input only) – – – – No 1) These values show typical application configurations for the pad. Complete and detailed pad parameters are available in the individual pad parameter table on the following pages. 2) In applications where the LVDS pins are not used (disabled), these pins must be either left unconnected, or properly terminated with the differential parallel termination of 100 Ω ± 10%. Data Sheet 71 V 1.1, 2014-05 TC1791 Electrical ParametersGeneral Parameters 5.1.3 Absolute Maximum Ratings Stresses above the values listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability. Table 13 Absolute Maximum Rating Parameters Parameter Symbol Values Min. Typ. Max. Storage temperature TST Voltage at 1.3 V power supply VDD pins with respect to VSS Voltage at 3.3 V power supply VDDP pins with respect to VSS SR Voltage at 5 V power supply VDDM pins with respect to VSS Voltage on any Class A input VIN Unit Note / Test Con dition SR -65 – 150 °C – SR – – 2.0 V – – – 4.33 V – SR – – 7.0 V – SR -0.7 – VDDP + 0.5 V or max. 4.33 Whatever is lower -0.6 – 7.0 V – Voltage on any shared Class VAINF -0.6 – D analog input pin with VFAREF respect to VSSAF, if the FADC SR is switched through to the pin. 7.0 V – Input current on any pin during overload condition pin and dedicated input pins with respect to VSS Voltage on any Class D analog input pin with respect to VAGND VAIN VAREFx SR IIN -10 – +10 mA Absolute maximum sum of all IIN input circuit currents for one port group during overload condition1) -25 – +25 mA Absolute maximum sum of all ΣIIN input circuit currents during overload condition -200 – 200 mA 1) The port groups are defined in Table 18. Data Sheet 72 V 1.1, 2014-05 TC1791 Electrical ParametersGeneral Parameters 5.1.4 Pin Reliability in Overload When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification. Table 14 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met: • • full operation life-time (24000 h) is not exceeded Operating Conditions are met for – pad supply levels (VDDP or VDDM) – temperature If a pin current is out of the Operating Conditions but within the overload parameters, then the parameters functionality of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters. Note: An overload condition on one or more pins does not require a reset. Table 14 Overload Parameters Parameter Min. Typ. Max. Unit Note / Test Con dition Input current on any digital pin IIN during overload condition except LVDS pins -5 mA Input current on LVDS pins IINLVDS IING -3 – +3 mA -20 – +20 mA IINANA IINSA -3 – +3 mA -45 – +45 mA ΣIINS -100 – 100 mA Absolute sum of all input circuit currents for one port group during overload condition1) Input current on analog pins Absolute sum of all analog input currents for analog inputs during overload condition Absolute sum of all input circuit currents during overload condition Symbol Values – +5 1) The port groups are defined in Table 18. Note: FADC input pins count as analog pin as they are overlayed with an ADC pins. Data Sheet 73 V 1.1, 2014-05 TC1791 Electrical ParametersGeneral Parameters Table 15 PN-Junction Characterisitics for positive Overload Pad Type IIN = 3 mA IIN = 5 mA A1 / A1+ / F UIN = VDDP + 0.6 V UIN = VDDP + 0.5 V UIN = VDDP + 0.7 V UIN = VDDM + 0.6 V UIN = VDDM + 0.6 V UIN = VDDP + 0.7 V UIN = VDDP + 0.6 V A2 LVDS D S Table 16 - PN-Junction Characterisitics for negative Overload Pad Type IIN = -3 mA IIN = -5 mA A1 / A1+ / F UIN = VSS - 0.6 V UIN = VSS - 0.5 V UIN = VSS - 0.7 V UIN = VSSM - 0.6 V UIN = VSSM - 0.6 V UIN = VSS - 0.7 V UIN = VSS - 0.6 V A2 LVDS D S - Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery without having any negative reliability impact on the operational life-time. Data Sheet 74 V 1.1, 2014-05 TC1791 Electrical ParametersGeneral Parameters 5.1.5 Operating Conditions The following operating conditions must not be exceeded in order to ensure correct operation and reliability of the TC1791. All parameters specified in the following tables refer to these operating conditions, unless otherwise noticed. Digital supply voltages applied to the TC1791 must be static regulated voltages which allow a typical voltage swing of ± 5 %. All parameters specified in the following tables (Table 19 and following) refer to these operating conditions (Table 17), unless otherwise noticed in the Note / Test Condition column. The Extended Range Operating Conditions did not increase area of validity of the parameters defined in table 11 and later. Table 17 Parameter Operating Conditions Parameters Symbol Overload coupling factor KOVAN for analog inputs, negative CC Values Unit Min. Typ. Max. − − 0.0001 Note / Test Condition IOV≤ 0 mA; IOV≥ -2 mA; analog pad= 5.0 V Overload coupling factor KOVAP for analog inputs, positive CC − − 0.0000 1 IOV≤ 3 mA; IOV≥ 0 mA; analog pad= 5.0 V Data Sheet 75 V 1.1, 2014-05 TC1791 Electrical ParametersGeneral Parameters Table 17 Operating Conditions Parameters (cont’d) Parameter Symbol Values Min. CPU Frequency Data Sheet Unit Note / Test Condition Typ. Max. fCPU SR − − 240 MHz SAK-TC1791F512F 240EL; SAK-TC1791F512F 240EP; SAK-TC1791S512F 240EP − − 200 MHz SAK-TC1791F512F 200EL SAK-TC1791F512F 200EP; SAK-TC1791F384F 200EL; SAK-TC1791F384F 200EP; SAK-TC1791S384F 200EP; SAK-TC1791F384N 200EL; SAK-TC1791F384N 200EP 76 V 1.1, 2014-05 TC1791 Electrical ParametersGeneral Parameters Table 17 Operating Conditions Parameters (cont’d) Parameter Symbol Values Min. Modulated fCPU Modulated fFPI − 240 MHz SAK-TC1791F512F 240EL; SAK-TC1791F512F 240EP; SAK-TC1791S512F 240EP − − 200 MHz SAK-TC1791F512F 200EL SAK-TC1791F512F 200EP; SAK-TC1791F384F 200EL; SAK-TC1791F384F 200EP; SAK-TC1791S384F 200EP; SAK-TC1791F384N 200EL; SAK-TC1791F384N 200EP fFPI SR − fFPI_modul − − 100 MHz − 100MHz MA = modulatio 2*MA1) n amplitude − 150 − MHz MA = modulatio 150n amplitude 2*MA1) fCPU_mod − ated FSI frequency Modulated fFSI PCP Frequency SR SR fPCP SR − fPCP_mod − ulated Data Sheet SR fFSI SR − fFSI_modul − ated Modulated fPCP Note / Test Condition Max. ulated FPI bus frequency Unit Typ. SR 77 MHz − 200 − 200MHz MA = modulatio 2*MA1) n amplitude MHz V 1.1, 2014-05 TC1791 Electrical ParametersGeneral Parameters Table 17 Operating Conditions Parameters (cont’d) Parameter SRI Frequency Data Sheet Symbol fSRI SR Values Unit Note / Test Condition Min. Typ. Max. − − 240 MHz SAK-TC1791F512F 240EL; SAK-TC1791F512F 240EP; SAK-TC1791S512F 240EP − − 200 MHz SAK-TC1791F512F 200EL SAK-TC1791F512F 200EP; SAK-TC1791F384F 200EL; SAK-TC1791F384F 200EP; SAK-TC1791S384F 200EP; SAK-TC1791F384N 200EL; SAK-TC1791F384N 200EP 78 V 1.1, 2014-05 TC1791 Electrical ParametersGeneral Parameters Table 17 Operating Conditions Parameters (cont’d) Parameter Symbol Values Min. Unit Note / Test Condition Typ. Max. − 240 MHz SAK-TC1791F512F 240EL; SAK-TC1791F512F 240EP; SAK-TC1791S512F 240EP − − 200 MHz SAK-TC1791F512F 200EL SAK-TC1791F512F 200EP; SAK-TC1791F384F 200EL; SAK-TC1791F384F 200EP; SAK-TC1791S384F 200EP; SAK-TC1791F384N 200EL; SAK-TC1791F384N 200EP Inactive device pin current IID SR -1 − 1 mA Short circuit current of digital outputs2) ISC SR -5 − 5 mA Absolute sum of short circuit currents of the device ΣISC_D CC − − 100 mA Absolute sum of short circuit currents per pin group ΣISC_PG CC − − 20 mA Ambient Temperature TA SR -40 TJ SR -40 VDD SR 1.17 − 125 °C − 150 Modulated fSRI fSRI_modul − ated Junction temperature Core Supply Voltage Data Sheet SR 1.3 79 1.43 All power supply voltages VDDx = 0 °C 3) V for duration limitation see Section 5.1.5.1 V 1.1, 2014-05 TC1791 Electrical ParametersGeneral Parameters Table 17 Operating Conditions Parameters (cont’d) Parameter Symbol Values Unit Note / Test Condition 3.635) V for duration limitation see Section 5.1.5.1 5 5.54) V 1.17 1.3 1.433) V for duration limitation see Section 5.1.5.1 VDDOSC3 2.97 3.3 3.635) V for duration limitation see Section 5.1.5.1 VDDP SR 2.97 3.3 3.63 5) V for duration limitation see Section 5.1.5.1 Min. Typ. Max. Flash supply voltage 3.3V VDDFL3 SR 2.97 3.3 ADC analog supply voltage VDDM 3.135 Oscillator core supply voltage VDDOSC SR Oscillator 3.3V supply voltage SR Digital supply voltage for IO pads SR E-Ray PLL core voltage supply VDDPF 1.17 1.3 1.433) V SR for duration limitation see Section 5.1.5.1 E-Ray PLL 3.3V supply VDDPF3 2.97 3.3 3.635) V for duration limitation see Section 5.1.5.1 VDDPPA 0.65 − − V VSS SR 0 Analog ground voltage for VSSM SR -0.1 VDDM Analog core supply VDDAF 1.17 − − V 0 0.1 V 1.3 1.433) V SR VDDP voltage to ensure defined pad states6) CC Digital ground voltage SR VDDMF 2.97 3.3 3.635) V Analog ground voltage for VSSAF SR -0.1 0 0.1 V FADC / ADC analog supply voltage SR VDDMF 1) MA equals the modulation amplitude in percentage times the configured PLL clock out frequency. 2) Applicable for digital outputs. 3) Voltage overshoot to 1.7V is permissible at Power-Up and PORST low, provided the pulse duration is less than 100 μs and the cumulated sum of the pulses does not exceed 1 h. Data Sheet 80 V 1.1, 2014-05 TC1791 Electrical ParametersGeneral Parameters 4) Voltage overshoot to 6.5V is permissible at Power-Up and PORST low, provided the pulse duration is less than 100 μs and the cumulated sum of the pulses does not exceed 1 h. 5) Voltage overshoot to 4.0V is permissible at Power-Up and PORST low, provided the pulse duration is less than 100 μs and the cumulated sum of the pulses does not exceed 1 h. 6) This parameter is valid under the assumption the PORST signal is constantly at low level during the powerup/power-down of VDDP. 5.1.5.1 Extended Range Operating Conditions The following extended operating conditions are defined: • • • 1.3V + 5% < VDD / VDDOSC / VDDPF / VDDAF < 1.3V + 7.5% (overvoltage condition): – limited to 10000 hour duration cumulative in lifetime, due to the reliability reduction of the chip caused by the overvoltage stress. 1.3V + 7.5% < VDD / VDDOSC / VDDPF / VDDAF < 1.3V + 10% (overvoltage condition): – limited to 1000 hours duration cumulative in lifetime, due to the reliability reduction of the chip caused by the overvoltage stress. 3.3V + 5% < VDDP / VDDOSC3 / VDDPF3 / VDDFL3 / VDDMF < 3.3V + 10% (overvoltage condition): limited to 1000 hours duration cumulative in lifetime, due to the reliability reduction of the chip caused by the overvoltage stress. Table 18 Pin Groups for Overload / Short-Circuit Current Sum Parameter Group Pins 1 P2.[4:2], P6.[6:9] 2 P6.[5:4], P6.[11:10] 3 P6.[15:12] 4 P8.[5:0] 5 P8.[7:6] 6 P1.7, P1.9 7 P1.6, P1.12 8 P1.[1:0], P7.[2:0] 9 P7.[5:3] 10 P4.[6:0] 11 P4.[10:7] 12 P4.12, P4.14 13 P10.[5:0] 14 P14.8 Data Sheet 81 V 1.1, 2014-05 TC1791 Electrical ParametersGeneral Parameters Table 18 Pin Groups for Overload / Short-Circuit Current Sum Parameter Group Pins 15 P14.4, P14.6 16 P13.15, P14.0, P14.2 17 P13.[14:11] 18 P13.[10:8] 19 P13.[7:4] 20 P13.[3:0] 21 P9.10, P9.14 22 P9.7, P9.13 23 P9.[4:2], P9.6 24 P9.1, P9.5, P9.8 25 P9.0 26 P5.[11:8] 27 P5.6, P5.[15:12] 28 P5.0, P5.[5:2], P5.7 29 P3.0, P3.4, P5.1 30 P3.10, P3.12 31 P0.[3:0] 32 P0.[11:4] 33 P0.[14:12] 34 P2:12, P2.14 35 P2.[10:5] Data Sheet 82 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters 5.2 DC Parameters 5.2.1 Input/Output Pins Table 19 Standard_Pads Parameters Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition TA= 25 °C; f= 1 MHz Vi≥ 0.6 x VDDP V Vi≥ 0.36 x VDDP V Vi≤ 0.6 x VDDP V Vi≤ 0.36 x VDDP V Pin capacitance (digital inputs/outputs) CIO CC − − 10 pF Pull-down current |IPDL| CC − − 150 μA 10 − − μA |IPUH| CC 10 − − μA − − 100 μA Spike filter always blocked tSF1 CC pulse duration − − 10 ns only PORST pin Spike filter pass-through pulse duration 100 − − ns only PORST pin Unit Note / Test Condition Pull-Up current Table 20 tSF2 CC Standard_Pads Class_A1 Parameter Symbol Min. Typ. Max. Input Hysteresis for A1 pads 1) HYSA1 0.1 x − − V CC VDDP IOZA1 -500 − 500 nA VILA1 / VIHA1 0.6 − − − 450 600 Ohm IOH> -0.5 mA; P_MOS − 210 340 Ohm IOL< 0.5 mA; N_MOS Input Leakage Current Class A1 Ratio Vil/Vih, A1 pads Values CC Vi≥ 0 V; Vi≤ VDDP V CC On-Resistance of the RDSONW class A1 pad, weak driver CC Data Sheet 83 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters Table 20 Standard_Pads Class_A1 (cont’d) Parameter Symbol On-Resistance of the class A1 pad, medium driver CC Fall time, pad type A1 tFA1 CC RDSONM Values Unit Note / Test Condition Min. Typ. Max. − − 155 Ohm IOH> -2 mA; P_MOS − − 110 Ohm IOL< 2 mA; N_MOS − − 150 ns CL= 20 pF; pin out driver= weak − − 50 ns CL= 50 pF; pin out driver= medium − − 140 ns CL= 150 pF; pin out driver= medium − − 550 ns CL= 150 pF; pin out driver= weak − − 18000 ns CL= 20000 pF; pin out driver= medium − − 65000 ns CL= 20000 pF; pin out driver= weak Data Sheet 84 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters Table 20 Standard_Pads Class_A1 (cont’d) Parameter Symbol Values Min. Rise time, pad type A1 Typ. Max. tRA1 CC − − 150 − − Unit Note / Test Condition ns CL= 20 pF; pin out driver= weak 50 ns CL= 50 pF; pin out driver= medium − − 140 ns CL= 150 pF; pin out driver= medium − − 550 ns CL= 150 pF; pin out driver= weak − − 18000 ns CL= 20000 pF; pin out driver= medium − − 65000 ns CL= 20000 pF; pin out driver= weak Input high voltage class A1 pads VIHA1 SR 0.6 x min(V V DDP+ 0.3,3.6 ) − Input low voltage class A1 VILA1 SR -0.3 pads Data Sheet − VDDP 0.36 x V VDDP 85 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters Table 20 Standard_Pads Class_A1 (cont’d) Parameter Symbol Values Min. Output voltage high class A1 pads VOHA1 CC Typ. Unit Note / Test Condition V IOH≥ -1.4 mA; Max. VDDP - − − − − 0.4 2.4 pin out driver= medium V IOH≥ -2 mA; pin out driver= medium VDDP - − − V IOH≥ -400 μA; pin out driver= weak 2.4 − − V IOH≥ -500 μA; pin out driver= weak − − 0.4 V IOL≤ 2 mA; pin 0.4 Output voltage low class A1 pads VOLA1 CC out driver= medium − − 0.4 V IOL≤ 500 μA; pin out driver= weak 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can´t be guaranteed that it suppresses switching due to external system noise. Table 21 Standard_Pads Class_A1+ Parameter Symbol Input Hysteresis for A1+ pads 1) HYSA1 + CC IOZA1+ VDDP RDSONW Input Leakage Current Class A1+ On-Resistance of the class A1+ pad, weak driver Data Sheet Values Unit Note / Test Condition Min. Typ. Max. 0.1 x − − V -1000 − 1000 nA − 450 600 Ohm IOH> -0.5 mA; P_MOS − 210 340 Ohm IOL< 0.5 mA; N_MOS CC CC 86 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters Table 21 Standard_Pads Class_A1+ (cont’d) Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. − − 155 Ohm IOH> -2 mA; P_MOS − − 110 Ohm IOL< 2 mA; N_MOS On-Resistance of the class A1+ pad, strong driver RDSON1+ − − 100 Ohm IOH> -2 mA; P_MOS − − 80 Ohm IOL< 2 mA; N_MOS Fall time, pad type A1+ tFA1+ CC − − 150 ns − − On-Resistance of the class A1+ pad, medium driver RDSONM CC CC CL= 20 pF; pin out driver= weak 28 ns CL= 50 pF; edge= slow ; pin out driver= strong − − 16 ns CL= 50 pF; edge= soft ; pin out driver= strong − − 50 ns CL= 50 pF; pin out driver= medium − − 140 ns CL= 150 pF; pin out driver= medium − − 550 ns CL= 150 pF; pin out driver= weak − − 18000 ns CL= 20000 pF; pin out driver= medium − − 65000 ns CL= 20000 pF; pin out driver= weak Data Sheet 87 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters Table 21 Standard_Pads Class_A1+ (cont’d) Parameter Symbol Values Min. Rise time, pad type A1+ Typ. Max. tRA1+ CC − − 150 − − Unit Note / Test Condition ns CL= 20 pF; pin out driver= weak 28 ns CL= 50 pF; edge= slow ; pin out driver= strong − − 16 ns CL= 50 pF; edge= soft ; pin out driver= strong − − 50 ns CL= 50 pF; pin out driver= medium − − 140 ns CL= 150 pF; pin out driver= medium − − 550 ns CL= 150 pF; pin out driver= weak − − 18000 ns CL= 20000 pF; pin out driver= medium − − 65000 ns CL= 20000 pF; pin out driver= weak Input high voltage, Class A1+ pads Input low voltage Class A1+ pads Ratio Vil/Vih, A1+ pads VIHA1+ SR VILA1+ 0.6 x − VDDP 0.3,3.6 ) − -0.3 SR VILA1+ / VIHA1+ min(V V DDP+ 0.36 x V VDDP − 0.6 − CC Data Sheet 88 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters Table 21 Standard_Pads Class_A1+ (cont’d) Parameter Symbol Values Min. Output voltage high class A1+ pads VOHA1+ CC Typ. Unit Note / Test Condition V IOH≥ -1.4 mA; Max. VDDP - − − VDDP - − − − − 0.4 pin out driver= medium V 0.4 2.4 IOH≥ -1.4 mA; pin out driver= strong V IOH≥ -2 mA; pin out driver= medium − 2.4 − V IOH≥ -2 mA; pin out driver= strong VDDP - − − V IOH≥ -400 μA; pin out driver= weak 2.4 − − V IOH≥ -500 μA; pin out driver= weak − − 0.4 V IOL≤ 2 mA; pin 0.4 Output voltage low class A1+ pads VOLA1+ CC out driver= medium − − 0.4 V IOL≤ 2 mA; pin out driver= strong − − 0.4 V IOL≤ 500 μA; pin out driver= weak 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can´t be guaranteed that it suppresses switching due to external system noise. Data Sheet 89 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters Table 22 Standard_Pads Class_A2 Parameter Input Hysteresis for A2 pads 1) Input Leakage current Class A2 Symbol Values Unit Note / Test Condition Min. Typ. Max. HYSA2 0.1 x − − V CC VDDP IOZA2 -6000 − 6000 nA -3000 − 3000 nA 0.6 − − − 450 600 Ohm IOH> -0.5 mA; P_MOS − 210 340 Ohm IOL< 0.5 mA; N_MOS − − 155 Ohm IOH> -2 mA; P_MOS − − 110 Ohm IOL< 2 mA; N_MOS − − 28 Ohm IOH> -2 mA; P_MOS − − 22 Ohm IOL< 2 mA; N_MOS CC Vi< VDDP / 2 1 V; Vi> VDDP / 2 + 1 V; Vi≥ 0 V; Vi≤ VDDP V Vi> VDDP / 2 1 V; Vi< VDDP / 2 +1V Ratio Vil/Vih, A2 pads VILA2 / VIHA2 CC On-Resistance of the RDSONW class A2 pad, weak driver CC On-Resistance of the class A2 pad, medium driver RDSONM CC On-Resistance of the RDSON2 class A2 pad, strong driver CC Data Sheet 90 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters Table 22 Standard_Pads Class_A2 (cont’d) Parameter Fall time, pad type A2 Symbol tFA2 CC Values Min. Typ. Max. − − 150 Unit Note / Test Condition ns CL= 20 pF; pin out driver= weak − − 7 ns CL= 50 pF; edge= medium ; pin out driver= strong − − 10 ns CL= 50 pF; edge= mediumminus ; pin out driver= strong − − 3.7 ns CL= 50 pF; edge= sharp ; pin out driver= strong − − 5 ns CL= 50 pF; edge= sharpminus ; pin out driver= strong − − 16 ns CL= 50 pF; edge= soft ; pin out driver= strong − − 50 ns CL= 50 pF; pin out driver= medium − − 7.5 ns CL= 100 pF; edge= sharp ; pin out driver= strong − − 140 ns CL= 150 pF; pin out driver= medium Data Sheet 91 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters Table 22 Parameter Standard_Pads Class_A2 (cont’d) Symbol Values Min. Typ. Max. − − 550 Unit Note / Test Condition ns CL= 150 pF; pin out driver= weak − − 18000 ns CL= 20000 pF; pin out driver= medium − − 65000 ns CL= 20000 pF; pin out driver= weak Data Sheet 92 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters Table 22 Standard_Pads Class_A2 (cont’d) Parameter Symbol Values Min. Rise time, pad type A2 Typ. Max. tRA2 CC − − 150 − − Unit Note / Test Condition ns CL= 20 pF; pin out driver= weak 7.0 ns CL= 50 pF; edge= medium ; pin out driver= strong − − 10 ns CL= 50 pF; edge= mediumminus ; pin out driver= strong − − 3.7 ns CL= 50 pF; edge= sharp ; pin out driver= strong − − 5 ns CL= 50 pF; edge= sharpminus ; pin out driver= strong − − 16 ns CL= 50 pF; edge= soft ; pin out driver= strong − − 50 ns CL= 50 pF; pin out driver= medium − − 7.5 ns CL= 100 pF; edge= sharp ; pin out driver= strong − − 140 ns CL= 150 pF; pin out driver= medium Data Sheet 93 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters Table 22 Standard_Pads Class_A2 (cont’d) Parameter Symbol Values Min. Typ. Max. − − 550 Unit Note / Test Condition ns CL= 150 pF; pin out driver= weak − − 18000 ns CL= 20000 pF; pin out driver= medium − − 65000 ns CL= 20000 pF; pin out driver= weak Input high voltage, class A2 pads VIHA2 SR 0.6 x VOHA2 CC min(V V DDP + 0.3, 3.6) − Input low voltage Class A2 VILA2 SR -0.3 pads Output voltage high class A2 pads − VDDP 0.36 x V VDDP VDDP - − − VDDP - − − − − V 0.4 pin out driver= medium V 0.4 2.4 IOH≥ -1.4 mA; IOH≥ -1.4 mA; pin out driver= strong V IOH≥ -2 mA; pin out driver= medium − 2.4 − V IOH≥ -2 mA; pin out driver= strong VDDP - − − V IOH≥ -400 μA; pin out driver= weak − − V IOH≥ -500 μA; pin out driver= weak 0.4 2.4 Data Sheet 94 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters Table 22 Standard_Pads Class_A2 (cont’d) Parameter Symbol Output voltage low class A2 pads VOLA2 Values Min. Typ. Max. − − 0.4 Unit Note / Test Condition V IOL≤ 2 mA; pin CC out driver= medium − − 0.4 V IOL≤ 2 mA; pin out driver= strong − − 0.4 V IOL≤ 500 μA; pin out driver= weak 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can´t be guaranteed that it suppresses switching due to external system noise. Table 23 Standard_Pads Class_F Parameter Input Hysteresis F1) Input Leakage Current Class F Symbol Values Unit Note / Test Condition Min. Typ. Max. HYSF 0.05 x − − V CC VDDP IOZF CC -6000 − 6000 nA -3000 − 3000 nA − − − 170 Ohm IOH> -2 mA; P_MOS − − 145 Ohm IOL< 2 mA; N_MOS Vi< VDDP / 2 1 V; Vi> VDDP / 2 + 1 V; Vi≥ 0 V; Vi≤ VDDP V Vi> VDDP / 2 1 V; Vi< VDDP / 2 +1V Ratio Vil/ Vih, F pads On-Resistance of the class F pad, medium driver VILF / 0.6 VIHF CC RDSONM − CC Fall time, pad type F, CMOS mode tFF CC − − 60 ns CL= 50 pF Rise time, pad type F, CMOS mode tRF CC − − 60 ns CL= 50 pF Data Sheet 95 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters Table 23 Standard_Pads Class_F (cont’d) Parameter Symbol Values Min. Input high voltage, pad class F, CMOS mode VIHF SR 0.6 x VDDP Input low voltage, Class F VILF SR pads, CMOS mode Output high voltage, class VOHF F pads, CMOS mode CC − min(V V DDP+ Note / Test Condition 0.3, 3.6) 0.36 x V VDDP VDDP- − − V IOH≥ -1.4 mA − − V − 0.4 V IOH≥ -2 mA IOL≤ 2 mA 0.4 2.4 Output low voltage, class F pads, CMOS mode Max. − -0.3 Unit Typ. VOLF CC − 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can´t be guaranteed that it suppresses switching due to external system noise. Table 24 Standard_Pads Class_I Parameter Symbol Min. Typ. Max. Input Hysteresis Class I1) HYSI 0.1 x − − V CC VDDP IOZI CC -1000 VILI / VIHI 0.6 − 1000 nA − − VIHI SR − min(V V DDP+ Input Leakage Current Ratio between low and high input threshold Input high voltage, class I pins Input low voltage, Class I pads Values Unit Note / Test Condition CC 0.6 x VDDP VILI SR 0.3, 3.6) − -0.3 0.36 x V VDDP 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can´t be guaranteed that it suppresses switching due to external system noise. Class S pad parameters are only valid for VDDM = 4.75 V to 5.25 V. Data Sheet 96 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters Table 25 Standard_Pads Class_S Parameter Symbol Input Hysteresis for class S pads1) Input leakage current Input voltage high Input voltage low VILS Delta 2) HYSS Values Unit Min. Typ. Max. 0.3 − − V -300 − 300 nA − − 3.6 V 1.9 − − V -50 − 50 mV Note / Test Condition CC IOZS CC VIHS CC VILS CC VILSD CC Maximum input low state threshold variation over 1ms (VDDP = consta nt) 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can´t be guaranteed that it suppresses switching due to external system noise. 2) VILSD is implemented to ensure J2716 specification. It can’t be guaranteed that it suppresses switching due to external noise. Table 26 LVDS_Pads Parameters Parameter Symbol Min. Typ. Max. Output impedance, pad class F, LVDS mode RO CC 40 − 140 Ohm Fall time, pad type LVDS tFL CC − − 2 ns Data Sheet Values 97 Unit Note / Test Condition termination 100 Ω ± 1 %; differential capacitance = 1 0 pF; input capacitance = 2 0 pF V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters Table 26 LVDS_Pads Parameters (cont’d) Parameter Symbol Unit Note / Test Condition 2 ns termination 100 Ω ± 1 %; differential capacitance = 1 0 pF; input capacitance = 2 0 pF − 13 μs termination 100 Ω ± 1 % − 400 mV termination 100 Ω ± 1 % Typ. Max. − − tSET_LVD − Rise time, pad type LVDS tRL CC Pad set-up time Values Min. S CC Output Differential Voltage VOD CC 150 Output voltage high, pad class F, LVDS mode VOH CC − − 1525 mV termination 100 Ω ± 1 % Output voltage low, pad class F, LVDS mode VOL CC − − mV termination 100 Ω ± 1 % Output Offset Voltage VOS CC 1075 − 1325 mV termination 100 Ω ± 1 % Data Sheet 875 98 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters 5.2.2 Analog to Digital Converters (ADCx) ADC parameter are valid for VDD / DDAF = 1.235 V to 1.365 V; VDDM = 4.5 V to 5.5 V. Table 27 ADC Parameters Parameter Symbol Values Unit Min. Typ. Max. CAINSW Switched capacitance at the analog voltage inputs1) CC − 9 20 pF Total capacitance of an analog input − 20 30 pF Switched capacitance at the positive reference voltage input2)3) CAREFSW − 15 30 pF Total capacitance of the voltage reference inputs2) CAREFTO − 20 40 pF Differential Non-Linearity Error4)5)6)7) Gain Error4)5)6)7) CAINTOT CC CC T CC EADNL -3 − 3 LSB ADC resolution= 12bit 8) 9) EAGAIN -3.5 − 3.5 LSB ADC resolution= 12bit 8) 9) EAINL -3 − 3 LSB ADC resolution= 12bit 8) 9) EAOFF -4 − 4 LSB ADC resolution= 12bit 8) 9) CC CC Integral NonLinearity4)5)6)7) Offset Error4)5)6)7) CC CC Converter clock Internal ADC clock Charge consumption per conversion Note / Test Condition fADC SR 4 fADCI CC 1 − 100 MHz fADC= fFPI − 18 MHz ADC0 1 − 18 MHz ADC1 1 − 2010) MHz ADC2 100 pC QCONV 11) 70 85 CC charge needs to be provided via VAREF0 Data Sheet 99 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters Table 27 ADC Parameters (cont’d) Parameter Symbol Values Min. Input leakage at analog inputs12) IOZ1 CC -100 Typ. Max. − 500 Unit Note / Test Condition nA Vi≤ VDDM V; Vi≥ 0.97 x VDDM V; overlayed= No -100 − 600 nA Vi≥ 0.97 x VDDM V; Vi≤ VDDM V; overlayed= Yes -500 − 100 nA Vi≤ 0.03 x VDDM V; Vi≥ 0 V; -600 − 100 nA Vi≤ 0.03 x VDDM V; Vi≥ 0 V; -100 − 200 nA Vi> 0.03 x VDDM V; Vi< 0.97 x VDDM V; overlayed= No overlayed= Yes overlayed= No -100 − 300 nA Vi< 0.97 x VDDM V; Vi> 0.03 x VDDM V; overlayed= Yes Input leakage current at VAREF0 / VAREF2 IOZ2 CC -1 − 1 μA Input leakage current at -2 − 2 μA IOZ3 CC -4 − 4 μA RAIN CC − 900 1500 Ohm VAREF1 Input leakage current at VAGND0 ON resistance of the transmission gates in the analog voltage path Data Sheet 100 VAREFx≥ 0 V; VAREFx≤ VDDM V VAREFx≥ 0 V; VAREFx≤ VDDM V VAGND0≥ 0 V; VAGND0≤ VDDM V V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters Table 27 ADC Parameters (cont’d) Parameter Symbol Values Unit Min. Typ. Max. ON resistance for the ADC RAIN7T test (pull down for AIN7) CC 180 550 900 Ohm Resistance of the reference voltage input path − 500 1000 Ohm tS CC 2 tCAL CC − − 257 TADCI − 4352 cycle s TUE CC -4 − 414) LSB Sample time Calibration time after bit ADC_GLOBCFG.SUCAL is set Total Unadjusted Error6)5)13) RAREF CC Analog reference ground2) VAGNDx SR Analog input voltage VSSM - − 0.05 VAIN SR VAGNDx − VAGNDx − Analog reference voltage2) VAREFx SR Analog reference voltage range6)5)2) Note / Test Condition +1 ADC resolution= 12bit VAREFx V -1 VAREFx V VDDM + V 0.0515) 16) VAREFx - VDDM/2 − VAGNDx VDDM + V 0.05 SR 1) The sampling capacity of the conversion C-network is pre-charged to VAREF/2 before the sampling moment. Because of the parasitic elements the voltage measured at AINx can deviate from VAREF/2. 2) Applies to AINx, when used as auxiliary reference input. 3) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead smaller capacitances are successively switched to the reference voltage. 4) The sum of DNL/INL/GAIN/OFF errors does not exceed the related TUE total unadjusted error. 5) If a reduced analog reference voltage between 1V and VDDM / 2 is used, then there are additional decrease in the ADC speed and accuracy. 6) If the analog reference voltage range is below VDDM but still in the defined range of VDDM / 2 and VDDM is used, then the ADC converter errors increase. If the reference voltage is reduced by the factor k (k<1), TUE,DNL,INL,Gain, and Offset errors increase also by the factor 1/k. 7) If the analog reference voltage is > VDDM, then the ADC converter errors increase. 8) For 10-bit conversions the error value must be multiplied with a factor 0.25. 9) For 8-bit conversions the error value must be multiplied with a factor 0.0625. 10) For fADCI between 18MHz and 20MHz the TUE and Gain Error can increase beyond the given limits. For STC < 2 INL, DNL , and Offset errors can also increase. Data Sheet 101 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters 11) For a conversion time of 1 µs a rms value of 85µA result for IAREF0. 12) The leakage current definition is a continuos function, as shown in figure ADCx Analoge Input Leakage. The numerical values defined determine the characteristic points of the given continuous linear approximation they do not define step function. 13) Measured without noise. 14) For 10-bit conversion the TUE is ±2LSB; for 8-bit conversion the TUE is ±1LSB 15) A running conversion may become inexact in case of violating the normal conditions (voltage overshoot). 16) If the reference voltage VAREF increase or the VDDM decrease, so that VAREF = (VDDM + 0.05V to VDDM + 0.07V), then the accuracy of the ADC decrease by 4LSB12. Table 28 Conversion Time (Operating Conditions apply) Parameter Symbol Conversion tC time with post-calibration Values Unit Note CC 2 × TADC + (4 + STC + n) × TADCI μs 2 × TADC + (2 + STC + n) × TADCI Conversion time without post-calibration n = 8, 10, 12 for n - bit conversion TADC = 1 / fFPI TADCI = 1 / fADCI The power-up calibration of the ADC requires a maximum number of 4352 fADCI cycles. REXT VAIN = Analog Input Circuitry RAIN, On ANx CEXT CAINTOT - CAINSW VAGNDx CAINSW RAIN7T Reference Voltage Input Circuitry RAREF, On VAREFx VAREF CAREFTOT - CAREFSW CAREFSW VAGNDx Analog_InpRefDiag Figure 8 Data Sheet ADCx Input Circuits 102 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters Ioz1 Single ADC Input 500nA 200nA 100nA -100nA VIN[VDDM%] 3% 97% 100% -500nA Ioz1 Overlayed ADC/FADC Input 600nA 300nA 100nA -100nA VIN[VDDM%] 3% 97% 100% -600nA Figure 9 Data Sheet ADCx Analog Inputs Leakage 103 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters 5.2.3 Fast Analog to Digital Converter (FADC) FADC parameter are vaild for VDD / DDAF = 1.235 V to 1.365 V; VDDMF = 2.97 V to 3.6 V. Table 29 FADC Parameters Parameter Input current at VFAREF Symbol Values Unit Min. Typ. Max. IFAREF − − 120 μA IFOZ2 -500 − 500 nA IFOZ3 -500 − 500 nA EFDNL -1 − 1 LSB Note / Test Condition CC Input leakage current at VFAREF1) CC Input leakage current at VFAGND CC DNL error CC VFAREF≤ VDDMF V; VFAREF≥ 0 V VIN mode= differential; Gain = 1 or 2 − -2 2 LSB VIN mode= differential; Gain = 4 or 82) − -1 1 LSB VIN mode= single ended; Gain = 1 or 2 − -2 2 LSB VIN mode= single ended; Gain = 4 or 82) GRADient error EFGRAD -5 − -5 − 5 % CC VIN mode= differential ; Gain≤ 4 5 % VIN mode= single ended ; Gain≤ 4 − -6 6 % VIN mode= differential ; Gain= 8 − -6 6 % VIN mode= single ended ; Gain= 8 Data Sheet 104 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters Table 29 FADC Parameters (cont’d) Parameter INL error Symbol EFINL Values Unit Note / Test Condition 4 LSB VIN mode= 4 LSB VIN mode= Min. Typ. Max. -4 − -4 − CC differential single ended Offset error EFOFF − -90 90 mV CC VIN mode= differential ; Calibration= No − -90 90 mV VIN mode= single ended ; Calibration= No − -20 20 mV VIN mode= differential ; Calibration= Ye s 3)4) − -20 20 mV VIN mode= single ended ; Calibration= Ye s 3)4) EFREF -60 − 60 mV Channel amplifier cutoff frequency fCOFF 2 − − MHz Converter clock fFADC 1 − 100 MHz fFADC= fFPI tC CC − − 21 1/ Input resistance of the analog voltage path (Rn, Rp) RFAIN 100 Settling time of a channel amplifier after changing ENN or ENP tSET CC − Analog input voltage range VAINF Error of commen mode voltage VFAREF/2 CC CC SR Conversion time Data Sheet − 200 kOh m − 5 μs VDDMF V CC SR For 10-bit fFADC conversion VFAGND − 105 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters Table 29 FADC Parameters (cont’d) Parameter Symbol Values Min. Analog reference ground VFAGND VSSAF - − VFAREF 2.97 SR Analog reference voltage Typ. 0.05 SR − Unit Max. VSSAF V 3.635) V Note / Test Condition + 0.05 6) 1) This value applies in power-down mode. 2) No missing codes. 3) Calibration should be preformed at each power-up. In case of a continous operation, it should be performed minimium once per week. 4) The offser error voltage drifts over the whole temperature range maximum +-3LSB. 5) Voltage overshoot to 4V is permissible, provided the pulse duration is less than 100 μs and the cumulated sum of the pulses does not exceed 1 h. 6) A running conversion may become inexact in case of violating the nomal operating conditions (voltage overshoots). The calibration procedure should run after each power-up, when all power supply voltages and the reference voltage have stabilized. Data Sheet 106 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters FADC Analog Input Stage FAINxN - = VFAGND RN VFAREF /2 + + FAINxP RP - FADC Reference Voltage Input Circuitry VFAREF IFAREF VFAREF VFAGND FADC_InpRefDiag Figure 10 Data Sheet FADC Input Circuits 107 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters 5.2.4 Table 30 Oscillator Pins OSC_XTAL Parameters Parameter Symbol Values Unit Note / Test Condition VIN<VDDOSC3 ; VIN>0 V Min. Typ. Max. -25 − 25 μA Input current at XTAL1 IIX1 CC Input frequency fOSC SR 4 − 40 MHz Direct Input Mode selected 8 − 25 MHz External Crystal Mode selected − − 10 ms VDDOS V Oscillator start-up time1) tOSCS CC Input high voltage at XTAL12) VIHX SR 0.7 x VDDOS Input low voltage at XTAL1 VILX SR -0.5 Input Hysteresis for XTAL1 pad 3) HYSAX − + 0.5 C3 C3 − 0.3 x V VDDOS C3 − − 200 mV CC 1) tOSCS is defined from the moment when VDDOSC3 = 3.13V until the oscillations reach an amplitude at XTAL1 of 0.3 * VDDOSC3. The external oscillator circuitry must be optimized by the customer and checked for negative resistance as recommended and specified by crystral suppliers. 2) If the XTAL1 pin is driven by a crystal, reaching a minimum amplitude (peak-to-peak) of 0.4 * VDDOSC3 is necessary. 3) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can´t be guaranteed that it suppresses switching due to external system noise. Note: It is strongly recommended to measure the oscillation allowance (negative resistance) in the final target system (layout) to determine the optimal parameters for the oscillator operation. Please refer to the limits specified by the crystal or ceramic resonator supplier. Data Sheet 108 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters 5.2.5 Table 31 Temperature Sensor DTS Parameters Parameter Symbol Values Min. Measurement time Temperature sensor range tM CC TSR SR Unit Typ. Max. − − 100 μs -40 − 150 °C Sensor Accuracy (calibrated) TTSA CC -6 − 6 °C Start-up time after resets inactive tTSST SR − − 20 μs Note / Test Condition The following formula calculates the temperature measured by the DTS in [oC] from the RESULT bit field of the DTSSTAT register. (1) DTSSTAT RESULT – 596 Tj = ------------------------------------------------------------------2, 03 Data Sheet 109 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters 5.2.6 Power Supply Current The total power supply current defined below consists of leakage and switching component. Application relevant values are typically lower than those given in the following two tables and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations). The operating conditions for the parameters in the following table are: VDD / VDDOSC / VDDAF / VDDPF = 1.365 V, VDDP / VDDOSC / VDDMF / VDDFL3 / VDDPF = 3.47 V, VDDM = 5.25 V fSRI / CPU=240 / 200 MHz, fPCP=120 / 200 MHz, fSRI=80 / 100 MHz, TJ=150 oC The realisic power pattern defines the following conditions: • • • • • • • TJ=150 oC fSRI = fCPU = 240 / 200 MHz fPCP = 120 / 200 MHz fFPI = 80 / 100MHz VDD = VDDOSC = VDDAF = VDDPF = 1.326 V VDDP = VDDOSC3 = VDDFL3 VDDPF3 = VDDMF = 3.366 V VDDM = 5.1 V The max power pattern defines the following conditions: • • • • • • • TJ=150 oC fSRI = fCPU = 240 / 200 MHz fPCP = 120 / 200 MHz fFPI = 80 / 100MHz VDD = VDDOSC = VDDAF = VDDPF = 1.43 V VDDP = VDDOSC3 = VDDFL3 VDDPF3 = VDDMF = 3.63 V VDDM = 5.5 V Data Sheet 110 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters Table 32 Power Supply Parameters Parameter Unit Note / Test Condition 7893) mA power pattern= max; fCPU=240 MHz − 591 mA power pattern= realisti c; fCPU=240 MHz − − 7354) mA power pattern= max; fCPU=200 MHz − − 555 mA power pattern= realisti c; fCPU=200 MHz IDD current at PORST Low IDD_PORS − T CC − − 298 mA − 249 mA TJ=150 oC TJ=140 oC Core active mode supply current1)2) Symbol IDD CC Values Min. Typ. Max. − − − E-Ray PLL core supply current IDDPF − − 4 mA Oscillator core supply current IDDOSC − − 3 mA Analog core supply current IDDAF − − 26 mA Sum of all 1.3 V supply currents IDDSUM − − 624 mA power pattern= realisti c; fCPU=240 MHz − − 588 mA power pattern= realisti c; fCPU=200 MHz IDDPF3 − − 4 mA IDDOSC3 − − 11 mA E-Ray PLL 3.3V supply CC CC CC CC CC Oscillator power supply current, 3.3V Data Sheet CC 111 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters Table 32 Power Supply Parameters (cont’d) Parameter Symbol Values Unit Min. Typ. Max. Note / Test Condition FADC analog supply current, 3.3V IDDMF − − 15 mA IDDP current at PORST IDDP_POR − − 7 mA − IDDP_ mA including flash read current mA including flash programming current 6) mA including flash erase verify current 6) CC Low ST CC IDDP CC − IDDP current no pad activity, LVDS off 5) PORST + 25 − − IDDP_ PORST + 55 − − IDDP_ PORST 7) + 40 5) − − 98 mA flash read current − − 29 mA flash programming current 6) − − 98 mA flash erase current 6) ILVDS − − 24 mA in total for all LVDS pairs Sum of all 3.3 V supply currents, no pad activity, LVDS off IDD3SUM − − 160 8) mA including flash read current ADC 5V power supply current IDDM CC − − 6 mA Flash memory current IDDFL3 CC Current Consumption of LVDS Pad Pairs Data Sheet CC CC 112 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters Table 32 Power Supply Parameters (cont’d) Parameter Symbol Maximum power dissipation PD CC Values Unit Note / Test Condition 1706 mW power pattern= max; fCPU=240 MHz − 1449 mW power pattern= realisti c; fCPU=240 MHz − − 1523 mW power pattern= max; fCPU=200 MHz − − 1403 mW power pattern= realisti c; fCPU=200 MHz Min. Typ. Max. − − − 1) Infineon Power Loop: CPU and PCP running, all peripherals active. The power consumption of each customer application will most probably be lower than this value, but must be evaluated seperately. 2) This current includes the E-Ray module power consumption, including the PCP operation component. 3) The IDD decreases typically by 102 mA if the fCPU decreases by 50MHz, at constant TJ 4) The IDD decreases typically by 105 mA if the fCPU decreases by 50MHz, at constant TJ 5) For operations including the D-Flash the required currents are always lower than the currents for non D-Flash operation. 6) Relevant for the power supply dimensioning, not for thermal considerations. 7) In case of erase of Program Flash PFx, internal flash array loading effects may generate transient current spikes of up to 15 mA for maximum 5 ms per flash module. 8) For power supply dimensioning of VDDP 30 mA have to added for flash programming case. Note: In general current consumption for operations with data flash are always lower than the defined values for program flash read operation. 5.2.6.1 Calculating the 1.3 V Current Consumption The current consumption of the 1.3 V rail compose out of two parts: • • Static current consumption Dynamic current consumption The static current consumption is related to the device temperature TJ and the dynamic current consumption depends of the configured clocking frequencies and the software Data Sheet 113 V 1.1, 2014-05 TC1791 Electrical ParametersDC Parameters application executed. These two parts needs to be added in order to get the rail current consumption. (2) I 0 mA = 3, 75 --------- × e 0, 02041 × T J [ C ] C (3) I 0 mA = 18, 77 --------- × e 0, 01825 × T J [ C ] C Function 2 defines the typical static current consumption and Function 3 defines the maximum static current consumption. Both functions are valid for VDD = 1.326 V. For the dynamic current consumption using the real pattern and fSRI = 2 * fPCP = 3 * fFPI the function 4 applies: (4) mA I D m = 1, 22 ------------- × f CPU [ MHz ] y MHz For the dynamic current consumption using the real pattern and fSRI = fPCP = 2 * fFPI the function 5 applies: (5) mA I D m = 1, 305 ------------- × f CPU [ MHz ] y MHz and this finally results in (6) I DD = I 0 + I DYM Data Sheet 114 V 1.1, 2014-05 TC1791 Electrical ParametersAC Parameters 5.3 AC Parameters All AC parameters are defined with maximum driver strength unless otherwise noted. 5.3.1 Testing Waveforms VD D P 90% 90% 10% 10% VSS tR tF rise_fall Figure 11 Rise/Fall Time Parameters VD D P VD D E / 2 Test Points VD D E / 2 VSS mct04881_a.vsd Figure 12 Testing Waveform, Output Delay VLoad+ 0.1 V VLoad- 0.1 V Timing Reference Points VOH - 0.1 V VOL - 0.1 V MCT04880_new Figure 13 Data Sheet Testing Waveform, Output High Impedance 115 V 1.1, 2014-05 TC1791 Electrical ParametersAC Parameters 5.3.2 Power Sequencing V 5.25V 5V 4.75V VAREF 3.47V 3.3V 3.0V -12% 1.365V 1.3V 1.235V 0.5V -12% 0.5V 0.5V t VDDP PORST power down Figure 14 power fail t Power-Up 10.vsd 5 V / 3.3 V / 1.3 V Power-Up/Down Sequence The following list of rules applies to the power-up/down sequence: • • • All ground pins VSS must be externally connected to one single star point in the system. Regarding the DC current component, all ground pins are internally directly connected. At any moment in time to avoid increased latch-up risk, each power supply must be higher then any lower_power_supply - 0.5 V, or: VDD5 > VDD3.3 - 0.5 V; VDD5 > VDD1.3 - 0.5 V;VDD3.3 > VDD1.3 - 0.5 V, see Figure 14. – The latch-up risk is minimized if the I/O currents are limited to: – 20 mA for one pin group – AND 100 mA for the completed device I/Os – AND additionally before power-up / after power-down: 1 mA for one pin in inactive mode (0 V on all power supplies) During power-up and power-down, the voltage difference between the power supply pins of the same voltage (3.3 V, 1.3 V, and 5 V) with different names (for example VDDP, VDDFL3 ...), that are internally connected via diodes, must be lower than 100 mV. On the other hand, all power supply pins with the same name (for example all VDDP), Data Sheet 116 V 1.1, 2014-05 TC1791 Electrical ParametersAC Parameters 1. 2. 3. 4. 5. 6. are internally directly connected. It is recommended that the power pins of the same voltage are driven by a single power supply. The PORST signal may be deactivated after all VDD5, VDD3.3, VDD1.3, and VAREF powersupplies and the oscillator have reached stable operation, within the normal operating conditions. At normal power down the PORST signal should be activated within the normal operating range, and then the power supplies may be switched off. Care must be taken that all Flash write or delete sequences have been completed. At power fail the PORST signal must be activated at latest when any 3.3 V or 1.3 V power supply voltage falls 12% below the nominal level. If, under these conditions, the PORST is activated during a Flash write, only the memory row that was the target of the write at the moment of the power loss will contain unreliable content. In order to ensure clean power-down behavior, the PORST signal should be activated as close as possible to the normal operating voltage range. In case of a power-loss at any power-supply, all power supplies must be powereddown, conforming at the same time to the rules number 2 and 4. Although not necessary, it is additionally recommended that all power supplies are powered-up/down together in a controlled way, as tight to each other as possible. Additionally, regarding the ADC reference voltage VAREF: – VAREF must power-up at the same time or later then VDDM, and – VAREF must power-down either earlier or at latest to satisfy the condition VAREF < VDDM + 0.5 V. This is required in order to prevent discharge of VAREF filter capacitance through the ESD diodes through the VDDM power supply. In case of discharging the reference capacitance through the ESD diodes, the current must be lower than 5 mA. Data Sheet 117 V 1.1, 2014-05 TC1791 Electrical ParametersAC Parameters 5.3.3 Table 33 Power, Pad and Reset Timing Reset Timings Parameters Parameter Symbol Values Min. Application Reset Boot Time1)2) tB CC Power on Reset Boot Time3)4) tBP CC Typ. Unit Note / Test Condition fCPU = 240 MHz fCPU = 200 MHz Max. − − 1015 μs − − 1140 μs − − 2.5 ms − − ns − − ns HWCFG pins hold time from ESR0 rising edge tHDH SR 16 / fFPI HWCFG pins setup time to tHDS SR 0 ESR0 rising edge Ports inactive after ESR0 reset active tPI CC − − 8/fFPI ns Ports inactive after PORST reset active5) tPIP CC − − 150 ns Minimum PORST active time after power supplies are stable at operating levels tPOA SR 10 − − ms TESTMODE / TRST hold time from PORST rising edge tPOH SR 100 − − ns PORST rise time tPOR SR − tPOS SR 0 − 50 ms − − ns − 40 6) μs TESTMODE / TRST setup time to PORST rising edge Application Reset inactive tPOR_APP − after PORST deassertion SR 1) The duration of the boot time is defined between the rising edge of the internal application reset and the clock cycle when the first user instruction has entered the CPU pipeline and its processing starts. 2) The given time includes the time of the internal reset extension for a configured value of SCU_RSTCNTCON.RELSA = 0x05BE. 3) The duration of the boot time is defined between the rising edge of the PORST and the clock cycle when the first user instruction has entered the CPU pipeline and its processing starts. 4) The given time includes the internal reset extension time for the System and Application Reset which is visible through ESR0. Data Sheet 118 V 1.1, 2014-05 TC1791 Electrical ParametersAC Parameters 5) This parameter includes the delay of the analog spike filter in the PORST pad. 6) Application Reset is assumed not to be extended from external, otherwise the time extends by the time the Application Reset is extended. VDD P -12% VD D PPA V D DPPA VDDP VDD VD D -12% tPOA tPOA PORST tPOH TRST TESTMODE ESR0 tPOH t hd t hd tHDH tHDH tHDH HWCFG t PIP tPI Pads tPI t PIP tPI tPI t PIP tPI Pad-state undefined Tri-state or pull device active reset_beh2 As programmed Figure 15 Data Sheet Power, Pad and Reset Timing 119 V 1.1, 2014-05 TC1791 Electrical ParametersAC Parameters 5.3.4 Table 34 Phase Locked Loop (PLL) PLL_SysClk Parameters Parameter Symbol Values Min. Accumulated Jitter Modulation frequency PLL base frequency DP CC -7 fMOD SR 50 fPLLBASE 50 Unit Typ. Max. − 7 Note / Test Condition ns − 200 kHz 200 320 MHz fREF CC 8 fVCO CC 400 − 16 MHz − 720 MHz with inactive modulation 400 − 600 MHz with active modulation − 2.5 ns − 9.5 ns CC VCO input frequency VCO frequency range Modulation jitter Total long term jitter JMOD CC − JTOT CC − Sum of DP and JMOD Modulation Amplitude PLL lock-in time System frequency deviation MA SR tL CC fSYSD − 0 2.5 % % of fVCO 14 − 200 μs N > 32 14 − 400 μs N ≤ 32 − − 0.01 % with active modulation CC Phase Locked Loop Operation When PLL operation is enabled and configured, the PLL clock fVCO (and with it the SRIBus clock fSRI) is constantly adjusted to the selected frequency. The PLL is constantly adjusting its output frequency to correspond to the input frequency (from crystal or clock source), resulting in an accumulated jitter that is limited. This means that the relative deviation for periods of more than one clock cycle is lower than for a single clock cycle. This is especially important for bus cycles using wait states and for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is negligible. Data Sheet 120 V 1.1, 2014-05 TC1791 Electrical ParametersAC Parameters Two formulas are defined for the (absolute) approximate maximum value of jitter Dm in [ns] dependent on the K2 - factor, the SRI clock frequency fSRI in [MHz], and the number m of consecutive fSRI clock periods. for ( K2 ≤ 100 ) ( m ≤ ( f SRI [ MHz ] ) ⁄ 2 ) and ( 1 – 0, 01 × K2 ) × ( m – 1 ) 740 D m [ ns ] = ⎛⎝ ------------------------------------------ + 5⎞⎠ × ⎛⎝ ---------------------------------------------------------------- + 0, 01 × K2⎞⎠ 0, 5 × f SRI [ MHz ] – 1 K2 × f SRI [ MHz ] else 740 D m [ ns ] = ------------------------------------------ + 5 K2 × f SRI [ MHz ] (7) (8) With rising number m of clock cycles the maximum jitter increases linearly up to a value of m that is defined by the K2-factor of the PLL. Beyond this value of m the maximum accumulated jitter remains at a constant value. Further, a lower SRI-Bus clock frequency fSRI results in a higher absolute maximum jitter value. Note: The specified PLL jitter values are valid if the capacitive load per pin does not exceed CL = 20 pF with the maximum driver and sharp edge. Note: The maximum peak-to-peak noise on the pad supply voltage, measured between VDDOSC3 and VSSOSC, is limited to a peak-to-peak voltage of VPP = 100 mV for noise frequencies below 300 KHz and VPP = 40 mV for noise frequencies above 300 KHz. The maximum peak-to peak noise on the pad supply voltage, measured between VDDOSC and VSSOSC, is limited to a peak-to-peak voltage of VPP = 100 mV for noise frequencies below 300 KHz and VPP = 40 mV for noise frequencies above 300 KHz. These conditions can be achieved by appropriate blocking of the supply voltage as near as possible to the supply pins and using PCB supply and ground planes. Oscillator Watchdog (OSC_WDT) The expected input frequency is selected via the bit field SCU_OSCCON.OSCVAL. The OSC_WDT checks for too low frequencies and for too high frequencies. The frequency that is monitored is fOSCREF which is derived for fOSC. (9) f O S C R EF fO S C = ---------------------------------OSCVAL + 1 The divider value SCU_OSCCON.OSCVAL has to be selected in a way that fOSCREF is 2.5 MHz. Data Sheet 121 V 1.1, 2014-05 TC1791 Electrical ParametersAC Parameters Note: fOSCREF has to be within the range of 2 MHz to 3 MHz and should be as close as possible to 2.5 MHz. The monitored frequency is too low if it is below 1.25 MHz and too high if it is above 7.5 MHz. This leads to the following two conditions: • • Too low: fOSC < 1.25 MHz × (SCU_OSCCON.OSCVAL+1) Too high: fOSC > 7.5 MHz × (SCU_OSCCON.OSCVAL+1) Note: The accuracy is 30% for these boundaries. Frequency Modulation Frequency modulation defines a slow and predictable variation of the clock speed. The modulation configuration itself is controlled via register SCU_PLLCON2 where the two bit fields define the modulation properties. (10) f OSC MODFREQ × 31, 32 f MOD = -------------- × ---------------------------------------------------P MODAMP (11) MODAMP MA = ---------------------------- N × 161 Data Sheet 122 V 1.1, 2014-05 TC1791 Electrical ParametersAC Parameters 5.3.5 Table 35 ERAY Phase Locked Loop (ERAY_PLL) PLL_ERAY Parameters Parameter Symbol Values Min. Unit Typ. Max. Accumulated jitter at SYSCLK pin DPP CC -0.8 − 0.8 ns Accumulated_Jitter DP CC -0.5 fPLLBASE_ 50 − 0.5 ns 250 360 MHz fREF CC 20 − 40 MHz fVCO_ERA 450 − 500 MHz − 200 μs PLL Base Frequency of the ERAY PLL VCO input frequency of the ERAY PLL ERAY Note / Test Condition CC VCO frequency range of the ERAY PLL Y PLL lock-in time tL CC CC 5.6 Note: The specified PLL jitter values are valid if the capacitive load per pin does not exceed CL = 20 pF with the maximum driver and sharp edge. Note: The maximum peak-to-peak noise on the pad supply voltage, measured between VDDPF3 and VSSPF, is limited to a peak-to-peak voltage of VPP = 100 mV for noise frequencies below 300 KHz and VPP = 40 mV for noise frequencies above 300 KHz. These conditions can be achieved by appropriate blocking of the supply voltage as near as possible to the supply pins and using PCB supply and ground planes. Data Sheet 123 V 1.1, 2014-05 TC1791 Electrical ParametersAC Parameters 5.3.6 JTAG Interface Timing The following parameters are applicable for communication through the JTAG debug interface. The JTAG module is fully compliant with IEEE1149.1-2000. Note: These parameters are not subject to production test but verified by design and/or characterization. Table 36 JTAG Interface Timing Parameters (Operating Conditions apply) Parameter Min. Typ. Max. Unit Note / Test Condition t1 SR t2 SR t3 SR t4 SR t5 SR t6 SR 25 – – ns – 10 – – ns – 10 – – ns – – – 4 ns – – – 4 ns – 6 – – ns – t7 SR 6 – – ns – TDO valid after TCK falling t8 CC edge1) (propagation delay) t CC 8 – – 13 ns CL = 50 pF 3 – – ns CL = 20 pF TDO hold after TCK falling t18 CC edge1) 2 – – ns TDO high imped. to valid from TCK falling edge1)2) t9 CC – – 14 ns CL = 50 pF TDO valid to high imped. from TCK falling edge1) t10 CC – – 13.5 ns CL = 50 pF TCK clock period TCK high time TCK low time TCK clock rise time TCK clock fall time TDI/TMS setup to TCK rising edge TDI/TMS hold after TCK rising edge Symbol Values 1) The falling edge on TCK is used to generate the TDO timing. 2) The setup time for TDO is given implicitly by the TCK cycle time. Data Sheet 124 V 1.1, 2014-05 TC1791 Electrical ParametersAC Parameters t1 0.9 VD D P 0.5 VD D P t5 t2 0.1 VD D P t4 t3 MC_ JTAG_ TCK Figure 16 Test Clock Timing (TCK) TCK t6 t7 t6 t7 TMS TDI t9 t8 t1 0 TDO t18 Figure 17 Data Sheet MC_JTAG JTAG Timing 125 V 1.1, 2014-05 TC1791 Electrical ParametersAC Parameters 5.3.7 DAP Interface Timing The following parameters are applicable for communication through the DAP debug interface. Note: These parameters are not subject to production test but verified by design and/or characterization. Table 37 DAP Parameters Parameter Symbol 1) tTCK SR t12 SR t13 SR t14 SR t15 SR t16 SR DAP0 clock period DAP0 high time 1) DAP0 low time DAP0 clock rise time DAP0 clock fall time DAP1 setup to DAP0 rising edge Values Unit Min. Typ. Max. 12.5 − − ns 4 − − ns 4 − − ns − − 2 ns − − 2 ns 6.0 − − ns DAP1 hold after DAP0 rising edge t17 SR 6.0 − − ns DAP1 valid per DAP0 clock period2) t19 CC 8 − − ns 10 − − ns Note / Test Condition CL= 20 pF; f= 80 MHz CL= 50 pF; f= 40 MHz 1) See the DAP chapter for clock rate restrictions in the Active:IDLE protocol state. 2) The Host has to find a suitable sampling point by analyzing the sync telegram response. t11 0.9 VD D P 0.5 VD D P t1 5 t1 2 t14 0.1 VD D P t1 3 MC_DAP0 Figure 18 Data Sheet Test Clock Timing (DAP0) 126 V 1.1, 2014-05 TC1791 Electrical ParametersAC Parameters DAP0 t1 6 t1 7 DAP1 MC_ DAP1_RX Figure 19 DAP Timing Host to Device t1 1 DAP1 t1 9 MC_ DAP1_TX Figure 20 5.3.8 Data Sheet DAP Timing Device to Host Micro Link Interface (MLI) Timing 127 V 1.1, 2014-05 TC1791 Electrical ParametersAC Parameters MLI Transmitter Timing t13 t14 t10 t12 TCLKx t11 t15 t15 TDATAx TVALIDx t16 t17 TREADYx MLI Receiver Timing t23 t24 t20 RCLKx t22 t21 t25 t26 RDATAx RVALIDx t27 t27 RREADYx MLI_Tmg_2.vsd Figure 21 MLI Interface Timing Note: The generation of RREADYx is in the input clock domain of the receiver. The reception of TREADYx is asynchronous to TCLKx. The MLI parameters are vaild for CL = 50 pF and strong driver medium edge. Data Sheet 128 V 1.1, 2014-05 TC1791 Electrical ParametersAC Parameters Table 38 MLI Receiver Parameter Symbol Values Unit Min. Typ. 1 / fFPI − − ns − 0.5 x − ns − ns − 4 ns − − 4 ns 4.2 − − ns RDATA/RVALID hold time t26 SR after RCLK falling edge 2.2 − − ns RREADY output delay time 0 − 16 ns RCLK clock period RCLK high time1)2) t20 SR t21 SR Max. Note / Test Condition t20 RCLK low time1)2) t22 SR − 0.5 x t20 RCLK rise time3) RCLK fall time 3) RDATA/RVALID setup time before RCLK falling edge t23 SR t24 SR t25 SR t27 SR − 1) The following formula is valid: t21 + t22 = t20. 2) Min and Max values for this parameter can be derived from the typ. value by considering the other receiver timing parameters. 3) The RCLK max. input rise/fall times are best case parameters for fSYS = 90 MHz. For reduction of EMI, slower input signal rise/fall times can be used for longer RCLK clock periods. Table 39 MLI Transmitter Parameter TCLK clock period Symbol t10 CC Values Unit Min. Typ. Max. 2x1/ − − ns 0.45 x 0.5 x 0.55 x ns t10 t10 t10 0.45 x 0.5 x 0.55 x t10 t10 t10 Note / Test Condition fFPI TCLK high time1)2) TCLK low time1)2) t11 CC t12 CC ns TCLK rise time t13 CC − − 0.3 x ns TCLK fall time t14 CC − − 0.3 x ns Data Sheet 129 t103) t103) V 1.1, 2014-05 TC1791 Electrical ParametersAC Parameters MLI Transmitter (cont’d) Table 39 Parameter Symbol Values Unit Min. Typ. Max. TDATA/TVALID output delay time t15 CC -3 − 4.4 ns TREADY setup time before TCLK rising edge t16 SR 18 − − ns TREADY hold time after TCLK rising edge t17 SR -2 − − ns Note / Test Condition 1) The following formula is valid: t11 + t12 = t10. 2) The min./max. TCLK low/high times t11/t12 include the PLL jitter of fSYS. Fractional divider settings must be regarded additionally to t11 / t12. 3) For high-speed MLI interface, strong driver sharp or medium edge selection (class A2 pad) is recommended for TCLK. 5.3.9 Micro Second Channel (MSC) Interface Timing The MSC parameters are vaild for CL = 50 pF. Table 40 MSC Parameters Parameter Symbol FCLP clock period1)2) t40 CC SOP4)/ENx outputs delay from FCLP4) rising edge t45 CC SDI bit time t46 CC Values Unit Note / Test Condition Min. Typ. Max. 2x − − ns -2 − 5 ns ENx with strong driver and sharp (minus ) edge -2 − 10 ns ENx with strong driver and medium (minus) edge 0 − 21 ns ENx with strong driver and soft edge 8x − − ns TMSC3) TMSC Data Sheet 130 V 1.1, 2014-05 TC1791 Electrical ParametersAC Parameters Table 40 MSC Parameters (cont’d) Parameter Symbol t48 SR t49 SR SDI rise time SDI fall time Values Unit Min. Typ. Max. − − 200 ns − − 200 ns Note / Test Condition 1) FCLP signal rise/fall times are only defined by the pad rise/fall times. 2) FCLP signal high and low can be minimum 1xTMSC 3) TMSC = TSYS = 1 / fSYS. 4) SOP / FCLP either propagated by LVDS or by CMOS strong driver and non soft edge. t40 0.9 VDDP 0.1 VDDP FCLP t45 t45 SOP EN t48 t49 0.9 VDDP 0.1 VDDP SDI t46 Figure 22 t46 MSC_Tmg_1.vsd MSC Interface Timing Note: The data at SOP should be sampled with the falling edge of FCLP in the target device. Data Sheet 131 V 1.1, 2014-05 TC1791 Electrical ParametersAC Parameters 5.3.10 SSC Master/Slave Mode Timing The SSC parameters are vaild for CL = 50 pF and strong driver medium edge. Table 41 SSC Parameters Parameter Symbol 1)2)3) SCLK clock period t50 CC Values Unit Min. Typ. Max. 2x1/ − − ns Note / Test Condition fFPI MTSR/SLSOx delay form SCLK rising edge t51 CC 0 − 8 ns MRST setup to SCLK latching edge3) t52 SR 16.5 − − ns MRST hold from SCLK latching edge3) t53 SR 0 − − ns SCLK input clock period1)3) t54 SR 4x1/ − − ns SCLK input clock duty cycle t55_t54 45 − 55 % MTSR setup to SCLK latching edge3)4) t56 SR 1 / fFPI − − ns MTSR hold from SCLK latching edge t57 SR 1 / fFPI +5 − − ns SLSI setup to first SCLK latching edge t58 SR 1 / fFPI +5 − − ns SLSI hold from last SCLK t59 SR latching edge5) 7 − − ns MRST delay from SCLK shift edge t60 CC 0 − 16.5 ns SLSI to valid data on MRST t61 CC − − 16.5 ns fFPI SR 1) SCLK signal rise/fall times are the same as the rise/fall times of the pad. 2) SCLK signal high and low times can be minimum 1xTSSC. 3) TSSCmin = TSYS = 1/fSYS. 4) Fractional divider switched off, SSC internal baud rate generation used. Data Sheet 132 V 1.1, 2014-05 TC1791 Electrical ParametersAC Parameters 5) For CON.PH=1 slave select must not be removed before the following shifting edge. This mean, that what ever is configured (shifting / latching first), SLSI must not be de-actived before the last trailing edge from the pair of shifting / latching edges. t50 SCLK1)2) t51 t51 MTSR1) t52 t53 Data valid 1) MRST t51 2) SLSOn 1) This timing is based on the following setup: CON.PH = CON.PO = 0. 2) The transition at SLSOn is based on the following setup: SSOTC.TRAIL = 0 and the first SCLK high pulse is in the first one of a transmission. SSC_TmgMM Figure 23 Data Sheet SSC Master Mode Timing 133 V 1.1, 2014-05 TC1791 Electrical ParametersAC Parameters t54 First latching SCLK edge First shift SCLK edge SCLK1) t55 t56 Last latching SCLK edge t55 t56 t57 Data valid 1) MTSR t57 Data valid t60 t60 1) MRST t61 SLSI t59 t58 1) This timing is based on the following setup: CON.PH = CON.PO = 0. Figure 24 Data Sheet SSC_TmgSM SSC Slave Mode Timing 134 V 1.1, 2014-05 TC1791 Electrical ParametersAC Parameters 5.3.11 ERAY Interface Timing The timings of this section are valid for the strong driver and either sharp edge or medium edge settings of the output drivers with CL = 25 pF. The ERAY interface is only available for the SAK-TC1791F-512F240EP / SAKTC1791F-512F240EL / SAK-TC1791S-512F240EP / SAK-TC1791F384F200EL / SAK-TC1791F-384F200EP / SAK-TC1791S-384F200EP. Table 42 ERAY Parameters Parameter Symbol Values Time span from last BSS to FES without the influence of quartz tolerancies (d10Bit_TX)1) t60 CC 997.75 − 1002.2 ns 5 TxD data valid from fsample flip flop txd_reg TxDA, TxDB (dTxAsym)2)3) t61-t62 − − 1.5 Time span between last BSS and FES without influence of quartz tolerancies (d10Bit_RX)1)4)5) t63 SR 966 − 1046.1 ns RxD capture by fsample (RxDA/RxDB sampling flip-flop) (dRxAsym)6) t64-t65 − − 3.0 ns Asymmetrical delay of rising and falling edge (RxDA, RxDB) TxD data delay from sampling flip-flop dTxdly − − 10.0 ns Px_PDR.PDy = 000B − − 15.0 ns Px_PDR.PDy = 001B − − 10.0 ns Min. RxD capture delay by sampling flip-flop Typ. Unit Max. ns CC CC CC dRxdly Note / Test Condition Asymmetrical delay of rising and falling edge (TxDA, TxDB) CC 1) This includes the PLL_ERAY accumulated jitter. 2) Refers to delays caused by the asymmetries of the output drivers of the digital logic and the GPIO pad drivers. Quarz tolerance and PLL_ERAY accumulated jitter are not included. 3) E-Ray TxD output drivers have an asymmetry of rising and falling edges of |tFA2 - tRA2| ≤ 1 ns. 4) Limits of 966ns and 1046.1ns correspond to (30%, 70%) * VDDP FlexRay standard input thresholds. For input thresholds of this product, a correction of - 0.5 ns and +0.1 ns has to be applied. Data Sheet 135 V 1.1, 2014-05 TC1791 Electrical ParametersFlash Memory Parameters 5) Valid for output slopes of the bus driver of dRxSlope ≤ 5ns, 20% * VDDP to 80% * VDDP, according to the FlexRay Electrical Physical Layer Specification V2.1B. For A2 pads, the rise and fall times of the incoming signal have to satisfy the following inequality: -1.6ns ≤ tFA2 - tRA2 ≤ 1.3ns. 6) Valid for output slopes of the bus driver of dRxSlope ≤ 5ns, 20% * VDDP to 80% * VDDP, according to the FlexRay Electrical Physical Layer Specification V2.1B. For A2 pads, the rise and fall times of the incoming signal have to satisfy the following inequality: -1.6ns ≤ tFA2 - tRA2 ≤ 1.3ns. Last CRC Byte BSS (Byte Start Sequence) FES (Frame End Sequence) 0.7 VDD 0.3 VDD TXD t60 tsample TXD 0.9 VDD 0.1 VDD t61 t62 Last CRC Byte BSS (Byte Start Sequence) FES (Frame End Sequence) 0.7 VDD 0.3 VDD RXD t63 tsample RXD 0.7 VDD 0.3 VDD t64 t65 ERAY_TIMING Figure 25 5.4 ERAY Timing Flash Memory Parameters The data retention time of the TC1791’s Flash memory depends on the number of times the Flash memory has been erased and programmed. Data Sheet 136 V 1.1, 2014-05 TC1791 Electrical ParametersFlash Memory Parameters Table 43 FLASH32 Parameters Parameter Symbol Values Min. Unit Typ. Max. Note / Test Condition Data Flash Erase Time per Sector tERD CC − − 4.21) s Program Flash Erase Time per 256 KByte Sector tERP CC − − 5 s Program time data flash per page2) tPRD CC − − 5.3 ms without reprogramming − − 15.9 ms with two reprogramming cycles tPRP CC − − 5.3 ms without reprogramming − − 10.6 ms with one reprogramming cycle − cycle Min. data s retention time 5 years Program time program flash per page3) Data Flash Endurance Erase suspend delay NE CC 60000 − 4) tFL_ErSusp − − 15 ms tFL_Margin 10 − − μs CC Wait time after margin change Del CC Program Flash Retention Time, Physical Sector5)6) tRET CC 20 − − year s Max. 1000 erase/program cycles Program Flash Retention Time, Logical Sector5)6) tRETL CC 20 − − year s Max. 100 erase/program cycles UCB Retention Time5)6) tRTU CC 20 − − year s Max. 4 erase/program cycles per UCB Wake-Up time tWU CC − 270 μs Data Sheet − 137 V 1.1, 2014-05 TC1791 Electrical ParametersFlash Memory Parameters Table 43 FLASH32 Parameters (cont’d) Parameter Symbol Values Min. DFlash wait state configuration WSDF PFlash wait state configuration WSPF CC CC Typ. 50 ns x − fFSI 26 ns x − fFSI Unit Max. Note / Test Condition − − 1) In case of wordline oriented defects (see robust EEPROM emulation in the User's Manual) this erase time can increase by up to 100%. 2) In case the Program Verify feature detects weak bits, these bits will be programmed up to twice more. Each reprogramming takes additional 5 ms. 3) In case the Program Verify feature detects weak bits, these bits will be programmed once more. The reprogramming takes additional 5 ms. 4) Only valid when a robust EEPROM emulation algorithm is used. For more details see the User´s Manual. 5) Storage and inactive time included. 6) At average weighted junction temperature Tj = 100°C, or the retention time at average weighted temperature of Tj = 110°C is minimum 10 years, or the retention time at average weighted temperature of Tj = 150°C is minimum 0.7 years. Data Sheet 138 V 1.1, 2014-05 TC1791 Electrical ParametersPackage and Reliability 5.5 Package and Reliability 5.5.1 Package Parameters Table 44 Thermal Characteristics of the Package Device Package RΘJCT1) RΘJCB1) RΘJA Unit TC1791 PG-LFBGA- 292-6 3,73 4,98 K/W 15,0 Note 1) The top and bottom thermal resistances between the case and the ambient (RTCAT, RTCAB) are to be combined with the thermal resistances between the junction and the case given above (RTJCT, RTJCB), in order to calculate the total thermal resistance between the junction and the ambient (RTJA). The thermal resistances between the case and the ambient (RTCAT, RTCAB) depend on the external system (PCB, case) characteristics, and are under user responsibility. The junction temperature can be calculated using the following equation: TJ = TA + RTJA × PD, where the RTJA is the total thermal resistance between the junction and the ambient. This total junction ambient resistance RTJA can be obtained from the upper four partial thermal resistances. Thermal resistances as measured by the ’cold plate method’ (MIL SPEC-883 Method 1012.1). Data Sheet 139 V 1.1, 2014-05 TC1791 Electrical ParametersPackage and Reliability Package Outline 292 x 0 .5 ±0.05 A 0.15 M C A B 0.08 M C 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1 7 ±0.1 0.1 C CODE COPLANARITY INDEX MARKING (LASERED ) C SEATING PLANE 292 x 0.15 Y W V U T R P N M L K J HG F E D C B A 19 x 0 .8 = 15.2 17 ±0. 1 B 1 .7 MAX 0.8 5.5.2 INDEX MARKING 0.8 19 x 0.8 = 15 .2 0.33 MIN STANDOFF Figure 26 Package Outlines PG-LFBGA- 292-6 You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”: http://www.infineon.com/products. 5.5.3 Table 45 Parameter Quality Declarations Quality Parameters Symbol Values Unit Note / Test Condition Min. Typ. Max. – – 24000 hours –2) ESD susceptibility VHBM according to Human Body Model (HBM) – – 2000 V Conforming to JESD22-A114-B ESD susceptibility VHBM1 of the LVDS pins – – 500 V – Operation Lifetime1) Data Sheet tOP 140 V 1.1, 2014-05 TC1791 Electrical ParametersPackage and Reliability Table 45 Quality Parameters Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. ESD susceptibility VCDM according to Charged Device Model (CDM) – – 500 V Conforming to JESD22-C101-C Moisture Sensitivity Level – – 3 – Conforming to Jedec J-STD-020C for 240°C MSL 1) This lifetime refers only to the time when the device is powered on. 2)For worst-case temperature profile equivalent to: 1200 hours at Tj = 125...150oC 3600 hours at Tj = 110...125oC 7200 hours at Tj = 100...110oC 11000 hours at Tj = 25...100oC 1000 hours at Tj = -40...25oC Data Sheet 141 V 1.1, 2014-05 TC1791 History 6 History The following changes where done between Version 0.6 and 0.62 of this document: • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • add footnote to port 4.1 alternate output 3 MTSR2 change function description for port 4.1 alternate output 3 MTSR2 from Slave to Master Transmit add footnote to port 6.4 alternate output 1 MTSR1 add footnote to port 7.1 alternate output 2 MTSR3 change for port 8.3 the symbol from OUT43 (GPTA1) to CC62 (CCU60) change for port 17 the type from S to D / S add clarification that table 11 defines the conditions for all other parameters add conditions for MLI, MSC, SSC, parameters add parameters dTxdly and dRxdly to ERAY parameters correct footnotes for ERAY parameters split flash parameters tPRD and tPRP in two conditions add conditions to LVDS pad parameters remove Pin Reliability in Overload section add parameters IIN and Sum IIN to absolute ratings add parameter HYSX to PSC_XTAL added RDSON values for all driver settings (weak, medium, and strong) removed footnote 2 of table 10 change load for timing of SSC, MSC, and MLI from CL = 25 pF to CL = 50 pF (typical) add to parameters tRF and tFF condition CL = 50 pF add new footnote 7) to ADC parameter table add min and max value for QCONV and adapt typ value add load conditions for tFF1 and tRF1 add conditions to PLL parameter tL change DAP parameter t19 from SR to CC classification remove footnote 2 for the FADC adapt IDs for AB step removed footnote 2 in table 11 change max value for ADC parameter tS from 255 to 257 switch input function ECTT1 and ECTT2 add input function REQ15 to P9.14 add alternate output O1 for OUT97 of GPTA0 changed the name for O3 from EVTO2 to EVTO1 for P0.5 changed the name for O3 from EVTO3 to EVTO2 for P0.6 changed the name for O3 from EVTO4 to EVTO3 for P0.7 add input function SLSI2 for SSC2 to P4.9 The following changes where done between Version 0.62 and 0.63 of this document: Data Sheet 1 V 1.1, 2014-05 TC1791 History • • • • • • • • • • • • • • switch input function ECTT1 and ECTT2 add input function REQ15 to P9.14 add alternate output O1 for OUT97 of GPTA0 changed the name for O3 from EVTO2 to EVTO1 for P0.5 changed the name for O3 from EVTO3 to EVTO2 for P0.6 changed the name for O3 from EVTO4 to EVTO3 for P0.7 add input function SLSI2 for SSC2 to P4.9 change for port 6.15 the symbol from CC61(CCU60) to CC60(CCU61) change for port 8.2 the symbol from CC61(CCU60) to COUT63(CCU61) add to all SSC signal the assosiated SSC module where is was missing in the pinning add section Pin Reliability in Overload incease values for absolute maximium parameters IIN and SumIIN correct P14.8 O2 as this was incorrected label as O1 add to P4.9 output function OUT1 for LTCA2 The following changes where done between Version 0.63 and 0.7 of this document: • • • • • • • • • • • • • • • • • • • • • • • update value of RTID registers in section Identification Registers for AB step remove sentence ‘Exposure to conditions within the maximum ratings will not affect device reliability. To replace this sentence section Pin Reliability in Overload was added. add footnote 1 to table 12 (Operating Conditions) increase values for absolute maximum parameters IIN and SumIIN remove capacitance conditions for LVDS pad parameters as loads are defined by interface (MSC) timings add parameter VILSD for class S pads add VDDM supply limitation for class S parameters add footnote 10 to table 23 (ADC parameters) remove old footnote 2 from table 24 (FADC parameters) remove term typical from load of Peripheral Timings add definition of driver strength settings for ERAY Interface Timing update formulas for frequency modulation change SSC parameter from t59 CC to SR change footnote 4 wording for ERAY timing back to TC1797 wording increase flash parameters tPRD and tPRP values increase flash parameter tERD add section 5.2.6.1. change in legende of table 2 definition of class S pad correct section Extended Range Operating Conditions for the 3.3 V area increase limit in Extended Range Operating Conditions from 1 hour to 1000 hours specify wording for limitation of pad performance in section Extended Range Operating Conditions remove incorrect test conditions for RDSONx parameters adjust typo in temperature profile Data Sheet 2 V 1.1, 2014-05 TC1791 History • • • • removed RDSON parameters for class F pads weak driver as only medium is available add parameter fSYSD for the SYSPLL update all current values of table 28 (Power Supply Parameters) rework the 3.3 V current part of the Power Supply Parameters for better description and usage – Parameters IDDP_FP, IDDFL3E and IDDFL3R are removed and replaced in the following way – IDDP_FP is replaced by IDDP with the condition including flash programming current – IDDFL3E is replaced by IDDP with the condition including flash erase verify current – IDDFL3R is replaced by IDDP with the condition including flash read current – parameter IDDFL3R was renamed to IDDFL3 The rework of the 3.3 V current part of the Power Supply Parameters was done for simplification and clarification. Former given values could still be used if liked, the new definition results in the same resulting values or slightly better values. The flash module is supplied via IDDFL3 and IDDP. For the different flash operating modes in worst case different allocations for the two domains resulting. The application typical case ‘flash read’ has max IDDP of 25 mA and max IDDFL3 of 98 mA resulting is a sum of 123 mA. The case ‘flash programming’ has max IDDP of 55 mA and max IDDFL3 of 29 mA resulting is a sum of 84 mA. The case ‘flash erase verify’ has max IDDP of 40 mA and max IDDFL3 of 98 mA resulting is a sum of 138 mA. So for the old parameter IDDP with 35 mA, the new version reads as IDDP = 25+IDDP_PORST = 32 mA for the same application relevant case. The following changes where done between Version 0.7 and 1.0 of this document: • • • • • • • • • • • • • • add product options SAK-TC1791S-512F240EP, SAK-TC1791S-384F200EP, and SAK-TC1791N-384F200EP update block diagrams to cover new options add note to TC1791 Logic Symbol figure and pin list for E-RAY pins availability add identification registers for new options adapt Absolute Maximum Rating clarify pad supply levels in Pin Reliability in Overload section correct errors for analog inputs in tables 12 and 13 add note at the end of Pin Reliability in Overload section clarify wording for valid operating conditions add negative limit for class S pad leakage change description of parameter tCAL for the ADC update footnote 10 for the ADC split FADC DNL parameter into two conditions and change value for gain 4 and 8 add footnote 5 to IDDP Data Sheet 3 V 1.1, 2014-05 TC1791 History • • • • • • • • • • • • • • improve parameters IDDFL3 add footnote for D-Flash currents in power section rework first sentence for chapter 5.3 increase max values for parameter tB reduce min value for tL for both PLLs split fVCO for the system PLL into two conditions change formula 10 add for MLI and SSC timing parameter: valid strong driver medium edge only change MLI parameter t17 min value update parameter description for SSC parameters t52, t53, t56, t57, t58, and t59 change SSC parameters from CC to SR Symbol for t56, t57, t58 and t59 add note to ERAY parameters for availability add footnote to Flash parameter tERD change for parameter NE note from Max. data retention to Min. The following changes where done between Version 1.0 and 1.1 of this document: • • • • • • remove the following product options: – SAK-TC1791N-384F200EL change VILS from 2.1V to 1.9V in table 25 change t48 from 100ns to 200ns in table 40 change t49 from 100ns to 200ns in table 40 extend KOVAN conditon from IOV≤ 0 mA; IOV≥ -1 mA to IOV≤ 0 mA; IOV≥ -2 mA change package version from PG-LFBGA-292-3 to PG-LFBGA-292-6 Data Sheet 4 V 1.1, 2014-05 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG