32-Bit Microcontroller TC1784 32-Bit Single-Chip Microcontroller Data Sheet V 1.1.1 2014-05 Microcontrollers Edition 2014-05 Published by Infineon Technologies AG 81726 Munich, Germany © 2014 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 32-Bit Microcontroller TC1784 32-Bit Single-Chip Microcontroller Data Sheet V 1.1.1 2014-05 Microcontrollers TC1784 Table of Contents 1 Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 2 2.1 System Overview of the TC1784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4 TC1784 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 3 3.1 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 TC1784 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 4 Identification Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-42 5 5.1 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.6.1 5.3 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6 5.3.7 5.3.8 5.3.8.1 5.3.8.2 5.3.8.3 5.3.8.4 5.3.8.5 5.4 5.4.1 5.4.2 Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-44 General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-44 Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-44 Pad Driver and Pad Classes Summary . . . . . . . . . . . . . . . . . . . . . . . 5-45 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-46 Pin Reliability in Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-47 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-49 DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-53 Input/Output Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-53 Analog to Digital Converters (ADCx) . . . . . . . . . . . . . . . . . . . . . . . . . 5-68 Fast Analog to Digital Converter (FADC) . . . . . . . . . . . . . . . . . . . . . . 5-73 Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-77 Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-78 Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-79 Calculating the 1.3 V Current Consumption . . . . . . . . . . . . . . . . . 5-81 AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-83 Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-83 Power Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-84 Power, Pad and Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-86 Phase Locked Loop (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-88 ERAY Phase Locked Loop (ERAY_PLL) . . . . . . . . . . . . . . . . . . . . . . 5-90 JTAG Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-91 DAP Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-93 Peripheral Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-95 Micro Link Interface (MLI) Timing . . . . . . . . . . . . . . . . . . . . . . . . . 5-95 Micro Second Channel (MSC) Interface Timing . . . . . . . . . . . . . . 5-97 SSC Master/Slave Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 5-99 ERAY Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-101 EBU Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-103 Package and Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-111 Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-111 Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-112 Data Sheet I-1 V 1.1.1, 2014-05 TC1784 5.4.3 5.4.4 6 Data Sheet Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-112 Quality Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-114 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-115 I-2 V 1.1.1, 2014-05 TC1784 Data Sheet 3 V 1.1.1, 2014-05 TC1784 Data Sheet 4 V 1.1.1, 2014-05 TC1784 Summary of Features 1 Summary of Features The SAK-TC1784F-320F180EL / SAK-TC1784F-320F180EP features: • • • • • • • has the following High-performance 32-bit super-scalar TriCore V1.3.1 CPU with 4-stage pipeline – Superior real-time performance – Strong bit handling – Fully integrated DSP capabilities – Single precision Floating Point Unit (FPU) – 180 MHz operation at full temperature range 32-bit Peripheral Control Processor with single cycle instruction (PCP2) – 16 Kbyte Parameter Memory (PRAM) – 32 Kbyte Code Memory (CMEM) – 180 MHz operation at full temperature range Multiple on-chip memories – 2.5 Mbyte Program Flash Memory (PFLASH) with ECC – 64 Kbyte Data Flash Memory (DFLASH) usable for EEPROM emulation – 128 Kbyte Data Memory (LDRAM) – Instruction Cache: up to 16 Kbyte (ICACHE, configurable) – 40 Kbyte Code Scratchpad Memory (SPRAM) – Data Cache: up to 4 Kbyte (DCACHE, configurable) – 8 Kbyte Overlay Memory (OVRAM) – 16 Kbyte BootROM (BROM) 16-Channel DMA Controller Sophisticated interrupt system with 2 × 255 hardware priority arbitration levels serviced by CPU or PCP2 High performing on-chip bus structure – 64-bit Local Memory Buses between CPU, Flash and Data Memory – 32-bit System Peripheral Bus (SPB) for on-chip peripheral and functional units – One bus bridge (LFI Bridge) Versatile On-chip Peripheral Units – Two Asynchronous/Synchronous Serial Channels (ASC) with baud rate generator, parity, framing and overrun error detection – Three High-Speed Synchronous Serial Channels (SSC) with programmable data length and shift direction – One serial Micro Second Bus interface (MSC) for serial port expansion to external power devices – One High-Speed Micro Link interface (MLI) for serial inter-processor communication – One External Bus Interface (EBU) with 32-bit demultiplexed / 16-bit multiplexed external bus interface Scalable external bus timing up to 75 MHz Data Sheet 1 V 1.1.1, 2014-05 TC1784 Summary of Features • • • • • • • • – One MultiCAN Module with 3 CAN nodes and 128 free assignable message objects for high efficiency data handling via FIFO buffering and gateway data transfer (one CAN node supports TTCAN functionality) – One FlexRayTM module with 2 channels (E-Ray). – One General Purpose Timer Array Module (GPTA) with additional Local Timer Cell Array (LTCA2) providing a powerful set of digital signal filtering and timer functionality to realize autonomous and complex Input/Output management 32 analog input lines for ADC – 2 independent kernels (ADC0 and ADC1) – Analog supply voltage range from 3.3 V to 5 V (single supply) 4 different FADC input channels – channels with impedance control and overlaid with ADC1 inputs – Extreme fast conversion, 21 cycles of fFADC clock – 10-bit A/D conversion (higher resolution can be achieved by averaging of consecutive conversions in digital data reduction filter) 91 digital general purpose I/O lines (GPIO), 4 input lines Digital I/O ports with 3.3 V capability On-chip debug support for OCDS Level 1 (CPU, PCP, DMA, On Chip Bus) Dedicated Emulation Device chip available (TC1784ED) – multi-core debugging, real time tracing, and calibration – four/five wire JTAG (IEEE 1149.1) or two wire DAP (Device Access Port) interface Power Management System Clock Generation Unit with PLL Data Sheet 2 V 1.1.1, 2014-05 TC1784 Summary of Features Ordering Information The ordering code for Infineon microcontrollers provides an exact reference to the required product. This ordering code identifies: • • The derivative itself, i.e. its function set, the temperature range, and the supply voltage The package and the type of delivery. For the available ordering codes for the TC1784 please refer to the “Product Catalog Microcontrollers”, which summarizes all available microcontroller variants. This document describes the derivatives of the device.The Table 1 enumerates these derivatives and summarizes the differences. Table 1 TC1784 Derivative Synopsis Derivative Ambient Temperature Range SAK-TC1784F-320F180EL TA = -40oC to +125oC SAK-TC1784F-320F180EP TA = -40oC to +125oC Data Sheet 3 V 1.1.1, 2014-05 TC1784 System Overview of the TC1784 2 System Overview of the TC1784 The TC1784 combines three powerful technologies within one silicon die, achieving new levels of power, speed, and economy for embedded applications: • • • Reduced Instruction Set Computing (RISC) processor architecture Digital Signal Processing (DSP) operations and addressing modes On-chip memories and peripherals DSP operations and addressing modes provide the computational power necessary to efficiently analyze complex real-world signals. The RISC load/store architecture provides high computational bandwidth with low system cost. On-chip memory and peripherals are designed to support even the most demanding high-bandwidth real-time embedded control-systems tasks. Additional high-level features of the TC1784 include: • • • • • • • • • Efficient memory organization: instruction and data scratch memories, caches Serial communication interfaces – flexible synchronous and asynchronous modes Peripheral Control Processor – standalone data operations and interrupt servicing DMA Controller – DMA operations and interrupt servicing General-purpose timers High-performance on-chip buses On-chip debugging and emulation facilities Flexible interconnections to external components Flexible power-management The TC1784 is a high-performance microcontroller with TriCore CPU, program and data memories, buses, bus arbitration, an interrupt controller, a peripheral control processor and a DMA controller and several on-chip peripherals. The TC1784 is designed to meet the needs of the most demanding embedded control systems applications where the competing issues of price/performance, real-time responsiveness, computational power, data bandwidth, and power consumption are key design elements. The TC1784 offers several versatile on-chip peripheral units such as serial controllers, timer units, and Analog-to-Digital converters. Within the TC1784, all these peripheral units are connected to the TriCore CPU/system via the Flexible Peripheral Interconnect (FPI) Bus and the Local Memory Bus (LMB). Several I/O lines on the TC1784 ports are reserved for these peripheral units to communicate with the external world. Data Sheet 4 V 1.1.1, 2014-05 TC1784 System Overview of the TC1784TC1784 Block Diagram 2.1 TC1784 Block Diagram Figure 1 shows the block diagram of the TC1784. FPU PMI TriCore CPU 24 KB SPRAM 16 KB ICACHE (Configurable) Abbreviations: ICACHE: Instruction Cache DCACHE Data Cache SPRAM: Scratch-Pad RAM LDRAM: Local Data RAM OVRAM: Overlay RAM BROM: Boot ROM PFlash: Program Flash DFlash: Data Flash PRAM: Parameter RAM in PCP PCODE: Code RAM in PCP DMI 124 KB LDRAM LDRAM 4 KB DCACHE (Configurable) DCACHE CPS Local Memory Bus BCU (LMB) PMU M 2,5 MB PFlash 128 KB DFlash 8 KB OVRAM 16 KB BROM DMA Bridge 16 channels SMIF EBU OCDS L1 Debug Interface/JTAG M/ S MLI0 System Peripheral Bus (SPB) MemCheck 16 KB PRAM E-Ray GPTA 0 System Peripheral Bus Interrupts ASC1 (2 Channels) Interrupt System FPI-Bus Interface ASC0 PCP2 Core STM 5V (3.3V supported as well) Ext. ADC Supply 32 KB CMEM SCU ADC0 28 ( 5V max) SBCU PLL E-RAY Ports ADC1 4 PLL SSC0 FADC ( 3.3V max) LTCA2 4 SSC1 Ext. Request Unit Figure 1 Multi CAN (3 Nodes, 128 MO) MSC0 SSC2 (LVDS) 3.3V Ext. FADC Supply BlockDiagram TC1784F V1.1 TC1784F Block Diagram Figure 1 shows the block diagram of the SAK-TC1784F-320F180EL / SAK-TC1784F320F180EP. Data Sheet 5 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration 3 Pinning Figure 3-1 is showing the TC1784 Logic Symbol. General Control PORST TESTMODE ESR0 ESR1 Alternate Functions 16 16 TRST OCDS / JTAG Control Analog Inputs 14 TCK / DAP0 16 TDI / BRKIN TDO / DAP2 / BRKOUT TMS / DAP1 4 16 AN [35:0] 4 V DDM VSSM VDDMF Analog Power Supply 16 V SSMF VDDAF 15 VAREF0 VAREF1 VAGND0 V FAREF VFAGND 8 V DDFL3 VDD Digital Circuitry Power Supply TC1784 VDDP V SS VSSP 14 Port 3 GPTA, SCU. E-RAY, MSC0 GPTA, SSC1, ADC0, OCDS GPTA, SSC0/1, MLI0, MSC0 GPTA, ASC0/1, SSC 0/1, SCU, CAN, MSC 0 Port 4 GPTA, SCU, CAN Port 5 GPTA, MLI0, E-RAY, SSC2 Port 6 GPTA, MSC 0 Port 7 GPTA, EBU Port 8 GPTA, EBU Port 9 GPTA, SCU, CAN Port 10 GPTA, SSC 2 Port 0 Port 1 Port 2 XTAL1 XTAL2 2 VDDOSC VDDOSC3 12 11 Oscillator VSSOSC 48 V DDPF 15 V DDPF3 TC1784_LogSym_292 Figure 3-1 3.1 TC1784 Logic Symbol TC1784 Pin Configuration This chapter shows the pin configuration of package variant PG-LFBGA-292-6. Data Sheet , 3-6 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 A N.C.2 P10.9 P10.8 P10.6 P10.4 VSSP P2.12 P2.11 P6.2 P6.0 VSSP P0.12 P0.10 P0.8 P3.13 P3.15 P3.4 P3.2 P3.8 VSSP A B VDDP VSSP P10.7 P10.5 P10.3 VDDP P0.15 P2.10 P6.3 P6.1 VDDP P0.13 P0.11 P0.9 P3.12 P3.14 P3.7 P3.3 VSSP VDDP B C P10.10 VDDP VDDP P3.6 C D P5.0 P10.11 VSSP D E P5.5 P5.1 F P5.6 P5.7 G VSSP H Top-View P10.2 P10.0 P0.14 P0.6 P2.13 P2.9 P0.2 P0.1 P10.12 VSSP P10.1 P0.7 P0.5 P0.4 P2.8 P0.3 P0.0 P5.2 P10.13 VDDP P9.0 P5.3 P5.15 P5.8 P9.1 P5.4 VDD J P5.10 P5.9 P9.3 P9.2 VSS VSS K P5.12 P5.11 P9.4 P9.5 VSS VSS L P5.14 P5.13 P9.6 P9.7 VSS VSS VSSP VDDP N.C.3 N.C.4 VSS VSS M N VDDMF VDDAF VDD VFAREF VFAGND VDD VDDFL3 VDDFL3 P3.11 P3.9 P3.0 P3.10 P3.1 VSSP P3.5 ESR0 VSSP P1.1 ESR1 PORST E P1.15 P1.0 TEST MODE TCK F P1.6 P1.7 TRST TDO G VDD P1.5 TMS TDI VSS VSS P1.4 VDDPF3 XTAL2 XTAL1 J VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS P1.3 VDDPF VDDOSC VSSOSC K VSS VSS VSS VSS VSS VSS P1.10 P1.8 P1.9 P1.11 L VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDD VSS VDDOSC3 H VSS P1.2 P8.14 VDDP VSSP M VDD P8.13 P8.12 P8.11 P8.4 N P8.10 P8.9 P8.8 P8.7 P VDD P7.2 P8.6 P8.5 R P AN35 VSSAF VSSMF AN34 AN33 R AN32 AN31 AN30 AN29 T AN28 AN7 AN25 AN24 VAGND0 VAREF1 AN6 AN2 P1.12 P2.3 P2.7 P4.0 P7.4 P7.7 VSS VDD P8.2 P8.3 T U AN27 AN26 AN21 AN15 VAREF0 AN8 AN3 P1.14 P1.13 P2.2 P2.6 P4.1 P7.3 P7.8 P7.0 VSS P8.0 P8.1 U VDD VDD V AN23 AN22 VDD P7.15 V W AN20 AN14 AN16 AN18 AN17 AN19 VSSM AN5 AN1 VDDP P2.1 P2.5 P4.2 P7.6 P7.9 VDDP P7.11 P7.13 VSS VDD W Y N.C.1 AN13 AN12 AN11 AN10 AN9 VDDM AN4 AN0 VSSP P2.0 P2.4 P4.3 P7.1 P7.5 VSSP P7.10 P7.12 P7.14 VSS Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Figure 3-2 Data Sheet , TC1784 Pinning for PG-LFBGA-292-6 Package 3-7 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Pin Definitions and Functions (PG-LFBGA-292-6) Symbol Ctrl. Type Function Port 0 E12 D12 D11 E11 P0.0 I/O0 IN0 I A1/ PU IN0 I LTCA2 Input 0 HWCFG0 I Hardware Configuration Input 0 OUT0 O1 GPTA0 Output 0 OUT56 O2 GPTA0 Output 56 Port 0 General Purpose I/O Line 0 GPTA0 Input 0 OUT0 O3 P0.1 I/O0 IN1 I IN1 I LTCA2 Input 1 SDI1 I MSC0 Serial Data Input 1 HWCFG1 I Hardware Configuration Input 1 OUT1 O1 GPTA0 Output 1 OUT57 O2 GPTA0 Output 57 LTCA2 Output 0 A1/ PU Port 0 General Purpose I/O Line 1 GPTA0 Input 1 OUT1 O3 P0.2 I/O0 IN2 I IN2 I LTCA2 Input 2 HWCFG2 I Hardware Configuration Input 2 OUT2 O1 GPTA0 Output 2 OUT58 O2 GPTA0 Output 58 OUT2 O3 LTCA2 Output 2 LTCA2 Output 1 A1/ PU GPTA0 Input 2 P0.3 I/O0 IN3 I IN3 I LTCA2 Input 3 HWCFG3 I Hardware Configuration Input 3 OUT3 O1 GPTA0 Output 3 OUT59 O2 GPTA0 Output 59 OUT3 O3 LTCA2 Output 3 Data Sheet , A1+/ PU Port 0 General Purpose I/O Line 2 Port 0 General Purpose I/O Line 3 GPTA0 Input 3 3-8 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Pin Symbol Ctrl. Type Function E9 P0.4 I/O0 IN4 I IN4 I LTCA2 Input 4 HWCFG4 I Hardware Configuration Input 4 OUT4 O1 GPTA0 Output 4 OUT60 O2 GPTA0 Output 60 OUT4 O3 LTCA2 Output 4 E8 D8 E7 A1/ PU GPTA0 Input 4 P0.5 I/O0 IN5 I IN5 I LTCA2 Input 5 HWCFG5 I Hardware Configuration Input 5 OUT5 O1 GPTA0 Output 5 OUT61 O2 GPTA0 Output 61 OUT5 O3 LTCA2 Output 5 P0.6 I/O0 IN6 I IN6 I LTCA2 Input 6 HWCFG6 I Hardware Configuration Input 6 REQ2 I External Request Input 2 OUT6 O1 GPTA0 Output 6 OUT62 O2 GPTA0 Output 62 OUT6 O3 LTCA2 Output 6 P0.7 I/O0 IN7 I IN7 I LTCA2 Input 7 HWCFG7 I Hardware Configuration Input 7 REQ3 I External Request Input 3 OUT7 O1 GPTA0 Output 7 OUT63 O2 GPTA0 Output 63 OUT7 O3 LTCA2 Output 7 Data Sheet , A1/ PU Port 0 General Purpose I/O Line 4 A1/ PU A1/ PU Port 0 General Purpose I/O Line 5 GPTA0 Input 5 Port 0 General Purpose I/O Line 6 GPTA0 Input 6 Port 0 General Purpose I/O Line 7 GPTA0 Input 7 3-9 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Pin Symbol Ctrl. Type Function A14 P0.8 I/O0 IN8 I IN8 I LTCA2 Input 8 RXDA0 I E-Ray Channel A Receive Data Input 0 OUT8 O1 GPTA0 Output 8 OUT64 O2 GPTA0 Output 64 OUT8 O3 LTCA2 Output 8 P0.9 I/O0 IN9 I B14 A13 B13 A12 A1/ PU A1/ PU Port 0 General Purpose I/O Line 8 GPTA0 Input 8 Port 0 General Purpose I/O Line 9 GPTA0 Input 9 IN9 I LTCA2 Input 9 RXDB0 I E-Ray Channel B Receive Data Input 0 OUT9 O1 GPTA0 Output 9 OUT65 O2 GPTA0 Output 65 OUT9 O3 LTCA2 Output 9 P0.10 I/O0 IN10 I OUT10 O1 GPTA0 Output 10 TXDA0 O2 E-Ray Channel A transmit Data Output OUT10 O3 LTCA2 Output 10 P0.11 I/O0 IN11 I OUT11 O1 GPTA0 Output 11 TXDB0 O2 E-Ray Channel B transmit Data Output A2/ PU A2/ PU Port 0 General Purpose I/O Line 10 GPTA0 Input 10 Port 0 General Purpose I/O Line 11 GPTA0 Input 11 OUT11 O3 P0.12 I/O0 IN12 I OUT12 O1 GPTA0 Output 12 TXENA O2 E-Ray Channel A transmit Data Output enable OUT12 O3 LTCA2 Output 12 Data Sheet , LTCA2 Output 11 A2/ PU Port 0 General Purpose I/O Line 12 GPTA0 Input 12 3-10 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Pin Symbol Ctrl. Type Function B12 P0.13 I/O0 IN13 I OUT13 O1 GPTA0 Output 13 TXENB O2 E-Ray Channel B transmit Data Output enable OUT13 O3 P0.14 I/O0 IN14 I D7 B7 A2/ PU Port 0 General Purpose I/O Line 13 GPTA0 Input 13 LTCA2 Output 13 A1+/ PU Port 0 General Purpose I/O Line 14 GPTA0 Input 14 REQ4 I External Request Input 4 OUT14 O1 GPTA0 Output 14 FCLP0C O2 MSC0 Clock Output Positive C OUT14 O3 LTCA2 Output 14 P0.15 I/O0 IN15 I REQ5 I External Request Input 5 OUT15 O1 GPTA0 Output 15 A1+/ PU Port 0 General Purpose I/O Line 15 GPTA0 Input 15 SOP0C O2 MSC0 Serial Data Output Positive C OUT15 O3 LTCA2 Output 15 P1.0 I/O0 IN16 I Port 1 F17 E17 A2/ PU Port 1 General Purpose I/O Line 0 GPTA0 Input 16 BRKIN I Break Input OUT16 O1 GPTA0 Output 16 OUT72 O2 GPTA0 Output 72 OUT16 O3 LTCA2 Output 16 BRKOUT O Break Output (controlled by OCDS module) P1.1 I/O0 IN17 I OUT17 O1 GPTA0 Output 17 OUT73 O2 GPTA0 Output 73 OUT17 O3 LTCA2 Output 17 Data Sheet , A1/ PU Port 1 General Purpose I/O Line 1 GPTA0 Input 17 3-11 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Pin Symbol Ctrl. Type Function M16 P1.2 I/O0 IN18 I OUT18 O1 GPTA0 Output 18 OUT74 O2 GPTA0 Output 74 OUT18 O3 P1.3 I/O0 IN19 I IN19 I LTCA2 Input 19 OUT19 O1 GPTA0 Output 19 OUT75 O2 GPTA0 Output 75 OUT19 O3 LTCA2 Output 19 P1.4 I/O0 IN20 I IN20 I LTCA2 Input 20 EMGSTOP I Emergency Stop Input OUT20 O1 GPTA0 Output 20 OUT76 O2 GPTA0 Output 76 OUT20 O3 P1.5 I/O0 IN21 I IN21 I LTCA2 Input 21 OUT21 O1 GPTA0 Output 21 OUT77 O2 GPTA0 Output 77 OUT21 O3 P1.6 I/O0 IN22 I IN22 I LTCA2 Input 22 OUT22 O1 GPTA0 Output 22 OUT78 O2 GPTA0 Output 78 OUT22 O3 LTCA2 Output 22 K16 J16 H16 G16 Data Sheet , A1/ PU Port 1 General Purpose I/O Line 2 GPTA0 Input 18 LTCA2 Output 18 A1/ PU A1/ PU Port 1 General Purpose I/O Line 3 GPTA0 Input 19 Port 1 General Purpose I/O Line 4 GPTA0 Input 20 LTCA2 Output 20 A1/ PU Port 1 General Purpose I/O Line 35 GPTA0 Input 21 LTCA2 Output 21 A1/ PU Port 1 General Purpose I/O Line 6 GPTA0 Input 22 3-12 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Pin Symbol Ctrl. Type Function G17 P1.7 I/O0 IN23 I IN23 I LTCA2 Input 23 OUT23 O1 GPTA0 Output 23 OUT79 O2 GPTA0 Output 79 OUT23 O3 LTCA2 Output 23 P1.8 I/O0 IN24 I IN48 I GPTA0 Input 48 MTSR1B I SSC1 Slave Receive Input B (Slave Mode) OUT24 O1 GPTA0 Output 24 OUT48 O2 GPTA0 Output 48 L17 L19 L16 A1/ PU A1+/ PU Port 1 General Purpose I/O Line 7 GPTA0 Input 23 Port 1 General Purpose I/O Line 8 GPTA0 Input 24 MTSR1B O3 P1.9 I/O0 IN25 I IN49 I GPTA0 Input 49 MRST1B I SSC1 Master Receive Input B (Master Mode) OUT25 O1 GPTA0 Output 25 OUT49 O2 GPTA0 Output 49 MRST1B O3 SSC1 Slave Transmit Output B (Slave Mode) SSC1 Master Transmit Output B (Master Mode) A1+/ PU GPTA0 Input 25 P1.10 I/O0 IN26 I IN50 I GPTA0 Input 50 OUT26 O1 GPTA0 Output 26 OUT50 O2 GPTA0 Output 50 SLSO17 O3 SSC1 Slave Select Output 7 Data Sheet , A1+/ PU Port 1 General Purpose I/O Line 9 Port 1 General Purpose I/O Line 10 GPTA0 Input 26 3-13 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Pin Symbol Ctrl. Type Function L20 P1.11 I/O0 IN27 I IN51 I GPTA0 Input 51 SCLK1B I SSC1 Clock Input B OUT27 O1 GPTA0 Output 27 OUT51 O2 GPTA0 Output 51 SCLK1B O3 SSC1 Clock Output B T10 U10 U9 F16 A1+/ PU A1/ PU Port 1 General Purpose I/O Line 11 GPTA0 Input 27 P1.12 I/O0 IN16 I AD0EMUX0 O1 ADC0 External Multiplexer Control Output 0 AD0EMUX0 O2 ADC0 External Multiplexer Control Output 0 OUT16 O3 LTCA2 Output 16 A1/ PU Port 1 General Purpose I/O Line 12 LTCA2 Input 16 P1.13 I/O0 IN17 I AD0EMUX1 O1 ADC0 External Multiplexer Control Output 1 AD0EMUX1 O2 ADC0 External Multiplexer Control Output 1 OUT17 O3 LTCA2 Output 17 A1/ PU Port 1 General Purpose I/O Line 13 LTCA2 Input 17 P1.14 I/O0 IN18 I AD0EMUX2 O1 ADC0 External Multiplexer Control Output 2 AD0EMUX2 O2 ADC0 External Multiplexer Control Output 2 OUT18 O3 LTCA2 Output 18 P1.15 I/O0 A2/ PU Port 1 General Purpose I/O Line 14 LTCA2 Input 18 Port 1 General Purpose I/O Line 15 BRKIN I Reserved O1 - Reserved O2 - Reserved O3 - BRKOUT O OCDS Break Output OCDS Break Input Port 2 Data Sheet , 3-14 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Pin Symbol Ctrl. Type Function Y11 P2.0 I/O0 IN32 I OUT32 O1 GPTA0 Output 32 TCLK0 O2 MLI0 Transmitter Clock Output 0 OUT28 O3 W11 P2.1 IN33 U11 T11 Y12 I/O0 I A2/ PU Port 2 General Purpose I/O Line 0 GPTA0 Input 32 LTCA2 Output 28 A2/ PU Port 2 General Purpose I/O Line 1 GPTA0 Input 33 TREADY0A I MLI0 Transmitter Ready Input A OUT33 O1 GPTA0 Output 33 SLSO03 O2 SSC0 Slave Select Output Line 3 SLSO13 O3 SSC1 Slave Select Output Line 3 P2.2 I/O0 IN34 I OUT34 O1 GPTA0 Output 34 TVALID0 O2 MLI0 Transmitter Valid Output OUT29 O3 P2.3 I/O0 IN35 I OUT35 O1 GPTA0 Output 35 TDATA0 O2 MLI0 Transmitter Data Output OUT30 O3 P2.4 I/O0 IN36 I RCLK0A I MLI Receiver Clock Input A OUT36 O1 GPTA0 Output 36 OUT36 O2 GPTA0 Output 36 OUT31 O3 LTCA2 Output 31 Data Sheet , A2/ PU Port 2 General Purpose I/O Line 2 GPTA0 Input 34 LTCA2 Output 29 A2/ PU Port 2 General Purpose I/O Line 3 GPTA0 Input 35 LTCA2 Output 30 A2/ PU Port 2 General Purpose I/O Line 4 GPTA0 Input 36 3-15 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Symbol W12 P2.5 U12 T12 E10 D10 Ctrl. Type Function I/O0 A2/ PU Port 2 General Purpose I/O Line 5 IN37 I OUT37 O1 GPTA0 Output 37 RREADY0A O2 MLI0 Receiver Ready Output A OUT110 O3 P2.6 I/O0 IN38 I RVALID0A I MLI Receiver Valid Input A OUT38 O1 GPTA0 Output 38 OUT38 O2 GPTA0 Output 38 OUT111 O3 LTCA2 Output 111 P2.7 I/O0 GPTA0 Input 37 LTCA2 Output 110 A2/ PU A2/ PU Port 2 General Purpose I/O Line 6 GPTA0 Input 38 Port 2 General Purpose I/O Line 7 IN39 I RDATA0A I MLI Receiver Data Input A OUT39 O1 GPTA0 Output 39 OUT39 O2 GPTA0 Output 39 Reserved O3 - P2.8 I/O0 SLSO04 O1 SLSO14 O2 A2/ PU GPTA0 Input 39 Port 2 General Purpose I/O Line 8 SSC0 Slave Select Output 4 SSC1 Slave Select Output 4 EN00 O3 P2.9 I/O0 SLSO05 O1 SLSO15 O2 SSC1 Slave Select Output 5 EN01 O3 MSC0 Enable Output 1 Data Sheet , MSC0 Enable Output 0 A2/ PU Port 2 General Purpose I/O Line 9 SSC0 Slave Select Output 5 3-16 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Pin Symbol Ctrl. Type Function B8 P2.10 I/O0 A8 A7 D9 A1+/ PU Port 2 General Purpose I/O Line 10 MRST1A I IN10 I LTCA2 Input 10 MRST1A O1 SSC1 Slave Transmit Output OUT0 O2 LTCA2 Output 0 Reserved O3 - P2.11 I/O0 A1+/ PU SSC1 Master Receive Input A Port 2 General Purpose I/O Line 11 SCLK1A I IN11 I LTCA2 Input 11 SCLK1A O1 SSC1 Clock Output A OUT1 O2 LTCA2 Output 1 FCLP0B O3 MSC0 Clock Output Positive B P2.12 I/O0 MTSR1A I IN12 I LTCA2 Input 12 MTSR1A O1 SSC1 Master Transmit Output A OUT2 O2 LTCA2 Output 2 SOP0B O3 P2.13 I/O0 SLSI11 I A1+/ PU SSC1 Clock Input A Port 2 General Purpose I/O Line 12 SSC1 Slave Receive Input A MSC0 Serial Data Output Positive B A1/ PU Port 2 General Purpose I/O Line 13 SSC1 Slave Select Input 1 SDI0 I MSC0 Serial Data Input 0 IN13 I LTCA2 Input 13 OUT3 O1 LTCA2 Output 3 Reserved O2 - Reserved O3 - Port 3 Data Sheet , 3-17 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Pin Symbol Ctrl. Type Function D15 P3.0 I/O0 RXD0A I RXD0A O1 ASC0 Clock Output (Sync. Mode) RXD0A O2 ASC0 Clock Output (Sync. Mode) OUT84 O3 P3.1 I/O0 TXD0 O1 D16 A18 B18 A17 D19 A1+/ PU Port 3 General Purpose I/O Line 0 ASC0 Receiver Input A (Async. & Sync. Mode) GPTA0 Output 84 A1+/ PU Port 3 General Purpose I/O Line 1 ASC0 Transmit TXD0 O2 ASC0 Transmit OUT85 O3 GPTA0 Output 85 P3.2 I/O0 SCLK0 I SCLK0 O1 SSC0 Clock Output (Master Mode) SCLK0 O2 SSC0 Clock Input (Master Mode) OUT86 O3 GPTA0 Output 86 P3.3 I/O0 MRST0 I MRST0 O1 SSC0 Slave Transmit Output (Slave Mode) MRST0 O2 SSC0 Slave Transmit Output (Slave Mode) OUT87 O3 GPTA0 Output 87 P3.4 I/O0 MTSR0 I MTSR0 O1 SSC0 Master Transmit Output (Master Mode) MTSR0 O2 SSC0 Master Transmit Output (Master Mode) OUT88 O3 P3.5 I/O0 SLSO00 O1 SLSO10 O2 SLSOANDO0 O3 Data Sheet , A1+/ PU A1+/ PU A2/ PU Port 3 General Purpose I/O Line 2 SSC0 Clock Input (Slave Mode) Port 3 General Purpose I/O Line 3 SSC0 Master Receive Input (Master Mode) Port 3 General Purpose I/O Line 4 SSC0 Slave Receive Input (Slave Mode) GPTA0 Output 88 A1+/ PU Port 3 General Purpose I/O Line 5 SSC0 Slave Select Output 0 SSC1 Slave Select Output 0 SSC0 AND SSC1 Slave Select Output 0 3-18 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Pin Symbol Ctrl. Type Function C20 P3.6 I/O0 SLSO01 O1 SLSO11 O2 A1+/ PU A19 E14 E15 E13 SSC0 Slave Select Output 1 SSC1 Slave Select Output 1 SLSOANDO1 O3 B17 Port 3 General Purpose I/O Line 6 SSC0 AND SSC1 Slave Select Output 1 P3.7 I/O0 SLSI0 I A2/ PU SLSO02 O1 SSC0 Slave Select Output 2 SLSO12 O2 SSC1 Slave Select Output 2 OUT89 O3 GPTA0 Output 89 A2/ PU Port 3 General Purpose I/O Line 7 SSC0 Slave Select Input 1 P3.8 I/O0 SLSO06 O1 TXD1 O2 OUT90 O3 P3.9 I/O0 RXD1A I RXD1A O1 ASC1 Receiver Output A (Synchronous Mode) RXD1A O2 ASC1 Receiver Output A (Synchronous Mode) Port 3 General Purpose I/O Line 8 SSC0 Slave Select Output 6 ASC1 Transmit Output GPTA0 Output 90 A1/ PU Port 3 General Purpose I/O Line 9 ASC1 Receiver Input A OUT91 O3 P3.10 I/O0 REQ0 I Reserved O1 - Reserved O2 - OUT92 O3 GPTA0 Output 92 P3.11 I/O0 REQ1 I Reserved O1 - Reserved O2 - OUT93 O3 GPTA0 Output 93 Data Sheet , GPTA0 Output 91 A1/ PU A1/ PU Port 3 General Purpose I/O Line 10 External Request Input 0 Port 3 General Purpose I/O Line 11 External Request Input 1 3-19 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Pin Symbol Ctrl. Type Function B15 P3.12 I/O0 RXDCAN0 I RXD0B I ASC0 Receiver Input B RXD0B O1 ASC0 Receiver Output B (Synchronous Mode) RXD0B O2 ASC0 Receiver Output B (Synchronous Mode) OUT94 O3 GPTA0 Output 94 P3.13 I/O0 TXDCAN0 O1 TXD0 O2 A15 B16 A16 A1/ PU A2/ PU Port 3 General Purpose I/O Line 12 CAN Node 0 Receiver Input Port 3 General Purpose I/O Line 13 CAN Node 0 Transmitter Output ASC0 Transmit Output OUT95 O3 P3.14 I/O0 RXDCAN1 I RXD1B I ASC1 Receiver Input B SDI2 I MSC0 Serial Data Input 2 RXD1B O1 ASC1 Receiver Output B (Synchronous Mode) RXD1B O2 ASC1 Receiver Output B (Synchronous Mode) OUT96 O3 GPTA0 Output 96 P3.15 I/O0 TXDCAN1 O1 TXD1 O2 ASC1 Transmit Output OUT97 O3 GPTA0 Output 97 P4.0 I/O0 IN28 I IN52 I GPTA0 Input 52 RXDCAN2 I CAN Node 2 Receiver Input OUT28 O1 GPTA0 Output 28 OUT28 O1 GPTA0 Output 28 OUT52 O2 GPTA0 Output 52 GPTA0 Output 95 A1/ PU A2/ PU Port 3 General Purpose I/O Line 14 CAN Node 1 Receiver Input Port 3 General Purpose I/O Line 15 CAN Node 1 Transmitter Output Port 4 T13 Data Sheet , A1+/ PU Port 4 General Purpose I/O Line 0 GPTA0 Input 28 3-20 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Pin Symbol Ctrl. Type Function U13 P4.1 I/O0 IN29 I IN53 I GPTA0 Input 53 OUT29 O1 GPTA0 Output 29 OUT53 O2 GPTA0 Output 53 TXDCAN2 O3 CAN Node 2 Transmitter Output W13 P4.2 Y13 I/O0 A1+/ PU A2/ PU Port 4 General Purpose I/O Line 1 GPTA0 Input 29 Port 4 General Purpose I/O Line 2 IN30 I IN54 I GPTA0 Input 54 OUT30 O1 GPTA0 Output 30 OUT54 O2 GPTA0 Output 54 EXTCLK1 O3 External Clock 1 Output A2/ PU GPTA0 Input 30 P4.3 I/O0 IN31 I IN55 I GPTA0 Input 55 OUT31 O1 GPTA0 Output 31 OUT55 O2 GPTA0 Output 55 EXTCLK0 O3 External Clock 0 Output P5.0 I/O0 IN40 I IN26 I LTCA2 Input 26 OUT40 O1 GPTA0 Output 40 OUT8 O2 LTCA2 Output 8 SLSO20 O3 SSC2 Slave Select Output 0 Port 4 General Purpose I/O Line 3 GPTA0 Input 31 Port 5 D1 Data Sheet , A1+/ PU Port 5 General Purpose I/O Line 0 GPTA0 Input 40 3-21 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Pin Symbol Ctrl. Type Function E2 P5.1 I/O0 IN41 I IN27 I LTCA2 Input 27 OUT41 O1 GPTA0 Output 41 OUT9 O2 LTCA2 Output 9 SLSO21 O3 SSC2 Slave Select Output 1 P5.2 I/O0 IN42 I IN28 I LTCA2 Input 28 OUT42 O1 GPTA0 Output 42 OUT10 O2 LTCA2 Output 10 SLSO22 O3 SSC2 Slave Select Output 2 F4 G5 H5 A1+/ PU A1+/ PU A1+/ PU Port 5 General Purpose I/O Line 1 GPTA0 Input 41 Port 5 General Purpose I/O Line 2 GPTA0 Input 42 P5.3 I/O0 IN43 I OUT43 O1 GPTA0 Output 43 OUT11 O2 LTCA2 Output 11 SLSO23 O3 SSC2 Slave Select Output 3 A1+/ PU Port 5 General Purpose I/O Line 3 GPTA0 Input 43 P5.4 I/O0 IN44 I IN29 I LTCA2 Input 29 Port 5 General Purpose I/O Line 4 GPTA0 Input 44 SLSI2A I SSC2 Slave Select Input A OUT44 O1 GPTA0 Output 44 OUT12 O2 LTCA2 Output 12 SLSO24 O3 SSC2 Slave Select Output 4 Data Sheet , 3-22 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Pin Symbol Ctrl. Type Function E1 P5.5 I/O0 IN45 I IN30 I LTCA2 Input 30 MRST2A I SSC2 Master Receive Input (Master Mode) OUT45 O1 GPTA0 Output 45 OUT13 O2 LTCA2 Output 13 MRST2 O3 SSC2 Slave Transmit Output (Slave Mode) F1 F2 H2 J2 A1+/ PU A1+/ PU Port 5 General Purpose I/O Line 5 GPTA0 Input 45 P5.6 I/O0 IN46 I IN31 I LTCA2 Input 31 MTSR2A I SSC2 Slave Receive Input (Slave Mode) OUT46 O1 GPTA0 Output 46 OUT14 O2 LTCA2 Output 14 MTSR2 O3 SSC2 Master Transmit Output (Master Mode) P5.7 I/O0 IN47 I SCLK2A I SSC0 Clock Input (Slave Mode) OUT47 O1 GPTA0 Output 47 OUT15 O2 LTCA2 Output 15 SCLK2 O3 SSC0 Clock Output (Master Mode) A1+/ PU A2/ PU Port 5 General Purpose I/O Line 6 GPTA0 Input 46 Port 5 General Purpose I/O Line 7 GPTA0 Input 47 P5.8 I/O0 RDATA0B I Reserved O1 - TXDA1 O2 E-Ray Channel A transmit Data Output OUT89 O3 LTCA2 Output 89 MLI0 Receiver Data Input B P5.9 I/O0 RVALID0B I Reserved O1 - TXDB1 O2 E-Ray Channel B transmit Data Output OUT90 O3 LTCA2 Output 90 Data Sheet , A2/ PU Port 5 General Purpose I/O Line 8 Port 5 General Purpose I/O Line 9 MLI0 Receiver Data Valid Input B 3-23 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Pin Symbol Ctrl. Type Function J1 P5.10 I/O0 RREADY0B O1 TXENA O2 E-Ray Channel A transmit Data Output enable OUT91 O3 LTCA2 Output 91 K2 K1 L2 L1 H1 A2/ PU A2/ PU Port 5 General Purpose I/O Line 10 MLI0 Receiver Ready Input B P5.11 I/O0 RCLK0B I Reserved O1 - TXENB O2 E-Ray Channel B transmit Data Output enable OUT92 O3 LTCA2 Output 92 P5.12 I/O0 TDATA0 O1 SLSO07 O2 OUT93 O3 P5.13 I/O0 TVALID0B O1 SLSO16 O2 SSC1 Slave Select Output 6 Reserved O3 - A1+/ PU Port 5 General Purpose I/O Line 11 MLI0 Receiver Clock Input B Port 5 General Purpose I/O Line 12 MLI0 Transmitter Data Output SSC0 Slave Select Output 7 LTCA2 Output 93 A1+/ PU A1+/ PU Port 5 General Purpose I/O Line 13 MLI0 Transmitter Valid Input B P5.14 I/O0 TREADY0B I RXDA1 I E-Ray Channel A Receive Data Input 1 Reserved O1 - Reserved O2 - OUT94 O3 LTCA2 Output 94 A1+/ PU Port 5 General Purpose I/O Line 14 MLI0 Transmitter Ready Input B P5.15 I/O0 RXDB1 I TCLK0 O1 MLI0 Transmitter Clock Output Reserved O2 - OUT95 O3 LTCA2 Output 95 Port 5 General Purpose I/O Line 15 E-Ray Channel B Receive Data Input 1 Port 6 Data Sheet , 3-24 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Pin Symbol Ctrl. Type Function A10 P6.0 I/O0 IN14 I FCLN0 O1 MSC0 Clock Output Negative OUT80 O2 GPTA0 Output 80 OUT4 O3 P6.1 I/O0 IN15 I B10 A9 B9 F/ PU Port 6 General Purpose I/O Line 0 LTCA2 Input 14 LTCA2 Output 4 F/ PU Port 6 General Purpose I/O Line 1 LTCA2 Input 15 FCLP0A O1 MSC0 Clock Output Positive A OUT81 O2 GPTA0 Output 81 OUT5 O3 P6.2 I/O0 IN24 I LTCA2 Output 5 F/ PU Port 6 General Purpose I/O Line 2 LTCA2 Input 24 SON0 O1 MSC0 Serial Data Output Negative OUT82 O2 GPTA0 Output 82 OUT6 O3 LTCA2 Output 6 P6.3 I/O0 IN25 I F/ PU Port 6 General Purpose I/O Line 3 LTCA2 Input 25 SOP0A O1 MSC0 Serial Data Output Positive A OUT83 O2 GPTA0 Output 83 OUT7 O3 LTCA2 Output 7 P7.0 I/O0 AD0 I/O OUT32 O1 GPTA0 Output 32 Reserved O2 - Reserved O3 - Port 7 U16 Data Sheet , A2/ PU Port 7 General Purpose I/O Line 0 EBU Address/Data Bus Line 0 3-25 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Pin Symbol Ctrl. Type Function Y14 P7.1 I/O0 R17 U14 T14 Y15 A2/ PU Port 7 General Purpose I/O Line 1 AD1 I/O OUT33 O1 GPTA0 Output 33 Reserved O2 - EBU Address/Data Bus Line 1 Reserved O3 P7.2 I/O0 AD2 I/O OUT34 O1 GPTA0 Output 34 Reserved O2 - A2/ PU Port 7 General Purpose I/O Line 2 EBU Address/Data Bus Line 2 Reserved O3 P7.3 I/O0 AD3 I/O OUT35 O1 GPTA0 Output 35 Reserved O2 - Reserved O3 - A2/ PU A2/ PU Port 7 General Purpose I/O Line 3 EBU Address/Data Bus Line 3 P7.4 I/O0 AD4 I/O OUT36 O1 GPTA0 Output 36 Reserved O2 - Reserved O3 - EBU Address/Data Bus Line 4 P7.5 I/O0 AD5 I/O OUT37 O1 GPTA0 Output 37 Reserved O2 - Reserved O3 - W14 P7.6 I/O0 A2/ PU Port 7 General Purpose I/O Line 4 A2/ PU Port 7 General Purpose I/O Line 5 EBU Address/Data Bus Line 5 Port 7 General Purpose I/O Line 6 AD6 I/O OUT38 O1 GPTA0 Output 38 Reserved O2 - Reserved O3 - Data Sheet , EBU Address/Data Bus Line 6 3-26 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Pin Symbol Ctrl. Type Function T15 P7.7 I/O0 U15 I/O OUT39 O1 GPTA0 Output 39 Reserved O2 - EBU Address/Data Bus Line 7 Reserved O3 P7.8 I/O0 AD8 I/O OUT40 O1 GPTA0 Output 40 Reserved O2 - Reserved A2/ PU O3 I/O0 Port 7 General Purpose I/O Line 8 EBU Address/Data Bus Line 8 A2/ PU Port 7 General Purpose I/O Line 9 AD9 I/O OUT41 O1 GPTA0 Output 41 Reserved O2 - Reserved O3 - P7.10 I/O0 AD10 I/O OUT42 O1 GPTA0 Output 42 Reserved O2 - Reserved O3 - W17 P7.11 Y18 Port 7 General Purpose I/O Line 7 AD7 W15 P7.9 Y17 A2/ PU I/O0 A2/ PU A2/ PU EBU Address/Data Bus Line 9 Port 7 General Purpose I/O Line 10 EBU Address/Data Bus Line 10 Port 7 General Purpose I/O Line 11 AD11 I/O OUT43 O1 GPTA0 Output 43 Reserved O2 - Reserved O3 - P7.12 I/O0 AD12 I/O OUT44 O1 GPTA0 Output 44 Reserved O2 - Reserved O3 - Data Sheet , A2/ PU EBU Address/Data Bus Line 11 Port 7 General Purpose I/O Line 12 EBU Address/Data Bus Line 12 3-27 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Symbol W18 P7.13 Y19 V20 Ctrl. Type Function I/O0 A2/ PU Port 7 General Purpose I/O Line 13 AD13 I/O OUT45 O1 GPTA0 Output 45 Reserved O2 - EBU Address/Data Bus Line 13 Reserved O3 P7.14 I/O0 AD14 I/O OUT46 O1 GPTA0 Output 46 Reserved O2 - A2/ PU Port 7 General Purpose I/O Line 14 EBU Address/Data Bus Line 14 Reserved O3 P7.15 I/O0 AD15 I/O OUT47 O1 GPTA0 Output 47 Reserved O2 - Reserved O3 - P8.0 I/O0 A2/ PU Port 7 General Purpose I/O Line 15 EBU Address/Data Bus Line 15 Port 8 U19 U20 A2/ PU Port 8 General Purpose I/O Line 0 Reserved O1 OUT48 O2 GPTA0 Output 48 OUT95 O3 LTCA2 Output 95 A16 O P8.1 I/O0 Reserved O1 OUT49 O2 GPTA0 Output 49 OUT96 O3 LTCA2 Output 96 A17 O EBU Address Bus Line Output 17 Data Sheet , - EBU Address Bus Line Output 16 A2/ PU Port 8 General Purpose I/O Line 1 - 3-28 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Pin Symbol Ctrl. Type Function T19 P8.2 I/O0 T20 N20 R20 R19 P20 A2/ PU Port 8 General Purpose I/O Line 2 Reserved O1 OUT50 O2 GPTA0 Output 50 OUT97 O3 LTCA2 Output 97 A18 O P8.3 I/O0 Reserved O1 OUT51 O2 GPTA0 Output 51 OUT98 O3 LTCA2 Output 98 A19 O P8.4 I/O0 Reserved O1 OUT52 O2 GPTA0 Output 52 OUT99 O3 LTCA2 Output 99 A20 O EBU Address Bus Line Output 20 P8.5 I/O0 Reserved O1 - EBU Address Bus Line Output 18 A2/ PU Port 8 General Purpose I/O Line 3 - EBU Address Bus Line Output 19 A2/ PU A2/ PU Port 8 General Purpose I/O Line 4 - Port 8 General Purpose I/O Line 5 - OUT53 O2 GPTA0 Output 53 OUT100 O3 LTCA2 Output 100 CS0 O EBU Chip Select Output 0 P8.6 I/O0 Reserved O1 A2/ PU OUT54 O2 OUT101 O3 LTCA2 Output 101 CS1 O EBU Chip Select Output 1 Port 8 General Purpose I/O Line 6 GPTA0 Output 54 P8.7 I/O0 Reserved O1 OUT55 O2 OUT102 O3 LTCA2 Output 102 CS2 O EBU Chip Select Output 2 Data Sheet , A2/ PU Port 8 General Purpose I/O Line 7 GPTA0 Output 55 3-29 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Pin Symbol Ctrl. Type Function P19 P8.8 I/O0 P17 P16 N19 N17 N16 A2/ PU Port 8 General Purpose I/O Line 8 Reserved O1 OUT56 O2 GPTA0 Output 56 OUT103 O3 LTCA2 Output 103 CS3 O P8.9 I/O0 Reserved O1 - EBU Chip Select Output 3 A2/ PU Port 8 General Purpose I/O Line 9 - OUT57 O2 GPTA0 Output 57 OUT104 O3 LTCA2 Output 104 BC0 O P8.10 I/O0 Reserved O1 EBU Byte Control Line Output 0 A2/ PU Port 8 General Purpose I/O Line 10 - OUT58 O2 GPTA0 Output 58 OUT105 O3 LTCA2 Output 105 BC1 O EBU Byte Control Line Output 1 P8.11 I/O0 Reserved O1 A2/ PU Port 8 General Purpose I/O Line 11 - OUT59 O2 GPTA0 Output 59 OUT106 O3 LTCA2 Output 106 RD O EBU Read Control Line P8.12 I/O0 Reserved O1 A2/ PU OUT60 O2 OUT107 O3 LTCA2 Output 107 RD/WR O EBU Write Control Line Port 8 General Purpose I/O Line 12 GPTA0 Output 60 P8.13 I/O0 Reserved O1 OUT61 O2 GPTA0 Output 61 OUT108 O3 LTCA2 Output 108 ADV O EBU Address Valid Line Data Sheet , A2/ PU Port 8 General Purpose I/O Line 13 - 3-30 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Pin Symbol Ctrl. Type Function M17 P8.14 I/O0 A1/ PU Port 8 General Purpose I/O Line 14 WAIT I Reserved O1 - OUT62 O2 GPTA0 Output 62 OUT109 O3 LTCA2 Output 109 P9.0 I/O0 RXDCAN2 I Reserved O1 - OUT80 O2 GPTA0 Output 80 OUT80 O3 LTCA2 Output 80 P9.1 I/O0 EBU Wait Line Port 9 G4 H4 J5 J4 A1/ PU A2/ PU Port 9 General Purpose I/O Line 0 CAN Node 2 Receiver Input Port 9 General Purpose I/O Line 1 Reserved I TXDCAN2 O1 CAN Node 2 Transmitter Output OUT81 O2 GPTA0 Output 81 OUT81 O3 P9.2 I/O0 Reserved I Reserved O1 - OUT82 O2 GPTA0 Output 82 OUT82 O3 P9.3 I/O0 Reserved I - LTCA2 Output 81 A1/ PU Port 9 General Purpose I/O Line 2 - LTCA2 Output 82 A1/ PU Port 9 General Purpose I/O Line 3 - Reserved O1 - OUT83 O2 GPTA0 Output 83 OUT83 O3 LTCA2 Output 83 Data Sheet , 3-31 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Pin Symbol Ctrl. Type Function K4 P9.4 I/O0 Reserved I Reserved O1 - OUT84 O2 GPTA0 Output 84 OUT84 O3 P9.5 I/O0 Reserved I K5 L4 L5 A1/ PU Port 9 General Purpose I/O Line 4 - LTCA2 Output 84 A1/ PU Port 9 General Purpose I/O Line 5 - Reserved O1 - OUT85 O2 GPTA0 Output 85 OUT85 O3 P9.6 I/O0 Reserved I LTCA2 Output 85 A1/ PU Port 9 General Purpose I/O Line 6 - Reserved O1 - OUT86 O2 GPTA0 Output 86 OUT86 O3 LTCA2 Output 86 P9.7 I/O0 Reserved I A1/ PU Port 9 General Purpose I/O Line 7 - Reserved O1 - OUT87 O2 GPTA0 Output 87 OUT87 O3 LTCA2 Output 87 Port 10 D6 P10.0 I/O0 MRST2B I MRST2 O1 SSC2 Master Transmit Input (Slave Mode) EVTO0 O2 MCDS Event Output 0 Reserved O3 - Data Sheet , A1+/ PU Port 10 General Purpose I/O Line 0 SSC2 Master Receive Input (Master Mode) 3-32 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Pin Symbol Ctrl. Type Function E6 P10.1 I/O0 D5 B5 A5 B4 A4 A1+/ PU Port 10 General Purpose I/O Line 1 Reserved I MTSR2 O1 SSC0 Slave Receive Input (Slave Mode) EVTO1 O2 MCDS Event Output 1 - Reserved O3 P10.2 I/O0 SCLK2B I SCLK2 O1 SSC0 Clock Output (Master Mode) EVTO2 O2 MCDS Event Output 2 Reserved O3 P10.3 I/O0 SLSI2B I A1+/ PU Port 10 General Purpose I/O Line 2 SSC0 Clock Input (Slave Mode) A1+/ PU Port 10 General Purpose I/O Line 3 SSC2 Slave Select Input B SLSO20 O1 SSC2 Slave Select Output 0 EVTO3 O2 MCDS Event Output 3 Reserved O3 LTCA2 Output 83 P10.4 I/O0 Reserved I SLSO21 O1 SSC2 Slave Select Output 1 Reserved O2 GPTA0 Output 84 Reserved O3 - P10.5 I/O0 Reserved I SLSO22 O1 SSC2 Slave Select Output 0 Reserved O2 GPTA0 Output 85 Reserved O3 - P10.6 I/O0 Reserved I SLSO23 O1 SSC2 Slave Select Output 3 SLSOAND03 O2 SSC0 AND SSC2 Slave Select Output 3 Reserved O3 - Data Sheet , A1+/ PU A1+/ PU A1+/ PU Port 10 General Purpose I/O Line 4 - Port 10 General Purpose I/O Line 5 - Port 10 General Purpose I/O Line 6 - 3-33 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Pin Symbol Ctrl. Type Function B3 P10.7 I/O0 Reserved I SLSO24 O1 SSC2 Slave Select Output 4 SLSOAND04 O2 SSC1 AND SSC2 Slave Select Output 4 A3 A2 C1 D2 E4 A1+/ PU Port 10 General Purpose I/O Line 7 - Reserved O3 P10.8 I/O0 Reserved I Reserved O1 - Reserved O2 - A1/ PU Port 10 General Purpose I/O Line 8 - Reserved O3 P10.9 I/O0 Reserved I Reserved O1 - Reserved O2 - Reserved O3 - A1/ PU A1/ PU Port 10 General Purpose I/O Line 9 - P10.10 I/O0 RXDCAN2 I Reserved O1 - Reserved O2 - Reserved O3 - CAN Node 2 Receiver Input P10.11 I/O0 Reserved I Reserved O1 - Reserved O2 - Reserved O3 - P10.12 I/O0 Reserved I Reserved O1 - Reserved O2 - Reserved O3 - Data Sheet , A1/ PU Port 10 General Purpose I/O Line 10 A1/ PU Port 10 General Purpose I/O Line 11 - Port 10 General Purpose I/O Line 12 - 3-34 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Pin Symbol Ctrl. Type Function F5 P10.13 I/O0 Reserved I Reserved O1 - Reserved O2 - Reserved O3 - A1/ PU Port 10 General Purpose I/O Line 13 - Analog Input Port Y9 AN0 W9 AN1 T9 AN2 U8 AN3 Y8 AN4 W8 I D Analog Input 0 I D Analog Input 1 I D Analog Input 2 I D Analog Input 3 I D Analog Input 4 AN5 I D Analog Input 5 T8 AN6 I D Analog Input 6 T2 AN7 I D Analog Input 7 U7 AN8 I D Analog Input 8 Y6 AN9 I D Analog Input 9 Y5 AN10 I D Analog Input 10 Y4 AN11 I D Analog Input 11 Y3 AN12 I D Analog Input 12 Y2 AN13 I D Analog Input 13 W2 AN14 I D Analog Input 14 U5 AN15 I D Analog Input 15 W3 AN16 I D Analog Input 16 W5 AN17 I D Analog Input 17 W4 AN18 I D Analog Input 18 W6 AN19 I D Analog Input 19 W1 AN20 I D Analog Input 20 U4 AN21 I D Analog Input 21 V2 AN22 I D Analog Input 22 V1 AN23 I D Analog Input 23 Data Sheet , 3-35 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Pin Symbol Ctrl. Type Function T5 AN24 I D Analog Input 24 T4 AN25 I D Analog Input 25 U2 AN26 I D Analog Input 26 U1 AN27 I D Analog Input 27 T1 AN28 I D Analog Input 28 R5 AN29 I D Analog Input 29 R4 AN30 I D Analog Input 30 R2 AN31 I D Analog Input 31 R1 AN32 I D Analog Input 32 P5 AN33 I D Analog Input 33 P4 AN34 I D Analog Input 34 P1 AN35 I D Analog Input 35 Y7 VDDM VSSM VAREF0 VAREF1 VAGND0 VDDMF VDDAF VSSMF VSSAF VFAREF VFAGND - - ADC Analog Part Power Supply (3.3V - 5V) - - ADC Analog Part Ground - - ADC0 Reference Voltage - - ADC1 Reference Voltage - - ADC Reference Ground - - FADC Analog Part Power Supply (3.3V) - - FADC Analog Part Logic Power Supply (1.3V) - - FADC Analog Part Ground - - FADC Analog Part Ground - - FADC Reference Voltage - - FADC Reference Ground W7 U6 T7 T6 N1 N2 P2 P2 N4 N5 Data Sheet , 3-36 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Symbol Ctrl. Type Function G8, VDD G13, H7, H14, N7, N14, P8, P13, R16, T17, V19, W20 - - Digital Core Power Supply (1.3V) VDDP B1, B6, B11, B20, C2, C19, G2, M2, M19, W10, W16 - - Port Power Supply (3.3V) M4, M5 - - Emulation Stand-by SRAM Power Supply (1.3V) (Emulation device only) VDDE(SB) Note: This pin is N.C. in a productive device. Data Sheet , 3-37 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Symbol Ctrl. Type Function A6, VSSP A11, A20, B2, B19, D4, D17, E5, E16, G1, M1, M20, Y10, Y16 - - Digital Ground G9, VSS G10, G11, G12 - - Digital Ground H9, VSS H10, H11, H12 - - Digital Ground J7, J8, J10, J11, J13, J14 VSS - - Digital Ground K7, VSS K8, K9, K10, K11, K12, K13, K14 - - Digital Ground Data Sheet , 3-38 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Pin Symbol Ctrl. Type Function L7, L8, L9, L10, L11, L12, L13, L14 VSS - - Digital Ground M7, VSS M8, M10, M11, M13, M14 - - Digital Ground N9, VSS N10, N11, N12 - - Digital Ground (cont´d) P9, VSS P10, P11, P12 - - Digital Ground (cont´d) T16, VSS U17, W19, Y20 - - Digital Ground (cont´d) K19 - - Main Oscillator and PLL Power Supply (1.3V) - - Main Oscillator Power Supply (3.3V) - - Flexray Oscillator and PLL Power Supply (1.3V) J17 VDDPF3 VSSOSC D13, VDDFL3 - - Flexray Oscillator Power Supply (3.3V) K20 - - Main Oscillator and PLL Ground - - Power Supply for Flash (3.3V) J20 XTAL1 I Oscillator/PLL/Clock Generator Input J19 XTAL2 O Oscillator/PLL/Clock Generator Output H20 K17 VDDOSC VDDOSC3 VDDPF D14 Data Sheet , 3-39 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration Table 3-1 Pin Definitions and Functions (PG-LFBGA-292-6) (cont’d) Pin Symbol Ctrl. Type Function H19 TDI I BRKIN I BRKOUT O H17 TMS I DAP1 I/O G20 TDO I/O DAP2 I/O BRKIN I OCDS Break Input (Alternate Input) BRKOUT O OCDS Break Output (Alternate Output) G19 TRST I A1/ PD JTAG Reset Input F20 TCK I JTAG Clock Input DAP0 I A1/ PD F19 TESTMODE I PU Test Mode Select Input E19 ESR1 I/O A2/ PD External System Request Reset Input 1 E20 PORST I PD Power On Reset Input D20 ESR0 I/O A2 External System Request Reset Input 0 Default configuration during and after reset is open-drain driver. The driver drives low during power-on reset. A1, Y1 N.C. - - Not connected. These pins are reserved for future extension and shall not be connected externally A2/ PU JTAG Serial Data Input OCDS Break Input (Alternate Input) OCDS Break Output (Alternate Output) A2/ PD JTAG State Machine Control Input A2/ PU JTAG Serial Data Output Device Access Port Line 1 Device Access Port Line 2 Device Access Port Line 0 Legend for Table 3-1 Column “Ctrl.”: I = Input (for GPIO port lines with IOCR bit field selection PCx = 0XXXB) O = Output O0 = Output with IOCR bit field selection PCx = 1X00B O1 = Output with IOCR bit field selection PCx = 1X01B (ALT1) O2 = Output with IOCR bit field selection PCx = 1X10B(ALT2) O3 = Output with IOCR bit field selection PCx = 1X11(ALT3) Column “Type”: Data Sheet , 3-40 V 1.1.1, 2014-05 TC1784 PinningTC1784 Pin Configuration A1 = Pad class A1 (LVTTL) A1+ = Pad class A1+ (LVTTL) A2 = Pad class A2 (LVTTL) F = Pad class F (LVDS/CMOS) D = Pad class D (ADC) I = Pad class I (LVTTL) PU = with pull-up device connected during reset (PORST = 0) PD = with pull-down device connected during reset (PORST = 0) TR = tri-state during reset (PORST = 0) Data Sheet , 3-41 V 1.1.1, 2014-05 TC1784 Identification Registers 4 Identification Registers The Identification Registers uniquely identify the whole device. Table 2 SAK-TC1784F-320F180EL Identification Registers Short Name Value Address Stepping CBS_JDPID 0000 6350H F000 0408H BA CBS_JTAGID 1018 E083H F000 0464H BA SCU_CHIPID 0500 9610H F000 0640H BA SCU_MANID 0000 1820H F000 0644H BA SCU_RTID 0000 0000H F000 0648H BA Table 3 SAK-TC1784F-320F180EP Identification Registers Short Name Value Address Stepping CBS_JDPID 0000 6350H F000 0408H BA CBS_JTAGID 1018 E083H F000 0464H BA SCU_CHIPID 8500 9610H F000 0640H BA SCU_MANID 0000 1820H F000 0644H BA SCU_RTID 0000 0000H F000 0648H BA Data Sheet 42 V 1.1.1, 2014-05 TC1784 Identification Registers Data Sheet 43 V 1.1.1, 2014-05 TC1784 Electrical ParametersGeneral Parameters 5 Electrical Parameters This specification provides all electrical parameters of the TC1784. 5.1 General Parameters 5.1.1 Parameter Interpretation The parameters listed in this section partly represent the characteristics of the TC1784 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are marked with an two-letter abbreviation in column “Symbol”: • • CC Such parameters indicate Controller Characteristics which are a distinctive feature of the TC1784 and must be regarded for a system design. SR Such parameters indicate System Requirements which must provided by the microcontroller system in which the TC1784 designed in. Data Sheet 44 V 1.1.1, 2014-05 TC1784 Electrical ParametersGeneral Parameters 5.1.2 Pad Driver and Pad Classes Summary This section gives an overview on the different pad driver classes and its basic characteristics. More details (mainly DC parameters) are defined in the Section 5.2.1. Table 4 Pad Driver and Pad Classes Overview Class Power Type Supply Sub Class Speed Load Grade 1) Leakage 150oC 1) Termination 1) A F 3.3 V 3.3 V LVTTL I/O, LVTTL outputs A1 (e.g. GPIO) 6 MHz 100 pF 500 nA A1+ (e.g. serial I/Os) 25 MHz 50 pF 1 μA Series termination recommended A2 (e.g. serial I/Os) 40 MHz 50 pF 3 μA Series termination recommended LVDS – 50 MHz – – Parallel termination, 100 Ω ± 10% 2) CMOS – 6 MHz 50 pF – DE 5V ADC – – – – I 3.3 V LVTTL (input only) – – – – No 1) These values show typical application configurations for the pad. Complete and detailed pad parameters are available in the individual pad parameter table on the following pages. 2) In applications where the LVDS pins are not used (disabled), these pins must be either left unconnected, or properly terminated with the differential parallel termination of 100 Ω ± 10%. Data Sheet 45 V 1.1.1, 2014-05 TC1784 Electrical ParametersGeneral Parameters 5.1.3 Absolute Maximum Ratings Stresses above the values listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability. Table 5 Absolute Maximum Rating Parameters Parameter Symbol Values Min. Typ. Max. Storage temperature TST Voltage at 1.3 V power supply VDD pins with respect to VSS Voltage at 3.3 V power supply VDDP pins with respect to VSS SR Voltage at 5 V power supply VDDM pins with respect to VSS Voltage on any Class A input VIN Unit Note / Test Con dition SR -65 – 150 °C – SR – – 2.0 V – – – 4.33 V – SR – – 7.0 V – SR -0.7 – VDDP + 0.5 V or max. 4.33 Whatever is lower -0.6 – 7.0 V – Voltage on any shared Class VAINF -0.6 – D analog input pin with SR respect to VSSAF, if the FADC is switched through to the pin. 7.0 V – Input current on any pin during overload condition pin and dedicated input pins with respect to VSS Voltage on any Class D analog input pin with respect to VAGND0 VAIN VAREFx SR IIN -10 – +10 mA – Absolute maximum sum of all IIN input circuit currents for one port group during overload condition1) -25 – +25 mA – Absolute maximum sum of all ΣIIN input circuit currents during overload condition -200 – 200 mA – 1) The port groups are defined in Table 10. Data Sheet 46 V 1.1.1, 2014-05 TC1784 Electrical ParametersGeneral Parameters 5.1.4 Pin Reliability in Overload When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification. Table 6 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met: • • full operation life-time (24000 h) is not exceeded Operating Conditions are met for – pad supply levels (VDDP or VDDM) – temperature If a pin current is out of the Operating Conditions but within the overload parameters, then the parameters functionality of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters. Note: An overload condition on one or more pins does not require a reset. Table 6 Overload Parameters Parameter Min. Typ. Max. Unit Note / Test Con dition Input current on any digital pin IIN during overload condition except LVDS pins -5 mA Input current on LVDS pins IINLVDS IING -3 – +3 mA – -20 – +20 mA – IINANA IINSAS -3 – +3 mA – -15 – +15 mA – ΣIINS -100 – 100 mA – Absolute sum of all input circuit currents for one port group during overload condition1) Input current on analog pins Absolute sum of all analog input currents for analog inputs of a single ADC during overload condition Absolute sum of all input circuit currents during overload condition Symbol Values – +5 – 1) The port groups are defined in Table 10. Note: FADC input pins count as analog pin as they are overlayed with an ADC pins. Data Sheet 47 V 1.1.1, 2014-05 TC1784 Electrical ParametersGeneral Parameters Table 7 PN-Junction Characterisitics for positive Overload Pad Type IIN = 3 mA IIN = 5 mA A1 / A1+ / F UIN = VDDP + 0.6 V UIN = VDDP + 0.5 V UIN = VDDP + 0.7 V UIN = VDDM + 0.6 V UIN = VDDP + 0.7 V UIN = VDDP + 0.6 V A2 LVDS D Table 8 - PN-Junction Characterisitics for negative Overload Pad Type IIN = -3 mA IIN = -5 mA A1 / A1+ / F UIN = VSS - 0.6 V UIN = VSS - 0.5 V UIN = VSS - 0.7 V UIN = VSSM - 0.6 V UIN = VSS - 0.7 V UIN = VSS - 0.6 V A2 LVDS D - Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery without having any negative reliability impact on the operational life-time. Data Sheet 48 V 1.1.1, 2014-05 TC1784 Electrical ParametersGeneral Parameters 5.1.5 Operating Conditions The following operating conditions must not be exceeded in order to ensure correct operation and reliability of the TC1784. All parameters specified in the following tables refer to these operating conditions, unless otherwise noticed. Digital supply voltages applied to the TC1784 must be static regulated voltages which allow a typical voltage swing of ± 5 %. All parameters specified in the following tables (Table 11 and following) refer to these operating conditions (Table 9), unless otherwise noticed in the Note / Test Condition column. The Extended Range Operating Conditions did not increase area of validity of the parameters defined in table 9 and later. Table 9 Operating Conditions Parameters Parameter Symbol Overload coupling factor KOVAN for analog inputs, negative CC Values Unit Min. Typ. Max. − − 0.0001 Note / Test Condition IOV≤ 0 mA; IOV≥ -2 mA; analog pad= 5.0 V Overload coupling factor KOVAP for analog inputs, positive CC − − IOV≤ 3 mA; IOV≥ 0 mA; 0.0000 1 analog pad= 5.0 V fCPU SR FPI bus frequency fFPI SR LMB frequency fLMB CC fPCP SR PCP Frequency Inactive device pin current IID SR CPU Frequency − − 180 MHz − − 90 MHz − − 180 MHz − − 180 MHz -1 − 1 mA Short circuit current of digital outputs1) ISC SR -5 − 5 mA Absolute sum of short circuit currents of the device ΣISC_D CC − − 100 mA Data Sheet 49 All power supply voltagesVDDx = 0 V 1.1.1, 2014-05 TC1784 Electrical ParametersGeneral Parameters Table 9 Operating Conditions Parameters (cont’d) Parameter Symbol Values Unit Min. Typ. Max. − − 20 mA TA SR Junction temperature TJ SR Core Supply Voltage VDD SR Flash supply voltage 3.3V VDDFL3 -40 − 125 °C -40 − 150 °C 1.235 1.3 1.3652) V 3.13 3.3 3.474) V ADC analog supply voltage VDDM 3.13 3.3 5.53) V VDDOSC 1.235 1.3 1.3652) V 3.3 3.474) Absolute sum of short circuit currents per pin group ΣISC_PG CC Ambient Temperature Note / Test Condition SR Oscillator core supply voltage Oscillator 3.3V supply voltage SR SR VDDOSC3 3.05 V SR VDDPF 1.235 1.3 1.3652) V E-Ray PLL 3.3V supply voltage VDDPF3 3.05 3.3 3.474) Digital supply voltage for IO pads VDDP SR 3.13 3.3 3.47 4) V VDDP voltage to ensure defined pad states5) VDDPPA 0.65 − − Digital ground voltage VSS SR 0 E-Ray PLL core supply voltage SR V SR V CC Analog ground voltage for VSSM SR -0.1 − − V 0 0.1 V VDDM VDDAF 1.235 1.3 1.3652) V VDDMF 3.13 3.3 3.474) V Analog ground voltage for VSSAF SR -0.1 0 0.1 V Analog core supply SR FADC / ADC analog supply voltage SR VDDMF 1) Applicable for digital outputs. Data Sheet 50 V 1.1.1, 2014-05 TC1784 Electrical ParametersGeneral Parameters 2) Voltage overshoot to 1.7V is permissible at Power-Up and PORST low, provided the pulse duration is less than 100 μs and the cumulated sum of the pulses does not exceed 1 h. 3) Voltage overshoot to 6.5V is permissible at Power-Up and PORST low, provided the pulse duration is less than 100 μs and the cumulated sum of the pulses does not exceed 1 h. 4) Voltage overshoot to 4.0V is permissible at Power-Up and PORST low, provided the pulse duration is less than 100 μs and the cumulated sum of the pulses does not exceed 1 h. 5) This parameter is valid under the assumption the PORST signal is constantly at low level during the powerup/power-down of VDDP. Extended Range Operating Conditions The following extended operating conditions are defined: • • • 1.3V + 5% < VDD / VDDPF / VDDOSC / VDDAF < 1.3V + 7.5% (overvoltage condition): – limited to 10000 hour duration cumulative in lifetime, due to the reliability reduction of the chip caused by the overvoltage stress. 1.3V + 7.5% < VDD / VDDOSC / VDDAF < 1.3V + 10% (overvoltage condition): – limited to 1000 hour duration cumulative in lifetime, due to the reliability reduction of the chip caused by the overvoltage stress. VDDP / VDDOSC3 / VDDFL3 / VDDMF< 3.3 V ± 10% – 3.3V + 5% < VDDP / VDDOSC3 / VDDFL3 / VDDMF< 3.3V + 10% (overvoltage condition): limited to 1000 hour duration cumulative in lifetime, due to the reliability reduction of the chip caused by the overvoltage stress. – 3.3V - 10% < VDDP / VDDOSC3 / VDDFL3 / VDDMF< 3.3 V − 5% (undervoltage condition): -reduces GPIO pads performance Table 10 Pin Groups for Overload / Short-Circuit Current Sum Parameter Group Pins 1 P5.[7:2], P5.15 2 P5.[9:8] 3 P5.[11:10] 4 P5.[14:12] 5 P1.[14:12], P2.0 6 P2.[4:1] 7 P2.[7:5] 8 P4.[2:0] Data Sheet 51 V 1.1.1, 2014-05 TC1784 Electrical ParametersGeneral Parameters Table 10 Pin Groups for Overload / Short-Circuit Current Sum Parameter Group Pins 9 P4.3 10 P1.2, P1.8 11 P1.[10:9] 12 P1.3, P1.11 13 P1.[7:4] 14 P1.[1:0], P1.15 15 P3.[8:5], P3.[3:2] 16 P3.[1:0], P3.4, P3.[10:9], P3.[15:14] 17 P0.[1:0], P3.[13:11] 18 P0.[3:2], P0.[9:8] 19 P0.[11:10] 20 P6.[3:0] 21 P2.[13:8] 22 P0.[5:4], P0.[13:12] 23 P0.[7:6], P0.[15:14], P5.[1:0] Data Sheet 52 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters 5.2 DC Parameters 5.2.1 Input/Output Pins Table 11 Standard_Pads Parameters Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition TA= 25 °C; f= 1 MHz Vi≥ 0.6 x VDDP V Vi≥ 0.36 x VDDP V Vi≤ 0.6 x VDDP V Vi≤ 0.36 x VDDP V Pin capacitance (digital inputs/outputs) CIO CC − − 10 pF Pull-down current |IPDL| CC − − 150 μA 10 − − μA |IPUH| CC 10 − − μA − − 100 μA Spike filter always blocked tSF1 CC pulse duration − − 10 ns only PORST pin Spike filter pass-through pulse duration 100 − − ns only PORST pin Unit Note / Test Condition Pull-Up current Table 12 tSF2 CC Standard_Pads Class_A1 Parameter Input Hysteresis for A1 pads 1) Input Leakage Current Class A1 Ratio Vil/Vih, A1 pads Symbol Values Min. Typ. Max. HYSA1 0.1 x − − V CC VDDP IOZA1 -500 − 500 nA VILA1 / VIHA1 0.6 − − − 450 600 Ohm IOH> -0.5 mA; P_MOS − 210 340 Ohm IOL< 0.5 mA; N_MOS CC Vi≥ 0 V; Vi≤ VDDP V CC On-Resistance of the RDSONW class A1 pad, weak driver CC Data Sheet 53 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters Table 12 Standard_Pads Class_A1 (cont’d) Parameter Symbol On-Resistance of the class A1 pad, medium driver CC Fall time, pad type A1 tFA1 CC RDSONM Values Unit Note / Test Condition Min. Typ. Max. − − 155 Ohm IOH> -2 mA; P_MOS − − 110 Ohm IOL< 2 mA; N_MOS − − 150 ns CL= 20 pF; pin out driver= weak − − 50 ns CL= 50 pF; pin out driver= medium − − 140 ns CL= 150 pF; pin out driver= medium − − 550 ns CL= 150 pF; pin out driver= weak − − 18000 ns CL= 20000 pF; pin out driver= medium − − 65000 ns CL= 20000 pF; pin out driver= weak Data Sheet 54 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters Table 12 Standard_Pads Class_A1 (cont’d) Parameter Symbol Values Min. Rise time, pad type A1 Typ. Max. tRA1 CC − − 150 − − Unit Note / Test Condition ns CL= 20 pF; pin out driver= weak 50 ns CL= 50 pF; pin out driver= medium − − 140 ns CL= 150 pF; pin out driver= medium − − 550 ns CL= 150 pF; pin out driver= weak − − 18000 ns CL= 20000 pF; pin out driver= medium − − 65000 ns CL= 20000 pF; pin out driver= weak Input high voltage class A1 pads VIHA1 SR 0.6 x min(V V DDP+ 0.3,3.6 ) − Input low voltage class A1 VILA1 SR -0.3 pads Data Sheet − VDDP 0.36 x V VDDP 55 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters Table 12 Standard_Pads Class_A1 (cont’d) Parameter Symbol Values Min. Output voltage high class A1 pads VOHA1 CC Typ. Unit Note / Test Condition V IOH≥ -1.4 mA; Max. VDDP - − − − − 0.4 2.4 pin out driver= medium V IOH≥ -2 mA; pin out driver= medium VDDP - − − V IOH≥ -400 μA; pin out driver= weak 2.4 − − V IOH≥ -500 μA; pin out driver= weak − − 0.4 V IOL≤ 2 mA; pin 0.4 Output voltage low class A1 pads VOLA1 CC out driver= medium − − 0.4 V IOL≤ 500 μA; pin out driver= weak 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can´t be guaranteed that it suppresses switching due to external system noise. Table 13 Standard_Pads Class_A1+ Parameter Symbol Input Hysteresis for A1+ pads 1) HYSA1 + CC IOZA1+ VDDP RDSONW Input Leakage Current Class A1+ On-Resistance of the class A1+ pad, weak driver Data Sheet Values Unit Note / Test Condition Min. Typ. Max. 0.1 x − − V -1000 − 1000 nA − 450 600 Ohm IOH> -0.5 mA; P_MOS − 210 340 Ohm IOL< 0.5 mA; N_MOS CC CC 56 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters Table 13 Standard_Pads Class_A1+ (cont’d) Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. − − 155 Ohm IOH> -2 mA; P_MOS − − 110 Ohm IOL< 2 mA; N_MOS On-Resistance of the class A1+ pad, strong driver RDSON1+ − − 100 Ohm IOH> -2 mA; P_MOS − − 80 Ohm IOL< 2 mA; N_MOS Fall time, pad type A1+ tFA1+ CC − − 150 ns − − On-Resistance of the class A1+ pad, medium driver RDSONM CC CC CL= 20 pF; pin out driver= weak 28 ns CL= 50 pF; edge= slow ; pin out driver= strong − − 16 ns CL= 50 pF; edge= soft ; pin out driver= strong − − 50 ns CL= 50 pF; pin out driver= medium − − 140 ns CL= 150 pF; pin out driver= medium − − 550 ns CL= 150 pF; pin out driver= weak − − 18000 ns CL= 20000 pF; pin out driver= medium − − 65000 ns CL= 20000 pF; pin out driver= weak Data Sheet 57 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters Table 13 Standard_Pads Class_A1+ (cont’d) Parameter Symbol Values Min. Rise time, pad type A1+ Typ. Max. tRA1+ CC − − 150 − − Unit Note / Test Condition ns CL= 20 pF; pin out driver= weak 28 ns CL= 50 pF; edge= slow ; pin out driver= strong − − 16 ns CL= 50 pF; edge= soft ; pin out driver= strong − − 50 ns CL= 50 pF; pin out driver= medium − − 140 ns CL= 150 pF; pin out driver= medium − − 550 ns CL= 150 pF; pin out driver= weak − − 18000 ns CL= 20000 pF; pin out driver= medium − − 65000 ns CL= 20000 pF; pin out driver= weak Input high voltage, Class A1+ pads Input low voltage Class A1+ pads Ratio Vil/Vih, A1+ pads VIHA1+ SR VILA1+ 0.6 x − VDDP 0.3,3.6 ) − -0.3 SR VILA1+ / VIHA1+ min(V V DDP+ 0.36 x V VDDP − 0.6 − CC Data Sheet 58 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters Table 13 Standard_Pads Class_A1+ (cont’d) Parameter Symbol Values Min. Output voltage high class A1+ pads VOHA1+ CC Typ. Unit Note / Test Condition V IOH≥ -1.4 mA; Max. VDDP - − − VDDP - − − − − 0.4 pin out driver= medium V 0.4 2.4 IOH≥ -1.4 mA; pin out driver= strong V IOH≥ -2 mA; pin out driver= medium − 2.4 − V IOH≥ -2 mA; pin out driver= strong VDDP - − − V IOH≥ -400 μA; pin out driver= weak 2.4 − − V IOH≥ -500 μA; pin out driver= weak − − 0.4 V IOL≤ 2 mA; pin 0.4 Output voltage low class A1+ pads VOLA1+ CC out driver= medium − − 0.4 V IOL≤ 2 mA; pin out driver= strong − − 0.4 V IOL≤ 500 μA; pin out driver= weak 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can´t be guaranteed that it suppresses switching due to external system noise. Data Sheet 59 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters Table 14 Standard_Pads Class_A2 Parameter Input Hysteresis for A2 pads 1) Input Leakage current Class A2 Symbol Values Unit Note / Test Condition Min. Typ. Max. HYSA2 0.1 x − − V CC VDDP IOZA2 -6000 − 6000 nA -3000 − 3000 nA 0.6 − − − 450 600 Ohm IOH> -0.5 mA; P_MOS − 210 340 Ohm IOL< 0.5 mA; N_MOS − − 155 Ohm IOH> -2 mA; P_MOS − − 110 Ohm IOL< 2 mA; N_MOS − − 28 Ohm IOH> -2 mA; P_MOS − − 22 Ohm IOL< 2 mA; N_MOS CC Vi< VDDP / 2 1 V; Vi> VDDP / 2 + 1 V; Vi≥ 0 V; Vi≤ VDDP V Vi> VDDP / 2 1 V; Vi< VDDP / 2 +1V Ratio Vil/Vih, A2 pads VILA2 / VIHA2 CC On-Resistance of the RDSONW class A2 pad, weak driver CC On-Resistance of the class A2 pad, medium driver RDSONM CC On-Resistance of the RDSON2 class A2 pad, strong driver CC Data Sheet 60 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters Table 14 Standard_Pads Class_A2 (cont’d) Parameter Fall time, pad type A2 Symbol tFA2 CC Values Min. Typ. Max. − − 150 Unit Note / Test Condition ns CL= 20 pF; pin out driver= weak − − 7 ns CL= 50 pF; edge= medium ; pin out driver= strong − − 10 ns CL= 50 pF; edge= mediumminus ; pin out driver= strong − − 3.7 ns CL= 50 pF; edge= sharp ; pin out driver= strong − − 5 ns CL= 50 pF; edge= sharpminus ; pin out driver= strong − − 16 ns CL= 50 pF; edge= soft ; pin out driver= strong − − 50 ns CL= 50 pF; pin out driver= medium − − 7.5 ns CL= 100 pF; edge= sharp ; pin out driver= strong − − 140 ns CL= 150 pF; pin out driver= medium Data Sheet 61 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters Table 14 Parameter Standard_Pads Class_A2 (cont’d) Symbol Values Min. Typ. Max. − − 550 Unit Note / Test Condition ns CL= 150 pF; pin out driver= weak − − 18000 ns CL= 20000 pF; pin out driver= medium − − 65000 ns CL= 20000 pF; pin out driver= weak Data Sheet 62 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters Table 14 Standard_Pads Class_A2 (cont’d) Parameter Symbol Values Min. Rise time, pad type A2 Typ. Max. tRA2 CC − − 150 − − Unit Note / Test Condition ns CL= 20 pF; pin out driver= weak 7.0 ns CL= 50 pF; edge= medium ; pin out driver= strong − − 10 ns CL= 50 pF; edge= mediumminus ; pin out driver= strong − − 3.7 ns CL= 50 pF; edge= sharp ; pin out driver= strong − − 5 ns CL= 50 pF; edge= sharpminus ; pin out driver= strong − − 16 ns CL= 50 pF; edge= soft ; pin out driver= strong − − 50 ns CL= 50 pF; pin out driver= medium − − 7.5 ns CL= 100 pF; edge= sharp ; pin out driver= strong − − 140 ns CL= 150 pF; pin out driver= medium Data Sheet 63 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters Table 14 Standard_Pads Class_A2 (cont’d) Parameter Symbol Values Min. Typ. Max. − − 550 Unit Note / Test Condition ns CL= 150 pF; pin out driver= weak − − 18000 ns CL= 20000 pF; pin out driver= medium − − 65000 ns CL= 20000 pF; pin out driver= weak Input high voltage, class A2 pads VIHA2 SR 0.6 x VOHA2 CC min(V V DDP + 0.3, 3.6) − Input low voltage Class A2 VILA2 SR -0.3 pads Output voltage high class A2 pads − VDDP 0.36 x V VDDP VDDP - − − VDDP - − − − − V 0.4 pin out driver= medium V 0.4 2.4 IOH≥ -1.4 mA; IOH≥ -1.4 mA; pin out driver= strong V IOH≥ -2 mA; pin out driver= medium − 2.4 − V IOH≥ -2 mA; pin out driver= strong VDDP - − − V IOH≥ -400 μA; pin out driver= weak − − V IOH≥ -500 μA; pin out driver= weak 0.4 2.4 Data Sheet 64 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters Table 14 Standard_Pads Class_A2 (cont’d) Parameter Symbol Output voltage low class A2 pads VOLA2 Values Min. Typ. Max. − − 0.4 Unit Note / Test Condition V IOL≤ 2 mA; pin CC out driver= medium − − 0.4 V IOL≤ 2 mA; pin out driver= strong − − 0.4 V IOL≤ 500 μA; pin out driver= weak 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can´t be guaranteed that it suppresses switching due to external system noise. Table 15 Standard_Pads Class_F Parameter Input Hysteresis F1) Input Leakage Current Class F Symbol Values Unit Note / Test Condition Min. Typ. Max. HYSF 0.05 x − − V CC VDDP IOZF CC -6000 − 6000 nA -3000 − 3000 nA − − − 170 Ohm IOH> -2 mA; P_MOS − − 145 Ohm IOL< 2 mA; N_MOS Vi< VDDP / 2 1 V; Vi> VDDP / 2 + 1 V; Vi≥ 0 V; Vi≤ VDDP V Vi> VDDP / 2 1 V; Vi< VDDP / 2 +1V Ratio Vil/ Vih, F pads On-Resistance of the class F pad, medium driver VILF / 0.6 VIHF CC RDSONM − CC Fall time, pad type F, CMOS mode tFF CC − − 60 ns CL= 50 pF Rise time, pad type F, CMOS mode tRF CC − − 60 ns CL= 50 pF Data Sheet 65 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters Table 15 Standard_Pads Class_F (cont’d) Parameter Symbol Values Min. Input high voltage, pad class F, CMOS mode VIHF SR 0.6 x VDDP Input low voltage, Class F VILF SR pads, CMOS mode Output high voltage, class VOHF F pads, CMOS mode CC − min(V V DDP+ Note / Test Condition 0.3, 3.6) 0.36 x V VDDP VDDP- − − V IOH≥ -1.4 mA − − V − 0.4 V IOH≥ -2 mA IOL≤ 2 mA 0.4 2.4 Output low voltage, class F pads, CMOS mode Max. − -0.3 Unit Typ. VOLF CC − 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can´t be guaranteed that it suppresses switching due to external system noise. Table 16 Standard_Pads Class_I Parameter Symbol Min. Typ. Max. Input Hysteresis Class I1) HYSI 0.1 x − − V CC VDDP IOZI CC -1000 VILI / VIHI 0.6 − 1000 nA − − VIHI SR − min(V V DDP+ Input Leakage Current Ratio between low and high input threshold Input high voltage, class I pins Input low voltage, Class I pads Values Unit Note / Test Condition CC 0.6 x VDDP VILI SR 0.3, 3.6) − -0.3 0.36 x V VDDP 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can´t be guaranteed that it suppresses switching due to external system noise. Data Sheet 66 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters Table 17 LVDS_Pads Parameters Parameter Symbol Values Unit Min. Typ. Max. Note / Test Condition Output impedance, pad class F, LVDS mode RO CC 40 − 140 Ohm Fall time, pad type LVDS tFL CC − − 2 ns termination 100 Ω ± 1 %; differential capacitance = 10 pF; input capacitance = 20 pF Rise time, pad type LVDS tRL CC − − 2 ns termination 100 Ω ± 1 %; differential capacitance = 10 pF; input capacitance = 20 pF tSET_LVD − − 13 μs termination 100 Ω ± 1 % − 400 mV termination 100 Ω ± 1 % Pad set-up time S CC Output Differential Voltage VOD CC 150 Output voltage high, pad class F, LVDS mode VOH CC − − 1525 mV termination 100 Ω ± 1 % Output voltage low, pad class F, LVDS mode VOL CC − − mV termination 100 Ω ± 1 % Output Offset Voltage VOS CC 1075 − 1325 mV termination 100 Ω ± 1 % Data Sheet 875 67 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters 5.2.2 Analog to Digital Converters (ADCx) ADC parameter are valid for VDDM = 4.75 V to 5.25 V. Table 18 ADC Parameters Parameter Symbol Values Unit Min. Typ. Max. CAINSW Switched capacitance at the analog voltage inputs1) CC − 9 20 pF Total capacitance of an analog input − 20 30 pF Switched capacitance at the positive reference voltage input2)3) CAREFSW − 15 30 pF Total capacitance of the voltage reference inputs2) CAREFTO − 20 40 pF Differential Non-Linearity Error4)5)6)7) Gain Error4)6)5)7) CAINTOT CC CC T CC EADNL -3 − 3 LSB ADC resolution= 12bit 8) 9) EAGAIN -3.5 − 3.5 LSB ADC resolution= 12bit 8) 9) EAINL -3 − 3 LSB ADC resolution= 12bit 8) 9) EAOFF -4 − 4 LSB ADC resolution= 12bit 8) 9) fADC SC 4 fADCI CC 1 QCONV 70 − 90 MHz fADC= fFPI 18 MHz 100 pC CC CC Integral NonLinearity4)6)5)7) Offset Error4)6)5)7) CC CC Converter clock Internal ADC clock Charge consumption per conversion Note / Test Condition − 10) 85 CC charge needs to be provided via VAREFx Data Sheet 68 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters Table 18 ADC Parameters (cont’d) Parameter Symbol Values Min. Input leakage at analog inputs11) IOZ1 CC -100 Typ. Max. − 500 Unit Note / Test Condition nA Vi≤ VDDM V; Vi≥ 0.97 x VDDM V; overlayed= No − -100 600 nA Vi≥ 0.97 x VDDM V; Vi≤ VDDM V; overlayed= Yes -500 − 100 nA Vi≤ 0.03 x VDDM V; Vi≥ 0 V; -600 − 100 nA Vi≤ 0.03 x VDDM V; Vi≥ 0 V; -100 − 200 nA Vi> 0.03 x VDDM V; Vi< 0.97 x VDDM V; overlayed= No overlayed= Yes overlayed= No − -100 300 nA Vi< 0.97 x VDDM V; Vi> 0.03 x VDDM V; overlayed= Yes Input leakage current at Varef0 IOZ2 CC -1 − 1 μA VAREF0≤ VDDM V Input leakage current at Varef1 -1 − 1 μA VAREF1≤ VDDM V Input leakage current at Vagnd0 IOZ3 CC -2 − 2 μA VAGND0≤ VDDM V ON resistance of the transmission gates in the analog voltage path RAIN CC − 900 1500 Ohm Data Sheet 69 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters Table 18 ADC Parameters (cont’d) Parameter Symbol Values Unit Min. Typ. Max. ON resistance for the ADC RAIN7T test (pull down for AIN7) CC 180 550 900 Ohm Resistance of the reference voltage input path − 500 1000 Ohm tS CC 2 tCAL CC − − 257 TADCI − 4352 cycle s TUE CC -4 − 413) LSB Sample time Calibration time after bit ADC_GLOBCFG.SUCAL is set Total Unadjusted Error6)5)12) RAREF CC Analog reference ground2) VAGND0 SR Analog input voltage VSSM - − 0.05 VAIN SR VAGND0 − VAGND0 − Analog reference voltage2) VAREFx SR Analog reference voltage range6)5)2) Note / Test Condition +1 ADC resolution= 12bit VAREFx V -1 VAREFx V VDDM + V 0.0514) 15) VAREFx - VDDM/2 − VAGND0 VDDM + V 0.05 SR 1) The sampling capacity of the conversion C-network is pre-charged to VAREFx/2 before the sampling moment. Because of the parasitic elements the voltage measured at AINx can deviate from VAREFx/2. 2) Applies to AINx, when used as auxiliary reference input. 3) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead smaller capacitances are successively switched to the reference voltage. 4) The sum of DNL/INL/GAIN/OFF errors does not exceed the related TUE total unadjusted error. 5) If a reduced analog reference voltage between 1V and VDDM / 2 is used, then there are additional decrease in the ADC speed and accuracy. 6) If the analog reference voltage range is below VDDM but still in the defined range of VDDM / 2 and VDDM is used, then the ADC converter errors increase. If the reference voltage is reduced by the factor k (k<1), TUE,DNL,INL,Gain, and Offset errors increase also by the factor 1/k. 7) If the analog reference voltage is > VDDM, then the ADC converter errors increase. 8) For 10-bit conversions the error value must be multiplied with a factor 0.25. 9) For 8-bit conversions the error value must be multiplied with a factor 0.0625. 10) For a conversion time of 1 µs a rms value of 85µA result for IAREFx. Data Sheet 70 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters 11) The leakage current definition is a continuos function, as shown in figure ADCx Analoge Input Leakage. The numerical values defined determine the characteristic points of the given continuous linear approximation they do not define step function. 12) Measured without noise. 13) For 10-bit conversion the TUE is ±2LSB; for 8-bit conversion the TUE is ±1LSB 14) A running conversion may become inexact in case of violating the normal conditions (voltage overshoot). 15) If the reference voltage VAREFx increase or the VDDM decrease, so that VAREF = (VDDM + 0.05V to VDDM + 0.07V), then the accuracy of the ADC decrease by 4LSB12. Table 19 Conversion Time (Operating Conditions apply) Parameter Symbol tC Conversion time with post-calibration Values Unit Note CC 2 × TADC + (4 + STC + n) × TADCI μs 2 × TADC + (2 + STC + n) × TADCI Conversion time without post-calibration n = 8, 10, 12 for n - bit conversion TADC = 1 / fFPI TADCI = 1 / fADCI The power-up calibration of the ADC requires a maximum number of 4352 fADCI cycles. REXT VAIN = Analog Input Circuitry RAIN, On ANx CEXT CAINTOT - CAINSW VAGNDx CAINSW RAIN7T Reference Voltage Input Circuitry RAREF, On VAREFx VAREF CAREFTOT - CAREFSW CAREFSW VAGNDx Analog_InpRefDiag Figure 2 Data Sheet ADCx Input Circuits 71 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters Ioz1 Single ADC Input 500nA 200nA 100nA -100nA VIN[VDDM%] 3% 97% 100% -500nA Ioz1 Overlayed ADC/FADC Input 600nA 300nA 100nA -100nA VIN[VDDM%] 3% 97% 100% -600nA Figure 3 Data Sheet ADCx Analog Inputs Leakage 72 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters 5.2.3 Table 20 Fast Analog to Digital Converter (FADC) FADC Parameters Parameter Input current at VFAREF Symbol Values Unit Min. Typ. Max. IFAREF − − 120 μA IFOZ2 -500 − 500 nA IFOZ3 -500 − 500 nA EFDNL -1 − 1 LSB Note / Test Condition CC Input leakage current at VFAREF1) CC Input leakage current at VFAGND CC DNL error CC VFAREF≤ VDDMF V; VFAREF≥ 0 V VIN mode= differential; Gain = 1 or 2 − -2 2 LSB VIN mode= differential; Gain = 4 or 82) − -1 1 LSB VIN mode= single ended; Gain = 1 or 2 − -2 2 LSB VIN mode= single ended; Gain = 4 or 82) GRADient error EFGRAD -5 − -5 − 5 % CC VIN mode= differential ; Gain≤ 4 5 % VIN mode= single ended ; Gain≤ 4 − -6 6 % VIN mode= differential ; Gain= 8 − -6 6 % VIN mode= single ended ; Gain= 8 Data Sheet 73 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters Table 20 FADC Parameters (cont’d) Parameter INL error Symbol EFINL Values Unit Note / Test Condition 4 LSB VIN mode= 4 LSB VIN mode= Min. Typ. Max. -4 − -4 − CC differential single ended Offset error EFOFF − -90 90 mV CC VIN mode= differential ; Calibration= No − -90 90 mV VIN mode= single ended ; Calibration= No − -20 20 mV VIN mode= differential ; Calibration= Ye s 3)4) − -20 20 mV VIN mode= single ended ; Calibration= Ye s 3)4) EFREF -60 − 60 mV Channel amplifier cutoff frequency fCOFF 2 − − MHz Converter clock fFADC 1 − 90 MHz fFADC= fFPI tC CC − − 21 1/ Input resistance of the analog voltage path (Rn, Rp) RFAIN 100 Settling time of a channel amplifier after changing ENN or ENP tSET CC − Analog input voltage range VAINF Error of commen mode voltage VFAREF/2 CC CC SC Conversion time Data Sheet − 200 kOh m − 5 μs VDDMF V CC SR For 10-bit fFADC conversion VFAGND − 74 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters Table 20 FADC Parameters (cont’d) Parameter Symbol Values Min. Analog reference ground VFAGND VSSAF - − VFAREF 3.0 SR Analog reference voltage Typ. 0.05 − SR Unit Max. VSSAF V 3.635) V Note / Test Condition + 0.05 6) 1) This value applies in power-down mode. 2) No missing codes. 3) Calibration should be preformed at each power-up. In case of a continous operation, it should be performed minimium once per week. 4) The offser error voltage drifts over the whole temperature range maximum +-3LSB. 5) Voltage overshoot to 4V is permissible, provided the pulse duration is less than 100 μs and the cumulated sum of the pulses does not exceed 1 h. 6) A running conversion may become inexact in case of violating the nomal operating conditions (voltage overshoots). The calibration procedure should run after each power-up, when all power supply voltages and the reference voltage have stabilized. Data Sheet 75 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters FADC Analog Input Stage FAINxN - = VFAGND RN VFAREF /2 + + FAINxP RP - FADC Reference Voltage Input Circuitry VFAREF IFAREF VFAREF VFAGND FADC_InpRefDiag Figure 4 Data Sheet FADC Input Circuits 76 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters 5.2.4 Table 21 Oscillator Pins OSC_XTAL Parameters Parameter Symbol Values Unit Note / Test Condition VIN<VDDOSC3 ; VIN>0 V Min. Typ. Max. -25 − 25 μA Input current at XTAL1 IIX1 CC Input frequency fOSC SR 4 − 40 MHz Direct Input Mode selected 8 − 25 MHz External Crystal Mode selected − − 10 ms VDDOS V Oscillator start-up time1) tOSCS CC Input high voltage at XTAL12) VIHX SR 0.7 x VDDOS Input low voltage at XTAL1 VILX SR -0.5 Input Hysteresis for XTAL1 pad 3) HYSAX − + 0.5 C3 C3 − 0.3 x V VDDOS C3 − − 200 mV CC 1) tOSCS is defined from the moment when VDDOSC3 = 3.13V until the oscillations reach an amplitude at XTAL1 of 0.3 * VDDOSC3. The external oscillator circuitry must be optimized by the customer and checked for negative resistance as recommended and specified by crystral suppliers. 2) If the XTAL1 pin is driven by a crystal, reaching a minimum amplitude (peak-to-peak) of 0.4 * VDDOSC3 is necessary. 3) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can´t be guaranteed that it suppresses switching due to external system noise. Note: It is strongly recommended to measure the oscillation allowance (negative resistance) in the final target system (layout) to determine the optimal parameters for the oscillator operation. Please refer to the limits specified by the crystal or ceramic resonator supplier. Data Sheet 77 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters 5.2.5 Table 22 Temperature Sensor DTS Parameters Parameter Symbol Values Min. Measurement time Temperature sensor range tM CC TSR SR Unit Typ. Max. − − 100 μs -40 − 150 °C Sensor Accuracy (calibrated) TTSA CC -6 − 6 °C Start-up time after resets inactive tTSST SR − − 20 μs Note / Test Condition The following formula calculates the temperature measured by the DTS in [oC] from the RESULT bit field of the DTSSTAT register. (1) DTSSTAT RESULT – 596 Tj = ------------------------------------------------------------------2, 03 Data Sheet 78 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters 5.2.6 Power Supply Current The total power supply current defined below consists of leakage and switching component. Application relevant values are typically lower than those given in the following two tables and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations). The operating conditions for the parameters in the following table are: VDD=1.365 V, VDDP=3.47 V, VDDM=5.1 V, fLMB=180, TJ=150 oC The realisic power pattern defines the following conditions: • • • • • • TJ=150 oC fLMB = fPCP = fCPU = 180 MHz fFPI = 90 MHz VDD = VDDOSC = VDDAF = 1.326 V VDDP = VDDOSC3 = VDDFL3 = VDDMF = 3.366 V VDDM = 5.1 V The max power pattern defines the following conditions: • • • • • • TJ=150 oC fLMB = fPCP = fCPU = 180 MHz fFPI = 90 MHz VDD = VDDOSC = VDDAF = 1.365 V VDDP = VDDOSC3 = VDDFL3 = VDDMF = 3.47 V VDDM = 5.5 V Table 23 Power Supply Parameters Parameter Symbol Values Unit Note / Test Condition 5853) mA power pattern= max 4) power pattern= realistic Min. Typ. Max. − − Core active mode supply current1)2) IDD CC − − 433 mA IDD current at PORST Low IDD_PORS − − 300 mA CC − − 291 mA Analog core supply current IDDAF − − 23 mA IDDOSC − − 2 mA − − 2 mA Oscillator core supply current T CC CC E-Ray PLL core IDDPF supply current CC Data Sheet VDD=1.326 V 79 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters Table 23 Power Supply Parameters (cont’d) Parameter Symbol Values Min. IDDP current at PORST Low IDDP_POR − ST Unit Typ. Max. − 2.5 − IDDP_P mA CC IDDP current no IDDP CC − pad activity, LVDS off 5) mA including flash read current IDDP_P mA including flash programming current 6) IDDP_P mA including flash erase current ORST + 12 − − ORST + 27 − − ORST + 20 7) Flash memory current 5) Note / Test Condition IDDFL3 CC 6) − − 56 mA flash read current − − 21 mA flash programming current 6) − − 56 mA flash erase current 6) Oscillator power supply current, 3.3V IDDOSC3 − − 11.5 mA E-Ray PLL supply current, 3.3V IDDPF3 − − 3.5 mA FADC analog supply current, 3.3V IDDMF − − 15 mA Current ILVDS Consumption of CC LVDS Pad Pairs − − 24 mA ADC 5V power supply current IDDM CC − − 2 mA Maximum power dissipation PD CC − − 1277 mW power pattern= max − − 1042 mW power pattern= realistic CC CC CC for all LVDS pads in total 1) Infineon Power Loop: CPU and PCP running, all peripherals active. The power consumption of each customer application will most probably be lower than this value, but must be evaluated seperately. 2) This current includes the E-Ray module power consumption, including the PCP operation component. Data Sheet 80 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters 3) The IDD decreases typically by 79mA if the fCPU decreases by 50MHz, at constant TJ 4) The IDD decreases typically by 38mA if the fCPU decreases by 50MHz, at constant TJ 5) For operations including the D-Flash the required currents are always lower than the currents for non D-Flash operation. 6) Relevant for the power supply dimensioning, not for thermal considerations. 7) In case of erase of Program Flash PF, internal flash array loading effects may generate transient current spikes of up to 15 mA for maximum 5 ms per flash module. 5.2.6.1 Calculating the 1.3 V Current Consumption The current consumption of the 1.3 V rail compose out of two parts: • • Static current consumption Dynamic current consumption The static current consumption is related to the device temperature TJ and the dynamic current consumption depends of the configured clocking frequencies and the software application executed. These two parts needs to be added in order to get the rail current consumption. (2) I 0 mA = 2, 20897 --------- × e 0, 02696 × T J [ C ] C (3) mA I 0 = 10, 68 --------- × e 0, 02203 × T J [ C ] C Function 2 defines the typical static current consumption and Function 3 defines the maximum static current consumption. Both functions are valid for VDD = 1.326 V. For the dynamic current consumption using the application pattern and fLMB = 2 * fFPI the function 4 applies: (4) mA I D y m = 0, 77 ------------- × f CPU [ MHz ] MHz Data Sheet 81 V 1.1.1, 2014-05 TC1784 Electrical ParametersDC Parameters and this finally results in (5) I DD = I 0 + I DYM Data Sheet 82 V 1.1.1, 2014-05 TC1784 Electrical ParametersAC Parameters 5.3 AC Parameters That means, keeping the pads constantly at maximum strength. 5.3.1 Testing Waveforms VD D P 90% 90% 10% 10% VSS tR tF rise_fall Figure 5 Rise/Fall Time Parameters VD D P VD D E / 2 Test Points VD D E / 2 VSS mct04881_a.vsd Figure 6 Testing Waveform, Output Delay VLoad+ 0.1 V VLoad- 0.1 V Timing Reference Points VOH - 0.1 V VOL - 0.1 V MCT04880_new Figure 7 Data Sheet Testing Waveform, Output High Impedance 83 V 1.1.1, 2014-05 TC1784 Electrical ParametersAC Parameters 5.3.2 Power Sequencing V 5.5V 5V 4.5V VAREF 3.63V 3.3V 2.97V -12% 1.43V 1.3V 1.17V 0.5V -12% 0.5V 0.5V t VDDP PORST Figure 8 power power down fail 5 V / 3.3 V / 1.3 V Power-Up/Down Sequence t The following list of rules applies to the power-up/down sequence: • • • All ground pins VSS must be externally connected to one single star point in the system. Regarding the DC current component, all ground pins are internally directly connected. At any moment in time to avoid increased latch-up risk, each power supply must be higher then any lower_power_supply - 0.5 V, or: VDD5 > VDD3.3 - 0.5 V; VDD5 > VDD1.3 - 0.5 V;VDD3.3 > VDD1.3 - 0.5 V, see Figure 8. – The latch-up risk is minimized if the I/O currents are limited to: – 20 mA for one pin group – AND 100 mA for the completed device I/Os – AND additionally before power-up / after power-down: 1 mA for one pin in inactive mode (0 V on all power supplies) During power-up and power-down, the voltage difference between the power supply pins of the same voltage (3.3 V, 1.3 V, and 5 V) with different names (for example VDDP, VDDFL3 ...), that are internally connected via diodes, must be lower than 100 mV. On the other hand, all power supply pins with the same name (for example all VDDP), Data Sheet 84 V 1.1.1, 2014-05 TC1784 Electrical ParametersAC Parameters 1. 2. 3. 4. 5. 6. are internally directly connected. It is recommended that the power pins of the same voltage are driven by a single power supply. The PORST signal may be deactivated after all VDD5, VDD3.3, VDD1.3, and VAREF powersupplies and the oscillator have reached stable operation, within the normal operating conditions. At normal power down the PORST signal should be activated within the normal operating range, and then the power supplies may be switched off. Care must be taken that all Flash write or delete sequences have been completed. At power fail the PORST signal must be activated at latest when any 3.3 V or 1.3 V power supply voltage falls 12% below the nominal level. If, under these conditions, the PORST is activated during a Flash write, only the memory row that was the target of the write at the moment of the power loss will contain unreliable content. In order to ensure clean power-down behavior, the PORST signal should be activated as close as possible to the normal operating voltage range. In case of a power-loss at any power-supply, all power supplies must be powereddown, conforming at the same time to the rules number 2 and 4. Although not necessary, it is additionally recommended that all power supplies are powered-up/down together in a controlled way, as tight to each other as possible. Additionally, regarding the ADC reference voltage VAREF: – VAREF must power-up at the same time or later then VDDM, and – VAREF must power-down either earlier or at latest to satisfy the condition VAREF < VDDM + 0.5 V. This is required in order to prevent discharge of VAREF filter capacitance through the ESD diodes through the VDDM power supply. In case of discharging the reference capacitance through the ESD diodes, the current must be lower than 5 mA. Data Sheet 85 V 1.1.1, 2014-05 TC1784 Electrical ParametersAC Parameters 5.3.3 Table 24 Power, Pad and Reset Timing Reset Timings Parameters Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition fCPU = 180 MHz Application Reset Boot Time1)2) tB CC 150 − 665 μs Power on Reset Boot Time3)4) tBP CC − − 2.5 ms − − ns − − ns HWCFG pins hold time from ESR0 rising edge tHDH SR 16 / fFPI HWCFG pins setup time to tHDS CC 0 ESR0 rising edge Ports inactive after ESR0 reset active tPI CC − − 8 / fFPI ns Ports inactive after PORST reset active5) tPIP CC − − 150 ns Minimum PORST active time after power supplies are stable at operating levels tPOA CC 10 − − ms TESTMODE / TRST hold time from PORST rising edge tPOH SR 100 − − ns PORST rise time tPOR SR − tPOS SR 0 − 50 ms − − ns − 40 6) μs TESTMODE / TRST setup time to PORST rising edge Application Reset inactive tPOR_APP − after PORST deassertion SR 1) The duration of the boot time is defined between the rising edge of the internal application reset and the clock cycle when the first user instruction has entered the CPU pipeline and its processing starts. 2) The given time includes the time of the internal reset extension for a configured value of SCU_RSTCNTCON.RELSA = 0x05BE. 3) The duration of the boot time is defined between the rising edge of the PORST and the clock cycle when the first user instruction has entered the CPU pipeline and its processing starts. Data Sheet 86 V 1.1.1, 2014-05 TC1784 Electrical ParametersAC Parameters 4) The given time includes the internal reset extension time for the System and Application Reset which is visible through ESR0. 5) This parameter includes the delay of the analog spike filter in the PORST pad. 6) Application Reset is assumed not to be extended from external, otherwise the time extends by the time the Application Reset is extended. VDD P -12% VD D PPA V D DPPA VDDP VDD VD D -12% tPOA tPOA PORST tPOH TRST TESTMODE ESR0 tPOH t hd t hd tHDH tHDH tHDH HWCFG t PIP tPI Pads tPI t PIP tPI tPI t PIP tPI Pad-state undefined Tri-state or pull device active reset_beh2 As programmed Figure 9 Data Sheet Power, Pad and Reset Timing 87 V 1.1.1, 2014-05 TC1784 Electrical ParametersAC Parameters 5.3.4 Table 25 Phase Locked Loop (PLL) PLL_SysClk Parameters Parameter Symbol Values Min. Typ. DP CC -7 fPLLBASE 50 Accumulated Jitter PLL base frequency Unit Max. − 7 ns 200 320 MHz − 16 MHz − 720 MHz Note / Test Condition CC VCO input frequency fREF CC 8 fVCO CC 400 tL CC 14 VCO frequency range PLL lock-in time 14 − 200 μs N > 32 − 400 μs N ≤ 32 Phase Locked Loop Operation When PLL operation is enabled and configured, the PLL clock fVCO (and with it the LMBBus clock fLMB) is constantly adjusted to the selected frequency. The PLL is constantly adjusting its output frequency to correspond to the input frequency (from crystal or clock source), resulting in an accumulated jitter that is limited. This means that the relative deviation for periods of more than one clock cycle is lower than for a single clock cycle. This is especially important for bus cycles using wait states and for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is negligible. Two formulas are defined for the (absolute) approximate maximum value of jitter Dm in [ns] dependent on the K2 - factor, the LMB clock frequency fLMB in [MHz], and the number m of consecutive fLMB clock periods. for ( K2 ≤ 100 ) ( m ≤ ( f LMB [ MHz ] ) ⁄ 2 ) and ( 1 – 0, 01 × K2 ) × ( m – 1 ) D m [ ns ] = ⎛⎝ --------------------------------------------- + 5⎞⎠ × ⎛⎝ ---------------------------------------------------------------- + 0, 01 × K2⎞⎠ K2 × f LMB [ MHz ] 0, 5 × f LMB [ MHz ] – 1 740 else 740 D m [ ns ] = --------------------------------------------- + 5 K2 × f LMB [ MHz ] (6) (7) With rising number m of clock cycles the maximum jitter increases linearly up to a value of m that is defined by the K2-factor of the PLL. Beyond this value of m the maximum Data Sheet 88 V 1.1.1, 2014-05 TC1784 Electrical ParametersAC Parameters accumulated jitter remains at a constant value. Further, a lower LMB-Bus clock frequency fLMB results in a higher absolute maximum jitter value. Note: The specified PLL jitter values are valid if the capacitive load per pin does not exceed CL = 20 pF with the maximum driver and sharp edge. Note: The maximum peak-to-peak noise on the pad supply voltage, measured between VDDOSC3 and VSSOSC, is limited to a peak-to-peak voltage of VPP = 100 mV for noise frequencies below 300 KHz and VPP = 40 mV for noise frequencies above 300 KHz. The maximum peak-to peak noise on the pad supply voltage, measured between VDDOSC and VSSOSC, is limited to a peak-to-peak voltage of VPP = 100 mV for noise frequencies below 300 KHz and VPP = 40 mV for noise frequencies above 300 KHz. These conditions can be achieved by appropriate blocking of the supply voltage as near as possible to the supply pins and using PCB supply and ground planes. Oscillator Watchdog (OSC_WDT) The expected input frequency is selected via the bit field SCU_OSCCON.OSCVAL. The OSC_WDT checks for too low frequencies and for too high frequencies. The frequency that is monitored is fOSCREF which is derived for fOSC. (8) f O S C R EF fO S C = ---------------------------------OSCVAL + 1 The divider value SCU_OSCCON.OSCVAL has to be selected in a way that fOSCREF is 2.5 MHz. Note: fOSCREF has to be within the range of 2 MHz to 3 MHz and should be as close as possible to 2.5 MHz. The monitored frequency is too low if it is below 1.25 MHz and too high if it is above 7.5 MHz. This leads to the following two conditions: • • Too low: fOSC < 1.25 MHz × (SCU_OSCCON.OSCVAL+1) Too high: fOSC > 7.5 MHz × (SCU_OSCCON.OSCVAL+1) Note: The accuracy is 30% for these boundaries. Data Sheet 89 V 1.1.1, 2014-05 TC1784 Electrical ParametersAC Parameters 5.3.5 Table 26 ERAY Phase Locked Loop (ERAY_PLL) PLL_ERAY Parameters Parameter Symbol Values Min. Unit Typ. Max. Accumulated jitter at SYSCLK pin DPP CC -0.8 − 0.8 ns Accumulated_Jitter DP CC -0.5 fPLLBASE_ 50 − 0.5 ns 250 360 MHz PLL Base Frequency of the ERAY PLL ERAY Note / Test Condition CC VCO input frequency of the ERAY PLL fREF CC 20 − 40 MHz VCO frequency range of the ERAY PLL fVCO_ERA 450 − 500 MHz Y CC PLL lock-in time tL CC − 200 μs 5.6 Note: The specified PLL jitter values are valid if the capacitive load per pin does not exceed CL = 20 pF with the maximum driver and sharp edge. Note: The maximum peak-to-peak noise on the pad supply voltage, measured between VDDPF3 and VSSOSC, is limited to a peak-to-peak voltage of VPP = 100 mV for noise frequencies below 300 KHz and VPP = 40 mV for noise frequencies above 300 KHz. These conditions can be achieved by appropriate blocking of the supply voltage as near as possible to the supply pins and using PCB supply and ground planes. Data Sheet 90 V 1.1.1, 2014-05 TC1784 Electrical ParametersAC Parameters 5.3.6 JTAG Interface Timing The following parameters are applicable for communication through the JTAG debug interface. The JTAG module is fully compliant with IEEE1149.1-2000. Note: These parameters are not subject to production test but verified by design and/or characterization. Table 27 JTAG Interface Timing Parameters (Operating Conditions apply) Parameter Min. Typ. Max. Unit Note / Test Condition t1 SR t2 SR t3 SR t4 SR t5 SR t6 SR 25 – – ns – 10 – – ns – 10 – – ns – – – 4 ns – – – 4 ns – 6 – – ns – t7 SR 6 – – ns – TDO valid after TCK falling t8 CC edge1) (propagation delay) t CC 8 – – 13 ns CL = 50 pF 3 – – ns CL = 20 pF TDO hold after TCK falling t18 CC edge1) 2 – – ns TDO high imped. to valid from TCK falling edge1)2) t9 CC – – 14 ns CL = 50 pF TDO valid to high imped. from TCK falling edge1) t10 CC – – 13.5 ns CL = 50 pF TCK clock period TCK high time TCK low time TCK clock rise time TCK clock fall time TDI/TMS setup to TCK rising edge TDI/TMS hold after TCK rising edge Symbol Values 1) The falling edge on TCK is used to generate the TDO timing. 2) The setup time for TDO is given implicitly by the TCK cycle time. Data Sheet 91 V 1.1.1, 2014-05 TC1784 Electrical ParametersAC Parameters t1 0.9 VD D P 0.5 VD D P t5 t2 0.1 VD D P t4 t3 MC_ JTAG_ TCK Figure 10 Test Clock Timing (TCK) TCK t6 t7 t6 t7 TMS TDI t9 t8 t1 0 TDO t18 Figure 11 Data Sheet MC_JTAG JTAG Timing 92 V 1.1.1, 2014-05 TC1784 Electrical ParametersAC Parameters 5.3.7 DAP Interface Timing The following parameters are applicable for communication through the DAP debug interface. Note: These parameters are not subject to production test but verified by design and/or characterization. Table 28 DAP Parameters Parameter Symbol DAP0 clock period1) tTCK SR t12 SR t13 SR t14 SR t15 SR t16 SR DAP0 high time 1) DAP0 low time DAP0 clock rise time DAP0 clock fall time DAP1 setup to DAP0 rising edge Values Unit Min. Typ. Max. 12.5 − − ns 4 − − ns 4 − − ns − − 2 ns − − 2 ns 6.0 − − ns DAP1 hold after DAP0 rising edge t17 SR 6.0 − − ns DAP1 valid per DAP0 clock period2) t19 CC 8 − − ns 10 − − ns Note / Test Condition CL= 20 pF; f= 80 MHz CL= 50 pF; f= 40 MHz 1) See the DAP chapter for clock rate restrictions in the Active:IDLE protocol state. 2) The Host has to find a suitable sampling point by analyzing the sync telegram response. t11 0.9 VD D P 0.5 VD D P t1 5 t1 2 t14 0.1 VD D P t1 3 MC_DAP0 Figure 12 Data Sheet Test Clock Timing (DAP0) 93 V 1.1.1, 2014-05 TC1784 Electrical ParametersAC Parameters DAP0 t1 6 t1 7 DAP1 MC_ DAP1_RX Figure 13 DAP Timing Host to Device t1 1 DAP1 t1 9 MC_ DAP1_TX Figure 14 Data Sheet DAP Timing Device to Host 94 V 1.1.1, 2014-05 TC1784 Electrical ParametersAC Parameters 5.3.8 Peripheral Timings Note: Peripheral timing parameters are not subject to production test. They are verified by design/characterization. 5.3.8.1 Micro Link Interface (MLI) Timing MLI Transmitter Timing t13 t14 t10 t12 TCLKx t11 t15 t15 TDATAx TVALIDx t16 t17 TREADYx MLI Receiver Timing t23 t24 t20 RCLKx t22 t21 t25 t26 RDATAx RVALIDx t27 t27 RREADYx MLI_Tmg_2.vsd Figure 15 MLI Interface Timing Note: The generation of RREADYx is in the input clock domain of the receiver. The reception of TREADYx is asynchronous to TCLKx. Data Sheet 95 V 1.1.1, 2014-05 TC1784 Electrical ParametersAC Parameters The MLI parameters are vaild for CL = 50 pF and strong driver medium edge. Table 29 MLI Receiver Parameter Symbol Values Unit Min. Typ. 1 / fFPI − − ns − 0.5 x − ns − ns − 4 ns − − 4 ns 4.2 − − ns RDATA/RVALID hold time t26 CC after RCLK falling edge 2.2 − − ns RREADY output delay time 0 − 16 ns RCLK clock period RCLK high time1)2) t20 SR t21 SR Max. Note / Test Condition t20 RCLK low time1)2) t22 SR − 0.5 x t20 RCLK rise time3) RCLK fall time 3) RDATA/RVALID setup time before RCLK falling edge t23 SR t24 SR t25 SR t27 CC − 1) The following formula is valid: t21 + t22 = t20. 2) Min and Max values for this parameter can be derived from the typ. value by considering the other receiver timing parameters. 3) The RCLK max. input rise/fall times are best case parameters for fSYS = 90 MHz. For reduction of EMI, slower input signal rise/fall times can be used for longer RCLK clock periods. Table 30 MLI Transmitter Parameter TCLK clock period Symbol t10 CC Values Unit Min. Typ. Max. 2x1/ − − ns 0.45 x 0.5 x 0.55 x ns t10 t10 t10 0.45 x 0.5 x 0.55 x t10 t10 t10 − − 0.3 x Note / Test Condition fFPI TCLK high time1)2) TCLK low time1)2) TCLK rise time Data Sheet t11 CC t12 CC t13 CC 96 t103) ns ns V 1.1.1, 2014-05 TC1784 Electrical ParametersAC Parameters MLI Transmitter (cont’d) Table 30 Parameter Symbol Values Unit Min. Typ. Max. TCLK fall time t14 CC − − 0.3 x ns TDATA/TVALID output delay time t15 CC -3 − 4.4 ns TREADY setup time before TCLK rising edge t16 SR 18 − − ns TREADY hold time after TCLK rising edge t17 SR -2 − − ns t103) Note / Test Condition 1) The following formula is valid: t11 + t12 = t10. 2) The min./max. TCLK low/high times t11/t12 include the PLL jitter of fSYS. Fractional divider settings must be regarded additionally to t11 / t12. 3) For high-speed MLI interface, strong driver sharp or medium edge selection (class A2 pad) is recommended for TCLK. 5.3.8.2 Micro Second Channel (MSC) Interface Timing The MSC parameters are vaild for CL = 50 pF. Table 31 MSC Parameters Parameter Symbol FCLP clock period1)2) t40 CC SOP4)/ENx outputs delay from FCLP4) rising edge t45 CC Data Sheet Values Unit Note / Test Condition Min. Typ. Max. 2x − − ns -2 − 5 ns ENx with strong driver and sharp (minus ) edge -2 − 10 ns ENx with strong driver and medium (minus) edge 0 − 21 ns ENx with strong driver and soft edge TMSC3) 97 V 1.1.1, 2014-05 TC1784 Electrical ParametersAC Parameters Table 31 MSC Parameters (cont’d) Parameter Symbol SDI bit time t46 CC Values Unit Min. Typ. Max. 8x − − ns − − 200 ns − − 200 ns Note / Test Condition TMSC SDI rise time t48 SR t49 SR SDI fall time 1) FCLP signal rise/fall times are only defined by the pad rise/fall times. 2) FCLP signal high and low can be minimum 1xTMSC 3) TMSC = TSYS = 1 / fSYS. 4) SOP / FCLP either propagated by LVDS or by CMOS strong driver and non soft edge. t40 0.9 VDDP 0.1 VDDP FCLP t45 t45 SOP EN t48 t49 0.9 VDDP 0.1 VDDP SDI t46 Figure 16 t46 MSC_Tmg_1.vsd MSC Interface Timing Note: The data at SOP should be sampled with the falling edge of FCLP in the target device. Data Sheet 98 V 1.1.1, 2014-05 TC1784 Electrical ParametersAC Parameters 5.3.8.3 SSC Master/Slave Mode Timing The SSC parameters are vaild for CL = 50 pF and strong driver medium edge. Table 32 SSC Parameters Parameter SCLK clock period1)2)3) Symbol t50 CC Values Unit Min. Typ. Max. 2x1/ − − ns Note / Test Condition fFPI MTSR/SLSOx delay form SCLK rising edge t51 CC 0 − 8 ns MRST setup to SCLK latching edge3) t52 SR 16.5 − − ns MRST hold from SCLK latching edge3) t53 SR 0 − − ns SCLK input clock period1)3) t54 SR 4x1/ − − ns SCLK input clock duty cycle t55_t54 45 − 55 % MTSR setup to SCLK latching edge3)4) t56 SR 1 / fFPI − − ns MTSR hold from SCLK latching edge t57 SR 1 / fFPI +5 − − ns SLSI setup to first SCLK latching edge t58 SR 1 / fFPI +5 − − ns SLSI hold from last SCLK t59 SR latching edge 5) 7 − − ns MRST delay from SCLK shift edge t60 CC 0 − 16.5 ns SLSI to valid data on MRST t61 CC − − 16.5 ns fFPI SR 1) SCLK signal rise/fall times are the same as the rise/fall times of the pad. 2) SCLK signal high and low times can be minimum 1xTSSC. 3) TSSCmin = TSYS = 1/fSYS. 4) Fractional divider switched off, SSC internal baud rate generation used. 5) For CON.PH=1 slave select must not be removed before the following shifting edge. This mean, that what ever is configured (shifting / latching first), SLSI must not be de-actived before the last trailing edge from the pair of shifting / latching edges. Data Sheet 99 V 1.1.1, 2014-05 TC1784 Electrical ParametersAC Parameters t50 SCLK1)2) t51 t51 MTSR1) t52 t53 Data valid 1) MRST t51 2) SLSOn 1) This timing is based on the following setup: CON.PH = CON.PO = 0. 2) The transition at SLSOn is based on the following setup: SSOTC.TRAIL = 0 and the first SCLK high pulse is in the first one of a transmission. SSC_TmgMM Figure 17 SSC Master Mode Timing t54 First latching SCLK edge First shift SCLK edge SCLK1) t55 t56 Last latching SCLK edge t55 t56 t57 Data valid 1) MTSR t57 Data valid t60 t60 1) MRST t61 SLSI t59 t58 1) This timing is based on the following setup: CON.PH = CON.PO = 0. Figure 18 Data Sheet SSC_TmgSM SSC Slave Mode Timing 100 V 1.1.1, 2014-05 TC1784 Electrical ParametersAC Parameters 5.3.8.4 ERAY Interface Timing The timings of this section are valid for the strong driver and either sharp edge or medium edge settings of the output drivers with CL = 25 pF. Table 33 ERAY Parameters Parameter Symbol Values Time span from last BSS to FES without the influence of quartz tolerancies (d10Bit_TX)1) t60 CC 997.75 − 1002.2 ns 5 TxD data valid from fsample flip flop txd_reg TxDA, TxDB (dTxAsym)2)3) t61-t62 − − 1.5 Time span between last BSS and FES without influence of quartz tolerancies (d10Bit_RX)1)4)5) t63 SR 966 − 1046.1 ns RxD capture by fsample (RxDA/RxDB sampling flip-flop) (dRxAsym)5) t64-t65 − − 3.0 ns Asymmetrical delay of rising and falling edge (RxDA, RxDB) TxD data delay from sampling flip-flop dTxdly − − 10.0 ns Px_PDR.PDy = 000B − − 15.0 ns Px_PDR.PDy = 001B − − 10.0 ns Min. RxD capture delay by sampling flip-flop Typ. Unit Max. ns CC CC CC dRxdly Note / Test Condition Asymmetrical delay of rising and falling edge (TxDA, TxDB) CC 1) This includes the PLL_ERAY accumulated jitter. 2) Refers to delays caused by the asymmetries of the output drivers of the digital logic and the GPIO pad drivers. Quarz tolerance and PLL_ERAY accumulated jitter are not included. 3) E-Ray TxD output drivers have an asymmetry of rising and falling edges of |tFA2 - tRA2| ≤ 1 ns. 4) Limits of 966ns and 1046.1ns correspond to (30%, 70%) * VDDP FlexRay standard input thresholds. For input thresholds of this product, a correction of - 0.5 ns and +0.1 ns has to be applied. 5) Valid for output slopes of the bus driver of dRxSlope ≤ 5ns, 20% * VDDP to 80% * VDDP, according to the FlexRay Electrical Physical Layer Specification V2.1B. For A2 pads, the rise and fall times of the incoming signal have to satisfy the following inequality: -1.6ns ≤ tFA2 - tRA2 ≤ 1.3ns. Data Sheet 101 V 1.1.1, 2014-05 TC1784 Electrical ParametersAC Parameters Last CRC Byte BSS (Byte Start Sequence) FES (Frame End Sequence) 0.7 VDD 0.3 VDD TXD t60 tsample TXD 0.9 VDD 0.1 VDD t61 t62 Last CRC Byte BSS (Byte Start Sequence) FES (Frame End Sequence) 0.7 VDD 0.3 VDD RXD t63 tsample RXD 0.7 VDD 0.3 VDD t64 t65 ERAY_TIMING Figure 19 Data Sheet ERAY Timing 102 V 1.1.1, 2014-05 TC1784 Electrical ParametersAC Parameters 5.3.8.5 EBU Timings EBU Asynchronous Timings VSS = 0 V;VDD = 1.3 V ± 5%; VDDEBU = 2.5 V ± 5% and 3.3 V ± 5%, Class A2 pins; CL = 35 pF for address/data; CL = 40pF for the control lines. For each timing, the accumulated PLL jitter of the programed duration in number of clock periods must be added separately. Operating conditions apply and CL = 35 pF. Table 34 EBU Common Asynchronous Timings Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. Pulse wdih deviation from ta CC the ideal programmed width due to B pad asymmetry, rise delay - fall delay -0.8 − 0.8 ns edge= medium -0.8 − 0.8 ns edge= sharp AD(31:0) output delay to ADV# rising edge, multiplexed read / write t13 CC -5.5 − 2 ns AD(31:0) output delay to ADV# rising edge, multiplexed read / write t14 CC -5.5 − 2 ns Table 35 Parameter EBU Asynchronous Read Timings Symbol Values Unit Min. Typ. Max. A(23:0) output delay to RD t0 CC rising edge, deviation from the ideal programmed value -2.5 − 2.5 ns A(23:0) output delay to RD t1 CC rising edge, deviation from the ideal programmed value -2.5 − 2.5 ns Data Sheet 103 Note / Test Condition V 1.1.1, 2014-05 TC1784 Electrical ParametersAC Parameters Table 35 Parameter EBU Asynchronous Read Timings (cont’d) Symbol Values Unit Min. Typ. Max. CS rising edge to RD t2 CC rising edge, deviation from the ideal programmed value -2 − 2.5 ns ADV rising edge to RD t3 CC rising edge, deviation from the ideal programmed value -1.5 − 4.5 ns BC rising edge to RD t4 CC rising edge, deviation from the ideal programmed value -2.5 − 2.5 ns WAIT input setup to RD t5 SR rising edge, deviation from the ideal programmed value 12 − − ns WAIT input hold to RD t6 SR rising edge, deviation from the ideal programmed value 0 − − ns Data input setup to RD t7 SR rising edge, deviation from the ideal programmed value 12 − − ns Data input hold to RD t8 SR rising edge, deviation from the ideal programmed value 0 − − ns t9 CC MR / W output delay to RD# rising edge, deviation from the ideal programmed value -2.5 − 1.5 ns Data Sheet 104 Note / Test Condition V 1.1.1, 2014-05 TC1784 Electrical ParametersAC Parameters EBU STATE Address Phase Address Hold Phase (opt.) Command Delay Phase Command Phase Recovery Phase (opt.) New Addr. Phase Control Bitfield: ADDRC AHOLDC CMDDELAY RDWAIT RDRECOVC ADDRC 1...15 0...15 0...7 1...31 Duration Limits in EBU_CLK Cycles 0...15 1...15 Next Addr. Valid Address A[23:0] pv + t0 pv + ta CS[3:0] CSCOMB pv + ta pv + pv + t1 t2 t3 ADV pv + ta RD pv + ta pv + ta t4 BC[3:0] pv + t5 t6 WAIT pv + AD[31:0] MR/W t13 pv + t14 t7 Address Out Data In pv + t9 pv = programmed value, TEBU_CLK * sum (correponding bitfield values) Figure 20 Data Sheet t8 new_MuxRD_Async_10.vsd Multiplexed Read Access 105 V 1.1.1, 2014-05 TC1784 Electrical ParametersAC Parameters EBU STATE Control Bitfield: Duration Limits in EBU_CLK Cycles Address Phase Address Hold Phase (opt.) Command Phase Recovery Phase (opt.) New Addr. Phase ADDRC AHOLDC RDWAIT RDRECOVC ADDRC 1...15 0...15 1...31 0...15 Next Addr. Valid Address A[23:0] pv + pv + t1 t0 pv + CS[3:0] CSCOMB pv + 1...15 t2 ta pv + t3 ta ADV pv + ta RD pv + ta pv + ta t4 BC[3:0] pv + t5 t6 WAIT t7 AD[31:0] Data In MR/W pv + pv = programmed value, TEBU_CLK * sum (correponding bitfield values) Figure 21 Data Sheet t8 t9 new_DemuxRD_Async_10.vsd Demultiplexed Read Access 106 V 1.1.1, 2014-05 TC1784 Electrical ParametersAC Parameters Table 36 Parameter EBU Asynchnronous Write Timings Symbol Values Unit Min. Typ. Max. t30 CC A(23:0) output delay to WR rising edge, deviation from the ideal programmed value -2.5 − 2.5 ns A(23:0) output delay to t31 CC WR rising edge, deviation from the ideal programmed value -2.5 − 2.5 ns CS rising edge to WR t32 CC rising edge, deviation from the ideal programmed value -2 − 2 ns ADV rising edge to WR t33 CC rising edge, deviation from the ideal programmed value -2.5 − 2 ns BC rising edge to WR t34 CC rising edge, deviation from the ideal programmed value -2.5 − 2 ns WAIT input setup to WR t35 SR rising edge, deviation from the ideal programmed value 12 − − ns WAIT input hold to WR t36 SR rising edge, deviation from the ideal programmed value 0 − − ns Data output delay to WR t37 CC rising edge, deviation from the ideal programmed value -5.5 − 2 ns Data Sheet 107 Note / Test Condition V 1.1.1, 2014-05 TC1784 Electrical ParametersAC Parameters Table 36 Parameter EBU Asynchnronous Write Timings (cont’d) Symbol Values Unit Min. Typ. Max. Data output delay to WR t38 CC rising edge, deviation from the ideal programmed value -5.5 − 2 ns MR / W output delay to t39 CC WR rising edge, deviation from the ideal programmed value -2.5 − 1.5 ns Data Sheet 108 Note / Test Condition V 1.1.1, 2014-05 TC1784 Electrical ParametersAC Parameters EBU STATE Address Phase Address Hold Phase (opt.) Command Phase Data Hold Phase Recovery Phase (opt.) Control Bitfield: ADDRC AHOLDC RDWAIT DATAC RDRECOVC 1...31 0...15 Duration Limits in EBU_CLK Cycles 1...15 0...15 A[23:0] 0...15 pv + t30 pv + ADDRC 1...15 Next Addr. Valid Address CS[3:0] CSCOMB New Addr. Phase pv + t31 ta pv + t32 pv + t33 pv + ta ADV pv + ta RD/WR pv + ta pv + ta BC[3:0] t34 t35 WAIT t36 t14 pv + t13 AD[31:0] MR/W pv + t37 pv + t38 Data Out Address Out pv + t39 pv = programmed value, TEBU_CLK * sum (correponding bitfield values) Figure 22 Data Sheet new_MuxWR_Async_10.vsd Multiplexed Write Access 109 V 1.1.1, 2014-05 TC1784 Electrical ParametersAC Parameters EBU STATE Address Phase Control Bitfield: ADDRC Duration Limits in EBU_CLK Cycles 1...15 Address Hold Phase (opt.) AHOLDC 0...15 A[23:0] Command Phase Data Hold Phase RDWAIT DATAC 1...31 0...15 Recovery Phase (opt.) RDRECOVC 0...15 pv + t30 pv + ADDRC 1...15 Next Addr. Valid Address CS[3:0] CSCOMB New Addr. Phase pv + t31 ta pv + t32 pv + t33 pv + ta ADV pv + ta RD/WR pv + ta pv + ta BC[3:0] t34 t35 WAIT t36 pv + t37 AD[31:0] MR/W Data Out pv + t39 pv = programmed value, TEBU_CLK * sum (correponding bitfield values) Figure 23 Data Sheet pv + t38 new_DemuxWR_Async_10.vsd Demultiplexed Write Access 110 V 1.1.1, 2014-05 TC1784 Electrical ParametersPackage and Reliability 5.4 Package and Reliability 5.4.1 Package Parameters Table 37 Thermal Characteristics of the Package Device Package TC1784 PG-LFBGA-292- 6,8 6 RΘJCT1) RΘJCB1) RΘJLead Unit Note 4,8 17,0 K/W 1) The top and bottom thermal resistances between the case and the ambient (RTCAT, RTCAB) are to be combined with the thermal resistances between the junction and the case given above (RTJCT, RTJCB), in order to calculate the total thermal resistance between the junction and the ambient (RTJA). The thermal resistances between the case and the ambient (RTCAT, RTCAB) depend on the external system (PCB, case) characteristics, and are under user responsibility. The junction temperature can be calculated using the following equation: TJ = TA + RTJA × PD, where the RTJA is the total thermal resistance between the junction and the ambient. This total junction ambient resistance RTJA can be obtained from the upper four partial thermal resistances. Thermal resistances as measured by the ’cold plate method’ (MIL SPEC-883 Method 1012.1). Data Sheet 111 V 1.1.1, 2014-05 TC1784 Electrical ParametersPackage and Reliability Package Outline 292x 0.5 ±0.05 0.15 M C A B 0.08 M C 1.7 MAX A 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1 7 ±0 .1 0.1 C CODE COPLANARITY INDEX MARKING (LASERED ) S E A TIN G P LA N E 292x 0.15 C Y W V U T R P N M L K J HG F E D C B A 19 x 0 .8 = 1 5. 2 17 ±0. 1 B 0 .8 5.4.2 INDEX MARKING 0.8 19 x 0.8 = 15.2 0.33 MIN STANDOFF Figure 24 Package Outlines PG-LFBGA-292-6 You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”: http://www.infineon.com/products. 5.4.3 Flash Memory Parameters The data retention time of the TC1784’s Flash memory depends on the number of times the Flash memory has been erased and programmed. Table 38 FLASH32 Parameters Parameter Symbol Values Min. Unit Typ. Max. Data Flash Erase Time per Sector tERD CC − − 31) s Program Flash Erase Time per 256 KByte Sector tERP CC − − 5 s Data Sheet 112 Note / Test Condition V 1.1.1, 2014-05 TC1784 Electrical ParametersPackage and Reliability Table 38 FLASH32 Parameters (cont’d) Parameter Symbol Values Unit Note / Test Condition 5.3 ms without reprogramming − 15.9 ms with two reprogramming cycles tPRP CC − − 5.3 ms without reprogramming − − 10.6 ms with one reprogramming cycle − cycle Min. data s retention time 5 years Min. Program time data flash per page2) Program time program flash per page3) Data Flash Endurance Typ. Max. tPRD CC − − − NE CC 60000 − 4) tFL_ErSusp − − 15 ms tFL_Margin 10 − − μs Program Flash Retention Time, Physical Sector5)6) tRET CC 20 − − year s Max. 1000 erase/program cycles Program Flash Retention Time, Logical Sector5)6) tRETL CC 20 − − year s Max. 100 erase/program cycles UCB Retention Time5)6) tRTU CC 20 − − year s Max. 4 erase/program cycles per UCB Wake-Up time tWU CC WSDF − 270 μs Erase suspend delay CC Wait time after margin change DFlash wait state configuration PFlash wait state configuration Del CC CC WSPF CC − 50 ns x − fFSI 26 ns x − fFSI − − 1) In case of wordline oriented defects (see robust EEPROM emulation in the User's Manual) this erase time can increase by up to 100%. 2) In case the Program Verify feature detects weak bits, these bits will be programmed up to twice more. Each reprogramming takes additional 5 ms. Data Sheet 113 V 1.1.1, 2014-05 TC1784 Electrical ParametersPackage and Reliability 3) In case the Program Verify feature detects weak bits, these bits will be programmed once more. The reprogramming takes additional 5 ms. 4) Only valid when a robust EEPROM emulation algorithm is used. For more details see the User´s Manual. 5) Storage and inactive time included. 6) At average weighted junction temperature Tj = 100°C, or the retention time at average weighted temperature of Tj = 110°C is minimum 10 years, or the retention time at average weighted temperature of Tj = 150°C is minimum 0.7 years. 5.4.4 Table 39 Quality Declarations Quality Parameters Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. – – 24000 hours –2) ESD susceptibility VHBM according to Human Body Model (HBM) – – 2000 V Conforming to JESD22-A114-B ESD susceptibility VHBM1 of the LVDS pins – – 500 V – ESD susceptibility VCDM according to Charged Device Model (CDM) – – 500 V Conforming to JESD22-C101-C Moisture Sensitivity Level – – 3 – Conforming to Jedec J-STD-020C for 240°C Operation Lifetime1) tOP MSL 1) This lifetime refers only to the time when the device is powered on. 2) For worst-case temperature profile equivalent to: 1200 hours at Tj = 125...150oC 3600 hours at Tj = 110...125oC 7200 hours at Tj = 100...110oC 11000 hours at Tj = 25...100oC 1000 hours at Tj = -40...25oC Data Sheet 114 V 1.1.1, 2014-05 TC1784 History 6 History The Version 0.7 is the first version of this document: The following changes where done between Version 0.7 and 0.71 of this document: • • update and coorect figure 3-2 update and correct table 3-1 The following changes where done between Version 0.71 and 1.0 of this document: • • • • • • • • • • • • • • adapt Absolute Maximum Rating clarify pad supply levels in Pin Reliability in Overload section add note at the end of Pin Reliability in Overload section clarify wording for valid operating conditions split FADC DNL parameter into two conditions and change value for gain 4 and 8 add footnote 5 to IDDP add footnote for D-Flash currents in power section rework first sentence for chapter 5.3 reduce min value for tL for both PLLs add for MLI and SSC timing parameter: valid strong driver medium edge only change MLI parameter t17 min value update parameter description for SSC parameters t52, t53, t56, t57, t58, and t59 change SSC parameters from CC to SR Symbol for t56, t57, t58 and t59 add footnote to Flash parameter tERD The following changes where done between Version 1.0 and 1.1 of this document: • • • • • • • remove the following product options: – SAK-TC1784N-320F180EL add the following product options: – SAK-TC1784F-320F180EP change t48 from 100ns to 200ns in table 42 change t49 from 100ns to 200ns in table 42 extend KOVAN conditon from IOV≤ 0 mA; IOV≥ -1 mA to IOV≤ 0 mA; IOV≥ -2 mA change parameter EFOFF from +-90mV to +-120 for condition Calibration = No change package version from PG-LFBGA-292-3 to PG-LFBGA-292-6 The following changes where done between Version 1.1 and 1.1.1 of this document: • change parameter EFOFF from +-120mV to +-90 for condition Calibration = No Data Sheet 115 V 1.1.1, 2014-05 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG