TC1782 Data Sheet

32-Bit
Microcontroller
TC1782
32-Bit Single-Chip Microcontroller
Data Sheet
V 1.4.1 2014-05
Microcontrollers
Edition 2014-05
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2014 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
32-Bit
Microcontroller
TC1782
32-Bit Single-Chip Microcontroller
Data Sheet
V 1.4.1 2014-05
Microcontrollers
TC1782
Table of Contents
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
1
Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
2
2.1
System Overview of the TC1782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
3
3.1
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
TC1782 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17
4
Identification Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-42
5
5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.6.1
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7
5.3.8
5.3.8.1
5.3.8.2
5.3.8.3
5.3.8.4
5.4
5.4.1
5.4.2
Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-45
General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-45
Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-45
Pad Driver and Pad Classes Summary . . . . . . . . . . . . . . . . . . . . . . . 5-46
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-47
Pin Reliability in Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-48
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-50
DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-59
Input/Output Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-59
Analog to Digital Converters (ADCx) . . . . . . . . . . . . . . . . . . . . . . . . . 5-74
Fast Analog to Digital Converter (FADC) . . . . . . . . . . . . . . . . . . . . . . 5-80
Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-85
Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-86
Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-87
Calculating the 1.3 V Current Consumption . . . . . . . . . . . . . . . . . 5-91
AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-92
Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-92
Power Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-93
Power, Pad and Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-96
Phase Locked Loop (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-99
ERAY Phase Locked Loop (ERAY_PLL) . . . . . . . . . . . . . . . . . . . . . 5-101
JTAG Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-102
DAP Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-104
Peripheral Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-106
Micro Link Interface (MLI) Timing . . . . . . . . . . . . . . . . . . . . . . . . 5-106
Micro Second Channel (MSC) Interface Timing . . . . . . . . . . . . . 5-108
SSC Master/Slave Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . 5-110
ERAY Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-112
Package and Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-114
Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-114
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-115
Data Sheet
I-1
V 1.4.1, 2014-05
TC1782
5.4.3
5.4.4
6
Data Sheet
Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-115
Quality Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-117
History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-119
I-2
V 1.4.1, 2014-05
TC1782
Data Sheet
3
V 1.4.1, 2014-05
TC1782
Data Sheet
4
V 1.4.1, 2014-05
TC1782
Summary of Features
1
Summary of Features
The SAK-TC1782F-320F180HR / SAK-TC1782F-320F180HL
features:
•
•
•
•
•
•
•
has
the
following
High-performance 32-bit super-scalar TriCore V1.3.1 CPU with 4-stage pipeline
– Superior real-time performance
– Strong bit handling
– Fully integrated DSP capabilities
– Single precision Floating Point Unit (FPU)
– 180 MHz operation at full temperature range
32-bit Peripheral Control Processor with single cycle instruction (PCP2)
– 16 Kbyte Parameter Memory (PRAM)
– 32 Kbyte Code Memory (CMEM)
– 180 MHz operation at full temperature range
Multiple on-chip memories
– 2.5 Mbyte Program Flash Memory (PFLASH) with ECC
– 128 Kbyte Data Flash Memory (DFLASH) usable for EEPROM emulation
– 128 Kbyte Data Memory (LDRAM)
– Instruction Cache: up to 16 Kbyte (ICACHE, configurable)
– 40 Kbyte Code Scratchpad Memory (SPRAM)
– Data Cache: up to 4 Kbyte (DCACHE, configurable)
– 8 Kbyte Overlay Memory (OVRAM)
– 16 Kbyte BootROM (BROM)
16-Channel DMA Controller
Sophisticated interrupt system with 2 × 255 hardware priority arbitration levels
serviced by CPU or PCP2
High performing on-chip bus structure
– 64-bit Local Memory Buses between CPU, Flash and Data Memory
– 32-bit System Peripheral Bus (SPB) for on-chip peripheral and functional units
– One bus bridge (LFI Bridge)
Versatile On-chip Peripheral Units
– Two Asynchronous/Synchronous Serial Channels (ASC) with baud rate generator,
parity, framing and overrun error detection
– Three High-Speed Synchronous Serial Channels (SSC) with programmable data
length and shift direction
– One serial Micro Second Bus interface (MSC) for serial port expansion to external
power devices
– One High-Speed Micro Link interface (MLI) for serial inter-processor
communication
– One MultiCAN Module with 3 CAN nodes and 128 free assignable message
objects for high efficiency data handling via FIFO buffering and gateway data
transfer (one CAN node supports TTCAN functionality)
– One FlexRayTM module with 2 channels (E-Ray).
Data Sheet
1
V 1.4.1, 2014-05
TC1782
Summary of Features
•
•
•
•
•
•
•
•
– One General Purpose Timer Array Module (GPTA) with additional Local Timer Cell
Array (LTCA2) providing a powerful set of digital signal filtering and timer
functionality to realize autonomous and complex Input/Output management
32 analog input lines for ADC
– 2 independent kernels (ADC0 and ADC1)
– Analog supply voltage range from 3.3 V to 5 V (single supply)
4 different FADC input channels
– channels with impedance control and overlaid with ADC1 inputs
– Extreme fast conversion, 21 cycles of fFADC clock
– 10-bit A/D conversion (higher resolution can be achieved by averaging of
consecutive conversions in digital data reduction filter)
86 digital general purpose I/O lines (GPIO), 4 input lines
Digital I/O ports with 3.3 V capability
On-chip debug support for OCDS Level 1 (CPU, PCP, DMA, On Chip Bus)
Dedicated Emulation Device chip available (TC1782ED)
– multi-core debugging, real time tracing, and calibration
– four/five wire JTAG (IEEE 1149.1) or two wire DAP (Device Access Port) interface
Power Management System
Clock Generation Unit with PLL
Data Sheet
2
V 1.4.1, 2014-05
TC1782
Summary of Features
The SAK-TC1782N-320F180HR / SAK-TC1782N-320F180HL
features:
•
•
•
•
•
•
•
has
the
following
High-performance 32-bit super-scalar TriCore V1.3.1 CPU with 4-stage pipeline
– Superior real-time performance
– Strong bit handling
– Fully integrated DSP capabilities
– Single precision Floating Point Unit (FPU)
– 180 MHz operation at full temperature range
32-bit Peripheral Control Processor with single cycle instruction (PCP2)
– 16 Kbyte Parameter Memory (PRAM)
– 32 Kbyte Code Memory (CMEM)
– 180 MHz operation at full temperature range
Multiple on-chip memories
– 2.5 Mbyte Program Flash Memory (PFLASH) with ECC
– 128 Kbyte Data Flash Memory (DFLASH) usable for EEPROM emulation
– 128 Kbyte Data Memory (LDRAM)
– Instruction Cache: up to 16 Kbyte (ICACHE, configurable)
– 40 Kbyte Code Scratchpad Memory (SPRAM)
– Data Cache: up to 4 Kbyte (DCACHE, configurable)
– 8 Kbyte Overlay Memory (OVRAM)
– 16 Kbyte BootROM (BROM)
16-Channel DMA Controller
Sophisticated interrupt system with 2 × 255 hardware priority arbitration levels
serviced by CPU or PCP2
High performing on-chip bus structure
– 64-bit Local Memory Buses between CPU, Flash and Data Memory
– 32-bit System Peripheral Bus (SPB) for on-chip peripheral and functional units
– One bus bridge (LFI Bridge)
Versatile On-chip Peripheral Units
– Two Asynchronous/Synchronous Serial Channels (ASC) with baud rate generator,
parity, framing and overrun error detection
– Three High-Speed Synchronous Serial Channels (SSC) with programmable data
length and shift direction
– One serial Micro Second Bus interface (MSC) for serial port expansion to external
power devices
– One High-Speed Micro Link interface (MLI) for serial inter-processor
communication
– One MultiCAN Module with 3 CAN nodes and 128 free assignable message
objects for high efficiency data handling via FIFO buffering and gateway data
transfer (one CAN node supports TTCAN functionality)
Data Sheet
3
V 1.4.1, 2014-05
TC1782
Summary of Features
•
•
•
•
•
•
•
•
– One General Purpose Timer Array Module (GPTA) with additional Local Timer Cell
Array (LTCA2) providing a powerful set of digital signal filtering and timer
functionality to realize autonomous and complex Input/Output management
32 analog input lines for ADC
– 2 independent kernels (ADC0 and ADC1)
– Analog supply voltage range from 3.3 V to 5 V (single supply)
4 different FADC input channels
– channels with impedance control and overlaid with ADC1 inputs
– Extreme fast conversion, 21 cycles of fFADC clock
– 10-bit A/D conversion (higher resolution can be achieved by averaging of
consecutive conversions in digital data reduction filter)
86 digital general purpose I/O lines (GPIO), 4 input lines
Digital I/O ports with 3.3 V capability
On-chip debug support for OCDS Level 1 (CPU, PCP, DMA, On Chip Bus)
Dedicated Emulation Device chip available (TC1782ED)
– multi-core debugging, real time tracing, and calibration
– four/five wire JTAG (IEEE 1149.1) or two wire DAP (Device Access Port) interface
Power Management System
Clock Generation Unit with PLL
Data Sheet
4
V 1.4.1, 2014-05
TC1782
Summary of Features
The SAK-TC1782N-256F133HR / SAK-TC1782N-256F133HL
features:
•
•
•
•
•
•
•
has
the
following
High-performance 32-bit super-scalar TriCore V1.3.1 CPU with 4-stage pipeline
– Superior real-time performance
– Strong bit handling
– Fully integrated DSP capabilities
– Single precision Floating Point Unit (FPU)
– 133 MHz operation at full temperature range
32-bit Peripheral Control Processor with single cycle instruction (PCP2)
– 16 Kbyte Parameter Memory (PRAM)
– 32 Kbyte Code Memory (CMEM)
– 133 MHz operation at full temperature range
Multiple on-chip memories
– 2 Mbyte Program Flash Memory (PFLASH) with ECC
– 128 Kbyte Data Flash Memory (DFLASH) usable for EEPROM emulation
– 128 Kbyte Data Memory (LDRAM)
– Instruction Cache: up to 16 Kbyte (ICACHE, configurable)
– 40 Kbyte Code Scratchpad Memory (SPRAM)
– Data Cache: up to 4 Kbyte (DCACHE, configurable)
– 8 Kbyte Overlay Memory (OVRAM)
– 16 Kbyte BootROM (BROM)
16-Channel DMA Controller
Sophisticated interrupt system with 2 × 255 hardware priority arbitration levels
serviced by CPU or PCP2
High performing on-chip bus structure
– 64-bit Local Memory Buses between CPU, Flash and Data Memory
– 32-bit System Peripheral Bus (SPB) for on-chip peripheral and functional units
– One bus bridge (LFI Bridge)
Versatile On-chip Peripheral Units
– Two Asynchronous/Synchronous Serial Channels (ASC) with baud rate generator,
parity, framing and overrun error detection
– Three High-Speed Synchronous Serial Channels (SSC) with programmable data
length and shift direction
– One serial Micro Second Bus interface (MSC) for serial port expansion to external
power devices
– One High-Speed Micro Link interface (MLI) for serial inter-processor
communication
– One MultiCAN Module with 3 CAN nodes and 128 free assignable message
objects for high efficiency data handling via FIFO buffering and gateway data
transfer (one CAN node supports TTCAN functionality)
Data Sheet
5
V 1.4.1, 2014-05
TC1782
Summary of Features
•
•
•
•
•
•
•
•
– One General Purpose Timer Array Module (GPTA) with additional Local Timer Cell
Array (LTCA2) providing a powerful set of digital signal filtering and timer
functionality to realize autonomous and complex Input/Output management
32 analog input lines for ADC
– 2 independent kernels (ADC0 and ADC1)
– Analog supply voltage range from 3.3 V to 5 V (single supply)
4 different FADC input channels
– channels with impedance control and overlaid with ADC1 inputs
– Extreme fast conversion, 21 cycles of fFADC clock
– 10-bit A/D conversion (higher resolution can be achieved by averaging of
consecutive conversions in digital data reduction filter)
86 digital general purpose I/O lines (GPIO), 4 input lines
Digital I/O ports with 3.3 V capability
On-chip debug support for OCDS Level 1 (CPU, PCP, DMA, On Chip Bus)
Dedicated Emulation Device chip available (TC1782ED)
– multi-core debugging, real time tracing, and calibration
– four/five wire JTAG (IEEE 1149.1) or two wire DAP (Device Access Port) interface
Power Management System
Clock Generation Unit with PLL
Data Sheet
6
V 1.4.1, 2014-05
TC1782
Summary of Features
The SAK-TC1782F-320F160HR / SAK-TC1782F-320F160HL
features:
•
•
•
•
•
•
•
has
the
following
High-performance 32-bit super-scalar TriCore V1.3.1 CPU with 4-stage pipeline
– Superior real-time performance
– Strong bit handling
– Fully integrated DSP capabilities
– Single precision Floating Point Unit (FPU)
– 160 MHz operation at full temperature range
32-bit Peripheral Control Processor with single cycle instruction (PCP2)
– 16 Kbyte Parameter Memory (PRAM)
– 32 Kbyte Code Memory (CMEM)
– 160 MHz operation at full temperature range
Multiple on-chip memories
– 2.5 Mbyte Program Flash Memory (PFLASH) with ECC
– 128 Kbyte Data Flash Memory (DFLASH) usable for EEPROM emulation
– 128 Kbyte Data Memory (LDRAM)
– Instruction Cache: up to 16 Kbyte (ICACHE, configurable)
– 40 Kbyte Code Scratchpad Memory (SPRAM)
– Data Cache: up to 4 Kbyte (DCACHE, configurable)
– 8 Kbyte Overlay Memory (OVRAM)
– 16 Kbyte BootROM (BROM)
16-Channel DMA Controller
Sophisticated interrupt system with 2 × 255 hardware priority arbitration levels
serviced by CPU or PCP2
High performing on-chip bus structure
– 64-bit Local Memory Buses between CPU, Flash and Data Memory
– 32-bit System Peripheral Bus (SPB) for on-chip peripheral and functional units
– One bus bridge (LFI Bridge)
Versatile On-chip Peripheral Units
– Two Asynchronous/Synchronous Serial Channels (ASC) with baud rate generator,
parity, framing and overrun error detection
– Three High-Speed Synchronous Serial Channels (SSC) with programmable data
length and shift direction
– One serial Micro Second Bus interface (MSC) for serial port expansion to external
power devices
– One High-Speed Micro Link interface (MLI) for serial inter-processor
communication
– One MultiCAN Module with 3 CAN nodes and 128 free assignable message
objects for high efficiency data handling via FIFO buffering and gateway data
transfer (one CAN node supports TTCAN functionality)
– One FlexRayTM module with 2 channels (E-Ray).
Data Sheet
7
V 1.4.1, 2014-05
TC1782
Summary of Features
•
•
•
•
•
•
•
•
– One General Purpose Timer Array Module (GPTA) with additional Local Timer Cell
Array (LTCA2) providing a powerful set of digital signal filtering and timer
functionality to realize autonomous and complex Input/Output management
32 analog input lines for ADC
– 2 independent kernels (ADC0 and ADC1)
– Analog supply voltage range from 3.3 V to 5 V (single supply)
4 different FADC input channels
– channels with impedance control and overlaid with ADC1 inputs
– Extreme fast conversion, 21 cycles of fFADC clock
– 10-bit A/D conversion (higher resolution can be achieved by averaging of
consecutive conversions in digital data reduction filter)
86 digital general purpose I/O lines (GPIO), 4 input lines
Digital I/O ports with 3.3 V capability
On-chip debug support for OCDS Level 1 (CPU, PCP, DMA, On Chip Bus)
Dedicated Emulation Device chip available (TC1782ED)
– multi-core debugging, real time tracing, and calibration
– four/five wire JTAG (IEEE 1149.1) or two wire DAP (Device Access Port) interface
Power Management System
Clock Generation Unit with PLL
Data Sheet
8
V 1.4.1, 2014-05
TC1782
Summary of Features
The SAK-TC1782N-320F160HR / SAK-TC1782N-320F160HL
features:
•
•
•
•
•
•
•
has
the
following
High-performance 32-bit super-scalar TriCore V1.3.1 CPU with 4-stage pipeline
– Superior real-time performance
– Strong bit handling
– Fully integrated DSP capabilities
– Single precision Floating Point Unit (FPU)
– 160 MHz operation at full temperature range
32-bit Peripheral Control Processor with single cycle instruction (PCP2)
– 16 Kbyte Parameter Memory (PRAM)
– 32 Kbyte Code Memory (CMEM)
– 160 MHz operation at full temperature range
Multiple on-chip memories
– 2.5 Mbyte Program Flash Memory (PFLASH) with ECC
– 128 Kbyte Data Flash Memory (DFLASH) usable for EEPROM emulation
– 128 Kbyte Data Memory (LDRAM)
– Instruction Cache: up to 16 Kbyte (ICACHE, configurable)
– 40 Kbyte Code Scratchpad Memory (SPRAM)
– Data Cache: up to 4 Kbyte (DCACHE, configurable)
– 8 Kbyte Overlay Memory (OVRAM)
– 16 Kbyte BootROM (BROM)
16-Channel DMA Controller
Sophisticated interrupt system with 2 × 255 hardware priority arbitration levels
serviced by CPU or PCP2
High performing on-chip bus structure
– 64-bit Local Memory Buses between CPU, Flash and Data Memory
– 32-bit System Peripheral Bus (SPB) for on-chip peripheral and functional units
– One bus bridge (LFI Bridge)
Versatile On-chip Peripheral Units
– Two Asynchronous/Synchronous Serial Channels (ASC) with baud rate generator,
parity, framing and overrun error detection
– Three High-Speed Synchronous Serial Channels (SSC) with programmable data
length and shift direction
– One serial Micro Second Bus interface (MSC) for serial port expansion to external
power devices
– One High-Speed Micro Link interface (MLI) for serial inter-processor
communication
– One MultiCAN Module with 3 CAN nodes and 128 free assignable message
objects for high efficiency data handling via FIFO buffering and gateway data
transfer (one CAN node supports TTCAN functionality)
Data Sheet
9
V 1.4.1, 2014-05
TC1782
Summary of Features
•
•
•
•
•
•
•
•
– One General Purpose Timer Array Module (GPTA) with additional Local Timer Cell
Array (LTCA2) providing a powerful set of digital signal filtering and timer
functionality to realize autonomous and complex Input/Output management
32 analog input lines for ADC
– 2 independent kernels (ADC0 and ADC1)
– Analog supply voltage range from 3.3 V to 5 V (single supply)
4 different FADC input channels
– channels with impedance control and overlaid with ADC1 inputs
– Extreme fast conversion, 21 cycles of fFADC clock
– 10-bit A/D conversion (higher resolution can be achieved by averaging of
consecutive conversions in digital data reduction filter)
86 digital general purpose I/O lines (GPIO), 4 input lines
Digital I/O ports with 3.3 V capability
On-chip debug support for OCDS Level 1 (CPU, PCP, DMA, On Chip Bus)
Dedicated Emulation Device chip available (TC1782ED)
– multi-core debugging, real time tracing, and calibration
– four/five wire JTAG (IEEE 1149.1) or two wire DAP (Device Access Port) interface
Power Management System
Clock Generation Unit with PLL
Data Sheet
10
V 1.4.1, 2014-05
TC1782
Summary of Features
Ordering Information
The ordering code for Infineon microcontrollers provides an exact reference to the
required product. This ordering code identifies:
•
•
The derivative itself, i.e. its function set, the temperature range, and the supply
voltage
The package and the type of delivery.
For the available ordering codes for the TC1782 please refer to the “Product Catalog
Microcontrollers”, which summarizes all available microcontroller variants.
This document describes the derivatives of the device.The Table 1 enumerates these
derivatives and summarizes the differences.
Table 1
TC1782 Derivative Synopsis
Derivative
SAK-TC1782F-320F180HR
Ambient Temperature Range
Package
o
o
PG-LQFP-176-20
o
o
TA = -40 C to +125 C
SAK-TC1782F-320F180HL
TA = -40 C to +125 C
PG-LQFP-176-10
SAK-TC1782N-320F180HR
TA = -40oC to +125oC
PG-LQFP-176-20
o
o
SAK-TC1782N-320F180HL
TA = -40 C to +125 C
PG-LQFP-176-10
SAK-TC1782N-256F133HR
TA = -40oC to +125oC
PG-LQFP-176-20
SAK-TC1782N-256F133HL
o
o
PG-LQFP-176-10
o
o
TA = -40 C to +125 C
SAK-TC1782F-320F160HR
TA = -40 C to +125 C
PG-LQFP-176-20
SAK-TC1782F-320F160HL
TA = -40oC to +125oC
PG-LQFP-176-10
SAK-TC1782N-320F160HR
SAK-TC1782N-320F160HL
Data Sheet
o
o
PG-LQFP-176-20
o
o
PG-LQFP-176-10
TA = -40 C to +125 C
TA = -40 C to +125 C
11
V 1.4.1, 2014-05
TC1782
System Overview of the TC1782
2
System Overview of the TC1782
The TC1782 combines three powerful technologies within one silicon die, achieving new
levels of power, speed, and economy for embedded applications:
•
•
•
Reduced Instruction Set Computing (RISC) processor architecture
Digital Signal Processing (DSP) operations and addressing modes
On-chip memories and peripherals
DSP operations and addressing modes provide the computational power necessary to
efficiently analyze complex real-world signals. The RISC load/store architecture
provides high computational bandwidth with low system cost. On-chip memory and
peripherals are designed to support even the most demanding high-bandwidth real-time
embedded control-systems tasks.
Additional high-level features of the TC1782 include:
•
•
•
•
•
•
•
•
•
Efficient memory organization: instruction and data scratch memories, caches
Serial communication interfaces – flexible synchronous and asynchronous modes
Peripheral Control Processor – standalone data operations and interrupt servicing
DMA Controller – DMA operations and interrupt servicing
General-purpose timers
High-performance on-chip buses
On-chip debugging and emulation facilities
Flexible interconnections to external components
Flexible power-management
The TC1782 is a high-performance microcontroller with TriCore CPU, program and data
memories, buses, bus arbitration, an interrupt controller, a peripheral control processor
and a DMA controller and several on-chip peripherals. The TC1782 is designed to meet
the needs of the most demanding embedded control systems applications where the
competing issues of price/performance, real-time responsiveness, computational power,
data bandwidth, and power consumption are key design elements.
The TC1782 offers several versatile on-chip peripheral units such as serial controllers,
timer units, and Analog-to-Digital converters. Within the TC1782, all these peripheral
units are connected to the TriCore CPU/system via the Flexible Peripheral Interconnect
(FPI) Bus and the Local Memory Bus (LMB). Several I/O lines on the TC1782 ports are
reserved for these peripheral units to communicate with the external world.
Data Sheet
12
V 1.4.1, 2014-05
TC1782
System Overview of the TC1782Block Diagrams
2.1
Block Diagrams
Figure 1 shows the block diagram of the SAK-TC1782-320F180HR / SAK-TC1782320F180HL / SAK-TC1782-320F160HR / SAK-TC1782-320F160HL.
FPU
PMI
DMI
TriCore
CPU
24 KB SPRAM
16 KB ICACHE
(Configurable)
Abbreviations:
ICACHE:
Instruction Cache
DCACHE
Data Cache
SPRAM:
Scratch-Pad RAM
LDRAM:
Local Data RAM
OVRAM:
Overlay RAM
BROM:
Boot ROM
PFlash:
Program Flash
DFlash:
Data Flash
PRAM:
Parameter RAM in PCP
PCODE:
Code RAM in PCP
124 KB LDRAM
LDRAM
4 KB DCACHE
(Configurable)
DCACHE
CPS
Local Memory Bus
BCU
(LMB)
PMU
DMA
Bridge
16 channels
SMIF
M
2,5 MB PFlash
128 KB DFlash
8 KB OVRAM
16 KB BROM
OCDS L1 Debug
Interface/ JTAG
M/S
MLI0
System Peripheral Bus
(SPB)
MemCheck
16 KB PRAM
E-Ray
GPTA0
System Peripheral Bus
Interrupts
ASC1
(2 Channels)
Interrupt
System
FPI-Bus Interface
ASC0
PCP2
Core
STM
5V (3.3V supported as well)
Ext. ADC Supply
32 KB CMEM
SCU
ADC0
28
(5V max)
SBCU
PLL
E-RAY
PLL
Ports
fE -Ray
ADC1
4
fCPU
SSC0
FADC
(3.3V max)
LTCA2
4
SSC1
Ext.
Request
Unit
Figure 1
Data Sheet
Multi
CAN
(3 Nodes,
128 MO)
MSC0
SSC2
(LVDS)
3.3V
Ext. FADC Supply
BlockDiagram
SAK-TC1782F-320F180HR
SAK-TC1782F-320F180HL
SAK-TC1782F-320F160HR
SAK-TC1782F-320F160HL
SAK-TC1782-320F180HR / SAK-TC1782-320F180HL / SAK-TC1782320F160HR / SAK-TC1782-320F160HL Block Diagram
13
V 1.4.1, 2014-05
TC1782
System Overview of the TC1782Block Diagrams
Figure 2 shows the block diagram of the SAK-TC1782N-320F180HR / SAK-TC1782N320F180HL / SAK-TC1782N-320F160HR / SAK-TC1782N-320F160HL.
FPU
PMI
TriCore
CPU
24 KB SPRAM
16 KB ICACHE
(Configurable)
Abbreviations:
ICACHE:
Instruction Cache
DCACHE
Data Cache
SPRAM:
Scratch-Pad RAM
LDRAM:
Local Data RAM
OVRAM:
Overlay RAM
BROM:
Boot ROM
PFlash:
Program Flash
DFlash:
Data Flash
PRAM:
Parameter RAM in PCP
PCODE:
Code RAM in PCP
DMI
124 KB LDRAM
LDRAM
4 KB DCACHE
(Configurable)
DCACHE
CPS
Local Memory Bus
BCU
(LMB)
PMU
2,5 MB PFlash
128 KB DFlash
8 KB OVRAM
16 KB BROM
DMA
Bridge
16 channels
SMIF
M
OCDS L1 Debug
Interface/JTAG
M/S
MLI0
System Peripheral Bus
(SPB)
MemCheck
16 KB PRAM
System Peripheral Bus
Interrupts
ASC1
GPTA0
Interrupt
System
FPI-Bus Interface
ASC0
PCP2
Core
STM
5V (3.3V supported as well)
Ext. ADC Supply
32 KB CMEM
SCU
ADC0
28
(5V max)
SBCU
PLL
E-RAY
PLL
Ports
fE -Ray
ADC1
4
fCPU
SSC0
FADC
(3.3V max)
LTCA2
4
SSC1
Ext.
Request
Unit
Figure 2
Data Sheet
Multi
CAN
(3 Nodes,
128 MO)
MSC0
3.3V
Ext. FADC Supply
SSC2
(LVDS )
BlockDiagram
SAK-TC1782N-320F180HR
SAK-TC1782N-320F180HL
SAK-TC1782N-320F160HR
SAK-TC1782N-320F160HL
SAK-TC1782N-320F180HR / SAK-TC1782N-320F180HL / SAKTC1782N-320F160HR / SAK-TC1782N-320F160HL /
Block Diagram
14
V 1.4.1, 2014-05
TC1782
System Overview of the TC1782Block Diagrams
Figure 3 shows the block diagram of the SAK-TC1782N-256F133HR / SAK-TC1782N256F133HL.
FPU
PMI
TriCore
CPU
24 KB SPRAM
16 KB ICACHE
(Configurable)
Abbreviations:
ICACHE:
Instruction Cache
DCACHE
Data Cache
SPRAM:
Scratch-Pad RAM
LDRAM:
Local Data RAM
OVRAM:
Overlay RAM
BROM:
Boot ROM
PFlash:
Program Flash
DFlash:
Data Flash
PRAM:
Parameter RAM in PCP
PCODE:
Code RAM in PCP
DMI
124 KB LDRAM
LDRAM
4 KB DCACHE
(Configurable)
DCACHE
CPS
Local Memory Bus
BCU
(LMB)
PMU
DMA
Bridge
16 channels
SMIF
M
2 MB PFlash
64 KB DFlash
8 KB OVRAM
16 KB BROM
OCDS L1 Debug
Interface/JTAG
M/S
MLI0
System Peripheral Bus
(SPB)
MemCheck
16 KB PRAM
System Peripheral Bus
Interrupts
ASC1
GPTA0
Interrupt
System
FPI-Bus Interface
ASC0
PCP2
Core
STM
5V (3.3V supported as well)
Ext. ADC Supply
32 KB CMEM
SCU
ADC0
28
(5V max)
SBCU
PLL
E-RAY
PLL
Ports
fE -R ay
ADC1
4
fCPU
SSC0
FADC
(3.3V max)
LTCA2
4
SSC1
Ext.
Request
Unit
Figure 3
Data Sheet
Multi
CAN
(3 Nodes,
128 MO)
MSC0
3.3V
Ext. FADC Supply
SSC2
(LVDS)
BlockDiagram
SAK-TC1782N-256F133HR
SAK-TC1782N-256F133HR
SAK-TC1782N-256F133HR / SAK-TC1782N-256F133HL
Block Diagram
15
V 1.4.1, 2014-05
TC1782
Pinning
3
Pinning
Figure 4 is showing the TC1782 Logic Symbol.
General Control
OCDS /
JTAG Control
Analog Inputs
Analog Power
Supply
16
TRST
14
16
TCK / DAP0
16
TDI / BRKIN
TDO / DAP2 /
BRKOUT
TMS / DAP1
4
16
AN[35:0]
VD D M
VSSM
V D D MF
V SSMF
V D D AF
V AR EF0
VAGN D 0
VFAR EF
V FAGN D
V D D FL3
Digital Circuitry
Power Supply
Alternate Functions
PORST
TESTMODE
ESR0
ESR1
VD D
VD D P
VSS
TC1782
4
Port 0
Port 1
Port 2
Port 3
GPTA, SCU, E-RAY,1)
MSC0
GPTA, SSC1,
ADC0, OCDS
GPTA, SSC0/1,
MLI 0, MSC0
GPTA, ASC0/1, SSC0/1,
SCU, CAN, MSC0
Port 4
GPTA, SCU, CAN
Port 5
GPTA, MLI0, E-RAY,
SSC2
Port 6
GPTA, MSC0
1)
1) Only available for
SAK-TC1782 F-320 F180HR,
SAK-TC1782 F-320 F180HL,
SAK-TC1782 F-320 F160HR,
SAK-TC1782 F-320F160HL,
SAK-TC1782 F-320 F133HR and
SAK-TC1782 F-320 F133HL
XTAL1
XTAL2
V D D OSC
V D D OSC3
V SSOSC
9
10
Oscillator
11
TC1782_LQFP-176
Figure 4
Data Sheet
TC1782 Logic Symbol
16
V 1.4.1, 2014-05
A N 19
A N 18
A N 17
A N 16
A N 15
A N 14
V AGND0
V AREF 0
VSSM
V DDM
A N 13
A N 12
A N 11
A N 10
AN9
AN8
AN6
AN5
AN4
AN3
AN2
AN1
AN0
VDD
V DDP
V SS
A D 0E M UX 2/OU T1 8/IN 1 8/P 1 .14
A D 0E M UX 1/OU T1 7/IN 1 7/P 1 .13
A D 0E M UX 0/OU T1 6/IN 1 6/P 1 .12
T CLK 0/ OUT 28/ OU T 32/I N32/ P 2.0
S LS O 13/ SL S O03 /OUT 33 /TR E A DY 0A /I N33/ P 2.1
T V A LID0 A/ OUT 29/ OU T 34/I N34/ P 2.2
T D A TA 0/ OUT 30/ OU T 35/I N35/ P 2.3
OU T 31 /OUT 36 /R CLK 0A /I N36/ P 2.4
R RE A D Y 0A /O UT3 7/OU T1 10/I N37/ P 2.5
O U T3 8/O UT1 11/ R V AL ID 0A /I N38/ P 2.6
OU T 39/ RD A TA 0A /I N39/ P 2.7
V SS
V DDP
VDD
V SS
OU T 52 /OUT 28 /IN 52 /IN2 8/R X D CA N2/ P 4.0
O UT5 3/O U T2 9/IN 5 3/I N 29/ TX D CA N2/ P 4.1
E X T CLK 1/O U T5 4/O U T3 0/IN 54/I N30/ P 4.2
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
P 0.1 5/IN 15/R EQ 5/O U T1 5/S OP 0 C
P 0.1 4/IN 14/R EQ 4/O U T1 4/F CLP 0C
P 0.7 /IN 7 /HW C F G7/R E Q 3/O U T7 /OU T 63
P 0.6 /IN 6 /HW C F G6/R E Q 2/O U T6 /OU T 62
V SS
V DDP
V DD(SB)
P 0.1 3/IN 13/O UT1 3/T X E N B
P 0.1 2/IN 12/O UT1 2/T X E N A
P 0.5 /IN 5 /HW C F G5/O UT5 /OUT 61
P 0.4 /IN 4 /HW C F G4/O UT4 /OUT 60
P 2.1 3/IN 13/O UT3 /S LS I1 1/S DI0
P 2.8 /S LS O0 4/S LS O 14/ EN0 0
P 2.1 2/IN 12/O UT2 /M TS R 1A / SO P 0B
P 2.1 1/IN 11/O UT1 /S CLK 1 A/ FCL P0 B
P 2.1 0/IN 10/O UT0 /M R ST 1A
P 2.9 /S LS O0 5/S LS O 15/ EN0 1
P 6.3 /IN 2 5/OU T 7/ OUT 83/ SO P 0A
P 6.2 /IN 2 4/OU T 6/ OUT 82/ SO N 0
P 6.1 /IN 1 5/OU T 5/ OUT 81/ FC L P0 A
P 6.0 /IN 1 4/OU T 4/ OUT 80/ FC L N 0
V SS
V DDP
V DD
P 0.1 1/IN 11/O UT1 1/T X DB 0
P 0.1 0/IN 10/O UT1 0/T X DA 0
P 0.9 /IN 9 /RX DB 0/OU T9/ OUT 65
P 0.8 /IN 8 /RX DA 0/OU T8/ OUT 64
P 0.3 /IN 3 /HW C F G3/O UT3 /OUT 59
P 0.2 /IN 2 /HW C F G2/O UT2 /OUT 58
P 0.1 /IN 1 /HW C F G1/O UT1 /OUT 57 /S D I1
P 0.0 /IN 0 /HW C F G0/O UT0 /OUT 56
P 3.1 1/O UT9 3/R E Q1
P 3.1 2/O UT9 4/R X D CA N0 /RX D0B
P 3.1 3/O UT9 5/T X D CA N0/T X D 0
V DDFL 3
V SS
V DDP
P 3.9 /OU T 91 /R X D 1A
P 3.1 0/O UT9 2/R E Q0
P 3.0 /OU T 84 /R X D 0A
P 3.1 /OU T 85 //T XD 0
P 3.1 4/O UT9 6/R X D CA N1 /RX D1B /S DI2
P 3.1 5/O UT9 7/T X D CA N1/T X D 1
3.1
SLSCO 20 /OUT 40/ OUT 8/IN 40/IN 26/ P5 .0
SLSCO 21 /OUT 41/ OUT 9/IN 41/IN 27/ P5 .1
SLSCO22 /OUT 42 /OUT 10 /IN 42/IN 28/ P5 .2
SLSCO 23/ OUT 43/ OUT 11/IN 43/ P5 .3
SLSCO24 /OUT 44 /OUT 12 /SLSI2AIN 44/IN 29/ P5 .4
M RST2A/OUT 45 /OUT 13 /IN 45/IN 30/ P5 .5
M T SR2A/OUT 46 /OUT 14 /IN 46/IN 31/ P5 .6
SCLK2/ OUT 47/ OUT 15/IN 47/ P5 .7
RXDB1 /T CLK0/OUT 95/P5 .15
VDD
V DDP
V SS
T XDA1/RDAT A0B/OUT 89 /P5. 8
T XDB1 /RVALID0 B/OUT 90/ P5 .9
T XENA/RREADY0B/OUT 91 /P5. 10
T XENB/ RCLK0B/OUT 92 /P5. 11
T DAT A0 /SLSO07 /OUT 93 /P5. 12
T VALID0B/SLSO16 /P5. 13
RXDA1/ T READY0B/OUT 94 /P5. 14
V DDP
V DD(SB)
V SS
V DDAF
VDDMF
V SSMF
V FAREF
V FAGND
AN35
AN34
AN33
AN32
AN31
AN30
AN29
AN28
AN7
AN27
AN26
AN25
AN24
AN23
AN22
AN21
AN20
Figure 5
Data Sheet
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
17 6
17 5
17 4
17 3
17 2
17 1
17 0
16 9
16 8
1 67
16 6
16 5
16 4
16 3
162
161
160
159
158
1 57
156
155
154
153
15 2
15 1
15 0
14 9
14 8
147
14 6
14 5
14 4
14 3
14 2
14 1
14 0
13 9
13 8
137
13 6
13 5
13 4
13 3
TC1782
PinningTC1782 Pin Configuration
TC1782 Pin Configuration
This chapter shows the pin configuration of the TC1782 package PG-LQFP-176-10 / PGLQFP-176-20.
TC1782
17
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
P3.4/ OUT 88/ M T SR0
P3.7/ SLSI01 /OUT 89 /SLSO02 /SLSO12
P3.3/ OUT 87/ M RST0
P3.2/ OUT 86/ SCLK0
P3.8/ SLSO06 /OUT 90 /T XD1
P3.6/ SLSO01 /SLSO11 /SLSO 01&SLSO 11
P3.5/ SLSO00 /SLSO10 /SLSO 00&SLSO 10
V SS
V DDP
V DD
ESR0
PORST
ESR1
P1 .1/IN 17/ OUT 17/ OUT 73
T EST M ODE
P1 .15 /BRKIN/BRKOUT
P1 .0/IN 16/ OUT 16/OUT 72 /BRKIN/ BRKOUT
T CK/DAP0
T RST
T DO/DAP2/BRKIN/BRKOUT
T M S/DAP1
T DI/BRKIN/BRKOUT
P1.7/ IN23 /OUT 23 /OUT 79
P1.6/ IN22 /OUT 22 /OUT 78
P1.5/ IN21 /OUT 21 /OUT 77
P1.4/ IN20 /EM GST OP/OUT 20 /OUT 76
V DDOSC3
V DDOSC
V SSOSC
XT AL2
XT AL1
V SS
V DDP
V DD
P1.3/ IN19 /OUT 19 /OUT 75
P1.11 /IN27 /IN51 /SCLK 1B/OUT 27 /OUT 51
P1.10 /IN26 /IN50 /OUT 26 /OUT 50 /SLSO 17
P1.9/ IN25 /IN49 /M RST1 B/ OUT 25/OUT 49
P1.8/ IN24 /IN48 /M T SR1 B/ OUT 24/OUT 48
P1.2/ IN18 /OUT 18 /OUT 74
V SS
V DD
P4.3/ IN31 /IN55 /OUT 31 /OUT 55 /EXT CLK0
V DDP
SAK_TC 1782-320F180HR
SAK_TC 1782-320F180HL
SAK_TC 1782-320F160HR
SAK_TC 1782-320F160HL
SAK_TC 1782-320F133HR
SAK_TC 1782-320F133HL
SAK-TC1782F-320F180HR / SAK-TC1782F-320F180HL /
SAK-TC1782F-320F160HR / SAK-TC1782F-320F160HL Pinning
V 1.4.1, 2014-05
A N 19
A N 18
A N 17
A N 16
A N 15
A N 14
V AGND0
V AREF 0
VSSM
V DDM
A N 13
A N 12
A N 11
A N 10
A N9
A N8
A N6
A N5
A N4
A N3
A N2
A N1
A N0
VDD
V DDP
V SS
A D0E M U X 2/OU T1 8/IN 1 8/P 1 .14
A D0E M U X 1/OU T1 7/IN 1 7/P 1 .13
A D0E M U X 0/OU T1 6/IN 1 6/P 1 .12
T C LK 0/ OU T 28/ OU T 32/I N32/ P 2.0
S LS O 13/ SL S O03 /OU T 33 /TRE A DY 0A /I N33/ P 2.1
T V A LID 0 A/ OU T 29/ OU T 34/I N34/ P 2.2
T DA TA 0/ OU T 30/ OU T 35/I N35/ P 2.3
OUT 31 /OUT 36 /RC LK 0A /I N36/ P 2.4
R R E A DY 0A /O U T3 7/OU T1 10/I N37/ P 2.5
O UT3 8/O U T1 11/ RV AL ID 0A /I N38/ P 2.6
OU T 39/ R DA TA 0A /I N39/ P 2.7
V SS
V DDP
VDD
V SS
OU T 52 /OU T 28 /IN 52 /IN 2 8/R X D CA N 2/ P 4.0
O UT5 3/O UT2 9/IN 5 3/I N29/ TX D CA N 2/ P 4.1
E X T C LK 1/O UT5 4/O UT3 0/IN 54/I N30/ P 4.2
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
SLSCO20 /OUT 40 /OUT 8/IN 40/ IN26 /P5.0
SLSCO21 /OUT 41 /OUT 9/IN 41/ IN27 /P5.1
SLSCO 22/ OUT 42/OUT 10 /IN 42/ IN28 /P5.2
SLSCO 23 /OUT 43 /OUT 11/ IN43 /P5.3
SLSCO24 /OUT 44 /OUT 12 /SLSI2A/IN 44/ IN29 /P5.4
M RST2 A/ OUT 45/OUT 13 /IN 45/ IN30 /P5.5
M T SR2 A/ OUT 46/OUT 14 /IN 46/ IN31 /P5.6
SCLK2 /OUT 47 /OUT 15/ IN47 /P5.7
T CLK0/ OUT 95/ P5 .15
V DD
V DDP
V SS
RDAT A0B/OUT 89 /P5 .8
RVALID0 B/OUT 90 /P5.9
RREADY0B/ OUT 91/P5 .10
RCLK0B/ OUT 92/P5 .11
T DAT A0/SLSO 07/ OUT 93/P5 .12
T VALID0B/SLSO 16/P5 .13
T READY0B/ OUT 94/P5 .14
V DDP
V DD(SB)
V SS
V DDAF
V DDMF
V SSMF
V FAREF
V FAGND
AN35
AN34
AN33
AN32
AN31
AN30
AN29
AN28
AN7
AN27
AN26
AN25
AN24
AN23
AN22
AN21
AN20
Figure 6
Data Sheet
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
17 6
17 5
17 4
17 3
17 2
17 1
17 0
16 9
16 8
1 67
16 6
16 5
16 4
16 3
162
161
160
159
158
1 57
156
155
154
153
15 2
15 1
15 0
14 9
14 8
147
14 6
14 5
14 4
14 3
14 2
14 1
14 0
13 9
13 8
137
13 6
13 5
13 4
13 3
P 0.1 5/IN 15/R EQ 5/O U T1 5/S OP 0 C
P 0.1 4/IN 14/R EQ 4/O U T1 4/F CLP 0C
P 0.7 /IN7 /H W C F G7/R E Q 3/O U T7 /OUT 63
P 0.6 /IN6 /H W C F G6/R E Q 2/O U T6 /OUT 62
V SS
V DDP
V DD(SB)
P 0.1 3/IN 13/O UT1 3
P 0.1 2/IN 12/O UT1 2
P 0.5 /IN5 /H W C F G5/O UT5 /OUT 61
P 0.4 /IN4 /H W C F G4/O UT4 /OUT 60
P 2.1 3/IN 13/O UT3 /S LS I1 1/S DI0
P 2.8 /S LS O0 4/S LS O 14/ EN0 0
P 2.1 2/IN 12/O UT2 /M TS R 1A / SO P 0B
P 2.1 1/IN 11/O UT1 /S C LK 1 A/ FCL P0 B
P 2.1 0/IN 10/O UT0 /M R ST 1A
P 2.9 /S LS O0 5/S LS O 15/ EN0 1
P 6.3 /IN2 5/OU T 7/ OUT 83/ SO P 0A
P 6.2 /IN2 4/OU T 6/ OUT 82/ SO N 0
P 6.1 /IN1 5/OU T 5/ OUT 81/ FC L P0 A
P 6.0 /IN1 4/OU T 4/ OUT 80/ FC L N 0
V SS
V DDP
V DD
P 0.1 1/IN 11/O UT1 1
P 0.1 0/IN 10/O UT1 0
P 0.9 /IN9 /OU T 9/O UT6 5
P 0.8 /IN8 /OU T 8/O UT6 4
P 0.3 /IN3 /H W C F G3/O UT3 /OUT 59
P 0.2 /IN2 /H W C F G2/O UT2 /OUT 58
P 0.1 /IN1 /H W C F G1/O UT1 /OUT 57 /S DI1
P 0.0 /IN0 /H W C F G0/O UT0 /OUT 56
P 3.1 1/O U T9 3/R E Q1
P 3.1 2/O U T9 4/R X D CA N 0 /RX D0B
P 3.1 3/O U T9 5/T X D CA N 0/T X D 0
V DDFL 3
V SS
V DDP
P 3.9 /OUT 91 /R X D 1A
P 3.1 0/O U T9 2/R E Q0
P 3.0 /OUT 84 /R X D 0A
P 3.1 /OUT 85 /TX D0
P 3.1 4/O U T9 6/R X D CA N 1 /RX D1B /S D I2
P 3.1 5/O U T9 7/T X D CA N 1/T X D 1
TC1782
PinningTC1782 Pin Configuration
TC1782
18
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
P3.4 /OUT 88 /M T SR0
P3.7 /SLSI01 /OUT 89 /SLSO02 /SLSO 12
P3.3 /OUT 87 /M RST0
P3.2 /OUT 86 /SCLK0
P3.8 /SLSO06 /OUT 90 /T XD1
P3.6 /SLSO01 /SLSO 11/SLSO 01 &SLSO 11
P3.5 /SLSO00 /SLSO 10/SLSO 00 &SLSO 10
V SS
V DDP
V DD
ESR0
PORST
ESR1
P1.1/ IN17 /OUT 17 /OUT 73
T EST M ODE
P1 .15 /BRKIN/BRKOUT
P1 .0/ IN16 /OUT 16/ OUT 72/ BRKIN/BRKOUT
T CK/ DAP0
T RST
T DO/DAP2/BRKIN/ BRKOUT
T M S/DAP1
T DI/BRKIN/BRKOUT
P1.7 /IN23 /OUT 23 /OUT 79
P1.6 /IN22 /OUT 22 /OUT 78
P1.5 /IN21 /OUT 21 /OUT 77
P1.4 /IN20 /EM GST OP/ OUT 20/OUT 76
V DDOSC3
V DDOSC
V SSOSC
XT AL2
XT AL1
V SS
V DDP
V DD
P1.3 /IN19 /OUT 19 /OUT 75
P1.11 /IN27 /IN 51/ SCLK1B/OUT 27 /OUT 51
P1.10 /IN26 /IN 50/ OUT 26/ OUT 50/SLSO 17
P1.9 /IN25 /IN49 /M RST1 B/OUT 25/ OUT 49
P1.8 /IN24 /IN48 /M T SR1 B/OUT 24/ OUT 48
P1.2 /IN18 /OUT 18 /OUT 74
V SS
V DD
P4.3 /IN31 /IN55 /OUT 31 /OUT 55 /EXT CLK0
V DDP
SAK_TC1782N-320F180HR
SAK_TC1782N-320F180HL
SAK_TC1782N-320F160HR
SAK_TC1782N-320F160HL
SAK_TC1782N-320F133HR
SAK_TC1782N-320F133HL
SAK-TC1782N-320F180HR / SAK-TC1782N-320F180HL /
SAK-TC1782N-320F160HR / SAK-TC1782N-320F160HL /
SAK-TC1782N-256F133HR / SAK-TC1782N-256F133HL / Pinning
V 1.4.1, 2014-05
TC1782
PinningTC1782 Pin Configuration
Table 2
Pin
Pin Definitions and Functions (PG-LQFP-176-10 / PG-LQFP-176-20
Package)
Symbol
Ctrl.
Type Function
A1/
PU
Port 0
145
146
147
P0.0
I/O0
IN0
I
IN0
I
LTCA2 Input 0
HWCFG0
I
Hardware Configuration Input 0
OUT0
O1
GPTA0 Output 0
OUT56
O2
GPTA0 Output 56
OUT0
O3
LTCA2 Output 0
P0.1
I/O0
IN1
I
IN1
I
LTCA2 Input 1
SDI1
I
MSC0 Serial Data Input 1
HWCFG1
I
Hardware Configuration Input 1
OUT1
O1
GPTA0 Output 1
OUT57
O2
GPTA0 Output 57
OUT1
O3
LTCA2 Output 1
P0.2
I/O0
IN2
I
IN2
I
LTCA2 Input 2
HWCFG2
I
Hardware Configuration Input 2
OUT2
O1
GPTA0 Output 2
OUT58
O2
GPTA0 Output 58
OUT2
O3
LTCA2 Output 2
Data Sheet
A1/
PU
A1/
PU
Port 0 General Purpose I/O Line 0
GPTA0 Input 0
Port 0 General Purpose I/O Line 1
GPTA0 Input 1
Port 0 General Purpose I/O Line 2
GPTA0 Input 2
19
V 1.4.1, 2014-05
TC1782
PinningTC1782 Pin Configuration
Table 2
Pin Definitions and Functions (PG-LQFP-176-10 / PG-LQFP-176-20
Package) (cont’d)
Pin
Symbol
Ctrl.
Type Function
148
P0.3
I/O0
IN3
I
A1+/
PU
IN3
I
LTCA2 Input 3
HWCFG3
I
Hardware Configuration Input 3
OUT3
O1
GPTA0 Output 3
OUT59
O2
GPTA0 Output 59
166
167
173
Port 0 General Purpose I/O Line 3
GPTA0 Input 3
OUT3
O3
P0.4
I/O0
IN4
I
IN4
I
LTCA2 Input 4
HWCFG4
I
Hardware Configuration Input 4
OUT4
O1
GPTA0 Output 4
OUT60
O2
GPTA0 Output 60
OUT4
O3
LTCA2 Output 4
LTCA2 Output 3
A1/
PU
GPTA0 Input 4
P0.5
I/O0
IN5
I
IN5
I
LTCA2 Input 5
HWCFG5
I
Hardware Configuration Input 5
OUT5
O1
GPTA0 Output 5
OUT61
O2
GPTA0 Output 61
OUT5
O3
LTCA2 Output 5
P0.6
I/O0
IN6
I
IN6
I
LTCA2 Input 6
HWCFG6
I
Hardware Configuration Input 6
REQ2
I
External Request Input 2
OUT6
O1
GPTA0 Output 6
OUT62
O2
GPTA0 Output 62
OUT6
O3
LTCA2 Output 6
Data Sheet
A1/
PU
Port 0 General Purpose I/O Line 4
A1/
PU
Port 0 General Purpose I/O Line 5
GPTA0 Input 5
Port 0 General Purpose I/O Line 6
GPTA0 Input 6
20
V 1.4.1, 2014-05
TC1782
PinningTC1782 Pin Configuration
Table 2
Pin Definitions and Functions (PG-LQFP-176-10 / PG-LQFP-176-20
Package) (cont’d)
Pin
Symbol
Ctrl.
Type Function
174
P0.7
I/O0
IN7
I
A1/
PU
IN7
I
LTCA2 Input 7
HWCFG7
I
Hardware Configuration Input 7
REQ3
I
External Request Input 3
OUT7
O1
GPTA0 Output 7
OUT63
O2
GPTA0 Output 63
OUT7
O3
LTCA2 Output 7
P0.8
I/O0
IN8
I
IN8
I
LTCA2 Input 8
RXDA0
I
E-Ray Channel A Receive Data Input 0 1)
OUT8
O1
GPTA0 Output 8
OUT64
O2
GPTA0 Output 64
149
150
151
OUT8
O3
P0.9
I/O0
IN9
I
A1/
PU
Port 0 General Purpose I/O Line 7
GPTA0 Input 7
Port 0 General Purpose I/O Line 8
GPTA0 Input 8
LTCA2 Output 8
A1/
PU
Port 0 General Purpose I/O Line 9
GPTA0 Input 9
IN9
I
LTCA2 Input 9
RXDB0
I
E-Ray Channel B Receive Data Input 0 1)
OUT9
O1
GPTA0 Output 9
OUT65
O2
GPTA0 Output 65
OUT9
O3
LTCA2 Output 9
P0.10
I/O0
IN10
I
OUT10
O1
GPTA0 Output 10
TXDA0
O2
E-Ray Channel A transmit Data Output 1)
OUT10
O3
LTCA2 Output 10
Data Sheet
A2/
PU
Port 0 General Purpose I/O Line 10
GPTA0 Input 10
21
V 1.4.1, 2014-05
TC1782
PinningTC1782 Pin Configuration
Table 2
Pin Definitions and Functions (PG-LQFP-176-10 / PG-LQFP-176-20
Package) (cont’d)
Pin
Symbol
Ctrl.
Type Function
152
P0.11
I/O0
IN11
I
A2/
PU
OUT11
O1
GPTA0 Output 11
TXDB0
O2
E-Ray Channel B transmit Data Output 1)
OUT11
O3
LTCA2 Output 11
P0.12
I/O0
IN12
I
OUT12
O1
GPTA0 Output 12
TXENA
O2
E-Ray Channel A transmit Data Output enable
168
A2/
PU
Port 0 General Purpose I/O Line 11
GPTA0 Input 11
Port 0 General Purpose I/O Line 12
GPTA0 Input 12
1)
169
OUT12
O3
P0.13
I/O0
IN13
I
OUT13
O1
GPTA0 Output 13
TXENB
O2
E-Ray Channel B transmit Data Output enable
LTCA2 Output 12
A2/
PU
Port 0 General Purpose I/O Line 13
GPTA0 Input 13
1)
OUT13
175
176
O3
LTCA2 Output 13
P0.14
I/O0
IN14
I
REQ4
I
External Request Input 4
OUT14
O1
GPTA0 Output 14
FCLP0C
O2
MSC0 Clock Output Positive C
OUT14
O3
LTCA2 Output 14
P0.15
I/O0
IN15
I
A1+/
PU
A1+/
PU
Port 0 General Purpose I/O Line 14
GPTA0 Input 14
Port 0 General Purpose I/O Line 15
GPTA0 Input 15
REQ5
I
External Request Input 5
OUT15
O1
GPTA0 Output 15
SOP0C
O2
MSC0 Serial Data Output Positive C
OUT15
O3
LTCA2 Output 15
Port 1
Data Sheet
22
V 1.4.1, 2014-05
TC1782
PinningTC1782 Pin Configuration
Table 2
Pin Definitions and Functions (PG-LQFP-176-10 / PG-LQFP-176-20
Package) (cont’d)
Pin
Symbol
Ctrl.
Type Function
116
P1.0
I/O0
IN16
I
A2/
PU
BRKIN
I
Break Input
OUT16
O1
GPTA0 Output 16
OUT72
O2
GPTA0 Output 72
OUT16
O3
LTCA2 Output 16
119
93
98
107
Port 1 General Purpose I/O Line 0
GPTA0 Input 16
BRKOUT
O
P1.1
I/O0
IN17
I
OUT17
O1
GPTA0 Output 17
OUT73
O2
GPTA0 Output 73
Break Output (controlled by OCDS module)
A1/
PU
Port 1 General Purpose I/O Line 1
GPTA0 Input 17
OUT17
O3
P1.2
I/O0
IN18
I
OUT18
O1
GPTA0 Output 18
OUT74
O2
GPTA0 Output 74
OUT18
O3
LTCA2 Output 18
LTCA2 Output 17
A1/
PU
A1/
PU
Port 1 General Purpose I/O Line 2
GPTA0 Input 18
P1.3
I/O0
IN19
I
IN19
I
LTCA2 Input 19
OUT19
O1
GPTA0 Output 19
OUT75
O2
GPTA0 Output 75
Port 1 General Purpose I/O Line 3
GPTA0 Input 19
OUT19
O3
P1.4
I/O0
IN20
I
IN20
I
LTCA2 Input 20
EMGSTOP
I
Emergency Stop Input
OUT20
O1
GPTA0 Output 20
OUT76
O2
GPTA0 Output 76
OUT20
O3
LTCA2 Output 20
Data Sheet
LTCA2 Output 19
A1/
PU
Port 1 General Purpose I/O Line 4
GPTA0 Input 20
23
V 1.4.1, 2014-05
TC1782
PinningTC1782 Pin Configuration
Table 2
Pin Definitions and Functions (PG-LQFP-176-10 / PG-LQFP-176-20
Package) (cont’d)
Pin
Symbol
Ctrl.
Type Function
108
P1.5
I/O0
IN21
I
A1/
PU
IN21
I
LTCA2 Input 21
OUT21
O1
GPTA0 Output 21
OUT77
O2
GPTA0 Output 77
OUT21
O3
LTCA2 Output 21
109
110
94
A1/
PU
Port 1 General Purpose I/O Line 35
GPTA0 Input 21
P1.6
I/O0
IN22
I
IN22
I
LTCA2 Input 22
OUT22
O1
GPTA0 Output 22
OUT78
O2
GPTA0 Output 78
Port 1 General Purpose I/O Line 6
GPTA0 Input 22
OUT22
O3
P1.7
I/O0
IN23
I
IN23
I
LTCA2 Input 23
OUT23
O1
GPTA0 Output 23
OUT79
O2
GPTA0 Output 79
OUT23
O3
P1.8
I/O0
IN24
I
IN48
I
GPTA0 Input 48
MTSR1B
I
SSC1 Slave Receive Input B (Slave Mode)
OUT24
O1
GPTA0 Output 24
OUT48
O2
GPTA0 Output 48
MTSR1B
O3
SSC1 Master Transmit Output B (Master Mode)
Data Sheet
LTCA2 Output 22
A1/
PU
Port 1 General Purpose I/O Line 7
GPTA0 Input 23
LTCA2 Output 23
A1+/
PU
Port 1 General Purpose I/O Line 8
GPTA0 Input 24
24
V 1.4.1, 2014-05
TC1782
PinningTC1782 Pin Configuration
Table 2
Pin Definitions and Functions (PG-LQFP-176-10 / PG-LQFP-176-20
Package) (cont’d)
Pin
Symbol
Ctrl.
Type Function
95
P1.9
I/O0
IN25
I
A1+/
PU
IN49
I
GPTA0 Input 49
MRST1B
I
SSC1 Master Receive Input B (Master Mode)
OUT25
O1
GPTA0 Output 25
OUT49
O2
GPTA0 Output 49
MRST1B
O3
P1.10
I/O0
IN26
I
IN50
I
GPTA0 Input 50
OUT26
O1
GPTA0 Output 26
OUT50
O2
GPTA0 Output 50
SLSO17
O3
SSC1 Slave Select Output 7
P1.11
I/O0
IN27
I
IN51
I
GPTA0 Input 51
SCLK1B
I
SSC1 Clock Input B
OUT27
O1
GPTA0 Output 27
OUT51
O2
GPTA0 Output 51
SCLK1B
O3
P1.12
I/O0
IN16
I
AD0EMUX0
O1
ADC0 External Multiplexer Control Output 0
AD0EMUX0
O2
ADC0 External Multiplexer Control Output 0
OUT16
O3
LTCA2 Output 16
96
97
73
72
Port 1 General Purpose I/O Line 9
GPTA0 Input 25
SSC1 Slave Transmit Output B (Slave Mode)
A1+/
PU
A1+/
PU
Port 1 General Purpose I/O Line 10
GPTA0 Input 26
Port 1 General Purpose I/O Line 11
GPTA0 Input 27
SSC1 Clock Output B
A1/
PU
LTCA2 Input 16
P1.13
I/O0
IN17
I
AD0EMUX1
O1
ADC0 External Multiplexer Control Output 1
AD0EMUX1
O2
ADC0 External Multiplexer Control Output 1
OUT17
O3
LTCA2 Output 17
Data Sheet
A1/
PU
Port 1 General Purpose I/O Line 12
Port 1 General Purpose I/O Line 13
LTCA2 Input 17
25
V 1.4.1, 2014-05
TC1782
PinningTC1782 Pin Configuration
Table 2
Pin Definitions and Functions (PG-LQFP-176-10 / PG-LQFP-176-20
Package) (cont’d)
Pin
Symbol
Ctrl.
Type Function
71
P1.14
I/O0
A1/
PU
117
Port 1 General Purpose I/O Line 14
IN18
I
AD0EMUX2
O1
ADC0 External Multiplexer Control Output 2
AD0EMUX2
O2
ADC0 External Multiplexer Control Output 2
OUT18
O3
LTCA2 Output 18
P1.15
I/O0
BRKIN
I
Reserved
O1
-
Reserved
O2
-
Reserved
O3
-
BRKOUT
O
Break Output (controlled by OCDS module)
P2.0
I/O0
IN32
I
OUT32
O1
GPTA0 Output 32
TCLK0
O2
MLI0 Transmitter Clock Output 0
OUT28
O3
LTCA2 Output 28
A2/
PU
LTCA2 Input 18
Port 1 General Purpose I/O Line 15
Break Input
Port 2
74
75
76
A2/
PU
A2/
PU
Port 2 General Purpose I/O Line 0
GPTA0 Input 32
P2.1
I/O0
IN33
I
TREADY0A
I
MLI0 Transmitter Ready Input A
OUT33
O1
GPTA0 Output 33
SLSO03
O2
SSC0 Slave Select Output Line 3
SLSO13
O3
P2.2
I/O0
IN34
I
Port 2 General Purpose I/O Line 1
GPTA0 Input 33
SSC1 Slave Select Output Line 3
A2/
PU
Port 2 General Purpose I/O Line 2
GPTA0 Input 34
OUT34
O1
GPTA0 Output 34
TVALID0
O2
MLI0 Transmitter Valid Output
OUT29
O3
LTCA2 Output 29
Data Sheet
26
V 1.4.1, 2014-05
TC1782
PinningTC1782 Pin Configuration
Table 2
Pin Definitions and Functions (PG-LQFP-176-10 / PG-LQFP-176-20
Package) (cont’d)
Pin
Symbol
Ctrl.
Type Function
77
P2.3
I/O0
IN35
I
A2/
PU
OUT35
O1
GPTA0 Output 35
TDATA0
O2
MLI0 Transmitter Data Output
OUT30
O3
LTCA2 Output 30
P2.4
I/O0
IN36
I
RCLK0A
I
MLI Receiver Clock Input A
OUT36
O1
GPTA0 Output 36
OUT36
O2
GPTA0 Output 36
OUT31
O3
LTCA2 Output 31
78
79
80
81
A2/
PU
A2/
PU
Port 2 General Purpose I/O Line 3
GPTA0 Input 35
Port 2 General Purpose I/O Line 4
GPTA0 Input 36
P2.5
I/O0
IN37
I
OUT37
O1
GPTA0 Output 37
RREADY0A
O2
MLI0 Receiver Ready Output A
OUT110
O3
LTCA2 Output 110
P2.6
I/O0
IN38
I
RVALID0A
I
MLI Receiver Valid Input A
OUT38
O1
GPTA0 Output 38
OUT38
O2
GPTA0 Output 38
OUT111
O3
LTCA2 Output 111
A2/
PU
GPTA0 Input 37
Port 2 General Purpose I/O Line 6
GPTA0 Input 38
P2.7
I/O0
IN39
I
RDATA0A
I
MLI Receiver Data Input A
OUT39
O1
GPTA0 Output 39
OUT39
O2
GPTA0 Output 39
Reserved
O3
-
Data Sheet
A2/
PU
Port 2 General Purpose I/O Line 5
Port 2 General Purpose I/O Line 7
GPTA0 Input 39
27
V 1.4.1, 2014-05
TC1782
PinningTC1782 Pin Configuration
Table 2
Pin Definitions and Functions (PG-LQFP-176-10 / PG-LQFP-176-20
Package) (cont’d)
Pin
Symbol
Ctrl.
Type Function
164
P2.8
I/O0
SLSO04
O1
A2/
PU
SLSO14
O2
EN00
O3
P2.9
I/O0
SLSO05
O1
SLSO15
O2
SSC1 Slave Select Output 5
EN01
O3
MSC0 Enable Output 1
P2.10
I/O0
MRST1A
I
IN10
I
LTCA2 Input 10
MRST1A
O1
SSC1 Slave Transmit Output
OUT0
O2
LTCA2 Output 0
Reserved
O3
-
160
161
162
163
Port 2 General Purpose I/O Line 8
SSC0 Slave Select Output 4
SSC1 Slave Select Output 4
MSC0 Enable Output 0
A2/
PU
A1+/
PU
A1+/
PU
Port 2 General Purpose I/O Line 9
SSC0 Slave Select Output 5
Port 2 General Purpose I/O Line 10
SSC1 Master Receive Input A
P2.11
I/O0
SCLK1A
I
IN11
I
LTCA2 Input 11
SCLK1A
O1
SSC1 Clock Output A
OUT1
O2
LTCA2 Output 1
FCLP0B
O3
P2.12
I/O0
MTSR1A
I
Port 2 General Purpose I/O Line 11
SSC1 Clock Input A
MSC0 Clock Output Positive B
A1+/
PU
Port 2 General Purpose I/O Line 12
SSC1 Slave Receive Input A
IN12
I
LTCA2 Input 12
MTSR1A
O1
SSC1 Master Transmit Output A
OUT2
O2
LTCA2 Output 2
SOP0B
O3
MSC0 Serial Data Output Positive B
Data Sheet
28
V 1.4.1, 2014-05
TC1782
PinningTC1782 Pin Configuration
Table 2
Pin Definitions and Functions (PG-LQFP-176-10 / PG-LQFP-176-20
Package) (cont’d)
Pin
Symbol
Ctrl.
Type Function
165
P2.13
I/O0
SLSI11
I
A1/
PU
SDI0
I
MSC0 Serial Data Input 0
IN13
I
LTCA2 Input 13
OUT3
O1
LTCA2 Output 3
Reserved
O2
-
Reserved
O3
-
P3.0
I/O0
RXD0A
I
RXD0A
O1
ASC0 Output (Sync. Mode)
RXD0A
O2
ASC0 Output (Sync. Mode)
OUT84
O3
GPTA0 Output 84
P3.1
I/O0
TXD0
O1
TXD0
O2
ASC0 Output
OUT85
O3
GPTA0 Output 85
Port 2 General Purpose I/O Line 13
SSC1 Slave Select Input 1
Port 3
136
135
129
130
A1+/
PU
A1+/
PU
A1+/
PU
Port 3 General Purpose I/O Line 0
ASC0 Receiver Input A (Async. & Sync. Mode)
Port 3 General Purpose I/O Line 1
ASC0 Output
P3.2
I/O0
SCLK0
I
SCLK0
O1
SSC0 Clock Output (Master Mode)
SCLK0
O2
SSC0 Clock Output (Master Mode)
OUT86
O3
GPTA0 Output 86
SSC0 Clock Input (Slave Mode)
P3.3
I/O0
MRST0
I
MRST0
O1
SSC0 Slave Transmit Output (Slave Mode)
MRST0
O2
SSC0 Slave Transmit Output (Slave Mode)
OUT87
O3
GPTA0 Output 87
Data Sheet
A1+/
PU
Port 3 General Purpose I/O Line 2
Port 3 General Purpose I/O Line 3
SSC0 Master Receive Input (Master Mode)
29
V 1.4.1, 2014-05
TC1782
PinningTC1782 Pin Configuration
Table 2
Pin Definitions and Functions (PG-LQFP-176-10 / PG-LQFP-176-20
Package) (cont’d)
Pin
Symbol
Ctrl.
Type Function
132
P3.4
I/O0
MTSR0
I
A2/
PU
MTSR0
O1
SSC0 Master Transmit Output (Master Mode)
MTSR0
O2
SSC0 Master Transmit Output (Master Mode)
OUT88
O3
GPTA0 Output 88
P3.5
I/O0
SLSO00
O1
SLSO10
O2
126
A1+/
PU
P3.6
I/O0
SLSO01
O1
SLSO11
O2
128
138
P3.7
I/O0
Port 3 General Purpose I/O Line 5
SSC0 Slave Select Output 0
SSC0 AND SSC1 Slave Select Output 0
A1+/
PU
Port 3 General Purpose I/O Line 6
SSC0 Slave Select Output 1
SSC1 Slave Select Output 1
SLSOANDO1 O3
131
SSC0 Slave Receive Input (Slave Mode)
SSC1 Slave Select Output 0
SLSOANDO0 O3
127
Port 3 General Purpose I/O Line 4
SSC0 AND SSC1 Slave Select Output 1
A2/
PU
Port 3 General Purpose I/O Line 7
SLSI01
I
SLSO02
O1
SSC0 Slave Select Output 2
SLSO12
O2
SSC1 Slave Select Output 2
SSC0 Slave Select Input 1
OUT89
O3
P3.8
I/O0
SLSO06
O1
TXD1
O2
ASC1 Transmit Output
OUT90
O3
GPTA0 Output 90
GPTA0 Output 89
A2/
PU
SSC0 Slave Select Output 6
P3.9
I/O0
RXD1A
I
RXD1A
O1
ASC1 Receiver Output A (Synchronous Mode)
RXD1A
O2
ASC1 Receiver Output A (Synchronous Mode)
OUT91
O3
GPTA0 Output 91
Data Sheet
A1/
PU
Port 3 General Purpose I/O Line 8
Port 3 General Purpose I/O Line 9
ASC1 Receiver Input A
30
V 1.4.1, 2014-05
TC1782
PinningTC1782 Pin Configuration
Table 2
Pin Definitions and Functions (PG-LQFP-176-10 / PG-LQFP-176-20
Package) (cont’d)
Pin
Symbol
Ctrl.
Type Function
137
P3.10
I/O0
REQ0
I
A1/
PU
Reserved
O1
-
Reserved
O2
-
OUT92
O3
GPTA0 Output 92
P3.11
I/O0
REQ1
I
Reserved
O1
-
Reserved
O2
-
OUT93
O3
P3.12
I/O0
RXDCAN0
I
RXD0B
I
ASC0 Receiver Input B
RXD0B
O1
ASC0 Receiver Output B (Synchronous Mode)
RXD0B
O2
ASC0 Receiver Output B (Synchronous Mode)
OUT94
O3
GPTA0 Output 94
P3.13
I/O0
TXDCAN0
O1
TXD0
O2
OUT95
O3
P3.14
I/O0
RXDCAN1
I
RXD1B
I
ASC1 Receiver Input B
SDI2
I
MSC0 Serial Data Input 2
RXD1B
O1
ASC1 Receiver Output B (Synchronous Mode)
RXD1B
O2
ASC1 Receiver Output B (Synchronous Mode)
OUT96
O3
GPTA0 Output 96
144
143
142
134
Data Sheet
A1/
PU
Port 3 General Purpose I/O Line 10
External Request Input 0
Port 3 General Purpose I/O Line 11
External Request Input 1
GPTA0 Output 93
A1/
PU
A2/
PU
Port 3 General Purpose I/O Line 12
CAN Node 0 Receiver Input
Port 3 General Purpose I/O Line 13
CAN Node 0 Transmitter Output
ASC0 Transmit Output
GPTA0 Output 95
A1/
PU
Port 3 General Purpose I/O Line 14
CAN Node 1 Receiver Input
31
V 1.4.1, 2014-05
TC1782
PinningTC1782 Pin Configuration
Table 2
Pin Definitions and Functions (PG-LQFP-176-10 / PG-LQFP-176-20
Package) (cont’d)
Pin
Symbol
Ctrl.
Type Function
133
P3.15
I/O0
TXDCAN1
O1
A2/
PU
TXD1
O2
ASC1 Transmit Output
OUT97
O3
GPTA0 Output 97
P4.0
I/O0
IN28
I
IN52
I
GPTA0 Input 52
RXDCAN2
I
CAN Node 2 Receiver Input
OUT28
O1
GPTA0 Output 28
OUT52
O2
GPTA0 Output 52
Reserved
O3
P4.1
I/O0
IN29
I
IN53
I
GPTA0 Input 53
OUT29
O1
GPTA0 Output 29
OUT53
O2
GPTA0 Output 53
TXDCAN2
O3
P4.2
I/O0
IN30
I
IN54
I
GPTA0 Input 54
OUT30
O1
GPTA0 Output 30
OUT54
O2
GPTA0 Output 54
EXTCLK1
O3
External Clock 1 Output
P4.3
I/O0
IN31
I
IN55
I
GPTA0 Input 55
OUT31
O1
GPTA0 Output 31
OUT55
O2
GPTA0 Output 55
EXTCLK0
O3
External Clock 0 Output
Port 3 General Purpose I/O Line 15
CAN Node 1 Transmitter Output
Port 4
86
87
88
90
Data Sheet
A1+/
PU
Port 4 General Purpose I/O Line 0
GPTA0 Input 28
A1+/
PU
Port 4 General Purpose I/O Line 1
GPTA0 Input 29
CAN Node 2 Transmitter Output
A2/
PU
A2/
PU
Port 4 General Purpose I/O Line 2
GPTA0 Input 30
Port 4 General Purpose I/O Line 3
GPTA0 Input 31
32
V 1.4.1, 2014-05
TC1782
PinningTC1782 Pin Configuration
Table 2
Pin
Pin Definitions and Functions (PG-LQFP-176-10 / PG-LQFP-176-20
Package) (cont’d)
Symbol
Ctrl.
Type Function
P5.0
I/O0
IN40
I
A1+/
PU
IN26
I
LTCA2 Input 26
OUT40
O1
GPTA0 Output 40
OUT8
O2
LTCA2 Output 8
Port 5
1
2
3
4
Port 5 General Purpose I/O Line 0
GPTA0 Input 40
SLSO20
O3
P5.1
I/O0
IN41
I
IN27
I
LTCA2 Input 27
OUT41
O1
GPTA0 Output 41
OUT9
O2
LTCA2 Output 9
SLSO21
O3
SSC2 Slave Select Output 1
P5.2
I/O0
IN42
I
IN28
I
LTCA2 Input 28
OUT42
O1
GPTA0 Output 42
OUT10
O2
LTCA2 Output 10
SLSO22
O3
SSC2 Slave Select Output 2
P5.3
I/O0
IN43
I
OUT43
O1
GPTA0 Output 43
OUT11
O2
LTCA2 Output 11
SLSO23
O3
SSC2 Slave Select Output 3
Data Sheet
SSC2 Slave Select Output 0
A1+/
PU
A1+/
PU
A1+/
PU
Port 5 General Purpose I/O Line 1
GPTA0 Input 41
Port 5 General Purpose I/O Line 2
GPTA0 Input 42
Port 5 General Purpose I/O Line 3
GPTA0 Input 43
33
V 1.4.1, 2014-05
TC1782
PinningTC1782 Pin Configuration
Table 2
Pin Definitions and Functions (PG-LQFP-176-10 / PG-LQFP-176-20
Package) (cont’d)
Pin
Symbol
Ctrl.
Type Function
5
P5.4
I/O0
IN44
I
A1+/
PU
IN29
I
LTCA2 Input 29
SLSI2A
I
SSC2 Slave Select Input A
OUT44
O1
GPTA0 Output 44
OUT12
O2
LTCA2 Output 12
6
7
8
SLSO24
O3
P5.5
I/O0
IN45
I
Port 5 General Purpose I/O Line 4
GPTA0 Input 44
SSC2 Slave Select Output 4
A1+/
PU
Port 5 General Purpose I/O Line 5
GPTA0 Input 45
IN30
I
LTCA2 Input 30
MRST2A
I
SSC2 Master Receive Input (Master Mode)
OUT45
O1
GPTA0 Output 45
OUT13
O2
LTCA2 Output 13
MRST2
O3
SSC2 Master Transmit Input (Slave Mode)
P5.6
I/O0
IN46
I
IN31
I
LTCA2 Input 31
MTSR2A
I
SSC2 Slave Receive Input (Slave Mode)
OUT46
O1
GPTA0 Output 46
OUT14
O2
LTCA2 Output 14
MTSR2
O3
SSC2 Master Transmit Output (Master Mode)
P5.7
I/O0
A1+/
PU
A1+/
PU
Port 5 General Purpose I/O Line 6
GPTA0 Input 46
Port 5 General Purpose I/O Line 7
IN47
I
SCLK2A
I
SSC2 Clock Input (Slave Mode)
OUT47
O1
GPTA0 Output 47
OUT15
O2
LTCA2 Output 15
SCLK2
O3
SSC2 Clock Output (Master Mode)
Data Sheet
GPTA0 Input 47
34
V 1.4.1, 2014-05
TC1782
PinningTC1782 Pin Configuration
Table 2
Pin Definitions and Functions (PG-LQFP-176-10 / PG-LQFP-176-20
Package) (cont’d)
Pin
Symbol
Ctrl.
Type Function
13
P5.8
I/O0
RDATA0B
I
A2/
PU
Reserved
O1
-
TXDA1
O2
E-Ray Channel A transmit Data Output 1)
OUT89
O3
LTCA2 Output 89
P5.9
I/O0
14
15
A2/
PU
Port 5 General Purpose I/O Line 8
MLI0 Receiver Data Input B
Port 5 General Purpose I/O Line 9
RVALID0B
I
Reserved
O1
-
TXDB1
O2
E-Ray Channel B transmit Data Output 1)
OUT90
O3
P5.10
I/O0
RREADY0B
O1
TXENA
O2
MLI0 Receiver Data Valid Input B
LTCA2 Output 90
A2/
PU
Port 5 General Purpose I/O Line 10
MLI0 Receiver Ready Input B
E-Ray Channel A transmit Data Output enable
1)
16
OUT91
O3
P5.11
I/O0
RCLK0B
I
LTCA2 Output 91
A2/
PU
Port 5 General Purpose I/O Line 11
MLI0 Receiver Clock Input B
Reserved
O1
-
TXENB
O2
E-Ray Channel B transmit Data Output enable
1)
17
18
OUT92
O3
P5.12
I/O0
TDATA0
O1
SLSO07
O2
SSC0 Slave Select Output 7
OUT93
O3
LTCA2 Output 93
LTCA2 Output 92
A1+/
PU
MLI0 Transmitter Data Output
P5.13
I/O0
TVALID0B
O1
SLSO16
O2
SSC1 Slave Select Output 6
Reserved
O3
-
Data Sheet
A1+/
PU
Port 5 General Purpose I/O Line 12
Port 5 General Purpose I/O Line 13
MLI0 Transmitter Valid Input B
35
V 1.4.1, 2014-05
TC1782
PinningTC1782 Pin Configuration
Table 2
Pin Definitions and Functions (PG-LQFP-176-10 / PG-LQFP-176-20
Package) (cont’d)
Pin
Symbol
Ctrl.
Type Function
19
P5.14
I/O0
A1+/
PU
9
Port 5 General Purpose I/O Line 14
TREADY0B
I
RXDA1
I
E-Ray Channel A Receive Data Input 1 1)
Reserved
O1
-
Reserved
O2
-
OUT94
O3
LTCA2 Output 94
A1+/
PU
MLI0 Transmitter Ready Input B
P5.15
I/O0
RXDB1
I
TCLK0
O1
MLI0 Transmitter Clock Output
Reserved
O2
-
OUT95
O3
LTCA2 Output 95
P6.0
I/O0
IN14
I
FCLN0
O1
OUT80
O2
GPTA0 Output 80
OUT4
O3
LTCA2 Output 4
Port 5 General Purpose I/O Line 15
E-Ray Channel B Receive Data Input 1 1)
Port 6
156
157
158
P6.1
I/O0
IN15
I
A1/
F/
PU
A1/
F/
PU
Port 6 General Purpose I/O Line 0
LTCA2 Input 14
MSC0 Clock Output Negative
Port 6 General Purpose I/O Line 1
LTCA2 Input 15
FCLP0A
O1
OUT81
O2
GPTA0 Output 81
OUT5
O3
LTCA2 Output 5
P6.2
I/O0
IN24
I
SON0
O1
OUT82
O2
GPTA0 Output 82
OUT6
O3
LTCA2 Output 6
Data Sheet
A1/
F/
PU
MSC0 Clock Output Positive A
Port 6 General Purpose I/O Line 2
LTCA2 Input 24
MSC0 Serial Data Output Negative
36
V 1.4.1, 2014-05
TC1782
PinningTC1782 Pin Configuration
Table 2
Pin Definitions and Functions (PG-LQFP-176-10 / PG-LQFP-176-20
Package) (cont’d)
Pin
Symbol
Ctrl.
Type Function
159
P6.3
I/O0
IN25
I
SOP0A
O1
A1/
F/
PU
OUT83
O2
GPTA0 Output 83
OUT7
O3
LTCA2 Output 7
Port 6 General Purpose I/O Line 3
LTCA2 Input 25
MSC0 Serial Data Output Positive A
Analog Input Port
67
AN0
I
D
ADC0 Analog Input Channel 0
66
AN1
I
D
ADC0 Analog Input Channel 1
65
AN2
I
D
ADC0 Analog Input Channel 2
64
AN3
I
D
ADC0 Analog Input Channel 3
63
AN4
I
D
ADC0 Analog Input Channel 4
62
AN5
I
D
ADC0 Analog Input Channel 5
61
AN6
I
D
ADC0 Analog Input Channel 6
36
AN7
I
D
ADC0 Analog Input Channel 7
60
AN8
I
D
ADC0 Analog Input Channel 8
59
AN9
I
D
ADC0 Analog Input Channel 9
58
AN10
I
D
ADC0 Analog Input Channel 10
57
AN11
I
D
ADC0 Analog Input Channel 11
56
AN12
I
D
ADC0 Analog Input Channel 12
55
AN13
I
D
ADC0 Analog Input Channel 13
50
AN14
I
D
ADC0 Analog Input Channel 14
49
AN15
I
D
ADC0 Analog Input Channel 15
48
AN16
I
D
ADC1 Analog Input Channel 16
47
AN17
I
D
ADC1 Analog Input Channel 17
46
AN18
I
D
ADC1 Analog Input Channel 18
45
AN19
I
D
ADC1 Analog Input Channel 19
44
AN20
I
D
ADC1 Analog Input Channel 20
43
AN21
I
D
ADC1 Analog Input Channel 21
42
AN22
I
D
ADC1 Analog Input Channel 22
41
AN23
I
D
ADC1 Analog Input Channel 23
Data Sheet
37
V 1.4.1, 2014-05
TC1782
PinningTC1782 Pin Configuration
Table 2
Pin Definitions and Functions (PG-LQFP-176-10 / PG-LQFP-176-20
Package) (cont’d)
Pin
Symbol
Ctrl.
Type Function
40
AN24
I
D
ADC1 Analog Input Channel 24
39
AN25
I
D
ADC1 Analog Input Channel 25
38
AN26
I
D
ADC1 Analog Input Channel 26
37
AN27
I
D
ADC1 Analog Input Channel 27
35
AN28
I
D
ADC1 / FADC Analog Input Channel 28
34
AN29
I
D
ADC1 / FADC Analog Input Channel 29
33
AN30
I
D
ADC1 / FADC Analog Input Channel 30
32
AN31
I
D
ADC1 / FADC Analog Input Channel 31
31
AN32
I
D
FADC Analog Input P Channel 0
30
AN33
I
D
FADC Analog Input N Channel 0
29
AN34
I
D
FADC Analog Input P Channel 1
28
AN35
I
D
FADC Analog Input N Channel 1
54
VDDM
VSSM
VAREF0
VAGND0
VDDMF
VDDAF
VSSMF
VSSAF
VFAREF
VFAGND
VDD
-
-
ADC Analog Part Power Supply (3.3V - 5V)
-
-
ADC Analog Part Ground
-
-
ADC0 and ADC1 Reference Voltage
-
-
ADC Reference Ground
-
-
FADC Analog Part Power Supply (3.3V)
-
-
FADC Analog Part Logic Power Supply (1.3V)
-
-
FADC Analog Part Ground
-
-
FADC Analog Part Ground
-
-
FADC Reference Voltage
-
-
FADC Reference Ground
-
-
Digital Core Power Supply (1.3V)
53
52
51
24
23
25
26
27
10,
212),
68,
84,
91,
99,
123,
153,
170
2)
Data Sheet
38
V 1.4.1, 2014-05
TC1782
PinningTC1782 Pin Configuration
Table 2
Pin Definitions and Functions (PG-LQFP-176-10 / PG-LQFP-176-20
Package) (cont’d)
Pin
Symbol
Ctrl.
Type Function
11,
20,
69,
83,
89,
100,
124,
139,
154,
171
VDDP
-
-
Port Power Supply (3.3V)
12,
22,
70,
82,
85,
92,
101,
125,
140,
155,
172
VSS
-
-
Digital Ground
105
-
-
Main Oscillator and PLL Power Supply (1.3V)
-
-
Main Oscillator Power Supply (3.3V)
-
-
Main Oscillator and PLL Ground
141
VDDOSC
VDDOSC3
VSSOSC
VDDFL3
-
-
Power Supply for Flash (3.3V)
102
XTAL1
I
103
XTAL2
O
111
TDI
I
106
104
112
BRKIN
I
BRKOUT
O
TMS
I
DAP1
I/O
Data Sheet
Main Oscillator Input
Main Oscillator Output
A2/
PU
JTAG Serial Data Input
OCDS Break Input Line
OCDS Break Output Line
A2/
PD
JTAG State Machine Control Input
Device Access Port Line 1
39
V 1.4.1, 2014-05
TC1782
PinningTC1782 Pin Configuration
Table 2
Pin Definitions and Functions (PG-LQFP-176-10 / PG-LQFP-176-20
Package) (cont’d)
Pin
Symbol
Ctrl.
Type Function
113
TDO
I/O
DAP2
I/O
A2/
PU
BRKIN
I
JTAG Serial Data Output
Device Access Port Line 2
OCDS Break Input Line
BRKOUT
O
114
TRST
I
I/
PD
JTAG Reset Input
115
TCK
I
I
A1/
PD
JTAG Clock Input
DAP0
118
TESTMODE
I
I/
PU
Test Mode Select Input
120
ESR1
I/O
A2/
PD
External System Request Reset Input 1
121
PORST
I
I/
PD
Power On Reset Input
122
ESR0
I/O
A2
External System Request Reset Input 0
Default configuration during and after reset is
open-drain driver. The driver drives low during
power-on reset.
OCDS Break Output Line
Device Access Port Line 0
1) Only available for SAK-TC1782F-320F180HR, SAK-TC1782F-320F180HL, and SAK-TC1782F-320F160HR.
2) For the emulation device (ED), this pin is bonded to VDDSB (ED Stand By RAM supply). In the production
devide device, this pin is bonded to a VDD pad.
Legend for Table 2
Column “Ctrl.”:
I = Input (for GPIO port lines with IOCR bit field selection PCx = 0XXXB)
O = Output
O0 = Output with IOCR bit field selection PCx = 1X00B
O1 = Output with IOCR bit field selection PCx = 1X01B (ALT1)
O2 = Output with IOCR bit field selection PCx = 1X10B(ALT2)
O3 = Output with IOCR bit field selection PCx = 1X11(ALT3)
Column “Type”:
A1 = Pad class A1 (LVTTL)
A1+ = Pad class A1+ (LVTTL)
A2 = Pad class A2 (LVTTL)
Data Sheet
40
V 1.4.1, 2014-05
TC1782
PinningTC1782 Pin Configuration
F = Pad class F (LVDS/CMOS)
D = Pad class D (ADC)
I = Pad class I (LVTTL)
PU = with pull-up device connected during reset (PORST = 0)
PD = with pull-down device connected during reset (PORST = 0)
TR = tri-state during reset (PORST = 0)
Data Sheet
41
V 1.4.1, 2014-05
TC1782
Identification Registers
4
Identification Registers
The Identification Registers uniquely identify the whole device.
Table 3
SAK-TC1782F-320F180HR Identification Registers
Short Name
Value
Address
Stepping
CBS_JDPID
0000 6350H
F000 0408H
BA
CBS_JTAGID
1018 E083H
F000 0464H
BA
SCU_CHIPID
8500 9310H
F000 0640H
BA
SCU_MANID
0000 1820H
F000 0644H
BA
SCU_RTID
0000 0000H
F000 0648H
BA
Table 4
SAK-TC1782F-320F180HL Identification Registers
Short Name
Value
Address
Stepping
CBS_JDPID
0000 6350H
F000 0408H
BA
CBS_JTAGID
1018 E083H
F000 0464H
BA
SCU_CHIPID
0500 9310H
F000 0640H
BA
SCU_MANID
0000 1820H
F000 0644H
BA
SCU_RTID
0000 0000H
F000 0648H
BA
Table 5
SAK-TC1782N-320F180HR Identification Registers
Short Name
Value
Address
Stepping
CBS_JDPID
0000 6350H
F000 0408H
BA
CBS_JTAGID
1018 E083H
F000 0464H
BA
SCU_CHIPID
8500 9410H
F000 0640H
BA
SCU_MANID
0000 1820H
F000 0644H
BA
SCU_RTID
0000 0000H
F000 0648H
BA
Table 6
SAK-TC1782N-320F180HL Identification Registers
Short Name
Value
Address
Stepping
CBS_JDPID
0000 6350H
F000 0408H
BA
CBS_JTAGID
1018 E083H
F000 0464H
BA
SCU_CHIPID
0500 9410H
F000 0640H
BA
Data Sheet
42
V 1.4.1, 2014-05
TC1782
Identification Registers
Table 6
SAK-TC1782N-320F180HL Identification Registers (cont’d)
Short Name
Value
Address
Stepping
SCU_MANID
0000 1820H
F000 0644H
BA
SCU_RTID
0000 0000H
F000 0648H
BA
Table 7
SAK-TC1782N-256F133HR Identification Registers
Short Name
Value
Address
Stepping
CBS_JDPID
0000 6350H
F000 0408H
BA
CBS_JTAGID
1018 E083H
F000 0464H
BA
SCU_CHIPID
9400 9410H
F000 0640H
BA
SCU_MANID
0000 1820H
F000 0644H
BA
SCU_RTID
0000 0000H
F000 0648H
BA
Table 8
SAK-TC1782N-256F133HL Identification Registers
Short Name
Value
Address
Stepping
CBS_JDPID
0000 6350H
F000 0408H
BA
CBS_JTAGID
1018 E083H
F000 0464H
BA
SCU_CHIPID
1400 9410H
F000 0640H
BA
SCU_MANID
0000 1820H
F000 0644H
BA
SCU_RTID
0000 0000H
F000 0648H
BA
Table 9
SAK-TC1782F-320F160HR Identification Registers
Short Name
Value
Address
Stepping
CBS_JDPID
0000 6350H
F000 0408H
BA
CBS_JTAGID
1018 E083H
F000 0464H
BA
SCU_CHIPID
A500 9310H
F000 0640H
BA
SCU_MANID
0000 1820H
F000 0644H
BA
SCU_RTID
0000 0000H
F000 0648H
BA
Data Sheet
43
V 1.4.1, 2014-05
TC1782
Identification Registers
Table 10
SAK-TC1782F-320F160HL Identification Registers
Short Name
Value
Address
Stepping
CBS_JDPID
0000 6350H
F000 0408H
BA
CBS_JTAGID
1018 E083H
F000 0464H
BA
SCU_CHIPID
2500 9310H
F000 0640H
BA
SCU_MANID
0000 1820H
F000 0644H
BA
SCU_RTID
0000 0000H
F000 0648H
BA
Table 11
SAK-TC1782N-320F160HR Identification Registers
Short Name
Value
Address
Stepping
CBS_JDPID
0000 6350H
F000 0408H
BA
CBS_JTAGID
1018 E083H
F000 0464H
BA
SCU_CHIPID
A500 9410H
F000 0640H
BA
SCU_MANID
0000 1820H
F000 0644H
BA
SCU_RTID
0000 0000H
F000 0648H
BA
Table 12
SAK-TC1782N-320F160HL Identification Registers
Short Name
Value
Address
Stepping
CBS_JDPID
0000 6350H
F000 0408H
BA
CBS_JTAGID
1018 E083H
F000 0464H
BA
SCU_CHIPID
2500 9410H
F000 0640H
BA
SCU_MANID
0000 1820H
F000 0644H
BA
SCU_RTID
0000 0000H
F000 0648H
BA
Data Sheet
44
V 1.4.1, 2014-05
TC1782
Electrical ParametersGeneral Parameters
5
Electrical Parameters
This specification provides all electrical parameters of the TC1782.
5.1
General Parameters
5.1.1
Parameter Interpretation
The parameters listed in this section partly represent the characteristics of the TC1782
and partly its requirements on the system. To aid interpreting the parameters easily
when evaluating them for a design, they are marked with an two-letter abbreviation in
column “Symbol”:
•
•
CC
Such parameters indicate Controller Characteristics which are a distinctive feature of
the TC1782 and must be regarded for a system design.
SR
Such parameters indicate System Requirements which must provided by the
microcontroller system in which the TC1782 designed in.
Data Sheet
45
V 1.4.1, 2014-05
TC1782
Electrical ParametersGeneral Parameters
5.1.2
Pad Driver and Pad Classes Summary
This section gives an overview on the different pad driver classes and its basic
characteristics. More details (mainly DC parameters) are defined in the Section 5.2.1.
Table 13
Pad Driver and Pad Classes Overview
Class Power Type
Supply
Sub Class
Speed Load
Grade 1)
Leakage
150oC 1)
Termination
1)
A
F
3.3 V
3.3 V
LVTTL
I/O,
LVTTL
outputs
A1
(e.g. GPIO)
6 MHz
100 pF 500 nA
A1+
(e.g. serial
I/Os)
25
MHz
50 pF
1 μA
Series
termination
recommended
A2
(e.g. serial
I/Os)
40
MHz
50 pF
3 μA
Series
termination
recommended
LVDS
–
50
MHz
–
–
Parallel
termination,
100 Ω ± 10% 2)
CMOS
–
6 MHz
50 pF
–
DE
5V
ADC
–
–
–
–
I
3.3 V
LVTTL
(input
only)
–
–
–
–
No
1) These values show typical application configurations for the pad. Complete and detailed pad parameters are
available in the individual pad parameter table on the following pages.
2) In applications where the LVDS pins are not used (disabled), these pins must be either left unconnected, or
properly terminated with the differential parallel termination of 100 Ω ± 10%.
Data Sheet
46
V 1.4.1, 2014-05
TC1782
Electrical ParametersGeneral Parameters
5.1.3
Absolute Maximum Ratings
Stresses above the values listed under “Absolute Maximum Ratings” may cause
permanent damage to the device. This is a stress rating only and functional operation of
the device at these or any other conditions above those indicated in the operational
sections of this specification is not implied. Exposure to absolute maximum rating
conditions may affect device reliability.
Table 14
Absolute Maximum Rating Parameters
Parameter
Symbol
Values
Min. Typ. Max.
Storage temperature
TST
Voltage at 1.3 V power supply VDD
pins with respect to VSS
Voltage at 3.3 V power supply VDDP
pins with respect to VSS
SR
Voltage at 5 V power supply VDDM
pins with respect to VSS
Voltage on any Class A input VIN
SR -65
–
150
°C
SR –
–
2.0
V
–
–
4.33
V
SR –
–
7.0
V
SR -0.6 –
pin and dedicated input pins
with respect to VSS
Voltage on any Class D
analog input pin with respect
to VAGND0
Unit Note /
Test Con
dition
VDDP + 0.7 V
or max. 4.33
-0.6 –
7.0
V
Voltage on any shared Class VAINF
-0.6 –
D analog input pin with
SR
respect to VSSAF, if the FADC
is switched through to the pin.
7.0
V
Input current on any pin
during overload condition
VAIN
VAREF0
Whatever
is lower
SR
IIN
-10
–
+10
mA
Absolute maximum sum of all IIN
input circuit currents for one
port group during overload
condition1)
-25
–
+25
mA
Absolute maximum sum of all ΣIIN
input circuit currents during
overload condition
–
–
|200|
mA
1) The port groups are defined in Table 19.
Data Sheet
47
V 1.4.1, 2014-05
TC1782
Electrical ParametersGeneral Parameters
5.1.4
Pin Reliability in Overload
When receiving signals from higher voltage devices, low-voltage devices experience
overload currents and voltages that go beyond their own IO power supplies specification.
Table 15 defines overload conditions that will not cause any negative reliability impact if
all the following conditions are met:
•
•
full operation life-time (24000 h) is not exceeded
Operating Conditions are met for
– pad supply levels (VDDP or VDDM)
– temperature
If a pin current is out of the Operating Conditions but within the overload parameters,
then the parameters functionality of this pin as stated in the Operating Conditions can no
longer be guaranteed. Operation is still possible in most cases but with relaxed
parameters.
Note: An overload condition on one or more pins does not require a reset.
Table 15
Overload Parameters
Parameter
Min. Typ. Max.
Unit Note /
Test Con
dition
Input current on any digital pin IIN
during overload condition
except LVDS pins
-5
mA
Input current on LVDS pins
IINLVDS
IING
-3
–
+3
mA
-20
–
+20
mA
IINANA
IINSAS
-3
–
+3
mA
-15
–
+15
mA
ΣIINS
-100 –
100
mA
Absolute sum of all input
circuit currents for one port
group during overload
condition1)
Input current on analog pins
Absolute sum of all analog
input currents for analog
inputs of a single ADC during
overload condition
Absolute sum of all input
circuit currents during
overload condition
Symbol
Values
–
+5
1) The port groups are defined in Table 19.
Note: FADC input pins count as analog pin as they are overlayed with an ADC pins.
Data Sheet
48
V 1.4.1, 2014-05
TC1782
Electrical ParametersGeneral Parameters
Table 16
PN-Junction Characterisitics for positive Overload
Pad Type
IIN = 3 mA
IIN = 5 mA
A1 / A1+ / F
UIN = VDDP + 0.6 V
UIN = VDDP + 0.5 V
UIN = VDDP + 0.7 V
UIN = VDDM + 0.6 V
UIN = VDDP + 0.7 V
UIN = VDDP + 0.6 V
A2
LVDS
D
Table 17
-
PN-Junction Characterisitics for negative Overload
Pad Type
IIN = -3 mA
IIN = -5 mA
A1 / A1+ / F
UIN = VSS - 0.6 V
UIN = VSS - 0.5 V
UIN = VSS - 0.7 V
UIN = VSSM - 0.6 V
UIN = VSS - 0.7 V
UIN = VSS - 0.6 V
A2
LVDS
D
-
Note: A series resistor at the pin to limit the current to the maximum permitted overload
current is sufficient to handle failure situations like short to battery without having
any negative reliability impact on the operational life-time.
Data Sheet
49
V 1.4.1, 2014-05
TC1782
Electrical ParametersGeneral Parameters
5.1.5
Operating Conditions
The following operating conditions must not be exceeded in order to ensure correct
operation and reliability of the TC1782.
Digital supply voltages applied to the TC1782 must be static regulated voltages which
allow a typical voltage swing of ± 5 %.
All parameters specified in the following tables refer to these operating conditions
(Table 18), unless otherwise noticed in the Note / Test Condition column.
The Voltage Operating Timing Profiles did not increase area of validity of the
parameters defined in table 8 and later.
Table 18
Operating Conditions Parameters
Parameter
Symbol
Values
Unit Note /
Test Condition
Min.
Typ.
Max.
Overload coupling
KOVAN
factor for analog inputs, CC
negative
−
−
0.000
1
IOV≤ 0 mA; IOV≥ -
KOVAP
Overload coupling
factor for analog inputs, CC
positive
−
−
0.000
01
IOV≤ 3 mA;
IOV≥ 0 mA; analog
fCPU SR −
−
133
MHz SAK-TC1782N256F133HR / SAKTC1782N256F133HL
−
−
180
MHz SAK-TC1782F320F180HR / SAKTC1782F320F180HL / SAKTC1782N320F180HR / SAKTC1782N320F180HL
−
−
160
MHz SAK-TC1782F320F160HR / SAKTC1782F320F160HL / SAKTC1782N320F160HR / SAKTC1782N320F160HL
CPU Frequency
Data Sheet
2 mA; analog
pad= 5.0 V
pad= 5.0 V
50
V 1.4.1, 2014-05
TC1782
Electrical ParametersGeneral Parameters
Table 18
Operating Conditions Parameters (cont’d)
Parameter
FPI bus frequency
Data Sheet
Symbol
fFPI SR
Values
Unit Note /
Test Condition
Min.
Typ.
Max.
−
−
90
MHz SAK-TC1782F320F180HR / SAKTC1782F320F180HL / SAKTC1782N320F180HR / SAKTC1782N320F180HL / SAKTC1782F256F133HR / SAKTC1782F256F133HL / SAKTC1782N256F133HR / SAKTC1782N256F133HL
−
−
80
MHz SAK-TC1782F320F160HR / SAKTC1782F320F160HL / SAKTC1782N320F160HR / SAKTC1782N320F160HL
51
V 1.4.1, 2014-05
TC1782
Electrical ParametersGeneral Parameters
Table 18
Operating Conditions Parameters (cont’d)
Parameter
Symbol
Values
Min.
LMB frequency
Data Sheet
Unit Note /
Test Condition
Typ.
Max.
fLMB CC −
−
133
MHz SAK-TC1782N256F133HR / SAKTC1782N256F133HL
−
−
180
MHz SAK-TC1782F320F180HR / SAKTC1782F320F180HL / SAKTC1782N320F180HR / SAKTC1782N320F180HL
−
−
160
MHz SAK-TC1782F320F160HR / SAKTC1782F320F160HL / SAKTC1782N320F160HR / SAKTC1782N320F160HL
52
V 1.4.1, 2014-05
TC1782
Electrical ParametersGeneral Parameters
Table 18
Operating Conditions Parameters (cont’d)
Parameter
Symbol
Values
Min.
PCP Frequency
Unit Note /
Test Condition
Typ.
Max.
fPCP SR −
−
133
MHz SAK-TC1782N256F133HR / SAKTC1782N256F133HL
−
−
180
MHz SAK-TC1782F320F180HR / SAKTC1782F320F180HL / SAKTC1782N320F180HR / SAKTC1782N320F180HL
−
−
160
MHz SAK-TC1782F320F160HR / SAKTC1782F320F160HL / SAKTC1782N320F160HR / SAKTC1782N320F160HL
Inactive device pin
current
IID SR
-1
−
1
mA
Short circuit current of
digital outputs1)
ISC SR
-5
−
5
mA
Absolute sum of short
circuit currents of the
device
ΣISC_D
CC
−
−
100
mA
Absolute sum of short
circuit currents per pin
group
ΣISC_PG
CC
−
−
20
mA
Ambient Temperature
TA SR
TJ SR
-40
−
125
°C
-40
−
150
°C
Junction temperature
Data Sheet
53
All power supply
voltagesVDDx = 0
V 1.4.1, 2014-05
TC1782
Electrical ParametersGeneral Parameters
Table 18
Operating Conditions Parameters (cont’d)
Parameter
Symbol
Values
Min.
Core Supply Voltage
Typ.
VDD SR 1.235 1.3
Max.
Unit Note /
Test Condition
1.365
V
SAK-TC1782F320F180HR / SAKTC1782F320F180HL / SAKTC1782N320F180HR / SAKTC1782N320F180HL / SAKTC1782N256F133HR / SAKTC1782N256F133HL; for
duration limitation
see Voltage
Operating Timing
Profiles
2)
1.17
1.3
1.432)
V
SAK-TC1782F320F160HR / SAKTC1782F320F160HL / SAKTC1782N320F160HR / SAKTC1782N320F160HL; for
duration limitation
see Voltage
Operating Timing
Profiles
for duration
limitation see
Voltage Operating
Timing Profiles
Flash supply voltage
3.3V
VDDFL3
2.97
3.3
3.634)
V
ADC analog supply
voltage
VDDM
2.97
3.3
5.53)
V
Data Sheet
SR
SR
54
V 1.4.1, 2014-05
TC1782
Electrical ParametersGeneral Parameters
Table 18
Operating Conditions Parameters (cont’d)
Parameter
Symbol
Values
Min.
Typ.
1.235
1.3
1.17
Oscillator 3.3V supply
voltage
Digital supply voltage
for IO pads
Oscillator core supply
voltage
Data Sheet
Max.
Unit Note /
Test Condition
1.3652 V
SAK-TC1782F320F180HR / SAKTC1782F320F180HL / SAKTC1782N320F180HR / SAKTC1782N320F180HL / SAKTC1782N256F133HR / SAKTC1782N256F133HL; for
duration limitation
see Voltage
Operating Timing
Profiles
1.3
1.432)
V
SAK-TC1782F320F160HR / SAKTC1782F320F160HL / SAKTC1782N320F160HR / SAKTC1782N320F160HL; for
duration limitation
see Voltage
Operating Timing
Profiles
VDDOSC3 2.97
3.3
3.634)
V
for duration
limitation see
Voltage Operating
Timing Profiles
VDDP SR 2.97
3.3
3.63 4) V
for duration
limitation see
Voltage Operating
Timing Profiles
VDDOSC
SR
)
SR
55
V 1.4.1, 2014-05
TC1782
Electrical ParametersGeneral Parameters
Table 18
Operating Conditions Parameters (cont’d)
Parameter
Symbol
Min.
Typ.
Max.
Unit Note /
Test Condition
0.65
−
−
V
VSS SR 0
VSSM SR -0.1
−
−
V
0
0.1
V
VDDP voltage to ensure VDDPPA
defined pad states5)
CC
Digital ground voltage
Analog ground voltage
for VDDM
Analog core supply
VDDAF
Values
1.235
1.3
1.17
1.3
SR
Data Sheet
56
1.3652 V
SAK-TC1782F320F180HR / SAKTC1782F320F180HL / SAKTC1782N320F180HR / SAKTC1782N320F180HL / SAKTC1782N256F133HR / SAKTC1782N256F133HL; for
duration limitation
see Voltage
Operating Timing
Profiles
1.432)
SAK-TC1782F320F160HR / SAKTC1782F320F160HL / SAKTC1782N320F160HR / SAKTC1782N320F160HL; for
duration limitation
see Voltage
Operating Timing
Profiles
)
V
V 1.4.1, 2014-05
TC1782
Electrical ParametersGeneral Parameters
Table 18
Operating Conditions Parameters (cont’d)
Parameter
FADC / ADC analog
supply voltage
Analog ground voltage
for VDDMF
Symbol
Min.
Values
Typ.
Max.
Unit Note /
Test Condition
VDDMF
2.97
3.3
3.634)
V
VSSAF
-0.1
0
0.1
V
SR
for duration
limitation see
Voltage Operating
Timing Profiles
SR
1) Applicable for digital outputs.
2) Voltage overshoot to 1.7V is permissible at Power-Up and PORST low, provided the pulse duration is less than
100 μs and the cumulated sum of the pulses does not exceed 1 h.
3) Voltage overshoot to 6.5V is permissible at Power-Up and PORST low, provided the pulse duration is less than
100 μs and the cumulated sum of the pulses does not exceed 1 h.
4) Voltage overshoot to 4.0V is permissible at Power-Up and PORST low, provided the pulse duration is less than
100 μs and the cumulated sum of the pulses does not exceed 1 h.
5) This parameter is valid under the assumption the PORST signal is constantly at low level during the powerup/power-down of VDDP.
Voltage Operating Timing Profiles
•
•
•
•
•
•
1.3V < VDD / VDDOSC / VDDAF < 1.3V + 5%:
– limited to Operation Lifetime (tOP) (see Table 46)
1.3V + 5% < VDD / VDDOSC / VDDAF < 1.3V + 7.5% (overvoltage condition):
– limited to 10000 hour duration cumulative in lifetime, due to the reliability reduction
of the chip caused by the overvoltage stress.
1.3V + 7.5% < VDD / VDDOSC / VDDAF < 1.3V + 10% (overvoltage condition):
– limited to 1000 hour duration cumulative in lifetime, due to the reliability reduction
of the chip caused by the overvoltage stress.
3.3V < VDDP / VDDOSC3 / VDDFL3 / VDDMF < 3.3V + 5%:
– limited to Operation Lifetime (tOP) (see Table 46)
VDDP / VDDOSC3 / VDDFL3 / VDDMF< 3.3 V + 10%
– 3.3V + 5% < VDDP / VDDOSC3 / VDDFL3 / VDDMF< 3.3V + 10%
(overvoltage condition):
limited to 1000 hour duration cumulative in lifetime, due to the reliability reduction
of the chip caused by the overvoltage stress.
5V < VDDM < 5V + 10%:
– limited to Operation Lifetime (tOP) (see Table 46)
Data Sheet
57
V 1.4.1, 2014-05
TC1782
Electrical ParametersGeneral Parameters
Table 19
Pin Groups for Overload / Short-Circuit Current Sum Parameter
Group
Pins
1
P5.[7:2], P5.15
2
P5.[9:8]
3
P5.[11:10]
4
P5.[14:12]
5
P1.[14:12], P2.0
6
P2.[4:1]
7
P2.[7:5]
8
P4.[2:0]
9
P4.3
10
P1.2, P1.8
11
P1.[10:9]
12
P1.3, P1.11
13
P1.[7:4]
14
P1.[1:0], P1.15
15
P3.[8:5], P3.[3:2]
16
P3.[1:0], P3.4, P3.[10:9], P3.[15:14]
17
P0.[1:0], P3.[13:11]
18
P0.[3:2], P0.[9:8]
19
P0.[11:10]
20
P6.[3:0]
21
P2.[13:8]
22
P0.[5:4], P0.[13:12]
23
P0.[7:6], P0.[15:14], P5.[1:0]
Data Sheet
58
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
5.2
DC Parameters
5.2.1
Input/Output Pins
Table 20
Standard_Pads Parameters
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note /
Test Condition
TA= 25 °C;
f= 1 MHz
Vi≥ 0.6 x VDDP V
Vi≥ 0.36 x
VDDP V
Vi≤ 0.6 x VDDP V
Vi≤ 0.36 x
VDDP V
Pin capacitance (digital
inputs/outputs)
CIO CC
−
−
10
pF
Pull-down current
|IPDL|
CC
−
−
150
μA
10
−
−
μA
|IPUH|
CC
10
−
−
μA
−
−
100
μA
Spike filter always blocked tSF1 CC
pulse duration
−
−
10
ns
only PORST pin
Spike filter pass-through
pulse duration
100
−
−
ns
only PORST pin
Unit
Note /
Test Condition
Pull-Up current
Table 21
tSF2 CC
Standard_Pads Class_A1
Parameter
Input Hysteresis for A1
pads 1)
Input Leakage Current
Class A1
Ratio Vil/Vih, A1 pads
Symbol
Values
Min.
Typ.
Max.
HYSA1
0.1 x
−
−
V
CC
VDDP
IOZA1
-500
−
500
nA
VILA1 /
VIHA1
0.6
−
−
−
450
600
Ohm IOH< -0.5 mA;
P_MOS
−
210
340
Ohm IOL< 0.5 mA;
N_MOS
CC
Vi≥ 0 V;
Vi≤ VDDP V
CC
On-Resistance of the
RDSONW
class A1 pad, weak driver CC
Data Sheet
59
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
Table 21
Standard_Pads Class_A1 (cont’d)
Parameter
Symbol
On-Resistance of the
class A1 pad, medium
driver
CC
Fall time, pad type A1
tFA1 CC
RDSONM
Values
Unit
Note /
Test Condition
Min.
Typ.
Max.
−
−
155
Ohm IOH< -2 mA;
P_MOS
−
−
110
Ohm IOL< 2 mA;
N_MOS
−
−
150
ns
CL= 20 pF; pin
out
driver= weak
−
−
50
ns
CL= 50 pF; pin
out
driver= medium
−
−
140
ns
CL= 150 pF; pin
out
driver= medium
−
−
550
ns
CL= 150 pF; pin
out
driver= weak
−
−
18000
ns
CL= 20000 pF;
pin out
driver= medium
−
−
65000
ns
CL= 20000 pF;
pin out
driver= weak
Data Sheet
60
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
Table 21
Standard_Pads Class_A1 (cont’d)
Parameter
Symbol
Values
Min.
Rise time, pad type A1
Typ.
Max.
tRA1 CC −
−
150
−
−
Unit
Note /
Test Condition
ns
CL= 20 pF; pin
out
driver= weak
50
ns
CL= 50 pF; pin
out
driver= medium
−
−
140
ns
CL= 150 pF; pin
out
driver= medium
−
−
550
ns
CL= 150 pF; pin
out
driver= weak
−
−
18000
ns
CL= 20000 pF;
pin out
driver= medium
−
−
65000
ns
CL= 20000 pF;
pin out
driver= weak
Input high voltage class
A1 pads
VIHA1
SR
0.6 x
min(V V
DDP+
0.3,3.6
)
−
Input low voltage class A1 VILA1 SR -0.3
pads
Data Sheet
−
VDDP
0.36 x
V
VDDP
61
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
Table 21
Standard_Pads Class_A1 (cont’d)
Parameter
Symbol
Values
Min.
Output voltage high class
A1 pads
VOHA1
CC
Typ.
Unit
Note /
Test Condition
V
IOH≥ -1.4 mA;
Max.
VDDP - −
−
−
−
0.4
2.4
pin out
driver= medium
V
IOH≥ -2 mA; pin
out
driver= medium
VDDP - −
−
V
IOH≥ -400 μA;
pin out
driver= weak
2.4
−
−
V
IOH≥ -500 μA;
pin out
driver= weak
−
−
0.4
V
IOL≤ 2 mA; pin
0.4
Output voltage low class
A1 pads
VOLA1
CC
out
driver= medium
−
−
0.4
V
IOL≤ 500 μA;
pin out
driver= weak
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can´t be
guaranteed that it suppresses switching due to external system noise.
Table 22
Standard_Pads Class_A1+
Parameter
Symbol
Input Hysteresis for A1+
pads 1)
HYSA1
+ CC
IOZA1+
VDDP
RDSONW
Input Leakage Current
Class A1+
On-Resistance of the
class A1+ pad, weak
driver
Data Sheet
Values
Unit
Note /
Test Condition
Min.
Typ.
Max.
0.1 x
−
−
V
-1000
−
1000
nA
−
450
600
Ohm IOH< -0.5 mA;
P_MOS
−
210
340
Ohm IOL< 0.5 mA;
N_MOS
CC
CC
62
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
Table 22
Standard_Pads Class_A1+ (cont’d)
Parameter
Symbol
Values
Unit
Note /
Test Condition
Min.
Typ.
Max.
−
−
155
Ohm IOH< -2 mA;
P_MOS
−
−
110
Ohm IOL< 2 mA;
N_MOS
On-Resistance of the
class A1+ pad, strong
driver
RDSON1+ −
−
100
Ohm IOH< -2 mA;
P_MOS
−
−
80
Ohm IOL< 2 mA;
N_MOS
Fall time, pad type A1+
tFA1+ CC −
−
150
ns
−
−
On-Resistance of the
class A1+ pad, medium
driver
RDSONM
CC
CC
CL= 20 pF; pin
out
driver= weak
28
ns
CL= 50 pF;
edge= slow ;
pin out
driver= strong
−
−
16
ns
CL= 50 pF;
edge= soft ; pin
out
driver= strong
−
−
50
ns
CL= 50 pF; pin
out
driver= medium
−
−
140
ns
CL= 150 pF; pin
out
driver= medium
−
−
550
ns
CL= 150 pF; pin
out
driver= weak
−
−
18000
ns
CL= 20000 pF;
pin out
driver= medium
−
−
65000
ns
CL= 20000 pF;
pin out
driver= weak
Data Sheet
63
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
Table 22
Standard_Pads Class_A1+ (cont’d)
Parameter
Symbol
Values
Min.
Rise time, pad type A1+
Typ.
Max.
tRA1+ CC −
−
150
−
−
Unit
Note /
Test Condition
ns
CL= 20 pF; pin
out
driver= weak
28
ns
CL= 50 pF;
edge= slow ;
pin out
driver= strong
−
−
16
ns
CL= 50 pF;
edge= soft ; pin
out
driver= strong
−
−
50
ns
CL= 50 pF; pin
out
driver= medium
−
−
140
ns
CL= 150 pF; pin
out
driver= medium
−
−
550
ns
CL= 150 pF; pin
out
driver= weak
−
−
18000
ns
CL= 20000 pF;
pin out
driver= medium
−
−
65000
ns
CL= 20000 pF;
pin out
driver= weak
Input high voltage, Class
A1+ pads
Input low voltage Class
A1+ pads
Ratio Vil/Vih, A1+ pads
VIHA1+
SR
VILA1+
0.6 x
−
VDDP
0.3,3.6
)
−
-0.3
SR
VILA1+ /
VIHA1+
min(V V
DDP+
0.36 x
V
VDDP
−
0.6
−
CC
Data Sheet
64
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
Table 22
Standard_Pads Class_A1+ (cont’d)
Parameter
Symbol
Values
Min.
Output voltage high class
A1+ pads
VOHA1+
CC
Typ.
Unit
Note /
Test Condition
V
IOH≥ -1.4 mA;
Max.
VDDP - −
−
VDDP - −
−
−
−
0.4
pin out
driver= medium
V
0.4
2.4
IOH≥ -1.4 mA;
pin out
driver= strong
V
IOH≥ -2 mA; pin
out
driver= medium
−
2.4
−
V
IOH≥ -2 mA; pin
out
driver= strong
VDDP - −
−
V
IOH≥ -400 μA;
pin out
driver= weak
2.4
−
−
V
IOH≥ -500 μA;
pin out
driver= weak
−
−
0.4
V
IOL≤ 2 mA; pin
0.4
Output voltage low class
A1+ pads
VOLA1+
CC
out
driver= medium
−
−
0.4
V
IOL≤ 2 mA; pin
out
driver= strong
−
−
0.4
V
IOL≤ 500 μA;
pin out
driver= weak
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can´t be
guaranteed that it suppresses switching due to external system noise.
Data Sheet
65
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
Table 23
Standard_Pads Class_A2
Parameter
Input Hysteresis for A2
pads 1)
Input Leakage current
Class A2
Symbol
Values
Unit
Note /
Test Condition
Min.
Typ.
Max.
HYSA2
0.1 x
−
−
V
CC
VDDP
IOZA2
-6000
−
6000
nA
-3000
−
3000
nA
0.6
−
−
−
450
600
Ohm IOH< -0.5 mA;
P_MOS
−
210
340
Ohm IOL< 0.5 mA;
N_MOS
−
−
155
Ohm IOH< -2 mA;
P_MOS
−
−
110
Ohm IOL< 2 mA;
N_MOS
−
−
28
Ohm IOH< -2 mA;
P_MOS
−
−
22
Ohm IOL< 2 mA;
N_MOS
CC
Vi< VDDP / 2 1 V; Vi> VDDP / 2
+ 1 V; Vi≥ 0 V;
Vi≤ VDDP V
Vi> VDDP / 2 1 V; Vi< VDDP / 2
+1V
Ratio Vil/Vih, A2 pads
VILA2 /
VIHA2
CC
On-Resistance of the
RDSONW
class A2 pad, weak driver CC
On-Resistance of the
class A2 pad, medium
driver
RDSONM
CC
On-Resistance of the
RDSON2
class A2 pad, strong driver CC
Data Sheet
66
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
Table 23
Standard_Pads Class_A2 (cont’d)
Parameter
Fall time, pad type A2
Symbol
tFA2 CC
Values
Min.
Typ.
Max.
−
−
150
Unit
Note /
Test Condition
ns
CL= 20 pF; pin
out
driver= weak
−
−
7
ns
CL= 50 pF;
edge= medium
; pin out
driver= strong
−
−
10
ns
CL= 50 pF;
edge= mediumminus ; pin out
driver= strong
−
−
3.7
ns
CL= 50 pF;
edge= sharp ;
pin out
driver= strong
−
−
5
ns
CL= 50 pF;
edge= sharpminus ; pin out
driver= strong
−
−
16
ns
CL= 50 pF;
edge= soft ; pin
out
driver= strong
−
−
50
ns
CL= 50 pF; pin
out
driver= medium
−
−
7.5
ns
CL= 100 pF;
edge= sharp ;
pin out
driver= strong
−
−
140
ns
CL= 150 pF; pin
out
driver= medium
Data Sheet
67
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
Table 23
Parameter
Standard_Pads Class_A2 (cont’d)
Symbol
Values
Min.
Typ.
Max.
−
−
550
Unit
Note /
Test Condition
ns
CL= 150 pF; pin
out
driver= weak
−
−
18000
ns
CL= 20000 pF;
pin out
driver= medium
−
−
65000
ns
CL= 20000 pF;
pin out
driver= weak
Data Sheet
68
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
Table 23
Standard_Pads Class_A2 (cont’d)
Parameter
Symbol
Values
Min.
Rise time, pad type A2
Typ.
Max.
tRA2 CC −
−
150
−
−
Unit
Note /
Test Condition
ns
CL= 20 pF; pin
out
driver= weak
7.0
ns
CL= 50 pF;
edge= medium
; pin out
driver= strong
−
−
10
ns
CL= 50 pF;
edge= mediumminus ; pin out
driver= strong
−
−
3.7
ns
CL= 50 pF;
edge= sharp ;
pin out
driver= strong
−
−
5
ns
CL= 50 pF;
edge= sharpminus ; pin out
driver= strong
−
−
16
ns
CL= 50 pF;
edge= soft ; pin
out
driver= strong
−
−
50
ns
CL= 50 pF; pin
out
driver= medium
−
−
7.5
ns
CL= 100 pF;
edge= sharp ;
pin out
driver= strong
−
−
140
ns
CL= 150 pF; pin
out
driver= medium
Data Sheet
69
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
Table 23
Standard_Pads Class_A2 (cont’d)
Parameter
Symbol
Values
Min.
Typ.
Max.
−
−
550
Unit
Note /
Test Condition
ns
CL= 150 pF; pin
out
driver= weak
−
−
18000
ns
CL= 20000 pF;
pin out
driver= medium
−
−
65000
ns
CL= 20000 pF;
pin out
driver= weak
Input high voltage, class
A2 pads
VIHA2
SR
0.6 x
VOHA2
CC
min(V V
DDP +
0.3,
3.6)
−
Input low voltage Class A2 VILA2 SR -0.3
pads
Output voltage high class
A2 pads
−
VDDP
0.36 x
V
VDDP
VDDP - −
−
VDDP - −
−
−
−
V
0.4
pin out
driver= medium
V
0.4
2.4
IOH≥ -1.4 mA;
IOH≥ -1.4 mA;
pin out
driver= strong
V
IOH≥ -2 mA; pin
out
driver= medium
−
2.4
−
V
IOH≥ -2 mA; pin
out
driver= strong
VDDP - −
−
V
IOH≥ -400 μA;
pin out
driver= weak
−
−
V
IOH≥ -500 μA;
pin out
driver= weak
0.4
2.4
Data Sheet
70
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
Table 23
Standard_Pads Class_A2 (cont’d)
Parameter
Symbol
Output voltage low class
A2 pads
VOLA2
Values
Min.
Typ.
Max.
−
−
0.4
Unit
Note /
Test Condition
V
IOL≤ 2 mA; pin
CC
out
driver= medium
−
−
0.4
V
IOL≤ 2 mA; pin
out
driver= strong
−
−
0.4
V
IOL≤ 500 μA;
pin out
driver= weak
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can´t be
guaranteed that it suppresses switching due to external system noise.
Table 24
Standard_Pads Class_F
Parameter
Input Hysteresis F1)
Input Leakage Current
Class F
Symbol
Values
Unit
Note /
Test Condition
Min.
Typ.
Max.
HYSF
0.05 x
−
−
V
CC
VDDP
IOZF CC -6000
−
6000
nA
-3000
−
3000
nA
−
−
−
170
Ohm IOH< -2 mA;
P_MOS
−
−
175
Ohm IOH< -2 mA;
P_MOS;
VDDP≥±5% * VD
−
−
145
Ohm IOL< 2 mA;
N_MOS
Vi< VDDP / 2 1 V; Vi> VDDP / 2
+ 1 V; Vi≥ 0 V;
Vi≤ VDDP V
Vi> VDDP / 2 1 V; Vi< VDDP / 2
+1V
Ratio Vil/ Vih, F pads
On-Resistance of the
class F pad, medium
driver
VILF /
0.6
VIHF CC
RDSONM −
CC
DP
Data Sheet
71
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
Table 24
Standard_Pads Class_F (cont’d)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note /
Test Condition
Fall time, pad type F,
CMOS mode
tFF CC
−
−
60
ns
CL= 50 pF
Rise time, pad type F,
CMOS mode
tRF CC
−
−
60
ns
CL= 50 pF
Input high voltage, pad
class F, CMOS mode
VIHF SR 0.6 x
VDDP
−
min(V V
DDP+
Input low voltage, Class F VILF SR
pads, CMOS mode
Output high voltage, class VOHF
F pads, CMOS mode
CC
−
-0.3
0.36 x
V
VDDP
VDDP-
−
−
V
IOH≥ -1.4 mA
−
−
V
−
0.4
V
IOH≥ -2 mA
IOL≤ 2 mA
0.4
2.4
Output low voltage, class
F pads, CMOS mode
0.3,
3.6)
VOLF CC −
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can´t be
guaranteed that it suppresses switching due to external system noise.
Table 25
Standard_Pads Class_I
Parameter
Input Hysteresis Class I1)
Input Leakage Current
Ratio between low and
high input threshold
Input high voltage, class I
pins
Input low voltage, Class I
pads
Data Sheet
Symbol
Values
Unit
Min.
Typ.
Max.
HYSI
0.1 x
−
−
V
CC
VDDP
IOZI CC -1000
VILI / VIHI 0.6
−
1000
nA
−
−
VIHI SR
−
min(V V
DDP+
Note /
Test Condition
CC
0.6 x
VDDP
VILI SR
0.3,
3.6)
−
-0.3
0.36 x
V
VDDP
72
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can´t be
guaranteed that it suppresses switching due to external system noise.
Table 26
LVDS_Pads Parameters
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note /
Test Condition
Output impedance, pad
class F, LVDS mode
RO CC
40
−
140
Ohm
Fall time, pad type LVDS
tFL CC
−
−
2
ns
termination
100 Ω ± 1 %
Rise time, pad type LVDS tRL CC
−
−
2
ns
termination
100 Ω ± 1 %
tSET_LVD −
−
13
μs
termination
100 Ω ± 1 %
−
400
mV
termination
100 Ω ± 1 %
Pad set-up time
S
CC
Output Differential Voltage VOD CC 150
Output voltage high, pad
class F, LVDS mode
VOH CC −
−
1525
mV
termination
100 Ω ± 1 %
Output voltage low, pad
class F, LVDS mode
VOL CC
−
−
mV
termination
100 Ω ± 1 %
Output Offset Voltage
VOS CC 1075
−
1325
mV
termination
100 Ω ± 1 %
Data Sheet
875
73
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
5.2.2
Analog to Digital Converters (ADCx)
ADC parameter are valid for VDD / DDAF = 1.17 V to 1.43 V; VDDM = 4.5 V to 5.5 V.
Table 27
ADC Parameters
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
CAINSW
Switched capacitance at
the analog voltage inputs1) CC
−
9
20
pF
Total capacitance of an
analog input
−
20
30
pF
Switched capacitance at
the positive reference
voltage input2)3)
CAREFSW −
15
30
pF
Total capacitance of the
voltage reference inputs2)
CAREFTO −
20
40
pF
Differential Non-Linearity
Error4)5)6)7)
Gain Error4)6)5)7)
CAINTOT
CC
CC
T CC
EADNL
-3
−
3
LSB
ADC
resolution= 12bit 8) 9)
EAGAIN
-3.5
−
3.5
LSB
ADC
resolution= 12bit 8) 9)
EAINL
-3
−
3
LSB
ADC
resolution= 12bit 8) 9)
EAOFF
-4
−
4
LSB
ADC
resolution= 12bit 8) 9)
CC
CC
Integral NonLinearity4)6)5)7)
Offset Error4)6)5)7)
CC
CC
Data Sheet
Note /
Test Condition
74
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
Table 27
ADC Parameters (cont’d)
Parameter
Symbol
Values
Min.
Converter clock
Internal ADC clock
Charge consumption per
conversion
Unit
Note /
Test Condition
Typ.
Max.
fADC SC 4
−
90
MHz fADC= fFPI; SAKTC1782F320F180HR / S
AK-TC1782F320F180HL / S
AK-TC1782N320F180HR / S
AK-TC1782N320F180HL / S
AK-TC1782N256F133HR / S
AK-TC1782N256F133HL
4
−
80
MHz fADC= fFPI; SAKTC1782F320F160HR / S
AK-TC1782F320F160HL / S
AK-TC1782N320F160HR / S
AK-TC1782N320F160HL
18
MHz
100
pC
−
fADCI CC 1
QCONV 70
10)
85
CC
charge needs to
be provided via
VAREF0
Data Sheet
75
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
Table 27
ADC Parameters (cont’d)
Parameter
Symbol
Values
Min.
Input leakage at analog
inputs11)
IOZ1 CC -100
Typ.
Max.
−
500
Unit
Note /
Test Condition
nA
Vi≤ VDDM V;
Vi≥ 0.97 x
VDDM V;
overlayed= No
−
-100
600
nA
Vi≥ 0.97 x
VDDM V;
Vi≤ VDDM V;
overlayed= Yes
-500
−
100
nA
Vi≤ 0.03 x
VDDM V;
Vi≥ 0 V;
-600
−
100
nA
Vi≤ 0.03 x
VDDM V;
Vi≥ 0 V;
-100
−
200
nA
Vi> 0.03 x
VDDM V;
Vi< 0.97 x
VDDM V;
overlayed= No
overlayed= Yes
overlayed= No
−
-100
300
nA
Vi< 0.97 x
VDDM V;
Vi> 0.03 x
VDDM V;
overlayed= Yes
Input leakage current at
Varef0
IOZ2 CC -2
−
2
μA
VAREF0≤ VDDM V
Input leakage current at
Vagnd0
IOZ3 CC -2
−
2
μA
VAGND0≤ VDDM V
ON resistance of the
transmission gates in the
analog voltage path
RAIN CC −
900
1500
Ohm
550
900
Ohm
ON resistance for the ADC RAIN7T
test (pull down for AIN7)
CC
Data Sheet
180
76
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
Table 27
ADC Parameters (cont’d)
Parameter
Symbol
Resistance of the
reference voltage input
path
Unit
Typ.
Max.
−
500
1000
Ohm
tS CC
2
tCAL CC −
−
257
TADCI
−
4352
cycle
s
TUE CC -4
−
413)
LSB
RAREF
Note /
Test Condition
CC
Sample time
Calibration time after bit
ADC_GLOBCFG.SUCAL
is set
Total Unadjusted
Error6)5)12)
Analog reference ground2) VAGND0
SR
Analog input voltage
Analog reference voltage
Values
Min.
2)
VAIN SR VAGND0 −
VAREF0 VAGND0 −
SR
Analog reference voltage
range6)5)2)
VSSM - −
0.05
+1
ADC
resolution= 12bit
VAREF0 V
-1
VAREF0 V
VDDM + V
0.0514)
15)
VAREF0 - VDDM/2 −
VAGND0
VDDM + V
0.05
SR
1) The sampling capacity of the conversion C-network is pre-charged to VAREF0/2 before the sampling moment.
Because of the parasitic elements the voltage measured at AINx can deviate from VAREF0/2.
2) Applies to AINx, when used as auxiliary reference input.
3) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage
at once. Instead smaller capacitances are successively switched to the reference voltage.
4) The sum of DNL/INL/GAIN/OFF errors does not exceed the related TUE total unadjusted error.
5) If a reduced analog reference voltage between 1V and VDDM / 2 is used, then there are additional decrease in
the ADC speed and accuracy.
6) If the analog reference voltage range is below VDDM but still in the defined range of VDDM / 2 and VDDM is used,
then the ADC converter errors increase. If the reference voltage is reduced by the factor k (k<1),
TUE,DNL,INL,Gain, and Offset errors increase also by the factor 1/k.
7) If the analog reference voltage is > VDDM, then the ADC converter errors increase.
8) For 10-bit conversions the error value must be multiplied with a factor 0.25.
9) For 8-bit conversions the error value must be multiplied with a factor 0.0625.
10) For a conversion time of 1 µs a rms value of 85µA result for IAREF0.
11) The leakage current definition is a continuos function, as shown in figure ADCx Analoge Input Leakage. The
numerical values defined determine the characteristic points of the given continuous linear approximation they do not define step function.
Data Sheet
77
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
12) Measured without noise.
13) For 10-bit conversion the TUE is ±2LSB; for 8-bit conversion the TUE is ±1LSB
14) A running conversion may become inexact in case of violating the normal conditions (voltage overshoot).
15) If the reference voltage VAREF0 increase or the VDDM decrease, so that VAREF = (VDDM + 0.05V to VDDM + 0.07V),
then the accuracy of the ADC decrease by 4LSB12.
Table 28
Conversion Time (Operating Conditions apply)
Parameter
Symbol
Conversion
tC
time with
post-calibration
Values
Unit Note
CC 2 × TADC + (4 + STC + n) × TADCI μs
2 × TADC + (2 + STC + n) × TADCI
Conversion
time without
post-calibration
n = 8, 10, 12 for
n - bit conversion
TADC = 1 / fFPI
TADCI = 1 / fADCI
The power-up calibration of the ADC requires a maximum number of 4352 fADCI cycles.
REXT
VAIN =
Analog Input Circuitry
RAIN, On
ANx
CEXT
CAINTOT - CAINSW
VAGNDx
CAINSW
RAIN7T
Reference Voltage Input Circuitry
RAREF, On
VAREFx
VAREF
CAREFTOT - CAREFSW
CAREFSW
VAGNDx
Analog_InpRefDiag
Figure 7
Data Sheet
ADCx Input Circuits
78
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
Ioz1
Single ADC Input
500nA
200nA
100nA
-100nA
VIN[VDDM%]
3%
97% 100%
-500nA
Ioz1
Overlayed ADC/FADC Input
600nA
300nA
100nA
-100nA
VIN[VDDM%]
3%
97% 100%
-600nA
Figure 8
Data Sheet
ADCx Analog Inputs Leakage
79
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
5.2.3
Table 29
Fast Analog to Digital Converter (FADC)
FADC Parameters
Parameter
Input current at VFAREF
Symbol
Values
Unit
Min.
Typ.
Max.
IFAREF
−
−
120
μA
IFOZ2
-500
−
500
nA
IFOZ3
-500
−
500
nA
Note /
Test Condition
CC
Input leakage current at
VFAREF1)
CC
Input leakage current at
VFAGND
CC
Data Sheet
80
VFAREF≤ VDDMF
V; VFAREF≥ 0 V
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
Table 29
Parameter
DNL error
FADC Parameters (cont’d)
Symbol
EFDNL
Values
Min.
Typ.
Max.
-1
−
1
Unit
Note /
Test Condition
LSB
VIN mode=
CC
differential;
Gain = 1 or 2;
Gain = 4 or 8
and
VDDAF / VDDMF≤
±5% * VDDAF / V
DDMF[Typ]
−
-1
1
LSB
VIN mode=
single ended;
Gain = 1 or 2;
Gain = 4 or 8
and
VDDAF / VDDMF≤
±5% * VDDAF / V
DDMF[Typ]
−
-2
2
LSB
VIN mode=
differential;
Gain = 4 or 8
and
VDDAF / VDDMF>
±5% * VDDAF / V
2)
DDMF[Typ]
−
-2
2
LSB
VIN mode=
single ended;
Gain = 4 or
8and
VDDAF / VDDMF>
±5% * VDDAF / V
2)
DDMF[Typ]
Data Sheet
81
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
Table 29
FADC Parameters (cont’d)
Parameter
Symbol
Values
Min.
GRADient error
Typ.
Max.
EFGRAD -5
−
5
-5
−
Unit
Note /
Test Condition
%
VIN mode=
CC
differential ;
Gain≤ 4
5
%
VIN mode=
single ended ;
Gain≤ 4
−
-6
6
%
VIN mode=
differential ;
Gain= 8
−
-6
6
%
VIN mode=
single ended ;
Gain= 8
INL error
EFINL
−
-4
4
LSB
CC
VIN mode=
differential
−
-4
4
LSB
VIN mode=
single ended
Offset error
EFOFF
−
-90
90
mV
CC
VIN mode=
differential ;
Calibration= No
−
-90
90
mV
VIN mode=
single ended ;
Calibration= No
−
-20
20
mV
VIN mode=
differential ;
Calibration= Ye
s 3)4)
−
-20
20
mV
VIN mode=
single ended ;
Calibration= Ye
s 3)4)
Error of commen mode
voltage VFAREF/2
Channel amplifier cutoff
frequency
Data Sheet
EFREF
-60
−
60
mV
fCOFF
2
−
−
MHz
CC
CC
82
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
Table 29
FADC Parameters (cont’d)
Parameter
Symbol
Values
Unit
Note /
Test Condition
Min.
Typ.
Max.
1
−
90
MHz fFADC= fFPI;
SAK-TC1782F320F180HR / S
AK-TC1782F320F180HL / S
AK-TC1782N320F180HR / S
AK-TC1782N320F180HL / S
AK-TC1782N256F133HR / S
AK-TC1782N256F133HL
1
−
80
MHz fFADC= fFPI;
SAK-TC1782F320F160HR / S
AK-TC1782F320F160HL / S
AK-TC1782N320F160HR / S
AK-TC1782N320F160HL
tC CC
−
−
21
1/
Input resistance of the
analog voltage path (Rn,
Rp)
RFAIN
100
Settling time of a channel
amplifier after changing
ENN or ENP
tSET CC −
Analog input voltage
range
VAINF
VFAGND −
Analog reference ground
VFAGND
VSSAF - −
VFAREF
3.0
Converter clock
fFADC
SC
Conversion time
SR
Analog reference voltage
200
kOh
m
−
5
μs
VDDMF
V
VSSAF
V
3.635)
V
0.05
−
SR
Data Sheet
−
CC
SR
For 10-bit
fFADC conversion
83
+ 0.05
6)
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
1) This value applies in power-down mode.
2) No missing codes.
3) Calibration should be preformed at each power-up. In case of a continous operation, it should be performed
minimium once per week.
4) The offser error voltage drifts over the whole temperature range maximum +-3LSB.
5) Voltage overshoot to 4V is permissible, provided the pulse duration is less than 100 μs and the cumulated sum
of the pulses does not exceed 1 h.
6) A running conversion may become inexact in case of violating the nomal operating conditions (voltage
overshoots).
The calibration procedure should run after each power-up, when all power supply
voltages and the reference voltage have stabilized.
FADC Analog Input Stage
FAINxN
-
=
VFAGND
RN
VFAREF /2
+
+
FAINxP
RP
-
FADC Reference Voltage
Input Circuitry
VFAREF
IFAREF
VFAREF
VFAGND
FADC_InpRefDiag
Figure 9
Data Sheet
FADC Input Circuits
84
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
5.2.4
Table 30
Oscillator Pins
OSC_XTAL Parameters
Parameter
Symbol
Values
Unit
Note /
Test Condition
VIN<VDDOSC3 ;
VIN>0 V
Min.
Typ.
Max.
-25
−
25
μA
Input current at XTAL1
IIX1 CC
Input frequency
fOSC SR 4
−
40
MHz Direct Input
Mode selected
8
−
25
MHz External Crystal
Mode selected
−
−
10
ms
VDDOS
V
Oscillator start-up time1)
tOSCS
CC
Input high voltage at
XTAL12)
VIHX SR 0.7 x
VDDOS
Input low voltage at
XTAL1
VILX SR -0.5
Input Hysteresis for
XTAL1 pad 3)
HYSAX
−
+
0.5
C3
C3
−
0.3 x
V
VDDOS
C3
−
−
200
mV
CC
1) tOSCS is defined from the moment when VDDOSC3 = 3.13V until the oscillations reach an amplitude at XTAL1 of
0.3 * VDDOSC3. The external oscillator circuitry must be optimized by the customer and checked for negative
resistance as recommended and specified by crystral suppliers.
2) If the XTAL1 pin is driven by a crystal, reaching a minimum amplitude (peak-to-peak) of 0.4 * VDDOSC3 is
necessary.
3) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can´t be
guaranteed that it suppresses switching due to external system noise.
Note: It is strongly recommended to measure the oscillation allowance (negative
resistance) in the final target system (layout) to determine the optimal parameters
for the oscillator operation. Please refer to the limits specified by the crystal or
ceramic resonator supplier.
Data Sheet
85
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
5.2.5
Table 31
Temperature Sensor
DTS Parameters
Parameter
Symbol
Values
Min.
Measurement time
Temperature sensor
range
tM CC
TSR SR
Unit
Typ.
Max.
−
−
100
μs
-40
−
150
°C
Sensor Accuracy
(calibrated)
TTSA CC -6
−
6
°C
Start-up time after resets
inactive
tTSST SR −
−
20
μs
Note /
Test Condition
The following formula calculates the temperature measured by the DTS in [oC] from the
RESULT bit field of the DTSSTAT register.
(1)
DTSSTAT RESULT – 596
Tj = ------------------------------------------------------------------2, 03
Data Sheet
86
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
5.2.6
Power Supply Current
The total power supply current defined below consists of leakage and switching
component.
Application relevant values are typically lower than those given in the following
two tables and depend on the customer's system operating conditions (e.g.
thermal connection or used application configurations).
The operating conditions for the parameters in the following table are:
VDD=1.365 V, VDDP=3.47 V, VDDM=5.1 V, fLMB=180 / 160 MHz / 133 MHz, TJ=150 oC
The realisic power pattern defines the following conditions:
•
•
•
•
•
•
TJ=150 oC
fLMB = fPCP = fCPU = 180 / 160 MHz / 133 MHz
fFPI = 90 MHz / 80 MHz / 66.5 MHz
VDD = VDDOSC = VDDAF = 1.326 V
VDDP = VDDOSC3 = VDDFL3 = VDDMF = 3.366 V
VDDM = 5.1 V
The max power pattern defines the following conditions:
•
•
•
•
•
•
TJ=150 oC
fLMB = fPCP = fCPU = 180 / 160 MHz / 133 MHz
fFPI = 90 MHz / 80 MHz / 66.5 MHz
VDD = VDDOSC = VDDAF = 1.365 V / 1.43 V / 1.365 V
VDDP = VDDOSC3 = VDDFL3 = VDDMF = 3.47 V / 3.63 V / 3.47 V
VDDM = 5.5 V
Data Sheet
87
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
Table 32
Parameter
Core active
mode supply
current1)2)
IDD current at
PORST Low
Analog core
supply current
Data Sheet
Power Supply Parameters
Symbol
Unit
Note / Test Condition
4863)
mA
power pattern= max ;
SAK-TC1782N-256F133HR
SAK-TC1782N-256F133HL
−
5503)
mA
power pattern= max ;
SAK-TC1782F320F180HR
SAK-TC1782F320F180HL
SAK-TC1782N-320F180HR
SAK-TC1782N-320F180HL
−
−
5503)
mA
power pattern= max ;
SAK-TC1782F-320F160HR
SAK-TC1782F-320F160HL
SAK-TC1782N-320F160HR
SAK-TC1782N-320F160HL
−
−
3704)
mA
power pattern= realistic ;
SAK-TC1782N-256F133HR
SAK-TC1782N256F133HL; VDD=1.326 V
−
−
3984)
mA
power pattern= realistic ;
SAK-TC1782F320F180HR
SAK-TC1782F320F180HL
SAK-TC1782N-320F180HR
SAK-TC1782N320F180HL; VDD=1.326 V
−
−
3864)
mA
power pattern= realistic ;
SAK-TC1782F-320F160HR
SAK-TC1782F-320F160HL
SAK-TC1782N-320F160HR
SAK-TC1782N320F160HL; VDD=1.326 V
IDD_PORS −
−
300
mA
−
−
291
mA
−
−
314
mA
−
−
23
mA
IDD CC
T
CC
IDDAF
Values
Min.
Typ.
Max.
−
−
−
VDD=1.326 V
VDD=1.43 V
CC
88
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
Table 32
Power Supply Parameters (cont’d)
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Oscillator core
supply current
−
−
4
mA
CC
IDDP current at
IDDP_POR −
−
2.5
mA
−
IDDP_P
PORST Low
IDDOSC
ST
Note / Test Condition
CC
IDDP current no IDDP CC −
pad activity,
LVDS off 5)
ORST
mA
including flash read current
mA
including flash programming
current 6)
mA
including flash erase current
+
12
−
−
IDDP_P
ORST
+
27
−
−
IDDP_P
ORST +
7)
6)
20
Flash memory
current 5)
IDDFL3
CC
−
−
56
mA
flash read current
−
−
21
mA
flash programming current 6)
−
−
56
mA
flash erase current 6)
Oscillator
power supply
current, 3.3V
IDDOSC3
−
−
15
mA
FADC analog
supply current,
3.3V
IDDMF
−
−
15
mA
Current
ILVDS
Consumption of CC
LVDS Pad
Pairs
−
−
12
mA
IDDM CC −
−
2
mA
ADC 5V power
supply current
Data Sheet
CC
CC
89
for all LVDS pads in total
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
Table 32
Parameter
Maximum
power
dissipation
Power Supply Parameters (cont’d)
Symbol
PD CC
Values
Unit
Note / Test Condition
1143
mW
power pattern= max ;
SAK-TC1782N-256F133HR
SAK-TC1782N-256F133HL
−
1231
mW
power pattern= max ;
SAK-TC1782F320F180HR
SAK-TC1782F320F180HL
SAK-TC1782N-320F180HR
SAK-TC1782N-320F180HL
−
−
1231
mW
power pattern= max ;
SAK-TC1782F-320F160HR
SAK-TC1782F-320F160HL
SAK-TC1782N-320F160HR
SAK-TC1782N-320F160HL
−
−
957
mW
power pattern= realistic ;
SAK-TC1782N-256F133HR
SAK-TC1782N256F133HL; VDD=1.326 V
−
−
994
mW
power pattern= realistic ;
SAK-TC1782F320F180HR
SAK-TC1782F320F180HL
SAK-TC1782N-320F180HR
SAK-TC1782N320F180HL; VDD=1.326 V
−
−
979
mW
power pattern= realistic ;
SAK-TC1782F-320F160HR
SAK-TC1782F-320F160HL
SAK-TC1782N-320F160HR
SAK-TC1782N320F160HL; VDD=1.326 V
Min.
Typ.
Max.
−
−
−
1) Infineon Power Loop: CPU and PCP running, all peripherals active. The power consumption of each customer
application will most probably be lower than this value, but must be evaluated seperately.
2) This current includes the E-Ray module power consumption, including the PCP operation component.
3) The IDD decreases typically by 68mA if the fCPU decreases by 50MHz, at constant TJ
4) The IDD decreases typically by 30mA if the fCPU decreases by 50MHz, at constant TJ
5) For operations including the D-Flash the required currents are always lower than the currents for non D-Flash
operation.
6) Relevant for the power supply dimensioning, not for thermal considerations.
Data Sheet
90
V 1.4.1, 2014-05
TC1782
Electrical ParametersDC Parameters
7) In case of erase of Program Flash PF, internal flash array loading effects may generate transient current spikes
of up to 15 mA for maximum 5 ms per flash module.
5.2.6.1
Calculating the 1.3 V Current Consumption
The current consumption of the 1.3 V rail compose out of two parts:
•
•
Static current consumption
Dynamic current consumption
The static current consumption is related to the device temperature TJ and the dynamic
current consumption depends of the configured clocking frequencies and the software
application executed. These two parts needs to be added in order to get the rail current
consumption.
(2)
I
0
mA
= 2, 20897 --------- × e 0, 02696 × T J [ C ]
C
(3)
mA
I 0 = 10, 68 --------- × e 0, 02203 × T J [ C ]
C
Function 2 defines the typical static current consumption and Function 3 defines the
maximum static current consumption. Both functions are valid for VDD = 1.326 V.
For the dynamic current consumption using the application pattern and fLMB = 2 * fFPI the
function 4 applies:
(4)
mA
I D y m = 0, 6 ------------- × f CPU [ MHz ]
MHz
and this finally results in
(5)
I DD = I 0 + I DYM
Data Sheet
91
V 1.4.1, 2014-05
TC1782
Electrical ParametersAC Parameters
5.3
AC Parameters
All AC parameters are defined with maximum driver strength unless otherwise noted.
5.3.1
Testing Waveforms
VD D P
90%
90%
10%
10%
VSS
tR
tF
rise_fall
Figure 10
Rise/Fall Time Parameters
VD D P
VD D E / 2
Test Points
VD D E / 2
VSS
mct04881_a.vsd
Figure 11
Testing Waveform, Output Delay
VLoad+ 0.1 V
VLoad- 0.1 V
Timing
Reference
Points
VOH - 0.1 V
VOL - 0.1 V
MCT04880_new
Figure 12
Data Sheet
Testing Waveform, Output High Impedance
92
V 1.4.1, 2014-05
TC1782
Electrical ParametersAC Parameters
5.3.2
Power Sequencing
V
5.5V
5V
4.5V
VAREF
3.63V
3.3V
2.97V
-12%
1.43V
1.3V
1.17V
0.5V
-12%
0.5V
0.5V
t
VDDP
PORST
power
down
Figure 13
Data Sheet
power
fail
t
Power-Up 10.vsd
5 V / 3.3 V / 1.3 V Power-Up/Down Sequence for 10% Operating
Range
93
V 1.4.1, 2014-05
TC1782
Electrical ParametersAC Parameters
V
5.5V
5V
4.5V
VAREF
3.47V
3.3V
2.97V
-12%
1.365V
1.3V
1.235V
0.5V
-12%
0.5V
0.5V
t
VDDP
PORST
power
down
Figure 14
power
fail
t
Power-Up 5.vsd
5 V / 3.3 V / 1.3 V Power-Up/Down Sequence for 5% Operating Range
The following list of rules applies to the power-up/down sequence:
•
•
•
All ground pins VSS must be externally connected to one single star point in the
system. Regarding the DC current component, all ground pins are internally directly
connected.
At any moment in time to avoid increased latch-up risk,
each power supply must be higher then any lower_power_supply - 0.5 V, or:
VDD5 > VDD3.3 - 0.5 V; VDD5 > VDD1.3 - 0.5 V;VDD3.3 > VDD1.3 - 0.5 V, see Figure 14.
– The latch-up risk is minimized if the I/O currents are limited to:
– 20 mA for one pin group
– AND 100 mA for the completed device I/Os
– AND additionally before power-up / after power-down:
1 mA for one pin in inactive mode (0 V on all power supplies)
During power-up and power-down, the voltage difference between the power supply
pins of the same voltage (3.3 V, 1.3 V, and 5 V) with different names (for example
VDDP, VDDFL3 ...), that are internally connected via diodes, must be lower than 100 mV.
On the other hand, all power supply pins with the same name (for example all VDDP),
are internally directly connected. It is recommended that the power pins of the same
voltage are driven by a single power supply.
Data Sheet
94
V 1.4.1, 2014-05
TC1782
Electrical ParametersAC Parameters
1. The PORST signal may be deactivated after all VDD5, VDD3.3, VDD1.3, and VAREF powersupplies and the oscillator have reached stable operation, within the normal
operating conditions.
2. At normal power down the PORST signal should be activated within the normal
operating range, and then the power supplies may be switched off. Care must be
taken that all Flash write or delete sequences have been completed.
3. At power fail the PORST signal must be activated at latest when any 3.3 V or 1.3 V
power supply voltage falls 12% below the nominal level. If, under these conditions,
the PORST is activated during a Flash write, only the memory row that was the target
of the write at the moment of the power loss will contain unreliable content. In order
to ensure clean power-down behavior, the PORST signal should be activated as
close as possible to the normal operating voltage range.
4. In case of a power-loss at any power-supply, all power supplies must be powereddown, conforming at the same time to the rules number 2 and 4.
5. Although not necessary, it is additionally recommended that all power supplies are
powered-up/down together in a controlled way, as tight to each other as possible.
6. Additionally, regarding the ADC reference voltage VAREF:
– VAREF must power-up at the same time or later then VDDM, and
– VAREF must power-down either earlier or at latest to satisfy the condition
VAREF < VDDM + 0.5 V. This is required in order to prevent discharge of VAREF filter
capacitance through the ESD diodes through the VDDM power supply. In case of
discharging the reference capacitance through the ESD diodes, the current must
be lower than 5 mA.
Data Sheet
95
V 1.4.1, 2014-05
TC1782
Electrical ParametersAC Parameters
5.3.3
Table 33
Power, Pad and Reset Timing
Reset Timings Parameters
Parameter
Application Reset Boot
Time1)2)
Power on Reset Boot
Time3)4)
Symbol
tB CC
tBP CC
Values
Unit
Note /
Test Condition
810
μs
SAK-TC1782N256F133HR
SAK-TC1782N256F133HL
−
665
μs
SAKTC1782F320F1
80HR
SAKTC1782F320F1
80HL
SAK-TC1782N320F180HR
SAK-TC1782N320F180HL
150
−
740
μs
SAK-TC1782F320F160HR
SAK-TC1782F320F160HL / S
AK-TC1782N320F160HR
SAK-TC1782N320F160HL
−
−
2.5
ms
−
−
ns
−
−
ns
Min.
Typ.
Max.
150
−
150
HWCFG pins hold time
from ESR0 rising edge
tHDH SR 16 /
fFPI
HWCFG pins setup time to tHDS CC 0
ESR0 rising edge
Ports inactive after ESR0
reset active
tPI CC
−
−
8 / fFPI
ns
Ports inactive after
PORST reset active5)
tPIP CC
−
−
150
ns
Data Sheet
96
V 1.4.1, 2014-05
TC1782
Electrical ParametersAC Parameters
Table 33
Reset Timings Parameters (cont’d)
Parameter
Symbol
Values
Min.
Unit
Typ.
Max.
Minimum PORST active
time after power supplies
are stable at operating
levels
tPOA CC 10
−
−
ms
TESTMODE / TRST hold
time from PORST rising
edge
tPOH SR 100
−
−
ns
PORST rise time
tPOR SR −
tPOS SR 0
−
50
ms
−
−
ns
TESTMODE / TRST
setup time to PORST
rising edge
Note /
Test Condition
1) The duration of the boot time is defined between the rising edge of the internal application reset and the clock
cycle when the first user instruction has entered the CPU pipeline and its processing starts.
2) The given time includes the time of the internal reset extension for a configured value of
SCU_RSTCNTCON.RELSA = 0x05BE.
3) The duration of the boot time is defined between the rising edge of the PORST and the clock cycle when the
first user instruction has entered the CPU pipeline and its processing starts.
4) The given time includes the internal reset extension time for the System and Application Reset which is visible
through ESR0.
5) This parameter includes the delay of the analog spike filter in the PORST pad.
Data Sheet
97
V 1.4.1, 2014-05
TC1782
Electrical ParametersAC Parameters
VDD P -12%
VD D PPA
V D DPPA
VDDP
VDD
VD D -12%
tPOA
tPOA
PORST
tPOH
TRST
TESTMODE
ESR0
tPOH
t hd
t hd
tHDH
tHDH
tHDH
HWCFG
t PIP
tPI
Pads
tPI
t PIP
tPI
tPI
t PIP
tPI
Pad-state undefined
Tri-state or pull device active
reset_beh2
As programmed
Figure 15
Data Sheet
Power, Pad and Reset Timing
98
V 1.4.1, 2014-05
TC1782
Electrical ParametersAC Parameters
5.3.4
Table 34
Phase Locked Loop (PLL)
PLL_SysClk Parameters
Parameter
Symbol
Values
Min.
Typ.
DP CC -7
fPLLBASE 50
Accumulated Jitter
PLL base frequency
Unit
Max.
−
7
ns
200
320
MHz
−
16
MHz
−
720
MHz
Note /
Test Condition
CC
VCO input frequency
fREF CC 8
fVCO CC 400
tL CC
14
VCO frequency range
PLL lock-in time
14
−
200
μs
N > 32
−
400
μs
N ≤ 32
Phase Locked Loop Operation
When PLL operation is enabled and configured, the PLL clock fVCO (and with it the LMBBus clock fLMB) is constantly adjusted to the selected frequency. The PLL is constantly
adjusting its output frequency to correspond to the input frequency (from crystal or clock
source), resulting in an accumulated jitter that is limited. This means that the relative
deviation for periods of more than one clock cycle is lower than for a single clock cycle.
This is especially important for bus cycles using wait states and for the operation of
timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train
generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter
is negligible.
Two formulas are defined for the (absolute) approximate maximum value of jitter Dm in
[ns] dependent on the K2 - factor, the LMB clock frequency fLMB in [MHz], and the
number m of consecutive fLMB clock periods.
for
( K2 ≤ 100 )
( m ≤ ( f LMB [ MHz ] ) ⁄ 2 )
and
( 1 – 0, 01 × K2 ) × ( m – 1 )
D m [ ns ] = ⎛⎝ --------------------------------------------- + 5⎞⎠ × ⎛⎝ ---------------------------------------------------------------- + 0, 01 × K2⎞⎠
K2 × f LMB [ MHz ]
0, 5 × f LMB [ MHz ] – 1
740
else
740
D m [ ns ] = --------------------------------------------- + 5
K2 × f LMB [ MHz ]
(6)
(7)
With rising number m of clock cycles the maximum jitter increases linearly up to a value
of m that is defined by the K2-factor of the PLL. Beyond this value of m the maximum
Data Sheet
99
V 1.4.1, 2014-05
TC1782
Electrical ParametersAC Parameters
accumulated jitter remains at a constant value. Further, a lower LMB-Bus clock
frequency fLMB results in a higher absolute maximum jitter value.
Note: The specified PLL jitter values are valid if the capacitive load per pin does not
exceed CL = 20 pF with the maximum driver and sharp edge.
Note: The maximum peak-to-peak noise on the pad supply voltage, measured between
VDDOSC3 and VSSOSC, is limited to a peak-to-peak voltage of VPP = 100 mV for noise
frequencies below 300 KHz and VPP = 40 mV for noise frequencies above
300 KHz.
The maximum peak-to peak noise on the pad supply voltage, measured between
VDDOSC and VSSOSC, is limited to a peak-to-peak voltage of VPP = 100 mV for noise
frequencies below 300 KHz and VPP = 40 mV for noise frequencies above
300 KHz.
These conditions can be achieved by appropriate blocking of the supply voltage
as near as possible to the supply pins and using PCB supply and ground planes.
Oscillator Watchdog (OSC_WDT)
The expected input frequency is selected via the bit field SCU_OSCCON.OSCVAL. The
OSC_WDT checks for too low frequencies and for too high frequencies.
The frequency that is monitored is fOSCREF which is derived for fOSC.
(8)
f O S C R EF
fO S C
= ---------------------------------OSCVAL + 1
The divider value SCU_OSCCON.OSCVAL has to be selected in a way that fOSCREF is
2.5 MHz.
Note: fOSCREF has to be within the range of 2 MHz to 3 MHz and should be as close as
possible to 2.5 MHz.
The monitored frequency is too low if it is below 1.25 MHz and too high if it is above
7.5 MHz. This leads to the following two conditions:
•
•
Too low: fOSC < 1.25 MHz × (SCU_OSCCON.OSCVAL+1)
Too high: fOSC > 7.5 MHz × (SCU_OSCCON.OSCVAL+1)
Note: The accuracy is 30% for these boundaries.
Data Sheet
100
V 1.4.1, 2014-05
TC1782
Electrical ParametersAC Parameters
5.3.5
Table 35
ERAY Phase Locked Loop (ERAY_PLL)
PLL_ERAY Parameters
Parameter
Symbol
Values
Min.
Unit
Typ.
Max.
Accumulated jitter at
SYSCLK pin
DPP CC -0.8
−
0.8
ns
Accumulated_Jitter
DP CC -0.5
fPLLBASE_ 50
−
0.5
ns
250
360
MHz
PLL Base Frequency of
the ERAY PLL
ERAY
Note /
Test Condition
CC
VCO input frequency of
the ERAY PLL
fREF CC 20
−
40
MHz
VCO frequency range of
the ERAY PLL
fVCO_ERA 450
−
500
MHz
Y CC
PLL lock-in time
tL CC
−
200
μs
5.6
Note: The specified PLL jitter values are valid if the capacitive load per pin does not
exceed CL = 20 pF with the maximum driver and sharp edge.
Note: The maximum peak-to-peak noise on the pad supply voltage, measured between
VDDOSC3 and VSSOSC, is limited to a peak-to-peak voltage of VPP = 100 mV for noise
frequencies below 300 KHz and VPP = 40 mV for noise frequencies above
300 KHz.
These conditions can be achieved by appropriate blocking of the supply voltage
as near as possible to the supply pins and using PCB supply and ground planes.
Data Sheet
101
V 1.4.1, 2014-05
TC1782
Electrical ParametersAC Parameters
5.3.6
JTAG Interface Timing
The following parameters are applicable for communication through the JTAG debug
interface. The JTAG module is fully compliant with IEEE1149.1-2000.
Note: These parameters are not subject to production test but verified by design and/or
characterization.
Table 36
JTAG Interface Timing Parameters
(Operating Conditions apply)
Parameter
Min.
Typ.
Max.
Unit Note /
Test Condition
t1 SR
t2 SR
t3 SR
t4 SR
t5 SR
t6 SR
25
–
–
ns
–
10
–
–
ns
–
10
–
–
ns
–
–
–
4
ns
–
–
–
4
ns
–
6
–
–
ns
–
t7 SR
6
–
–
ns
–
TDO valid after TCK falling t8 CC
edge1) (propagation delay) t CC
8
–
–
13
ns
CL = 50 pF
3
–
–
ns
CL = 20 pF
TDO hold after TCK falling t18 CC
edge1)
2
–
–
ns
TDO high imped. to valid
from TCK falling edge1)2)
t9 CC
–
–
14
ns
CL = 50 pF
TDO valid to high imped.
from TCK falling edge1)
t10 CC
–
–
13.5
ns
CL = 50 pF
TCK clock period
TCK high time
TCK low time
TCK clock rise time
TCK clock fall time
TDI/TMS setup
to TCK rising edge
TDI/TMS hold
after TCK rising edge
Symbol
Values
1) The falling edge on TCK is used to generate the TDO timing.
2) The setup time for TDO is given implicitly by the TCK cycle time.
Data Sheet
102
V 1.4.1, 2014-05
TC1782
Electrical ParametersAC Parameters
t1
0.9 VD D P
0.5 VD D P
t5
t2
0.1 VD D P
t4
t3
MC_ JTAG_ TCK
Figure 16
Test Clock Timing (TCK)
TCK
t6
t7
t6
t7
TMS
TDI
t9
t8
t1 0
TDO
t18
Figure 17
Data Sheet
MC_JTAG
JTAG Timing
103
V 1.4.1, 2014-05
TC1782
Electrical ParametersAC Parameters
5.3.7
DAP Interface Timing
The following parameters are applicable for communication through the DAP debug
interface.
Note: These parameters are not subject to production test but verified by design and/or
characterization.
Table 37
DAP Parameters
Parameter
Symbol
DAP0 clock period1)
tTCK SR
t12 SR
t13 SR
t14 SR
t15 SR
t16 SR
DAP0 high time
1)
DAP0 low time
DAP0 clock rise time
DAP0 clock fall time
DAP1 setup to DAP0
rising edge
Values
Unit
Min.
Typ.
Max.
12.5
−
−
ns
4
−
−
ns
4
−
−
ns
−
−
2
ns
−
−
2
ns
6.0
−
−
ns
DAP1 hold after DAP0
rising edge
t17 SR
6.0
−
−
ns
DAP1 valid per DAP0
clock period2)
t19 CC
8
−
−
ns
10
−
−
ns
Note /
Test Condition
CL= 20 pF;
f= 80 MHz
CL= 50 pF;
f= 40 MHz
1) See the DAP chapter for clock rate restrictions in the Active:IDLE protocol state.
2) The Host has to find a suitable sampling point by analyzing the sync telegram response.
t11
0.9 VD D P
0.5 VD D P
t1 5
t1 2
t14
0.1 VD D P
t1 3
MC_DAP0
Figure 18
Data Sheet
Test Clock Timing (DAP0)
104
V 1.4.1, 2014-05
TC1782
Electrical ParametersAC Parameters
DAP0
t1 6
t1 7
DAP1
MC_ DAP1_RX
Figure 19
DAP Timing Host to Device
t1 1
DAP1
t1 9
MC_ DAP1_TX
Figure 20
Data Sheet
DAP Timing Device to Host
105
V 1.4.1, 2014-05
TC1782
Electrical ParametersAC Parameters
5.3.8
Peripheral Timings
Note: Peripheral timing parameters are not subject to production test. They are verified
by design/characterization.
5.3.8.1
Micro Link Interface (MLI) Timing
MLI Transmitter Timing
t13
t14
t10
t12
TCLKx
t11
t15
t15
TDATAx
TVALIDx
t16
t17
TREADYx
MLI Receiver Timing
t23
t24
t20
RCLKx
t22
t21
t25
t26
RDATAx
RVALIDx
t27
t27
RREADYx
MLI_Tmg_2.vsd
Figure 21
MLI Interface Timing
Note: The generation of RREADYx is in the input clock domain of the receiver. The
reception of TREADYx is asynchronous to TCLKx.
Data Sheet
106
V 1.4.1, 2014-05
TC1782
Electrical ParametersAC Parameters
The MLI parameters are vaild for CL = 50 pF and for strong driver medium edge.
Table 38
MLI Receiver
Parameter
Symbol
Values
Unit
Min.
Typ.
1 / fFPI
−
−
ns
−
0.5 x
−
ns
−
ns
−
4
ns
−
−
4
ns
4.2
−
−
ns
RDATA/RVALID hold time t26 CC
after RCLK falling edge
2.2
−
−
ns
RREADY output delay
time
0
−
16
ns
RCLK clock period
RCLK high time1)2)
t20 SR
t21 SR
Max.
Note /
Test Condition
t20
RCLK low time1)2)
t22 SR
−
0.5 x
t20
RCLK rise time3)
RCLK fall time
3)
RDATA/RVALID setup
time before RCLK falling
edge
t23 SR
t24 SR
t25 SR
t27 CC
−
1) The following formula is valid: t21 + t22 = t20.
2) Min and Max values for this parameter can be derived from the typ. value by considering the other receiver
timing parameters.
3) The RCLK max. input rise/fall times are best case parameters for fSYS = 90 MHz. For reduction of EMI, slower
input signal rise/fall times can be used for longer RCLK clock periods.
Table 39
MLI Transmitter
Parameter
TCLK clock period
Symbol
t10 CC
Values
Unit
Min.
Typ.
Max.
2x1/
−
−
ns
0.45 x
0.5 x
0.55 x
ns
t10
t10
t10
0.45 x
0.5 x
0.55 x
t10
t10
t10
−
−
0.3 x
Note /
Test Condition
fFPI
TCLK high time1)2)
TCLK low time1)2)
TCLK rise time
Data Sheet
t11 CC
t12 CC
t13 CC
107
t103)
ns
ns
V 1.4.1, 2014-05
TC1782
Electrical ParametersAC Parameters
MLI Transmitter (cont’d)
Table 39
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
TCLK fall time
t14 CC
−
−
0.3 x
ns
TDATA/TVALID output
delay time
t15 CC
-3
−
4.4
ns
TREADY setup time
before TCLK rising edge
t16 SR
18
−
−
ns
TREADY hold time after
TCLK rising edge
t17 SR
-2
−
−
ns
t103)
Note /
Test Condition
1) The following formula is valid: t11 + t12 = t10.
2) The min./max. TCLK low/high times t11/t12 include the PLL jitter of fSYS. Fractional divider settings must be
regarded additionally to t11 / t12.
3) For high-speed MLI interface, strong driver sharp or medium edge selection (class A2 pad) is recommended
for TCLK.
5.3.8.2
Micro Second Channel (MSC) Interface Timing
The MSC parameters are vaild for CL = 50 pF.
Table 40
MSC Parameters
Parameter
Symbol
FCLP clock period1)2)
t40 CC
SOP4)/ENx outputs delay
from FCLP4) rising edge
t45 CC
Data Sheet
Values
Unit
Note /
Test Condition
Min.
Typ.
Max.
2x
−
−
ns
-2
−
5
ns
ENx with strong
driver and
sharp (minus )
edge
-2
−
10
ns
ENx with strong
driver and
medium
(minus) edge
0
−
21
ns
ENx with strong
driver and soft
edge
TMSC3)
108
V 1.4.1, 2014-05
TC1782
Electrical ParametersAC Parameters
MSC Parameters (cont’d)
Table 40
Parameter
Symbol
t46 CC
SDI bit time
Values
Unit
Min.
Typ.
Max.
8x
−
−
ns
−
−
200
ns
−
−
200
ns
Note /
Test Condition
TMSC
SDI rise time 5)
SDI fall time
t48 SR
t49 SR
5)
1) FCLP signal rise/fall times are only defined by the pad rise/fall times.
2) FCLP signal high and low can be minimum 1xTMSC
3) TMSC = TSYS = 1 / fSYS.
4) SOP / FCLP either propagated by LVDS or by CMOS strong driver and non soft edge.
5) When using slow and asymmetrical edges, like in case of open drain upstream connection, the application
must take care that the bit is long enough (the baud rate is low enough) so that under worst case conditions
the three sampling points in the middle of the bit are not violated.
t40
0.9 VDDP
0.1 VDDP
FCLP
t45
t45
SOP
EN
t48
t49
0.9 VDDP
0.1 VDDP
SDI
t46
Figure 22
t46
MSC_Tmg_1.vsd
MSC Interface Timing
Note: The data at SOP should be sampled with the falling edge of FCLP in the target
device.
Data Sheet
109
V 1.4.1, 2014-05
TC1782
Electrical ParametersAC Parameters
5.3.8.3
SSC Master/Slave Mode Timing
The SSC parameters are vaild for CL = 50 pF and for strong driver medium edge.
Table 41
SSC Parameters
Parameter
SCLK clock period1)2)3)
Symbol
t50 CC
Values
Unit
Min.
Typ.
Max.
2x1/
−
−
ns
Note /
Test Condition
fFPI
MTSR/SLSOx delay form
SCLK rising edge
t51 CC
0
−
8
ns
MRST setup to SCLK
falling edge3)
t52 SR
16.5
−
−
ns
MRST hold from SCLK
falling edge3)
t53 SR
0
−
−
ns
SCLK input clock
period1)3)
t54 SR
4x1/
−
−
ns
SCLK input clock duty
cycle
t55_t54
45
−
55
%
MTSR setup to SCLK
latching edge3)4)
t56 CC
1 / fFPI
−
−
ns
MTSR hold from SCLK
latching edge
t57 CC
1 / fFPI
+5
−
−
ns
SLSI setup to first SCLK
latching edge
t58 CC
1 / fFPI
+5
−
−
ns
SLSI hold from last SCLK t59 CC
latching edge5)
7
−
−
ns
MRST delay from SCLK
shift edge
t60 CC
0
−
16.5
ns
SLSI to valid data on
MRST
t61 CC
−
−
16.5
ns
fFPI
SR
1) SCLK signal rise/fall times are the same as the rise/fall times of the pad.
2) SCLK signal high and low times can be minimum 1xTSSC.
3) TSSCmin = TSYS = 1/fSYS.
4) Fractional divider switched off, SSC internal baud rate generation used.
5) For CON.PH=1 slave select must not be removed before the following shifting edge. This mean, that what ever
is configured (shifting / latching first), SLSI must not be de-actived before the last trailing edge from the pair
of shifting / latching edges.
Data Sheet
110
V 1.4.1, 2014-05
TC1782
Electrical ParametersAC Parameters
t50
SCLK1)2)
t51
t51
MTSR1)
t52
t53
Data
valid
1)
MRST
t51
2)
SLSOn
1) This timing is based on the following setup: CON.PH = CON.PO = 0.
2) The transition at SLSOn is based on the following setup: SSOTC.TRAIL = 0
and the first SCLK high pulse is in the first one of a transmission.
SSC_TmgMM
Figure 23
SSC Master Mode Timing
t54
First latching
SCLK edge
First shift
SCLK edge
SCLK1)
t55
t56
Last latching
SCLK edge
t55
t56
t57
Data
valid
1)
MTSR
t57
Data
valid
t60
t60
1)
MRST
t61
SLSI
t59
t58
1) This timing is based on the following setup: CON.PH = CON.PO = 0.
Figure 24
Data Sheet
SSC_TmgSM
SSC Slave Mode Timing
111
V 1.4.1, 2014-05
TC1782
Electrical ParametersAC Parameters
5.3.8.4
ERAY Interface Timing
The timings of this section are valid for the strong driver and either sharp edge or medium
edge settings of the output drivers with CL = 25 pF.
The ERAY interface is only available for the SAK-TC1782F-320F180HR / SAKTC1782F-320F180HL / SAK-TC1782F-320F160HR / SAK-TC1782F320F160HL / SAK-TC1782F-320F133HR / SAK-TC1782F-320F133HL.
Table 42
ERAY Parameters
Parameter
Symbol
Values
Time span from last BSS
to FES without the
influence of quartz
tolerancies (d10Bit_TX)1)
t60 CC
997.75 −
1002.2 ns
5
TxD data valid from
fsample flip flop txd_reg
TxDA, TxDB
(dTxAsym)2)3)
t61-t62
−
−
1.5
Time span between last
BSS and FES without
influence of quartz
tolerancies
(d10Bit_RX)1)4)5)
t63 SR
966
−
1046.1 ns
RxD capture by fsample
(RxDA/RxDB sampling
flip-flop) (dRxAsym)5)
t64-t65
−
−
3.0
ns
Asymmetrical
delay of rising
and falling edge
(RxDA, RxDB)
TxD data delay from
sampling flip-flop
dTxdly
−
−
10.0
ns
Px_PDR.PDy =
000B
−
−
15.0
ns
Px_PDR.PDy =
001B
−
−
10.0
ns
Min.
RxD capture delay by
sampling flip-flop
Typ.
Unit
Max.
ns
CC
CC
CC
dRxdly
Note /
Test Condition
Asymmetrical
delay of rising
and falling edge
(TxDA, TxDB)
CC
1) This includes the PLL_ERAY accumulated jitter.
2) Refers to delays caused by the asymmetries of the output drivers of the digital logic and the GPIO pad drivers.
Quarz tolerance and PLL_ERAY accumulated jitter are not included.
3) E-Ray TxD output drivers have an asymmetry of rising and falling edges of |tFA2 - tRA2| ≤ 1 ns.
4) Limits of 966ns and 1046.1ns correspond to (30%, 70%) * VDDP FlexRay standard input thresholds. For input
thresholds of this product, a correction of - 0.5 ns and +0.1 ns has to be applied.
Data Sheet
112
V 1.4.1, 2014-05
TC1782
Electrical ParametersAC Parameters
5) Valid for output slopes of the bus driver of dRxSlope ≤ 5ns, 20% * VDDP to 80% * VDDP, according to the
FlexRay Electrical Physical Layer Specification V2.1B. For A2 pads, the rise and fall times of the incoming
signal have to satisfy the following inequality: -1.6ns ≤ tFA2 - tRA2 ≤ 1.3ns.
Last CRC Byte
BSS
(Byte Start Sequence)
FES
(Frame End Sequence)
0.7 VDD
0.3 VDD
TXD
t60
tsample
TXD
0.9 VDD
0.1 VDD
t61
t62
Last CRC Byte
BSS
(Byte Start Sequence)
FES
(Frame End Sequence)
0.7 VDD
0.3 VDD
RXD
t63
tsample
RXD
0.7 VDD
0.3 VDD
t64
t65
ERAY_TIMING
Figure 25
Data Sheet
ERAY Timing
113
V 1.4.1, 2014-05
TC1782
Electrical ParametersPackage and Reliability
5.4
Package and Reliability
5.4.1
Package Parameters
Table 43
Thermal Characteristics of the Package
Device
Package
RΘJCT1)
RΘJCB1) RΘJLead Unit Note
TC1782
PG-LQFP-17610 / PG-LQFP176-20
8,1
0,3
30,9
K/W with soldered
exposed pad 2)
TC1782
PG-LQFP-17610 / PG-LQFP176-20
8,1
12,6
30,9
K/W with not soldered
exposed pad
1) The top and bottom thermal resistances between the case and the ambient (RTCAT, RTCAB) are to be combined
with the thermal resistances between the junction and the case given above (RTJCT, RTJCB), in order to calculate
the total thermal resistance between the junction and the ambient (RTJA). The thermal resistances between the
case and the ambient (RTCAT, RTCAB) depend on the external system (PCB, case) characteristics, and are
under user responsibility.
The junction temperature can be calculated using the following equation: TJ = TA + RTJA × PD, where the RTJA
is the total thermal resistance between the junction and the ambient. This total junction ambient resistance
RTJA can be obtained from the upper four partial thermal resistances.
Thermal resistances as measured by the ’cold plate method’ (MIL SPEC-883 Method 1012.1).
2) It is recommended by Infineon Technologies AG to connect the exposed pad.
Data Sheet
114
V 1.4.1, 2014-05
TC1782
Electrical ParametersPackage and Reliability
5.4.2
Package Outline
Exposed
DIPAD
Figure 26
Package Outlines PG-LQFP-176-10 / PG-LQFP-176-20
Table 44
Exposed pad Dimensions
Ex
7.8 mm
Ey
7.8 mm
You can find all of our packages, sorts of packing and others in our Infineon Internet
Page “Products”: http://www.infineon.com/products.
5.4.3
Flash Memory Parameters
The data retention time of the TC1782’s Flash memory depends on the number of times
the Flash memory has been erased and programmed.
Data Sheet
115
V 1.4.1, 2014-05
TC1782
Electrical ParametersPackage and Reliability
Table 45
FLASH32 Parameters
Parameter
Symbol
Values
Min.
Unit
Typ.
Max.
Note /
Test Condition
Data Flash Erase Time
per Sector
tERD CC −
−
31)
s
Program Flash Erase
Time per 256 KByte
Sector
tERP CC −
−
5
s
Program time data flash
per page2)
tPRD CC −
−
5.3
ms
without
reprogramming
−
−
15.9
ms
with two
reprogramming
cycles
tPRP CC −
−
5.3
ms
without
reprogramming
−
−
10.6
ms
with one
reprogramming
cycle
−
cycle Min. data
s
retention time 5
years
Program time program
flash per page3)
Data Flash Endurance
Erase suspend delay
NE CC
60000 −
4)
tFL_ErSusp −
−
15
ms
tFL_Margin 10
−
−
μs
CC
Wait time after margin
change
Del
CC
Program Flash Retention
Time, Physical Sector5)6)
tRET CC 20
−
−
year
s
Max. 1000
erase/program
cycles
Program Flash Retention
Time, Logical Sector5)6)
tRETL CC 20
−
−
year
s
Max. 100
erase/program
cycles
UCB Retention Time5)6)
tRTU CC 20
−
−
year
s
Max. 4
erase/program
cycles per UCB
Wake-Up time
tWU CC
−
270
μs
Data Sheet
−
116
V 1.4.1, 2014-05
TC1782
Electrical ParametersPackage and Reliability
Table 45
FLASH32 Parameters (cont’d)
Parameter
Symbol
Values
Min.
DFlash wait state
configuration
WSDF
PFlash wait state
configuration
WSPF
Typ.
50 ns x −
fFSI
26 ns x −
fFSI
CC
CC
Unit
Max.
Note /
Test Condition
−
−
1) In case of wordline oriented defects (see robust EEPROM emulation in the User's Manual) this erase time can
increase by up to 100%.
2) In case the Program Verify feature detects weak bits, these bits will be programmed up to twice more. Each
reprogramming takes additional 5 ms.
3) In case the Program Verify feature detects weak bits, these bits will be programmed once more. The
reprogramming takes additional 5 ms.
4) Only valid when a robust EEPROM emulation algorithm is used. For more details see the User´s Manual.
5) Storage and inactive time included.
6) At average weighted junction temperature Tj = 100°C, or the retention time at average weighted temperature
of Tj = 110°C is minimum 10 years, or the retention time at average weighted temperature of Tj = 150°C is
minimum 0.7 years.
5.4.4
Table 46
Quality Declarations
Quality Parameters
Parameter
Symbol
Values
Unit
Note / Test Condition
Min. Typ. Max.
–
–
24000 hours –2)
ESD susceptibility VHBM
according to
Human Body
Model (HBM)
–
–
2000
V
Conforming to
JESD22-A114-B
ESD susceptibility VHBM1
of the LVDS pins
–
–
500
V
–
ESD susceptibility VCDM
according to
Charged Device
Model (CDM)
–
–
500
V
Conforming to
JESD22-C101-C
Moisture
Sensitivity Level
–
–
3
–
Conforming to Jedec
J-STD-020C for 240°C
Operation
Lifetime1)
Data Sheet
tOP
MSL
117
V 1.4.1, 2014-05
TC1782
Electrical ParametersPackage and Reliability
1) This lifetime refers only to the time when the device is powered on.
2) For worst-case temperature profile equivalent to:
1200 hours at Tj = 125...150oC
3600 hours at Tj = 110...125oC
7200 hours at Tj = 100...110oC
11000 hours at Tj = 25...100oC
1000 hours at Tj = -40...25oC
Data Sheet
118
V 1.4.1, 2014-05
TC1782
History
6
History
The following changes where done between Version 0.7 and 0.8 of this document:
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Change product name from SAK-TC1782-320F180HL to SAK-TC1782-320F180HR
Change product name from SAK-TC1782-256F133HL to SAK-TC1782-256F133HR
Change DFLASH size from 64Kbyte to 128Kbyte in chapter 1
Add ADC module abbreviation to table 1 Analog Input Port Function description
Change SCU_RTID and SCU_CHIPID values to match the step
Extend VDDOSC3 to -7.5 %
Add parameter HYSA1+
Add parameter HYSA2
Add parameter VILF / VIHF
Add parameter RDSONF
Changed typical value of CAINSW from 7 to 9 pF
Changed typical value of CAINTOT from 25 to 20 pF
Remove 3.3 V values from ADC section
Add parameter fADC
Changed max. value of fADCI from 20 to 18 MHz
Remove parameter IAIN7T (covered by RAIN7T )
Replace parameter IAREF by QCONV
Changed typical value of RAIN from 700 to 900 Ohm
Add parameter tS
Add footnote to max value of TUE
Add parameter fFADC
Add parameter tC
Add formula for DTS temperature calculation
Adapt current values to reduced limits of BA step
Add clarification to parameter ILVDS
Remove parameter RTHJA (not required)
Add clarification to parameter tPOH description
Add clarification to parameter tPOS description
Add min. value to parameters tL
Changed typical value of fPLLBASE_ERAY from 200 to 250 MHz
Add MSC t45 behavior for CMOS / LVDS usage
Add RTHs for non soldered exposed pad
Add table 33
Change DTS accuracy to 6°C of the complete temperature range
Remove limitations of the DFLASH and PFLASH operating in extended Range
operating conditions
Change package version von PG-LQFP-176-6 to PG-LQFP-176-12
The following changes where done between Version 0.8 and 1.0 of this document:
•
Change package version von PG-LQFP-176-12 to PG-LQFP-176-10
Data Sheet
119
V 1.4.1, 2014-05
TC1782
History
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
improve description in table 2 for analog channels
add class A1+ to type list of table 2
add clarification that table 7 defines the conditions for all other parameters
add note the spike filter is only available for the PORST pin
add Vil to Vih ratio for A1+ pad
remove irritating Note / Test Conditions
adapt maximum power dissipation values
add conditions for MLI, MSC, SSC, parameters
changed definition for t13 and t14 of the MLI timing
changed definition for t45 of the MSC timing
add parameters dTxdly and dRxdly to ERAY parameters
correct ERAY parameters t60 and t63 values
correct footnotes for ERAY parameters
split flash parameters tPRD and tPRP in two conditions
add conditions to LVDS pad parameters
Changed VAREFx to VAREF0 and VAGNDx to VAGND0
remove Pin Reliability in Overload section
add parameters IIN and Sum IIN to absolute ratings
adjust thresholds in figure 28 (ERAY)
add parameter HYSX to PSC_XTAL
added RDSON values for all driver settings (weak, medium, and strong)
removed footnote 2 of table 6
change conditions for RDSON weak parameters
change load for timing of SSC, MSC, and MLI from CL = 25 pF to CL = 50 pF (typical)
add type I to legend of table 2
add SAK-TC1782-320F180HL and SAK-TC1782-256F133HL
changed timing checkpoints in figure 23
add section 5.2.6.1
add to parameters tRF and tFF condition CL = 50 pF
add new footnote 7) to ADC parameter table
add min and max value for QCONV and adapt typ value
add load conditions for tFF1 and tRF1
add conditions to PLL parameter tL
change DAP parameter t19 from SR to CC classification
remove footnote 2 for the FADC
increase current for IDDP_POR from 2 to 2.5mA
add footnote 3 to table 9
change SAK-TC1782-320F180HR / SAK-TC1782-320F180HL to SAK-TC1782F320F180HR / SAK-TC1782F-320F180HL
change SAK-TC1782-256F133HR / SAK-TC1782-256F133HL to SAK-TC1782F256F133HR / SAK-TC1782F-256F133HL
add information for the following products:
– SAK-TC1782N-320F180HR
Data Sheet
120
V 1.4.1, 2014-05
TC1782
History
–
–
–
–
–
–
–
SAK-TC1782N-320F180HL
SAK-TC1182N-320F180HR
SAK-TC1182N-320F180HL
SAK-TC1782N-256F133HR
SAK-TC1782N-256F133HL
SAK-TC1182N-256F133HR
SAK-TC1182N-156F133HL
The following changes where done between Version 1.0 and 1.1 of this document:
•
•
•
•
•
•
•
•
•
add section Pin Reliability in Overload
remove sentence ‘Exposure to conditions within the maximum ratings will not affect
device reliability. To replace this sentence section Pin Reliability in Overload was
added.
increase values for absolute maximum parameters IIN and SumIIN
remove capacitance conditions for LVDS pad parameters as loads are defined by
interface (MSC) timings
remove term typical from load of Peripheral Timings
add definition of driver strength settings for ERAY Interface Timing
change footnote 4 wording for ERAY timing back to TC1797 wording
increase flash parameters tPRD and tPRP values
rework the 3.3 V current part of the Power Supply Parameters for better description
and usage
– Parameters IDDP_FP, IDDFL3E and IDDFL3R are removed and replaced in the following
way
– IDDP_FP is replaced by IDDP with the condition including flash programming current
– IDDFL3E is replaced by IDDP with the condition including flash erase verify current
– IDDFL3R is replaced by IDDP with the condition including flash read current
– parameter IDDFL3R was renamed to IDDFL3
The rework of the 3.3 V current part of the Power Supply Parameters was done for
simplification and clarification. Former given values could still be used if liked, the new
definition results in the same resulting values or slightly better values. The flash module
is supplied via IDDFL3 and IDDP. For the different flash operating modes in worst case
different allocations for the two domains resulting.
The application typical case ‘flash read’ has max IDDP of 12 mA and max IDDFL3 of 56 mA
resulting is a sum of 68 mA.
The case ‘flash programming’ has max IDDP of 27 mA and max IDDFL3 of 21 mA resulting
is a sum of 48 mA.
The case ‘flash erase verify’ has max IDDP of 20 mA and max IDDFL3 of 56 mA resulting
is a sum of 76 mA.
So
for the old parameter IDDP with 15 mA, the new version reads as
IDDP = 12+IDDP_PORST = 14.5 mA for the same application relevant case.
The following changes where done between Version 1.1 and 1.2 of this document:
Data Sheet
121
V 1.4.1, 2014-05
TC1782
History
•
•
•
•
•
•
•
•
•
•
•
removed products SAK-TC1182N-320F180HR, SAK-TC1182N-320F180HL, SAKTC1182N-256F133HR, and SAK-TC1182N-256F133HL
improve parameters IDDFL3
change for parameter NE note from Max. data retention to Min.
removed the term (typical)
change description of parameter tCAL for the ADC
correct typo for class D pads in tables 14 and 15
adapt Absolute Maximun Rating
add footnote to Flash parameter tERD
add note at the end of Pin Reliability in Overload section
clearify pad supply levels in Pin Reliability in Overload section
add footnote for D-Flash currents in power section
The following changes where done between Version 1.2 and 1.3 of this document:
•
•
•
•
•
•
•
•
•
•
•
add product option SAK-TC1782F-320F160HL, SAK-TC1782F-320F160HR, SAKTC1782N-320F160HL and SAK-TC1782N-320F160HR
update block diagrams to cover new option
add identification registers for new product option
rework first sentence for chapter 5.3
reduce min value for tL for both PLLs
add for MLI and SSC parameter: valid strong driver medium edge only
add footnote 5) for SSC parameters
update FADC parameter EFDNL
change MLI parameter t17 min value
rename section Extented Range Operating Conditions to Voltage Operating timing
Profiles and remove limitions on GPIOs
split RDSONM for class F pads into two conditions
The following changes where done between Version 1.3 and 1.3.1 of this document:
•
•
correct typos in table 1
– SAK-TC1782N-320N160HR -> SAK-TC1782F-320F160HR
– SAK-TC1782N-320N160HL -> SAK-TC1782F-320F160HL
reduce current for ILVDS from 24mA to 12mA (only 2 pairs are available)
The following changes where done between Version 1.3.1 and 1.4 of this document:
•
•
•
•
•
remove the following product options:
– SAK-TC1782F-256F133HR
– SAK-TC1782F-256F133HL
change t48 from 100ns to 200ns in table 42
change t49 from 100ns to 200ns in table 42
extend KOVAN conditon from IOV≤ 0 mA; IOV≥ -1 mA to IOV≤ 0 mA; IOV≥ -2 mA
change parameter EFOFF from +-90mV to +-120 for condition Calibration = No
The following changes where done between Version 1.4 and 1.4.1 of this document:
•
change parameter EFOFF from +-120mV to +-90 for condition Calibration = No
Data Sheet
122
V 1.4.1, 2014-05
w w w . i n f i n e o n . c o m
Published by Infineon Technologies AG