StrongIRFET™ IRL7486MTRPbF DirectFET® N-Channel Power MOSFET Application Brushed Motor drive applications BLDC Motor drive applications Battery powered circuits Half-bridge and full-bridge topologies Synchronous rectifier applications Resonant mode power supplies OR-ing and redundant power switches DC/DC and AC/DC converters DC/AC Inverters Benefits Optimized for Logic Level Drive Improved Gate, Avalanche and Dynamic dv/dt Ruggedness Fully Characterized Capacitance and Avalanche SOA Enhanced body diode dv/dt and di/dt Capability Lead-Free, RoHS Compliant VDSS 40V RDS(on) typ. 1.0m max @ VGS = 10V 1.25m RDS(on) typ. 1.5m max @ VGS = 4.5V 2.0m ID (Silicon Limited) 209A S S D G S S S S D DirectFET® ISOMETRIC ME Package Type IRL7486MPbF DirectFET® ME Standard Pack Form Quantity Tape and Reel 4800 4.0 IRL7486MTRPbF 200 ID = 123A 3.5 180 3.0 2.5 2.0 T J = 125°C 1.5 T J = 25°C 1.0 160 140 120 100 80 60 40 20 0.5 0 2 4 6 8 10 12 14 16 18 20 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage 1 Orderable Part Number 220 ID, Drain Current (A) RDS(on), Drain-to -Source On Resistance (m ) Base part number www.irf.com © 2015 International Rectifier 25 50 75 100 125 150 T C , Case Temperature (°C) Fig 2. Maximum Drain Current vs. Case Temperature Submit Datasheet Feedback May 14, 2015 IRL7486MTRPbF Absolute Maximum Ratings Symbol Parameter ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited) Pulsed Drain Current IDM PD @TC = 25°C Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage VGS Operating Junction and TJ Storage Temperature Range TSTG Avalanche Characteristics EAS (Thermally limited) Single Pulse Avalanche Energy EAS (Thermally limited) Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value EAS (tested) Avalanche Current IAR EAR Repetitive Aval`anche Energy Thermal Resistance Symbol Parameter Junction-to-Ambient RJA Junction-to-Ambient RJA Junction-to-Ambient RJA Junction-to-Case RJC Junction-to-PCB Mounted RJ-PCB Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS Drain-to-Source Breakdown Voltage V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage IDSS Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance RG Notes: Mounted on minimum footprint full size board with metalized back and with small clip heatsink. Used double sided cooling , mounting pad with large heatsink. Surface mounted on 1 in. square Cu board (still air). 2 www.irf.com Min. Typ. Max. 40 ––– ––– ––– 35 ––– ––– 1.0 1.25 ––– 1.5 2.0 1.0 1.8 2.5 ––– ––– 1.0 ––– ––– 150 ––– ––– 100 ––– ––– -100 ––– 0.97 ––– Units A W W/°C V °C 80 190 111 mJ See Fig.15,16, 23a, 23b A mJ Typ. ––– 12.5 20 ––– 0.75 Max. 60 ––– ––– 1.2 ––– Units °C/W Units Conditions V VGS = 0V, ID = 250µA mV/°C Reference to 25°C, ID = 1.0mA VGS = 10V, ID = 123A m VGS = 4.5V, ID = 62A V VDS = VGS, ID = 150µA VDS = 40V, VGS = 0V µA VDS = 40V, VGS = 0V, TJ = 125°C VGS = 20V nA VGS = -20V TC measured with thermocouple mounted to top (Drain) of part. Mounted to a PCB with small clip heatsink (still air) © 2015 International Rectifier Max. 209 132 836 104 0.83 ± 20 -55 to + 150 Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) Submit Datasheet Feedback May 14, 2015 IRL7486MTRPbF Dynamic @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units Conditions gfs Forward Transconductance 427 ––– ––– S VDS = 10V, ID = 123A Qg Total Gate Charge ––– 76 111 ID = 123A Qgs Gate-to-Source Charge ––– 27 ––– VDS = 20V nC Qgd Gate-to-Drain ("Miller") Charge ––– 33 ––– VGS = 4.5V Qsync Total Gate Charge Sync. (Qg - Qgd) ––– 41 ––– ID = 123A, VDS =0V, VGS = 10V td(on) Turn-On Delay Time ––– 35 ––– VDD = 20V tr Rise Time ––– 110 ––– I = 30A ns D td(off) Turn-Off Delay Time ––– 54 ––– RG = 2.7 tf Fall Time ––– 47 ––– VGS = 4.5V Ciss Input Capacitance ––– 6904 ––– VGS = 0V Coss Output Capacitance ––– 939 ––– VDS = 25V Crss Reverse Transfer Capacitance ––– 607 ––– pF ƒ = 1.0MHz Coss eff. (ER) Effective Output Capacitance (Energy Related) ––– 1150 ––– VGS = 0V, VDS = 0V to 32V Coss eff. (TR) Effective Output Capacitance (Time Related) ––– 1376 ––– VGS = 0V, VDS = 0V to 32V Diode Characteristics Symbol Parameter IS Continuous Source Current (Body Diode) ISM Pulsed Source Current (Body Diode) Diode Forward Voltage VSD dv/dt Peak Diode Recovery trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Reverse Recovery Current Min. Typ. Max. Units Conditions MOSFET symbol ––– ––– 104 showing the A integral reverse ––– ––– 836 p-n junction diode. ––– ––– 1.2 V TJ= 25°C,IS =123A, VGS = 0V D G S ––– 3.6 ––– ––– ––– ––– ––– ––– 43 44 55 56 2.1 ––– ––– ––– ––– ––– TJ =150°C,IS =123A, VDS = 40V TJ = 25° C VR = 34V, ns TJ = 125°C IF = 123A TJ = 25°C di/dt = 100A/µs nC TJ = 125°C A TJ = 25°C V/ns Notes: Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.011mH RG = 50, IAS = 123A, VGS =10V. ISD ≤ 123A, di/dt ≤ 1056A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C. Pulse width ≤ 400µs; duty cycle ≤ 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. 3 www.irf.com © 2015 International Rectifier Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. R is measured at TJ approximately 90°C. This value determined from sample failure population, starting TJ = 25°C, L= 0.011mH, RG = 50, IAS = 123A, VGS =10V. Limited by TJmax, starting TJ = 25°C, L = 1.0mH RG = 50, IAS = 20A, VGS =10V. Submit Datasheet Feedback May 14, 2015 IRL7486MTRPbF 1000 1000 VGS 15V 10V 6.0V 5.0V 4.5V 4.0V 3.5V 3.0V 100 BOTTOM 3.0V 10 60µs PULSE WIDTH BOTTOM 100 3.0V 60µs PULSE WIDTH Tj = 150°C Tj = 25°C 1 10 0.1 1 10 100 0.1 V DS, Drain-to-Source Voltage (V) 100 2.0 T J = 150°C 100 T J = 25°C 10 VDS = 10V 60µs PULSE WIDTH RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 10 Fig 4. Typical Output Characteristics 1000 1.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 ID = 123A VGS = 10V 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 6.0 -60 -40 -20 0 Fig 5. Typical Transfer Characteristics 100000 Fig 6. Normalized On-Resistance vs. Temperature 14 VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ Ciss = C gs + Cgd, C ds SHORTED Crss = C gd Coss = Cds + Cgd 10000 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) 1 V DS, Drain-to-Source Voltage (V) Fig 3. Typical Output Characteristics Ciss Coss Crss 1000 ID= 123A 12 VDS= 32V VDS= 20V 10 8 6 4 2 0 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Capacitance vs. Drain-to-Source Voltage 4 VGS 15V 10V 6.0V 5.0V 4.5V 4.0V 3.5V 3.0V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP www.irf.com © 2015 International Rectifier 0 20 40 60 80 100 120 140 160 180 200 QG, Total Gate Charge (nC) Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage Submit Datasheet Feedback May 14, 2015 IRL7486MTRPbF 1000 100 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 T J = 150°C 10 T J = 25°C 1 100µsec 100 OPERATION IN THIS AREA LIMITED BY R (on) DS 10 10msec 1 Tc = 25°C Tj = 150°C Single Pulse VGS = 0V 0.1 DC 0.1 0.2 0.4 0.6 0.8 0.01 1.0 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) Fig 10. Maximum Safe Operating Area Fig 9. Typical Source-Drain Diode Forward Voltage 50 0.9 Id = 1.0mA 49 0.8 48 0.7 0.6 47 Energy (µJ) V(BR)DSS , Drain-to-Source Breakdown Voltage (V) 1msec 46 45 0.5 0.4 0.3 44 0.2 43 0.1 42 0.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 0 T J , Temperature ( °C ) 5 10 15 20 25 30 35 40 VDS, Drain-to-Source Voltage (V) RDS(on), Drain-to -Source On Resistance ( m) Fig 11. Drain-to-Source Breakdown Voltage Fig 12. Typical Coss Stored Energy 4.5 Vgs = 3.5V Vgs = 4.0V Vgs = 4.5V Vgs = 5.5V Vgs = 6.0V Vgs = 8.0V Vgs = 10V 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 20 40 60 80 100 120 140 160 180 200 ID , Drain Current (A) Fig 13. Typical On-Resistance vs. Drain Current 5 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback May 14, 2015 IRL7486MTRPbF Thermal Response ( Z thJC ) °C/W 10 1 D = 0.50 0.20 0.10 0.05 0.1 0.02 0.01 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case Avalanche Current (A) 1000 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 125°C and Tstart =25°C (Single Pulse) 100 10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25°C and Tstart = 125°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Avalanche Current vs. Pulse Width EAR , Avalanche Energy (mJ) 100 TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 123A 80 60 40 20 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature 6 www.irf.com © 2015 International Rectifier Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1.Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 23a, 23b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC Iav = 2T/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Submit Datasheet Feedback May 14, 2015 IRL7486MTRPbF 2.6 9 2.4 8 2.2 7 2.0 1.8 ID = 150µA ID = 250µA 1.6 1.4 TJ = 125°C 5 4 ID = 1.0mA ID = 1.0A 1.2 IF = 82A V R = 34V TJ = 25°C 6 IRRM (A) VGS(th) , Gate threshold Voltage (V) 3 2 1.0 1 0.8 -75 -50 -25 0 25 50 100 75 100 125 150 200 300 T J , Temperature ( °C ) Fig 17. Threshold Voltage vs. Temperature 600 700 180 IF = 123A V R = 34V IF = 82A V R = 34V TJ = 25°C 160 TJ = 25°C TJ = 125°C 140 6 QRR (nC) IRRM (A) 7 500 Fig 18. Typical Recovery Current vs. dif/dt 9 8 400 diF /dt (A/µs) 5 120 100 4 80 3 60 2 TJ = 125°C 40 100 200 300 400 500 600 700 100 200 300 diF /dt (A/µs) 400 500 600 700 diF /dt (A/µs) Fig 20. Typical Stored Charge vs. dif/dt Fig 19. Typical Recovery Current vs. dif/dt 180 160 QRR (nC) 140 IF = 123A V R = 34V TJ = 25°C TJ = 125°C 120 100 80 60 40 100 200 300 400 500 600 700 diF /dt (A/µs) Fig 21. Typical Stored Charge vs. dif/dt 7 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback May 14, 2015 IRL7486MTRPbF Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS tp 15V DRIVER L VDS D.U.T RG IAS 20V tp + V - DD A I AS 0.01 Fig 23a. Unclamped Inductive Test Circuit Fig 23b. Unclamped Inductive Waveforms Fig 24a. Switching Time Test Circuit Fig 24b. Switching Time Waveforms Id Vds Vgs VDD Vgs(th) Qgs1 Qgs2 Fig 25a. Gate Charge Test Circuit 8 www.irf.com © 2015 International Rectifier Qgd Qgodr Fig 25b. Gate Charge Waveform Submit Datasheet Feedback May 14, 2015 IRL7486MTRPbF DirectFET® Board Footprint, ME Outline (Medium Size Can, E-Designation) Please see DirectFET® application note AN-1035 for all details regarding the assembly of DirectFET®. This includes all recommendations for stencil and substrate designs. G = GATE D = DRAIN S = SOURCE D D G S S S S S D D Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 9 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback May 14, 2015 IRL7486MTRPbF DirectFET® Outline Dimension, ME Outline (Medium Size Can, E-Designation) Please see DirectFET® application note AN-1035 for all details regarding the assembly of DirectFET®. This includes all recommendations for stencil and substrate designs. DIMENSIONS CODE A B C D E F G H J J1 K L L1 M N P METRIC MIN MAX 6.25 6.35 4.80 5.05 3.85 3.95 0.35 0.45 0.58 0.62 1.08 1.12 0.93 0.97 1.28 1.32 0.38 0.42 0.58 0.62 0.88 0.92 2.08 2.12 3.63 3.67 0.59 0.70 0.02 0.08 0.08 0.17 IMPERIAL MAX MIN 0.250 0.246 0.199 0.189 0.156 0.152 0.018 0.014 0.024 0.023 0.044 0.043 0.037 0.038 0.050 0.052 0.017 0.015 0.023 0.024 0.035 0.036 0.083 0.082 0.143 0.144 0.023 0.028 0.0008 0.003 0.003 0.007 DirectFET® Part Marking LOGO GATE MARKING PART NUMBER BATCH NUMBER DATE CODE Line above the last character of the date code indicates "Lead-Free" Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback May 14, 2015 IRL7486MTRPbF DirectFET® Tape & Reel Dimension (Showing component orientation). LOADED TAPE FEED DIRECTION NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. Ordered as IRL7486MTRPBF. DIMENSIONS IMPERIAL METRIC MIN MAX MIN MAX 0.311 0.319 7.90 8.10 0.154 3.90 0.161 4.10 0.469 0.484 11.90 12.30 0.215 0.219 5.45 5.55 0.201 5.10 0.209 5.30 0.256 0.264 6.50 6.70 0.059 N.C 1.50 N.C 0.059 1.50 0.063 1.60 REEL DIMENSIONS STANDARD OPTION (QTY 4800) IMPERIAL METRIC MIN CODE MAX MIN MAX 12.992 A N.C 330.0 N.C 0.795 B 20.2 N.C N.C 0.504 C 12.8 0.520 13.2 0.059 D 1.5 N.C N.C 3.937 E 100.0 N.C N.C F N.C N.C 0.724 18.4 G 0.488 12.4 0.567 14.4 H 0.469 11.9 0.606 15.4 Note: For the most current drawing please refer to IR webite at http://www.irf.com/package/ Qualification Information† Industrial * Qualification Level (per JEDEC JESD47F†† guidelines) MSL1 DFET 1.5 Moisture Sensitivity Level (per JEDEC J-STD-020D††) Yes RoHS Compliant † Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability †† Applicable version of JEDEC standard at the time of product release. * Industrial qualification standards except autoclave test conditions. Revision History Date 05/14/2015 Comments Updated registered trademark from DirectFETTM to DirectFET® on page 1,9 and 10. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/ 11 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback May 14, 2015