IRL7486MTRPBF

StrongIRFET™
IRL7486MTRPbF
DirectFET® N-Channel Power MOSFET 
Application
Brushed Motor drive applications
 BLDC Motor drive applications
Battery powered circuits
 Half-bridge and full-bridge topologies
 Synchronous rectifier applications
 Resonant mode power supplies
 OR-ing and redundant power switches
 DC/DC and AC/DC converters
 DC/AC Inverters
Benefits
Optimized for Logic Level Drive
Improved Gate, Avalanche and Dynamic dv/dt Ruggedness
Fully Characterized Capacitance and Avalanche SOA
Enhanced body diode dv/dt and di/dt Capability
Lead-Free, RoHS Compliant
VDSS
40V
RDS(on) typ.
1.0m
max
@ VGS = 10V
1.25m
RDS(on) typ.
1.5m
max
@ VGS = 4.5V
2.0m
ID (Silicon Limited)
209A
S
S
D
G
S
S
S
S
D
DirectFET® ISOMETRIC
ME
Package Type
IRL7486MPbF
DirectFET® ME
Standard Pack
Form
Quantity
Tape and Reel
4800
4.0
IRL7486MTRPbF
200
ID = 123A
3.5
180
3.0
2.5
2.0
T J = 125°C
1.5
T J = 25°C
1.0
160
140
120
100
80
60
40
20
0.5
0
2
4
6
8
10
12
14
16
18
20
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
1
Orderable Part Number
220
ID, Drain Current (A)
RDS(on), Drain-to -Source On Resistance (m )
Base part number
www.irf.com
© 2015 International Rectifier
25
50
75
100
125
150
T C , Case Temperature (°C)
Fig 2. Maximum Drain Current vs. Case Temperature
Submit Datasheet Feedback
May 14, 2015
IRL7486MTRPbF
Absolute Maximum Ratings
Symbol
Parameter
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
Pulsed Drain Current 
IDM
PD @TC = 25°C Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
VGS
Operating Junction and
TJ
Storage Temperature Range
TSTG
Avalanche Characteristics
EAS (Thermally limited) Single Pulse Avalanche Energy 
EAS (Thermally limited) Single Pulse Avalanche Energy 
Single Pulse Avalanche Energy Tested Value 
EAS (tested)
Avalanche Current 
IAR
EAR
Repetitive Aval`anche Energy 
Thermal Resistance
Symbol
Parameter
Junction-to-Ambient 
RJA
Junction-to-Ambient 
RJA
Junction-to-Ambient 
RJA
Junction-to-Case 
RJC
Junction-to-PCB Mounted
RJ-PCB
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
V(BR)DSS
Drain-to-Source Breakdown Voltage
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
Gate Threshold Voltage
IDSS
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Internal Gate Resistance
RG
Notes:
 Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
 Used double sided cooling , mounting pad with large heatsink.
 Surface mounted on 1 in. square Cu
board (still air).
2
www.irf.com
Min. Typ. Max.
40
––– –––
–––
35
–––
––– 1.0 1.25
––– 1.5
2.0 1.0
1.8 2.5
––– ––– 1.0
––– ––– 150
––– ––– 100
––– ––– -100
––– 0.97 –––
Units
A
W
W/°C
V
°C
80
190
111
mJ
See Fig.15,16, 23a, 23b
A
mJ
Typ.
–––
12.5
20
–––
0.75
Max.
60
–––
–––
1.2
–––
Units
°C/W
Units
Conditions
V
VGS = 0V, ID = 250µA
mV/°C Reference to 25°C, ID = 1.0mA
VGS = 10V, ID = 123A 
m
VGS = 4.5V, ID = 62A 
V
VDS = VGS, ID = 150µA
VDS = 40V, VGS = 0V
µA
VDS = 40V, VGS = 0V, TJ = 125°C
VGS = 20V
nA
VGS = -20V

 TC measured with thermocouple mounted to top (Drain) of part.
 Mounted to a PCB with small clip
heatsink (still air)
© 2015 International Rectifier
Max.
209
132
836
104
0.83
± 20
-55 to + 150
 Mounted on minimum footprint full size
board with metalized back and with
small clip heatsink (still air)
Submit Datasheet Feedback
May 14, 2015
IRL7486MTRPbF
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
Min. Typ. Max. Units
Conditions
gfs
Forward Transconductance
427 ––– –––
S VDS = 10V, ID = 123A
Qg
Total Gate Charge
–––
76
111
ID = 123A
Qgs
Gate-to-Source Charge
–––
27
–––
VDS = 20V
nC
Qgd
Gate-to-Drain ("Miller") Charge
–––
33
–––
VGS = 4.5V 
Qsync
Total Gate Charge Sync. (Qg - Qgd)
–––
41
–––
ID = 123A, VDS =0V, VGS = 10V
td(on)
Turn-On Delay Time
–––
35
–––
VDD = 20V
tr
Rise Time
––– 110 –––
I = 30A
ns D
td(off)
Turn-Off Delay Time
–––
54
–––
RG = 2.7
tf
Fall Time
–––
47
–––
VGS = 4.5V 
Ciss
Input Capacitance
––– 6904 –––
VGS = 0V
Coss
Output Capacitance
––– 939 –––
VDS = 25V
Crss
Reverse Transfer Capacitance
––– 607 –––
pF ƒ = 1.0MHz
Coss eff. (ER) Effective Output Capacitance (Energy Related) ––– 1150 –––
VGS = 0V, VDS = 0V to 32V 
Coss eff. (TR) Effective Output Capacitance (Time Related)
––– 1376 –––
VGS = 0V, VDS = 0V to 32V 
Diode Characteristics
Symbol
Parameter
IS
Continuous Source Current
(Body Diode)
ISM
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
VSD
dv/dt
Peak Diode Recovery 
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Reverse Recovery Current
Min. Typ. Max. Units
Conditions
MOSFET symbol
––– –––
104
showing the
A
integral reverse
––– –––
836
p-n junction diode.
––– ––– 1.2
V TJ= 25°C,IS =123A, VGS = 0V
D
G
S
–––
3.6
–––
–––
–––
–––
–––
–––
43
44
55
56
2.1
–––
–––
–––
–––
–––
TJ =150°C,IS =123A,
VDS = 40V
TJ = 25° C VR = 34V,
ns
TJ = 125°C IF = 123A
TJ = 25°C di/dt = 100A/µs 
nC
TJ = 125°C
A TJ = 25°C
V/ns
Notes:
Repetitive rating; pulse width limited by max. junction
temperature.
 Limited by TJmax, starting TJ = 25°C, L = 0.011mH
RG = 50, IAS = 123A, VGS =10V.
 ISD ≤ 123A, di/dt ≤ 1056A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C.
Pulse width ≤ 400µs; duty cycle ≤ 2%.
Coss eff. (TR) is a fixed capacitance that gives the same
charging time as Coss while VDS is rising from 0 to 80%
VDSS.
3
www.irf.com
© 2015 International Rectifier

Coss eff. (ER) is a fixed capacitance that gives the
same energy as Coss while VDS is rising from 0 to
80% VDSS.

R is measured at TJ approximately 90°C.
 This value determined from sample failure population,
starting TJ = 25°C, L= 0.011mH, RG = 50, IAS = 123A,
VGS =10V.
 Limited by TJmax, starting TJ = 25°C, L = 1.0mH
RG = 50, IAS = 20A, VGS =10V.
Submit Datasheet Feedback
May 14, 2015
IRL7486MTRPbF
1000
1000
VGS
15V
10V
6.0V
5.0V
4.5V
4.0V
3.5V
3.0V
100
BOTTOM
3.0V
10
 60µs PULSE WIDTH
BOTTOM
100
3.0V
 60µs PULSE WIDTH
Tj = 150°C
Tj = 25°C
1
10
0.1
1
10
100
0.1
V DS, Drain-to-Source Voltage (V)
100
2.0
T J = 150°C
100
T J = 25°C
10
VDS = 10V
 60µs PULSE WIDTH
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
10
Fig 4. Typical Output Characteristics
1000
1.0
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
ID = 123A
VGS = 10V
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
6.0
-60 -40 -20 0
Fig 5. Typical Transfer Characteristics
100000
Fig 6. Normalized On-Resistance vs. Temperature
14
VGS, Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = C gd
Coss = Cds + Cgd
10000
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
1
V DS, Drain-to-Source Voltage (V)
Fig 3. Typical Output Characteristics
Ciss
Coss
Crss
1000
ID= 123A
12
VDS= 32V
VDS= 20V
10
8
6
4
2
0
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage
4
VGS
15V
10V
6.0V
5.0V
4.5V
4.0V
3.5V
3.0V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
www.irf.com
© 2015 International Rectifier
0
20 40 60 80 100 120 140 160 180 200
QG, Total Gate Charge (nC)
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage
Submit Datasheet Feedback
May 14, 2015
IRL7486MTRPbF
1000
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
T J = 150°C
10
T J = 25°C
1
100µsec
100
OPERATION
IN THIS AREA
LIMITED BY R (on)
DS
10
10msec
1
Tc = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
0.1
DC
0.1
0.2
0.4
0.6
0.8
0.01
1.0
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
Fig 10. Maximum Safe Operating Area
Fig 9. Typical Source-Drain Diode Forward Voltage
50
0.9
Id = 1.0mA
49
0.8
48
0.7
0.6
47
Energy (µJ)
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
1msec
46
45
0.5
0.4
0.3
44
0.2
43
0.1
42
0.0
-60 -40 -20 0
20 40 60 80 100 120 140 160
0
T J , Temperature ( °C )
5
10
15
20
25
30
35
40
VDS, Drain-to-Source Voltage (V)
RDS(on), Drain-to -Source On Resistance ( m)
Fig 11. Drain-to-Source Breakdown Voltage
Fig 12. Typical Coss Stored Energy
4.5
Vgs = 3.5V
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.5V
Vgs = 6.0V
Vgs = 8.0V
Vgs = 10V
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
20 40 60 80 100 120 140 160 180 200
ID , Drain Current (A)
Fig 13. Typical On-Resistance vs. Drain Current
5
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
May 14, 2015
IRL7486MTRPbF
Thermal Response ( Z thJC ) °C/W
10
1
D = 0.50
0.20
0.10
0.05
0.1
0.02
0.01
0.01
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Avalanche Current (A)
1000
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming  Tj = 125°C and
Tstart =25°C (Single Pulse)
100
10
1
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming j = 25°C and
Tstart = 125°C.
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Avalanche Current vs. Pulse Width
EAR , Avalanche Energy (mJ)
100
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 123A
80
60
40
20
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy vs. Temperature
6
www.irf.com
© 2015 International Rectifier
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1.Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for every
part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not
exceeded.
3. Equation below based on circuit and waveforms shown in Figures
23a, 23b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage
increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed Tjmax
(assumed as 25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC
Iav = 2T/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav Submit Datasheet Feedback
May 14, 2015
IRL7486MTRPbF
2.6
9
2.4
8
2.2
7
2.0
1.8
ID = 150µA
ID = 250µA
1.6
1.4
TJ = 125°C
5
4
ID = 1.0mA
ID = 1.0A
1.2
IF = 82A
V R = 34V
TJ = 25°C
6
IRRM (A)
VGS(th) , Gate threshold Voltage (V)
3
2
1.0
1
0.8
-75 -50 -25
0
25
50
100
75 100 125 150
200
300
T J , Temperature ( °C )
Fig 17. Threshold Voltage vs. Temperature
600
700
180
IF = 123A
V R = 34V
IF = 82A
V R = 34V
TJ = 25°C
160
TJ = 25°C
TJ = 125°C
140
6
QRR (nC)
IRRM (A)
7
500
Fig 18. Typical Recovery Current vs. dif/dt
9
8
400
diF /dt (A/µs)
5
120
100
4
80
3
60
2
TJ = 125°C
40
100
200
300
400
500
600
700
100
200
300
diF /dt (A/µs)
400
500
600
700
diF /dt (A/µs)
Fig 20. Typical Stored Charge vs. dif/dt
Fig 19. Typical Recovery Current vs. dif/dt
180
160
QRR (nC)
140
IF = 123A
V R = 34V
TJ = 25°C
TJ = 125°C
120
100
80
60
40
100
200
300
400
500
600
700
diF /dt (A/µs)
Fig 21. Typical Stored Charge vs. dif/dt
7
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
May 14, 2015
IRL7486MTRPbF
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
V(BR)DSS
tp
15V
DRIVER
L
VDS
D.U.T
RG
IAS
20V
tp
+
V
- DD
A
I AS
0.01
Fig 23a. Unclamped Inductive Test Circuit
Fig 23b. Unclamped Inductive Waveforms
Fig 24a. Switching Time Test Circuit
Fig 24b. Switching Time Waveforms
Id
Vds
Vgs
VDD Vgs(th)
Qgs1 Qgs2
Fig 25a. Gate Charge Test Circuit
8
www.irf.com
© 2015 International Rectifier
Qgd
Qgodr
Fig 25b. Gate Charge Waveform
Submit Datasheet Feedback
May 14, 2015
IRL7486MTRPbF
DirectFET® Board Footprint, ME Outline
(Medium Size Can, E-Designation)
Please see DirectFET® application note AN-1035 for all details regarding the assembly of DirectFET®.
This includes all recommendations for stencil and substrate designs.
G = GATE
D = DRAIN
S = SOURCE
D
D
G
S
S
S
S
S
D
D
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
9
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
May 14, 2015
IRL7486MTRPbF
DirectFET® Outline Dimension, ME Outline
(Medium Size Can, E-Designation)
Please see DirectFET® application note AN-1035 for all details regarding the assembly of DirectFET®. This includes all
recommendations for stencil and substrate designs.
DIMENSIONS
CODE
A
B
C
D
E
F
G
H
J
J1
K
L
L1
M
N
P
METRIC
MIN MAX
6.25 6.35
4.80 5.05
3.85 3.95
0.35 0.45
0.58 0.62
1.08 1.12
0.93 0.97
1.28 1.32
0.38 0.42
0.58 0.62
0.88 0.92
2.08 2.12
3.63 3.67
0.59 0.70
0.02 0.08
0.08 0.17
IMPERIAL
MAX
MIN
0.250
0.246
0.199
0.189
0.156
0.152
0.018
0.014
0.024
0.023
0.044
0.043
0.037
0.038
0.050
0.052
0.017
0.015
0.023
0.024
0.035
0.036
0.083
0.082
0.143
0.144
0.023
0.028
0.0008 0.003
0.003
0.007
DirectFET® Part Marking
LOGO
GATE MARKING
PART NUMBER
BATCH NUMBER
DATE CODE
Line above the last character of
the date code indicates "Lead-Free"
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
10
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
May 14, 2015
IRL7486MTRPbF
DirectFET® Tape & Reel Dimension (Showing component orientation).
LOADED TAPE FEED DIRECTION
NOTE: CONTROLLING
DIMENSIONS IN MM
CODE
A
B
C
D
E
F
G
H
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. Ordered as IRL7486MTRPBF.
DIMENSIONS
IMPERIAL
METRIC
MIN
MAX
MIN
MAX
0.311
0.319
7.90
8.10
0.154
3.90
0.161
4.10
0.469
0.484
11.90
12.30
0.215
0.219
5.45
5.55
0.201
5.10
0.209
5.30
0.256
0.264
6.50
6.70
0.059
N.C
1.50
N.C
0.059
1.50
0.063
1.60
REEL DIMENSIONS
STANDARD OPTION (QTY 4800)
IMPERIAL
METRIC
MIN
CODE
MAX
MIN
MAX
12.992
A
N.C
330.0
N.C
0.795
B
20.2
N.C
N.C
0.504
C
12.8
0.520
13.2
0.059
D
1.5
N.C
N.C
3.937
E
100.0
N.C
N.C
F
N.C
N.C
0.724
18.4
G
0.488
12.4
0.567
14.4
H
0.469
11.9
0.606
15.4
Note: For the most current drawing please refer to IR webite at http://www.irf.com/package/
Qualification Information† Industrial *
Qualification Level (per JEDEC JESD47F†† guidelines)
MSL1
DFET 1.5
Moisture Sensitivity Level
(per JEDEC J-STD-020D††)
Yes
RoHS Compliant
†
Qualification standards can be found at International Rectifier’s web site
http://www.irf.com/product-info/reliability
††
Applicable version of JEDEC standard at the time of product release.
* Industrial qualification standards except autoclave test conditions.
Revision History
Date
05/14/2015
Comments

Updated registered trademark from DirectFETTM to DirectFET® on page 1,9 and 10.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
11
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
May 14, 2015