StrongIRFET™ IRF40B207 HEXFET® Power MOSFET Application Brushed Motor drive applications BLDC Motor drive applications Battery powered circuits Half-bridge and full-bridge topologies Synchronous rectifier applications Resonant mode power supplies OR-ing and redundant power switches DC/DC and AC/DC converters DC/AC Inverters D 4.5m 95A TO-220AB IRF40B207 D Drain Standard Pack Form Quantity Tube 50 15 S Source Orderable Part Number IRF40B207 100 ID = 57A 12 80 9 TJ = 125°C 6 3 60 40 20 TJ = 25°C 0 0 2 4 6 8 10 12 14 16 18 20 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage 1 max S D G ID, Drain Current (A) RDS(on), Drain-to -Source On Resistance (m) TO-220 3.6m ID G Gate IRF40B207 RDS(on) typ. S Benefits Improved Gate, Avalanche and Dynamic dV/dt Ruggedness Fully Characterized Capacitance and Avalanche SOA Enhanced body diode dV/dt and dI/dt Capability Lead-Free* RoHS Compliant, Halogen-Free Package Type 40V G Base part number VDSS www.irf.com © 2015 International Rectifier 25 50 75 100 125 150 175 TC , Case Temperature (°C) Fig 2. Maximum Drain Current vs. Case Temperature Submit Datasheet Feedback April 1, 2015 IRF40B207 Absolute Maximum Rating Symbol ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS Parameter Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage TJ Operating Junction and Max. 95 67 380 83 0.56 ± 20 -55 to + 175 Soldering Temperature, for 10 seconds (1.6mm from case) 300 Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Avalanche Characteristics 85 EAS (Thermally limited) Single Pulse Avalanche Energy 167 EAS (Thermally limited) Single Pulse Avalanche Energy IAR Avalanche Current See Fig 15, 16, 23a, 23b Repetitive Avalanche Energy EAR Thermal Resistance Symbol Parameter Typ. Max. Junction-to-Case RJC ––– 1.8 Case-to-Sink, Flat Greased Surface RCS 0.50 ––– Junction-to-Ambient RJA ––– 62 Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS Drain-to-Source Breakdown Voltage V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage IDSS Drain-to-Source Leakage Current IGSS RG Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Gate Resistance Min. Typ. Max. 40 ––– ––– ––– 0.039 ––– ––– 3.6 4.5 ––– 5.4 ––– 2.2 3.0 3.9 ––– ––– 1.0 ––– ––– 150 ––– ––– 100 ––– ––– -100 ––– 2.0 ––– Units A W W/°C V °C mJ A mJ Units °C/W Units Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA VGS = 10V, ID = 57A m VGS = 6.0V, ID = 29A V VDS = VGS, ID = 50µA VDS =40 V, VGS = 0V µA VDS =40V,VGS = 0V,TJ =125°C VGS = 20V nA VGS = -20V Notes: Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.052mH, RG = 50, IAS = 57A, VGS =10V. ISD 57A, di/dt 860A/µs, VDD V(BR)DSS, TJ 175°C. Pulse width 400µs; duty cycle 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. R is measured at TJ approximately 90°C. Limited by TJmax, starting TJ = 25°C, L = 1mH, RG = 50, IAS = 18A, VGS =10V. 2 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback April 1, 2015 IRF40B207 Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain Charge Total Gate Charge Sync. (Qg– Qgd) Turn-On Delay Time Rise Time Min. 170 ––– ––– ––– ––– ––– ––– Typ. ––– 45 12 15 30 7.8 35 td(off) Turn-Off Delay Time ––– 25 tf Ciss Coss Fall Time Input Capacitance Output Capacitance ––– ––– ––– 19 2110 340 Crss Reverse Transfer Capacitance Effective Output Capacitance (Energy Related) Output Capacitance (Time Related) ––– 220 ––– ––– 400 ––– VGS = 0V, VDS = 0V to 32V ––– 498 ––– VGS = 0V, VDS = 0V to 32V Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Min. Typ. Max. Units ––– ––– 95 ––– ––– 380 Conditions MOSFET symbol showing the integral reverse p-n junction diode. VSD Diode Forward Voltage ––– 0.9 1.3 dv/dt Peak Diode Recovery dv/dt ––– 6.4 ––– trr Reverse Recovery Time ––– 21 ––– Qrr Reverse Recovery Charge IRRM Reverse Recovery Current ––– ––– ––– ––– 22 13 15 1.1 ––– ––– ––– ––– Coss eff.(ER) Coss eff.(TR) Max. Units Conditions ––– S VDS = 10V, ID =57A 68 ID = 57A VDS = 20V ––– nC VGS = 10V ––– ––– ––– VDD = 20V ––– ID = 30A ns ––– RG= 2.7 VGS = 10V ––– ––– ––– pF VGS = 0V VDS = 25V ƒ = 1.0MHz, See Fig.7 Diode Characteristics Symbol IS ISM 3 www.irf.com © 2015 International Rectifier A V D G S TJ = 25°C,IS = 57A,VGS = 0V V/ns TJ = 175°C,IS = 57A,VDS = 40V ns TJ = 25°C VDD = 34V TJ = 125°C IF = 57A, TJ = 25°C di/dt = 100A/µs nC TJ = 125°C A TJ = 25°C Submit Datasheet Feedback April 1, 2015 IRF40B207 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 100 10 4.5V 1 BOTTOM 4.5V 10 60µs PULSE WIDTH 60µs PULSE WIDTH Tj = 175°C Tj = 25°C 0.1 1 0.1 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) 100 2.2 R DS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current(A) 10 Fig 4. Typical Output Characteristics 1000 TJ = 175°C 100 10 TJ = 25°C 1 VDS = 10V 60µs PULSE WIDTH 0.1 ID = 57A VGS = 10V 1.8 1.4 1.0 0.6 2 4 6 8 10 -60 60 100 140 180 14 VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd 10000 Ciss 1000 20 Fig 6. Normalized On-Resistance vs. Temperature Fig 5. Typical Transfer Characteristics 100000 -20 TJ , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) 1 VDS, Drain-to-Source Voltage (V) Fig 3. Typical Output Characteristics Coss Crss ID= 57A 12 VDS = 32V VDS = 20V VDS= 8V 10 8 6 4 2 0 100 0.1 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 7. Typical Capacitance vs. Drain-to-Source Voltage 4 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V www.irf.com © 2015 International Rectifier 0 10 20 30 40 50 60 QG, Total Gate Charge (nC) Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage Submit Datasheet Feedback April 1, 2015 IRF40B207 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 TJ = 175°C 100 TJ = 25°C 10 1 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 100µsec 10 1msec 1 10msec DC Tc = 25°C Tj = 175°C Single Pulse 0.1 VGS = 0V 0.01 0.1 0.0 0.5 1.0 1.5 2.0 0.1 2.5 1 100 VDS , Drain-to-Source Voltage (V) VSD , Source-to-Drain Voltage (V) Fig 10. Maximum Safe Operating Area Fig 9. Typical Source-Drain Diode Forward Voltage 0.30 50 Id = 1.0mA 48 0.25 46 0.20 Energy (µJ) V(BR)DSS, Drain-to-Source Breakdown Voltage (V) 10 44 0.15 42 0.10 40 0.05 38 0.00 -60 -20 20 60 100 140 -5 180 TJ , Temperature ( °C ) 5 10 15 20 25 30 35 40 45 VDS, Drain-to-Source Voltage (V) Fig 11. Drain-to-Source Breakdown Voltage RDS (on), Drain-to -Source On Resistance (m) 0 Fig 12. Typical Coss Stored Energy 20 VGS = 5.5V VGS = 6.0V VGS = 7.0V VGS = 8.0V VGS = 10V 15 10 5 0 0 20 40 60 80 100 120 140 160 180 200 ID, Drain Current (A) Fig 13. Typical On-Resistance vs. Drain Current 5 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback April 1, 2015 IRF40B207 Thermal Response ( Z thJC ) °C/W 10 1 D = 0.50 0.20 0.10 0.05 0.1 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case Avalanche Current (A) 1000 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 150°C and Tstart = 25°C (Single Pulse) 100 10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Avalanche Current vs. Pulse Width EAR , Avalanche Energy (mJ) 100 TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 57A 80 60 40 20 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature 6 www.irf.com © 2015 International Rectifier Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1.Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 23a, 23b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 14) PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC Iav = 2T/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Submit Datasheet Feedback April 1, 2015 IRF40B207 7 3.5 IRRM (A) VGS(th), Gate threshold Voltage (V) 4.5 2.5 ID = 50µA ID = 250µA ID = 1.0mA ID = 1.0A 1.5 6 IF = 38A VR = 34V 5 TJ = 25°C TJ = 125°C 4 3 2 1 0 0.5 -75 -25 25 75 125 0 175 200 600 800 diF /dt (A/µs) TJ , Temperature ( °C ) Fig 18. Typical Recovery Current vs. dif/dt Fig 17. Threshold Voltage vs. Temperature 80 7 6 IF = 57A VR = 34V 70 IF = 38A VR = 34V 5 TJ = 25°C TJ = 125°C 60 TJ = 25°C TJ = 125°C QRR (nC) IRRM (A) 400 4 3 50 40 2 30 1 20 10 0 0 200 400 600 0 800 200 400 600 800 diF /dt (A/µs) diF /dt (A/µs) Fig 19. Typical Recovery Current vs. dif/dt Fig 20. Typical Stored Charge vs. dif/dt 80 IF = 57A VR = 34V 70 TJ = 25°C TJ = 125°C QRR (nC) 60 50 40 30 20 10 0 0 200 400 600 800 diF /dt (A/µs) Fig 21. Typical Stored Charge vs. dif/dt 7 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback April 1, 2015 IRF40B207 Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS tp 15V DRIVER L VDS D.U.T RG IAS 20V tp + V - DD A I AS 0.01 Fig 23a. Unclamped Inductive Test Circuit Fig 23b. Unclamped Inductive Waveforms Fig 24a. Switching Time Test Circuit Fig 24b. Switching Time Waveforms Id Vds Vgs VDD Vgs(th) Qgs1 Qgs2 Fig 25a. Gate Charge Test Circuit 8 www.irf.com © 2015 International Rectifier Qgd Qgodr Fig 25b. Gate Charge Waveform Submit Datasheet Feedback April 1, 2015 IRF40B207 TO-220AB Package Outline (Dimensions are shown in millimeters (inches)) TO-220AB Part Marking Information EXAM PLE: T H IS IS A N IR F 1 0 1 0 LO T C O D E 1789 ASSEM BLED O N W W 19, 2000 IN T H E A S S E M B L Y L IN E "C " N o t e : "P " in a s s e m b ly lin e p o s it io n in d ic a t e s "L e a d - F r e e " IN T E R N A T IO N A L R E C T IF IE R LO G O ASSEM BLY LO T C O D E PART NUM BER D ATE C O D E YEA R 0 = 2000 W EEK 19 L IN E C TO-220AB packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 9 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback April 1, 2015 IRF40B207 Qualification Information† Industrial (per JEDEC JESD47F) †† Qualification Level Moisture Sensitivity Level TO-220 N/A Yes RoHS Compliant † Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/ †† Applicable version of JEDEC standard at the time of product release. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/ 10 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback April 1, 2015